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We consider O(N)-symmetric bosonic ¢* field theories above four dimensions, and propose a new

reformulation in terms of an irreducible tensorial field with a cubic and Yukawa terms. The ¢* field theory
so rewritten exhibits real and nontrivial IR-stable fixed points near and below six dimension, for low values
of N such as N =2 and N = 3. The so-defined UV completions of the O(2) and O(3) models hence
constitute precious examples of asymptotically safe quantum field theories. The possibility of an extension

of our results to five dimensions is discussed.
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I. INTRODUCTION

The ¢* theory has been the cornerstone of our under-
standing of critical phenomena, and has served as a
prototypical field theory. Its ultraviolet (UV) and infrared
(IR) properties crucially depend on the number of dimen-
sions d and the symmetry O(N), where N is the number of
real components of the field ¢ [1]. For d < 4 the IR-stable
(critical) fixed point is at a finite positive value of the self-
interaction, which approaches zero as d tends to four, and
becomes negative and bicritical for d > 4. At dimensions
d > 4 therefore the long-distance (IR) behavior of the ¢*
theory is trivial, but there is a nontrivial, interacting,
UV-stable fixed point, albeit at a negative value of the
self-interaction, at which the theory appears unlikely to be
completely stable. A reformulation in which the theory at
the interacting UV fixed point would emerge from the
renormalization group (RG) flow of a more complete
theory would therefore be useful. Indeed, such a corre-
spondence between the UV-stable fixed point of one theory
and the IR-stable fixed point of another has been
established before between the Gross-Neveu model and
the Gross-Neveu-Yukawa field theory for dimensions
2 <d<4[2-6].

A possible such “UV completion” of the ¢* theory was
recently proposed by Fei, Giombi, and Klebanov [7] in the
form:

L= 30,0 + 50,0 + gzbdi 02, (1)

N[ =

where i = 1, ..., N, and the summation over the repeated
indices is assumed. The new scalar z may be understood as
the Hubbard-Stratonovich field used to decouple the
original (¢;¢;)* quartic term in the scalar channel, which
has acquired its own dynamics by the integration over the
high-energy modes of the original field ¢. The O(N)
symmetry also allows two IR-relevant quadratic terms,
m%zz, and mégb,-qbi, which have been tuned to zero to be at
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the critical surface. The advantage of this reformulation of
the ¢* theory is that the two interaction coupling constants
allowed by the O(N) symmetry, the self-interaction of the
new fields z, 4, and the “Yukawa” coupling g, are both
marginal in the same dimension d = 6. Below six dimen-
sions therefore one may hope to find a weakly-coupled
IR-stable fixed point at infinitesimal values of g and 4,
when m, = m, = 0. Such an interacting O(N)-symmetric
field theory above four dimensions would then at large
distances correspond to the ¢* theory at the UV-stable fixed
point in the original formulation, and provide a stable,
conformal, UV-complete version of it.

The above correspondence was further argued [7-9] to
be indeed born out at a sufficiently large value of N [10]: to
the lowest order in the small parameter ¢ = 6 — d the fixed-
point values of the couplings g and A are real, and
consequently the theory is unitary, only for N > 1038.
Further two-loop, three-loop, and four-loop corrections
[11] indicated a possible dramatic reduction of the critical
value of N when the parameter € is extended to the physical
value of ¢ =1, for example, but the question of the
existence of the unitary O(N)-symmetric conformal field
theory in five dimensions for reasonably low values of N
has remained open. In this paper we propose a different
reformulation of the ¢* theory, which yields such weakly
coupled, real, O(N)-symmetric IR-stable fixed points for
N =2 and N = 3 near six dimensions. The idea is to
decouple the ¢* term in the tensorial instead of in the scalar
channel. Instead of the theory (1) we consider:

L= 2 (0,20 + 5 (0,0 + g2ath Ny + ATl (2, A

(2)

N[ =

Here the indices i,j=1,...,N as before, but a =
l,....My where My = (N —1)(N +2)/2 is the number
of components of the irreducible (traceless) tensor of the
second rank under O(N) rotations. The My matrices A“
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provide a basis in the space of traceless, real, symmetric
N-dimensional matrices, and reduce to the two familiar real
Pauli matrices for N = 2, and the five real Gell-Mann
matrices for N = 3, for example [12]. The two IR-relevant
mass terms, m2z,z, and mgje;¢;, have again been tuned to
zero. Again, at such a critical surface with m, = my = 0
the couplings 4 and g are the only ones that at the Gaussian
fixed point turn IR relevant infinitesimally below d = 6,
and one hopes for a weakly-coupled IR-stable fixed point at
real values of the couplings. We indeed find such IR-stable
fixed points of (2) for N =2 and N = 3 near d = 6 in our
one-loop calculation, but not for N > 4. Our approach may
therefore be understood as being complementary to the
large-N strategy of Ref. [7]. The situation becomes par-
ticularly simple and transparent when N = 2 and the term
cubic in z in fact vanishes identically, leaving the theory
with a single IR-relevant Yukawa coupling g. We will
therefore begin our discussion in the next section with this
example.

The paper is organized as follows. In the next section we
start with the simplest example when N = 2. The general
case is then discussed next, in Sec. III. In Sec. IV we
present the one-loop flow equations and the concomitant
fixed-point structure in the A-g critical plane. We briefly
summarize and discuss the results in the concluding
section.

IL O(2) THEORY

Consider the bosonic ¢* field theory with two-
component real field ¢’ = (¢, $,). The quartic term
can obviously also be written as

(#7 + ¢3)° = (91 — #3)° + (2¢142)°
= (¢"030)* + (¢ 019)°. (3)
This suggests the following alternative Hubbard-

Stratonovich decoupling of the negative quartic term in
the Lagrangian density,

2
=S - Rp LB @)

which is

<¢2+¢2> SR Y )

where the index a € {1,3}, and 6, are the two real Pauli
matrices. The equivalence of the left- and right-hand sides
of Eq. (5) is exact (modulo normalization) at the level of the
partition function,
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+ lzaza + gza¢T6a¢>] , (6)

— 03)bi

2

which can straightforwardly be verified by integrating out
z, on the right-hand side of Eq. (6). The integration over the
high-energy modes of the field ¢ will generate further terms
in the expansion in powers of the auxiliary field z, and the
momentum, as allowed by the O(2) symmetry, such as
(0424)% (0424)", (2424)*, etc. Note that for N = 2 no term
cubic in z is possible, as Tr(c,0,0.) =0 for a, b,
c € {1,3}. Among the above allowed terms, in 6 —¢
dimensions we need to keep only the first one, since all
others will be IR irrelevant near the putative weakly-
coupled fixed point. The field theory therefore becomes

32)Za+ 5 bi(mG, = )i + 9249 0u,
(7)

which is recognized to be a special case of Eq. (2), in which
the term cubic in z is absent, and with the two mass terms
explicitly displayed for completeness.

1
L:—
2Za(

IIL. O(N > 2) THEORY

To see that a similar trick as in the previous section
can be played for any N, consider the quadratic form with
the Hubbard-Stratonovich fields z,, a = 1, ..., M, and the
basis in the traceless, real, symmetric N-dimensional matrix
space A“. In the sense of Hubbard-Stratonovich trans-
formation,

1
S ZaZa T 92" N = —

3 ¢A 00Ny (8)

Since, on the other hand, completeness of the set of
matrices A? in the space of real, symmetric, N-dimensional
matrices implies that [12]

2
——6ij0u )

ALAY = 6ibj + 8udji N

one finds that the right-hand side of Eq. (8) is actually
proportional to the standard ¢* term:

1 1
5 ZaZa T gZa¢TAa¢ = 92 ~—1 (¢i¢i)2' (10)
2 N

This identity, which generalizes Eq. (5) to higher values of
N, implies that the usual O(N)-symmetric quartic term
(¢p:¢p;)? can also be Hubbard-Stratonovich decoupled using
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FIG. 1.
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T

The one-loop diagrams that contribute to the RG flow dA/dIn b (top left) and dg/d In b (top right) and anomalous dimensions

of tensor field 77, (bottom left) and of scalar field 7,4 (bottom right). Wiggly internal lines: tensor-field propagator (z). Solid internal lines:

scalar-field propagator (¢).

M y real fields z,, that transform under the rotational group
O(N) as components of the traceless symmetric second-
rank tensor. The main novelty compared to the N = 2 case
is that the cubic invariant

Tr((z,A%)’] (11)

is finite when N > 2, and has the same engineering scaling
dimension as the Yukawa term z,¢” A%). In 6 — e dimen-
sion and when € < 1 it suffices then to consider the theory
in Eq. (2) with the two displayed cubic interaction terms
allowed by the O(N) symmetry only.

IV. RG FLOW

It is relatively straightforward to compute the one-loop
beta functions for the two cubic-term couplings. We set
m, = my = 0, and consider general N. (It will be possible
to set N to the special value N = 2 afterwards.) Performing
the usual Wilson’s momentum-shell mode elimination [13],
under the change of the UV cutoff Q into Q/b the
couplings flow according to the equations

dr 1 24 4
—5@—%mﬂ+%<N+4—N>ﬁ+—f,(u)

dinb 3

dg _1
dlnb 2

2
(e—nz—ﬁmhz+4<P—N>f
8\ >
+ 12 N+2_N qga, (13)
where the anomalous dimensions appearing above are

8 4
=12(N+2—— |22 +=-¢, 14
=i2(Ne2-g)R e

4 2

Note that both anomalous dimensions are manifestly
positive at any real fixed point and for N >2. Here
€ =6 —d, and we rescaled the couplings as Q7:—¢)/2 x
[Sy/(2m)Y)' /22 > A and QU+21=)/2[S, /(27)]'/2g > g.
Ss 1s the usual surface area of the unit sphere in d
dimensions. The diagrams that lead to the Eqgs. (12)—(14)
are depicted in Fig. 1.

Small perturbations out of the critical surface m, =
my = 0 are relevant in the sense of the RG, and governed
by the flow equations

dm? 8
= (2 — 2 22— —|)2 2
Jinb ( n.+7 <N+ N)zl )mz

+ 8gzm%¢, (16)

44(N+1—%>f@%+m@, (17)

where we rescaled Q' ~?m? > m2, QW *mj > my and
shifted the masses so that the position of the critical surface
remains m, = my = 0.

It is interesting to consider the evolution of the fixed-
point structure of these equations with N, treated as a
continuous variable.

(1) For 1 < N < 2.6534 there is a stable fixed point on
the critical surface m, = my = 0. For the physical
value of N = 2 the flow equation for g as well as the
anomalous dimensions become independent of A,
reflecting the fact that the term cubic in z in Eq. (2)
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FIG. 2. RG flow diagram at the critical surface m, = my =0
for 1 <N <2.653. O corresponds to the noninteracting,
Gaussian, fixed point. Fixed point A at ¢* =0 and 1* > 0 is
unstable toward the direction of g. B denotes the stable fixed
point. For the physical value of N = 2 (displayed), the term in
Eq. (2) that is cubic in z vanishes, and different values for 4
(horizontal axis) correspond to equivalent physical points.

vanishes in this case. We then find the location of the
fixed point along the g-axis to be

3
)P =_—e. 18
(5 =5 (18)
At this fixed point, the anomalous dimensions have
the values
2
Hy =21, = = (19)

The RG flow in this situation is depicted in Fig. 2,
displaying the IR-stable fixed point B. The only IR-
relevant parameters at this fixed point correspond
to the two masses of the fields z and ¢, and are
governed by the universal exponents 0, , that are the
eigenvalues of the mass-mixing matrix

0 dm?  dm;
i (G T ) (20)
d(mz,my) \dInb dInb

given by (for N = 2)

62 =2—¢. (21)

(2) As N 72.6535, the above fixed point B runs away to
infinity. For 2.6535 < N < 2.9990 there is no stable
fixed point on the critical manifold.

(3) For 2.9991 < N < 3.6846 there is a stable fixed
point at the critical manifold again. At the physical
value of N = 3 it is located at
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FIG. 3.
stable fixed point is denoted by C, whereas A and B are both
unstable in one direction. The fixed points B and C are very close
to each other, due to the value of N = 3 being near the critical
value of N = 2.999 at which they would coincide. For N below
this critical value the fixed points B and C would both become
complex [15].

RG flow diagram at the critical surface, for N = 3. The

(22)

and with 2* and ¢g* of opposite sign. The anomalous
dimensions at N = 3 are then

5
= = —€, 23
M ur 33 ( )
with the universal exponents corresponding to the
two relevant directions out of the critical surface

25
01 = 2+—€,

1
=2+4—¢ (24
33 62 + € ( )

33
Note that the theory (2) is invariant under simulta-
neous change of sign of A and g [12]. The two fixed
pointsatA* >0, g* < 0andA* <0, g* > O are therefore
physically equivalent. Figure 3 illustrates the flow for
N = 3, displaying the IR-stable fixed point C.

(4) For 3.6847 < N < 4 the fixed point at g* = 0 and
A* > 0 (fixed point A in Figs. 2-3) becomes stable.
This is the fixed point discussed before in the context
of the thermal nematic phase transition in liquid
crystals by Priest and Lubensky [14]. As N — 4,
however, the value of A* runs off to infinity, so that
for 4 < N there are again no stable fixed points at the
critical manifold.

V. SUMMARY AND OPEN QUESTIONS

We have found that both physical values of N =2 and
N = 3 lie within the intervals in which there is a stable
nontrivial fixed point of the theory (2), at the critical
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manifold with both relevant quadratic terms tuned to zero.
It is tempting to conjecture that these fixed points describe
the same universal physics as the usual Wilson-Fisher fixed
point at negative coupling in the ¢* theory above four
dimensions. These fixed points allow a consistent and
predictive UV completion of the theory—its perturbative
nonrenormalizability notwithstanding. Near and below six
dimensions our tensorial cubic theory hence constitutes
another precious example of an asymptotically safe quan-
tum field theory [16]. The open question, however, is
whether these fixed points survive the extension all the way
to five dimensions. The N = 3 fixed point, being so close to
the edge towards the region without stable fixed points (see
Fig. 3), seems to be in particular danger. This issue requires
further study, by higher-order epsilon expansion, or func-
tional RG, for example. One expects the critical values of
N at which the fixed-point structure of the flow diagram
qualitatively changes to behave as [17]

NC:N0+N1€+N2€2+0(€3), (25)

where we have computed only the leading terms N, here to
be 1, 2.653, 2.999, and 4. The corrections to these values
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would then follow from two-loop (N;), three-loop (N,),
and higher-order calculations, similarly as computed in
Ref. [11] for the theory in Eq. (1). The existence of the
nontrivial fixed points we predict should in principle
also be testable in Monte Carlo RG studies, e.g., by
employing the technique developed recently to identify
the UV fixed point of the three-dimensional nonlinear
sigma model [18].

While the present scheme enables us to reveal the fixed-
point structure and the stability properties of the RG flow, it
appears hard to deduce the full form of the effective fixed-
point potential and to examine the potential’s (global)
stability. It should be worthwhile to reconsider this question
in a future analysis, e.g., along the lines put forward
in Ref. [19].
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