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We consider OðNÞ-symmetric bosonic ϕ4 field theories above four dimensions, and propose a new
reformulation in terms of an irreducible tensorial field with a cubic and Yukawa terms. The ϕ4 field theory
so rewritten exhibits real and nontrivial IR-stable fixed points near and below six dimension, for low values
of N such as N ¼ 2 and N ¼ 3. The so-defined UV completions of the Oð2Þ and Oð3Þ models hence
constitute precious examples of asymptotically safe quantum field theories. The possibility of an extension
of our results to five dimensions is discussed.
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I. INTRODUCTION

The ϕ4 theory has been the cornerstone of our under-
standing of critical phenomena, and has served as a
prototypical field theory. Its ultraviolet (UV) and infrared
(IR) properties crucially depend on the number of dimen-
sions d and the symmetry OðNÞ, where N is the number of
real components of the field ϕ [1]. For d < 4 the IR-stable
(critical) fixed point is at a finite positive value of the self-
interaction, which approaches zero as d tends to four, and
becomes negative and bicritical for d > 4. At dimensions
d > 4 therefore the long-distance (IR) behavior of the ϕ4

theory is trivial, but there is a nontrivial, interacting,
UV-stable fixed point, albeit at a negative value of the
self-interaction, at which the theory appears unlikely to be
completely stable. A reformulation in which the theory at
the interacting UV fixed point would emerge from the
renormalization group (RG) flow of a more complete
theory would therefore be useful. Indeed, such a corre-
spondence between the UV-stable fixed point of one theory
and the IR-stable fixed point of another has been
established before between the Gross-Neveu model and
the Gross-Neveu-Yukawa field theory for dimensions
2 < d < 4 [2–6].
A possible such “UV completion” of the ϕ4 theory was

recently proposed by Fei, Giombi, and Klebanov [7] in the
form:

L ¼ 1

2
ð∂μzÞ2 þ

1

2
ð∂μϕiÞ2 þ gzϕiϕi þ λz3; ð1Þ

where i ¼ 1;…; N, and the summation over the repeated
indices is assumed. The new scalar z may be understood as
the Hubbard-Stratonovich field used to decouple the
original ðϕiϕiÞ2 quartic term in the scalar channel, which
has acquired its own dynamics by the integration over the
high-energy modes of the original field ϕ. The OðNÞ
symmetry also allows two IR-relevant quadratic terms,
m2

zz2, and m2
ϕϕiϕi, which have been tuned to zero to be at

the critical surface. The advantage of this reformulation of
the ϕ4 theory is that the two interaction coupling constants
allowed by the OðNÞ symmetry, the self-interaction of the
new fields z, λ, and the “Yukawa” coupling g, are both
marginal in the same dimension d ¼ 6. Below six dimen-
sions therefore one may hope to find a weakly-coupled
IR-stable fixed point at infinitesimal values of g and λ,
when mz ¼ mϕ ¼ 0. Such an interacting OðNÞ-symmetric
field theory above four dimensions would then at large
distances correspond to the ϕ4 theory at the UV-stable fixed
point in the original formulation, and provide a stable,
conformal, UV-complete version of it.
The above correspondence was further argued [7–9] to

be indeed born out at a sufficiently large value of N [10]: to
the lowest order in the small parameter ϵ ¼ 6 − d the fixed-
point values of the couplings g and λ are real, and
consequently the theory is unitary, only for N > 1038.
Further two-loop, three-loop, and four-loop corrections
[11] indicated a possible dramatic reduction of the critical
value of N when the parameter ϵ is extended to the physical
value of ϵ ¼ 1, for example, but the question of the
existence of the unitary OðNÞ-symmetric conformal field
theory in five dimensions for reasonably low values of N
has remained open. In this paper we propose a different
reformulation of the ϕ4 theory, which yields such weakly
coupled, real, OðNÞ-symmetric IR-stable fixed points for
N ¼ 2 and N ¼ 3 near six dimensions. The idea is to
decouple the ϕ4 term in the tensorial instead of in the scalar
channel. Instead of the theory (1) we consider:

L ¼ 1

2
ð∂μzaÞ2 þ

1

2
ð∂μϕiÞ2 þ gzaϕiΛa

ijϕj þ λTr½ðzaΛaÞ3�:
ð2Þ

Here the indices i; j ¼ 1;…; N as before, but a ¼
1;…;MN where MN ¼ ðN − 1ÞðN þ 2Þ=2 is the number
of components of the irreducible (traceless) tensor of the
second rank under OðNÞ rotations. The MN matrices Λa
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provide a basis in the space of traceless, real, symmetric
N-dimensional matrices, and reduce to the two familiar real
Pauli matrices for N ¼ 2, and the five real Gell-Mann
matrices for N ¼ 3, for example [12]. The two IR-relevant
mass terms, m2

zzaza and m2
ϕϕiϕi, have again been tuned to

zero. Again, at such a critical surface with mz ¼ mϕ ¼ 0

the couplings λ and g are the only ones that at the Gaussian
fixed point turn IR relevant infinitesimally below d ¼ 6,
and one hopes for a weakly-coupled IR-stable fixed point at
real values of the couplings. We indeed find such IR-stable
fixed points of (2) for N ¼ 2 and N ¼ 3 near d ¼ 6 in our
one-loop calculation, but not for N ≥ 4. Our approach may
therefore be understood as being complementary to the
large-N strategy of Ref. [7]. The situation becomes par-
ticularly simple and transparent when N ¼ 2 and the term
cubic in z in fact vanishes identically, leaving the theory
with a single IR-relevant Yukawa coupling g. We will
therefore begin our discussion in the next section with this
example.
The paper is organized as follows. In the next section we

start with the simplest example when N ¼ 2. The general
case is then discussed next, in Sec. III. In Sec. IV we
present the one-loop flow equations and the concomitant
fixed-point structure in the λ-g critical plane. We briefly
summarize and discuss the results in the concluding
section.

II. Oð2Þ THEORY

Consider the bosonic ϕ4 field theory with two-
component real field ϕT ¼ ðϕ1;ϕ2Þ. The quartic term
can obviously also be written as

ðϕ2
1 þ ϕ2

2Þ2 ¼ ðϕ2
1 − ϕ2

2Þ2 þ ð2ϕ1ϕ2Þ2
¼ ðϕTσ3ϕÞ2 þ ðϕTσ1ϕÞ2: ð3Þ

This suggests the following alternative Hubbard-
Stratonovich decoupling of the negative quartic term in
the Lagrangian density,

L0 ¼
1

2
ϕiðm2

ϕ − ∂2
μÞϕi − g2

2
ðϕ2

1 þ ϕ2
2Þ2; ð4Þ

which is

− g2

2
ðϕ2

1 þ ϕ2
2Þ2 ¼

1

2
zaza þ gzaϕTσaϕ; ð5Þ

where the index a ∈ f1; 3g, and σa are the two real Pauli
matrices. The equivalence of the left- and right-hand sides
of Eq. (5) is exact (modulo normalization) at the level of the
partition function,

Z ¼
Z

Dϕi exp

�
−
Z

ddxL0

�

¼
Z

DϕiDza exp

�
−
Z

ddx

�
1

2
ϕiðm2

ϕ − ∂2
μÞϕi

þ 1

2
zaza þ gzaϕTσaϕ

��
; ð6Þ

which can straightforwardly be verified by integrating out
za on the right-hand side of Eq. (6). The integration over the
high-energy modes of the field ϕwill generate further terms
in the expansion in powers of the auxiliary field za and the
momentum, as allowed by the Oð2Þ symmetry, such as
ð∂μzaÞ2, ð∂μzaÞ4, ðzazaÞ2, etc. Note that for N ¼ 2 no term
cubic in z is possible, as TrðσaσbσcÞ ¼ 0 for a, b,
c ∈ f1; 3g. Among the above allowed terms, in 6 − ϵ
dimensions we need to keep only the first one, since all
others will be IR irrelevant near the putative weakly-
coupled fixed point. The field theory therefore becomes

L ¼ 1

2
zaðm2

z − ∂2
μÞza þ

1

2
ϕiðm2

ϕ − ∂2
μÞϕi þ gzaϕTσaϕ;

ð7Þ

which is recognized to be a special case of Eq. (2), in which
the term cubic in z is absent, and with the two mass terms
explicitly displayed for completeness.

III. OðN > 2Þ THEORY

To see that a similar trick as in the previous section
can be played for any N, consider the quadratic form with
the Hubbard-Stratonovich fields za, a ¼ 1;…;MN , and the
basis in the traceless, real, symmetricN-dimensional matrix
space Λa. In the sense of Hubbard-Stratonovich trans-
formation,

1

2
zaza þ gzaϕTΛaϕ ¼ − g2

2
ϕiΛa

ijϕjϕkΛa
klϕl: ð8Þ

Since, on the other hand, completeness of the set of
matrices Λa in the space of real, symmetric, N-dimensional
matrices implies that [12]

Λa
ijΛ

a
kl ¼ δikδjl þ δilδjk − 2

N
δijδkl; ð9Þ

one finds that the right-hand side of Eq. (8) is actually
proportional to the standard ϕ4 term:

1

2
zaza þ gzaϕTΛaϕ ¼ g2

�
1

N
− 1

�
ðϕiϕiÞ2: ð10Þ

This identity, which generalizes Eq. (5) to higher values of
N, implies that the usual OðNÞ-symmetric quartic term
ðϕiϕiÞ2 can also be Hubbard-Stratonovich decoupled using
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MN real fields za that transform under the rotational group
OðNÞ as components of the traceless symmetric second-
rank tensor. The main novelty compared to the N ¼ 2 case
is that the cubic invariant

Tr½ðzaΛaÞ3� ð11Þ

is finite when N > 2, and has the same engineering scaling
dimension as the Yukawa term zaϕTΛaϕ. In 6 − ϵ dimen-
sion and when ϵ ≪ 1 it suffices then to consider the theory
in Eq. (2) with the two displayed cubic interaction terms
allowed by the OðNÞ symmetry only.

IV. RG FLOW

It is relatively straightforward to compute the one-loop
beta functions for the two cubic-term couplings. We set
mz ¼ mϕ ¼ 0, and consider general N. (It will be possible
to set N to the special value N ¼ 2 afterwards.) Performing
the usual Wilson’s momentum-shell mode elimination [13],
under the change of the UV cutoff Ω into Ω=b the
couplings flow according to the equations

dλ
d ln b

¼ 1

2
ðϵ − 3ηzÞλþ 36

�
N þ 4 − 24

N

�
λ3 þ 4

3
g3; ð12Þ

dg
d ln b

¼ 1

2
ðϵ − ηz − 2ηϕÞgþ 4

�
1 − 2

N

�
g3

þ 12

�
N þ 2 − 8

N

�
g2λ; ð13Þ

where the anomalous dimensions appearing above are

ηz ¼ 12

�
N þ 2 − 8

N

�
λ2 þ 4

3
g2; ð14Þ

ηϕ ¼ 4

3

�
N þ 1 − 2

N

�
g2: ð15Þ

Note that both anomalous dimensions are manifestly
positive at any real fixed point and for N ≥ 2. Here
ϵ ¼ 6 − d, and we rescaled the couplings as Ωð3ηz−ϵÞ=2 ×
½Sd=ð2πÞd�1=2λ ↦ λ and Ωðηzþ2ηϕ−ϵÞ=2½Sd=ð2πÞd�1=2g ↦ g.
Sd is the usual surface area of the unit sphere in d
dimensions. The diagrams that lead to the Eqs. (12)–(14)
are depicted in Fig. 1.
Small perturbations out of the critical surface mz ¼

mϕ ¼ 0 are relevant in the sense of the RG, and governed
by the flow equations

dm2
z

d ln b
¼

�
2 − ηz þ 72

�
N þ 2 − 8

N

�
λ2
�
m2

z

þ 8g2m2
ϕ; ð16Þ

dm2
ϕ

d ln b
¼ ð2 − ηϕÞm2

ϕ

þ 4

�
N þ 1 − 2

N

�
g2ðm2

ϕ þm2
zÞ; ð17Þ

where we rescaled Ωηz−2m2
z ↦ m2

z , Ωηϕ−2m2
ϕ ↦ m2

ϕ and
shifted the masses so that the position of the critical surface
remains mz ¼ mϕ ¼ 0.
It is interesting to consider the evolution of the fixed-

point structure of these equations with N, treated as a
continuous variable.
(1) For 1 < N < 2.6534 there is a stable fixed point on

the critical surface mz ¼ mϕ ¼ 0. For the physical
value of N ¼ 2 the flow equation for g as well as the
anomalous dimensions become independent of λ,
reflecting the fact that the term cubic in z in Eq. (2)

FIG. 1. The one-loop diagrams that contribute to the RG flow dλ=d ln b (top left) and dg=d ln b (top right) and anomalous dimensions
of tensor field ηz (bottom left) and of scalar field ηϕ (bottom right). Wiggly internal lines: tensor-field propagator (z). Solid internal lines:
scalar-field propagator (ϕ).
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vanishes in this case. We then find the location of the
fixed point along the g-axis to be

ðg�Þ2 ¼ 3

20
ϵ: ð18Þ

At this fixed point, the anomalous dimensions have
the values

ηϕ ¼ 2ηz ¼
2

5
ϵ: ð19Þ

The RG flow in this situation is depicted in Fig. 2,
displaying the IR-stable fixed point B. The only IR-
relevant parameters at this fixed point correspond
to the two masses of the fields z and ϕ, and are
governed by the universal exponents θ1;2 that are the
eigenvalues of the mass-mixing matrix

∂
∂ðm2

z ; m2
ϕÞ

�
dm2

z

d ln b
;
dm2

ϕ

d ln b

�
; ð20Þ

given by (for N ¼ 2)

θ1 ¼ 2þ 8

5
ϵ; θ2 ¼ 2 − ϵ: ð21Þ

(2) As N↗2.6535, the above fixed point B runs away to
infinity. For 2.6535 < N < 2.9990 there is no stable
fixed point on the critical manifold.

(3) For 2.9991 < N < 3.6846 there is a stable fixed
point at the critical manifold again. At the physical
value of N ¼ 3 it is located at

ðλ�Þ2 ¼ ϵ

264
; ðg�Þ2 ¼ 3ϵ

88
; ð22Þ

and with λ� and g� of opposite sign. The anomalous
dimensions at N ¼ 3 are then

ηz ¼ ηϕ ¼ 5

33
ϵ; ð23Þ

with the universal exponents corresponding to the
two relevant directions out of the critical surface

θ1 ¼ 2þ 25

33
ϵ; θ2 ¼ 2þ 1

33
ϵ: ð24Þ

Note that the theory (2) is invariant under simulta-
neous change of sign of λ and g [12]. The two fixed
points atλ�>0,g� < 0andλ�<0,g�>0are therefore
physically equivalent. Figure 3 illustrates the flow for
N ¼ 3, displaying the IR-stable fixed point C.

(4) For 3.6847 < N < 4 the fixed point at g� ¼ 0 and
λ� > 0 (fixed point A in Figs. 2–3) becomes stable.
This is the fixed point discussed before in the context
of the thermal nematic phase transition in liquid
crystals by Priest and Lubensky [14]. As N → 4,
however, the value of λ� runs off to infinity, so that
for 4 ≤ N there are again no stable fixed points at the
critical manifold.

V. SUMMARY AND OPEN QUESTIONS

We have found that both physical values of N ¼ 2 and
N ¼ 3 lie within the intervals in which there is a stable
nontrivial fixed point of the theory (2), at the critical

FIG. 2. RG flow diagram at the critical surface mz ¼ mϕ ¼ 0
for 1 < N < 2.653. O corresponds to the noninteracting,
Gaussian, fixed point. Fixed point A at g� ¼ 0 and λ� > 0 is
unstable toward the direction of g. B denotes the stable fixed
point. For the physical value of N ¼ 2 (displayed), the term in
Eq. (2) that is cubic in z vanishes, and different values for λ
(horizontal axis) correspond to equivalent physical points.

FIG. 3. RG flow diagram at the critical surface, for N ¼ 3. The
stable fixed point is denoted by C, whereas A and B are both
unstable in one direction. The fixed points B and C are very close
to each other, due to the value of N ¼ 3 being near the critical
value of N ¼ 2.999 at which they would coincide. For N below
this critical value the fixed points B and C would both become
complex [15].
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manifold with both relevant quadratic terms tuned to zero.
It is tempting to conjecture that these fixed points describe
the same universal physics as the usual Wilson-Fisher fixed
point at negative coupling in the ϕ4 theory above four
dimensions. These fixed points allow a consistent and
predictive UV completion of the theory—its perturbative
nonrenormalizability notwithstanding. Near and below six
dimensions our tensorial cubic theory hence constitutes
another precious example of an asymptotically safe quan-
tum field theory [16]. The open question, however, is
whether these fixed points survive the extension all the way
to five dimensions. TheN ¼ 3 fixed point, being so close to
the edge towards the region without stable fixed points (see
Fig. 3), seems to be in particular danger. This issue requires
further study, by higher-order epsilon expansion, or func-
tional RG, for example. One expects the critical values of
N at which the fixed-point structure of the flow diagram
qualitatively changes to behave as [17]

Nc ¼ N0 þ N1ϵþ N2ϵ
2 þOðϵ3Þ; ð25Þ

where we have computed only the leading terms N0 here to
be 1, 2.653, 2.999, and 4. The corrections to these values

would then follow from two-loop (N1), three-loop (N2),
and higher-order calculations, similarly as computed in
Ref. [11] for the theory in Eq. (1). The existence of the
nontrivial fixed points we predict should in principle
also be testable in Monte Carlo RG studies, e.g., by
employing the technique developed recently to identify
the UV fixed point of the three-dimensional nonlinear
sigma model [18].
While the present scheme enables us to reveal the fixed-

point structure and the stability properties of the RG flow, it
appears hard to deduce the full form of the effective fixed-
point potential and to examine the potential’s (global)
stability. It should be worthwhile to reconsider this question
in a future analysis, e.g., along the lines put forward
in Ref. [19].
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