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We investigate nonlinear plane-wave solutions of the classical Minkowskian Yang-Mills (YM) equations
of motion. By imposing a suitable ansatz which solves Gauss’ law for the SU(3) theory, we derive solutions
which consist of Jacobi elliptic functions depending on an enumerable set of elliptic modulus values. The
solutions represent periodic anharmonic plane waves which possess arbitrary nonzero mass and are exact
extrema of the nonlinear YM action. Among them, a unique harmonic plane wave with a nontrivial pattern
in phase, spin, and color is identified. Similar solutions are present in the SU(4) case, while they are absent
from the SU(2) theory.
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I. INTRODUCTION

Classical solutions of field theories remain of central
interest in the understanding of the structure and dynamics
of the Standard Model particle interactions. Regarding
the pure Yang-Mills (YM) theory, major attention has
been drawn to the extrema of the Euclidean action—the
instantons—whose structure and properties are determined
by topology (for a review see Ref. [1]). A lot of work has
been produced on the relevance of the instanton configu-
rations to the confining properties of the YM quantum
vacuum as well as the quark dynamics coupled to the gauge
bosons. On the other hand, in the Minkowskian 3þ 1-
dimensional spacetime, solitary waves, solitons, or traveling
localized lumps with a finite energy are forbidden in the
SUðNÞ gauge theory, as Coleman has shown generally [2]
that finite-energy nonsingular gauge field configurations
that do not radiate out to spatial infinity are not allowed to
exist. Minkowskian Nonlinear plane waves (NLPWs) have
been shown to exist for the SU(2) theory [3] and have the
form of the Jacobian elliptic function cnðωt − ~k · ~x; 1=2Þ
with fixed elliptic parameter 1=2 and relativistic dispersion
relation ω2 ¼ ~k2 þm2 for an arbitrary mass parameter m.
The self-interaction term is reflected in the anharmonic form
of the cn-wave while scale invariance leaves free the value
of mass m. Other solutions of the SU(2) Minkowskian
equations of motion (EoM) are generated from the massless
scalar ϕ4 theory extrema via the Corrigan-Fairlie-’t Hooft-
Wilczek ansatz [4,5] or generalized forms [6].
Regarding the SU(3) theory, a restrictive form of mass-

less plane waves was initially shown to exist by Coleman
[7], and in a more general form in Ref. [8], technically
eliminating the interaction. A class of massive plane-wave
solutions of the non-Abelian theory can be constructed
from classical solutions of the massless ϕ4 theory [9].

These are anharmonic waves of the cnðωt − ~k · ~x; 1=2Þ type
and are essentially waves constructed via the “multiple
copies trick” [10]. Such solutions have also been shown to
become relevant to the properties of the quantum theory in
the strong coupling limit [9].
It is the purpose of this work to investigate if more general

NLPW solutions exist for the SU(3) gauge theory EoM. For
this reason, in Sec. II we present the detailed form of the
EoM for the general SUðNÞNLPWansatz based on Lorentz
symmetry and the scale invariance of the theory. In Sec. III
we review the so-called “multiple copies trick” [10] which
determines SUðNÞ solutions proportional to the cnðωt − ~k ·
~x; 1=2Þ field with appropriate non-Abelian constant factors
and derive in particular the form of the constants for the
SU(3) theory. In Sec. IV we propose a more general ansatz
that solves the Gauss-law constraint equations for the SU(3)
gauge theory. We arrive at a set of coupled cubic equations
for complex fields which correspond to planar point-particle
dynamics bounded by the r4 potential. The gauge field color
and polarization indices of the solution are mixed in a
nontrivial scheme. The general solution is fixed by the
angular momentum L of the particle in the sense that the
elliptic parameter k2 of the Jacobian elliptic functions is
connected to L via a nonlinear equation. It is interesting that
for the highest value ofL allowed, a harmonicmassive plane
wave is shown to exist solving the SU(3) EoM even in the
presence of the interaction terms. In Sec. V we show that
plane waves other than the ones in Ref. [3] do not exist for
the SU(2) theory. We finally outline the relevant ansatz for
SU(4) and the embedding of the SU(3) solutions in it. The
possible utility of such solutions is commented on in the
final section.

II. NONLINEAR PLANE WAVES AND THE
YANG-MILLS EQUATIONS OF MOTION

The Lagrangian density of the YM theory is defined via

L ¼ −
1

4
F a

μνF μνa; ð1Þ
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where F a
μν is the antisymmetric field tensor of the gauge

field Aa
μ [μ, ν ¼ 0, 1, 2, 3 are spacetime indices with a

ð1;−1;−1;−1Þ metric assumed everywhere]:

F a
μν ¼ ∂μAa

ν − ∂νAa
μ þ gfabcAb

μAc
ν: ð2Þ

The structure constants fabc define the non-Abelian SUðNÞ
algebra via the commutators of the N2 − 1 generators Ta in
the fundamental (N × N) representation:

½Ta; Tb� ¼ i fabcTc: ð3Þ

The corresponding classical EoMs for the gauge field are1

∂μF μνa þ gfabcAb
μF μνc ¼ 0; ð4Þ

which in component form read explicitly

□Aνa − ∂ν∂μAμa

þ gfabc½ð∂μAμbÞAνc þ 2Aμb∂μAνc −Aμb∂νAc
μÞ�

þ g2fabcfcdeAb
μAμdAνe

¼ 0: ð5Þ

The ν ¼ 0 set of the above equations constitute the Gauss-
law constraint obeyed by the nondynamical fields Aa

0 , while
the ν ¼ 1, 2, 3 equations provide the evolution of the
dynamical spatial components. We introduce generic
plane-wave solutions, i.e., fields depending explicitly on
the plane-wave phase

ξ ¼ ωt − ~k · ~x; ð6Þ

with the momentum four-vector kμ ¼ ðω; ~kÞ satisfying the
dispersion relation ω2 ¼ ~k2 þm2 for an arbitrary mass
parameterm. In the physical system of units, the gauge field
also has the dimension of mass so we scale the fields by
completely eliminating at the same time the coupling g
from the classical EoM:

Aa
μ ¼

m
g
Aa
μðξÞ: ð7Þ

Spacetime derivatives are replaced by derivatives with
respect to ξ (denoted by dots):

∂μAa
ν ¼ kμ _A

a
νðξÞ; ð8Þ

and Eq. (5) becomes

m2Äνa − kνkμÄμa

þmfabc½kμ _AμbAνc þ 2kμAμb _Aνc − kνAμb _Ac
μ�

þm2fabcfcdeAb
μAμdAνe

¼ 0: ð9Þ

Now we make use of the Lorentz covariance of Eq. (9) by
boosting the vector fields Aa

μ in the proper time frame,
where kμ → ðm; ~0Þ and ξ → mt, via a Lorentz transforma-
tion Λð~βÞ with boost parameters

~β ¼
~k
ω
; γ ¼ ω

m
; ð10Þ

and the explicit spin-1 representation

Λμ
νð~βÞ ¼

 
γ −~βγ

−~βγ δij þ γ2

γþ1
βiβj

!
: ð11Þ

The Gauss-law equation in the proper frame becomes2

fabcAb
j
_Ac
j − fabcfcdeAb

jA
d
jA

0e ¼ 0; ð12Þ

while the dynamical equations read (latin indices i, j ¼ 1,
2, 3)

Äa
i þ fabc½ _A0bAc

i þ 2A0b _Ac
i �

þ fabcfcde½A0bA0d − Ab
jA

d
j �Ae

i ¼ 0: ð13Þ
Next, we use the remaining t-dependent gauge freedom to
fix Aa

0 ¼ 0. The gauge group element gðtÞ which solves the
equation

gAa
0T

ag−1 − i
dg
dt

g−1 ¼ 0 ð14Þ

is formally provided by the Polyakov line,

gðtÞ ¼ Pe−i
R

t Aa
oTa

, and the equations become

fabcAb
j
_Ac
j ¼ 0; ðGauss lawÞ

Äa
i − fabcfcdeAb

jA
d
jA

e
i ¼ 0: ð15Þ

Introducing also the matrices Ai ¼ Aa
i T

a and the matrix-

vector potential ~A ¼ Aa
i T

aêi (ê1, ê2, ê3 is an R3 basis), the
equations (15) are written as

½ ~A;
_~A� ¼ 0; ð16Þ

Äi þ
X
j≠i

½Aj; ½Aj;Ai�� ¼ 0: ð17Þ

1In covariant form DμF μν ¼ 0, with the covariant derivative
defined as Dμ ¼ ∂μ − igAμ and −igF μν ¼ ½Dμ;Dν�.

2For convenience we use the same symbol for the rotated fields
Λμ
νAνa → Aμa.
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The above set of equations maintain only the global SUðNÞ
rotations, ~A → g ~Ag−1. The chromoelectric and chromo-
magnetic fields for the above configurations are easily
obtained:

Ea
i ¼

m2

g
_Aa
i ; Ba

i ¼
m2

2g
ϵijkfabcAb

jA
c
k: ð18Þ

III. THE MULTIPLE COPIES TECHNIQUE

A standard trick which solves the Gauss-law constraint
[for any SUðNÞ] is the so-called multiple copies technique
[10]. This is the selection of copies of a color-independent
field ðΦx;Φy;ΦzÞ as

ðAa
x; Aa

y; Aa
z Þ ¼ ðCa

xΦx; Ca
yΦy; Ca

zΦzÞ ð19Þ

for some constant vectors Ca
x , Ca

y , Ca
z . Due to the anti-

symmetric structure of fabc, each of the three terms in
Gauss’ law

fabc½Cb
xCc

xΦx
_Φx þ Cb

yCc
yΦy

_Φy þ Cb
zCc

zΦz
_Φz� ¼ 0 ð20Þ

vanishes independently. Of course the dynamical equations
have to be consistent for all color indices a and these
impose restrictive algebraic constraints on the 3ðN2 − 1Þ
constants Ca

i . Even in this case, the equations

Ca
xΦ̈x − fabcfcdeCe

x½Cb
yCd

yΦ2
y þ Cb

zCd
zΦ2

z �Φx ¼ 0;

Ca
yΦ̈y − fabcfcdeCe

y½Cb
xCd

xΦ2
x þ Cb

zCd
zΦ2

z �Φy ¼ 0;

Ca
z Φ̈z − fabcfcdeCe

z ½Cb
xCd

xΦ2
x þ Cb

yCd
yΦ2

y�Φz ¼ 0 ð21Þ

will in general present chaotic behaviour [11]. Integrability
is expected only for the diagonal case Φx ¼ Φy ¼ Φz ¼ Φ,
in which case the compatibility of the system

Ca
xΦ̈ − fabcfcdeCe

x½Cb
yCd

y þ Cb
zCd

z �Φ3 ¼ 0;

Ca
yΦ̈ − fabcfcdeCe

y½Cb
xCd

x þ Cb
zCd

z �Φ3 ¼ 0;

Ca
z Φ̈ − fabcfcdeCe

z ½Cb
xCd

x þ Cb
yCd

y �Φ3 ¼ 0 ð22Þ

still allows a large space of constants Ca
i that can be traced

numerically. We investigated in particular the SU(3) group
and based on insight from Sec. IV we confirmed that the
(nonunique) structure

Ca
x ¼ ðcosϕ1; sinϕ1; 0; 0; 0; 0; 0; 0Þ;

Ca
y ¼ ð0; 0; 0; cosϕ2; sinϕ2; 0; 0; 0Þ;

Ca
z ¼ ð0; 0; 0; 0; 0; cosϕ3; sinϕ3; 0Þ ð23Þ

with arbitrary constant angles ϕ1, ϕ2, ϕ3 satisfies Eq. (22)
and leads to a single equation for Φ,

Φ̈þ 1

4
Φ3 ¼ 0; ð24Þ

which is solved by [12]

ΦðξÞ ¼ sn

�
1

2
ξ;−1

�
¼ cn

�
1

2
ξ;
1

2

�
: ð25Þ

For the SU(2) theory, the choice C1
x ¼ C2

y ¼ C3
z ¼ 1 (with

all others zero) leads to the original solution presented in
Ref. [3] with A1

x ¼ A2
y ¼ A3

z ¼ Φ, and Φ is the solution of

Φ̈þ 2Φ3 ¼ 0: ð26Þ

IV. SU(3)

We present here a more general way to solve the Gauss-
law constraint [Eq. (16)] for the SU(3) theory. The idea is to
arrange the matrix-vector ~A in such a way that it becomes
orthogonal to the matrix-vector multiplication with itself.
This can be achieved by “staggering” the color fields of
the fundamental 3 × 3 matrix along the three orthogonal
vectors of the R3 basis (ê1, ê2, ê3) in the following way:

~A ¼

0
BB@

D3ê3 Ψ�
1ê1 Ψ2ê2

Ψ1ê1 D2ê2 Ψ�
3ê3

Ψ�
2ê2 Ψ3ê3 D1ê1

1
CCA

−
1

3
ðD1ê1 þD2ê2 þD3ê3ÞI3; ð27Þ

where D1, D2, D3 are real functions and Ψ1, Ψ2, Ψ3 are
complex functions of ξ. Essentially, each complex SU(3)
root pair—which corresponds to a doublet of nondiagonal
color fields—is aligned along one of the three spatial
directions. The explicit connection with the octet fields is
given below (with all other components zero):

A1
x þ iA2

x ¼ 2Ψ1;

A4
y − iA5

y ¼ 2Ψ2;

A6
z þ iA7

z ¼ 2Ψ3;

A3
x ¼ 0; A3

y ¼ −D2; A3
z ¼ D3;

A8
x ¼ −

2D1ffiffiffi
3

p ; A8
y ¼

D2ffiffiffi
3

p ; A8
z ¼

D3ffiffiffi
3

p : ð28Þ

A direct check of Gauss’ law is straightforward, since the
trace piece [second term in Eq. (27)] drops out of the
commutator. By construction each column (row) of the first
term in Eq. (27) is orthogonal to any other column (row)
and thus Gauss’ law is written as
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GaTa ¼ ~A ·
_~A − _~A · ~A

¼ 2i

0
BB@

L1 − L2 0 0

0 L3 − L1 0

0 0 L2 − L3

1
CCA; ð29Þ

where we introduced the real quantities

L1 ¼
i
2
ðΨ1

_Ψ�
1 −Ψ�

1
_Ψ1Þ;

L2 ¼
i
2
ðΨ2

_Ψ�
2 −Ψ�

2
_Ψ2Þ;

L3 ¼
i
2
ðΨ3

_Ψ�
3 −Ψ�

3
_Ψ3Þ: ð30Þ

The implementation of Gauss’ law requires

L1 ¼ L2 ¼ L3 ¼ L; ð31Þ

with the classes of solutions distinguished from now on by
the L ≠ 0 and L ¼ 0 cases.
The dynamical EoMs (24 in total) are derived according

to Eq. (27). We separate them into three different groups.
Group 1:

Ψ̈1 þΨ1½jΨ2j2 þ jΨ3j2 þD2
2 þD2

3� ¼ 0;

Ψ̈2 þΨ2½jΨ1j2 þ jΨ3j2 þD2
1 þD2

3� ¼ 0;

Ψ̈3 þΨ3½jΨ1j2 þ jΨ2j2 þD2
1 þD2

2� ¼ 0: ð32Þ

Group 2:

D̈1 þ 6D1jΨ2j2 ¼ 0; D̈1 þ 6D1jΨ3j2 ¼ 0;

D̈2 þ 6D2jΨ1j2 ¼ 0; D̈2 þ 6D2jΨ3j2 ¼ 0;

D̈3 þ 6D3jΨ1j2 ¼ 0; D̈3 þ 6D3jΨ2j2 ¼ 0: ð33Þ

Group 3:

D1Ψ1Ψ2 ¼ 0; D1Ψ1Ψ3 ¼ 0;

D2Ψ1Ψ2 ¼ 0; D2Ψ2Ψ3 ¼ 0;

D3Ψ1Ψ3 ¼ 0; D3Ψ2Ψ3 ¼ 0: ð34Þ

A. L ≠ 0 solutions

Admitting L ≠ 0 requires Ψ1 ≠ 0, Ψ2 ≠ 0, and Ψ3 ≠ 0.
From the “Group 3” equations we are led to

D1 ¼ D2 ¼ D3 ¼ 0; ð35Þ

and the coupled system of equations

Ψ̈1 þΨ1½jΨ2j2 þ jΨ3j2� ¼ 0;

Ψ̈2 þΨ2½jΨ1j2 þ jΨ3j2� ¼ 0;

Ψ̈3 þΨ3½jΨ1j2 þ jΨ2j2� ¼ 0: ð36Þ

The above system has the interpretation of three coupled
planar point dynamics on the Ψ1, Ψ2, and Ψ3 planes,
respectively (which are the 1–2, 4–5, and 6–7 planes in the
adjoint representation). One may use equivalently a polar
coordinate description

Ψ1 ¼ r1eiθ1 ; Ψ2 ¼ r2eiθ2 ; Ψ3 ¼ r3eiθ3 ; ð37Þ

where ðri; θiÞ are functions of the phase ξ. The dynamics on
each plane is invariant under independent global U(1)
rotations,

Ψ1 → Ψ1eiω1 ; Ψ2 → Ψ2eiω2 ; Ψ3 → Ψ3eiω3 ;

ð38Þ

or equivalently under independent SO(2) rotations on the
ðri; θiÞ planes. From this we identify L1, L2, L3 in Eq. (29)
as the conserved angular momenta of the three coupled
rotating particles,

L1 ¼ A1
x
_A2
x − A2

x
_A1
x ¼ r21 _θ1;

L2 ¼ A5
y
_A4
y − A4

y
_A5
y ¼ r22 _θ2;

L3 ¼ A6
z
_A7
z − A7

z
_A6
z ¼ r23 _θ3: ð39Þ

Imposing Gauss’ law L1 ¼ L2 ¼ L3 relates the complex
functions Ψ1, Ψ2, Ψ3 via linear transformations. These are
well known, e.g.,

Ψ2 ¼ aΨ1 þ bΨ�
1; aa� − bb� ¼ 1; ð40Þ

where a, b are arbitrary complex constants. Equivalently, in
the Cartesian form they act as SLð2; RÞ transformations,3

e.g.,

Ψ2 ¼
�

A4
y

−A5
y

�
¼
�
α β

γ δ

�
·

�
A1
x

A2
x

�
¼ ΠΨ1; ð41Þ

where detðΠÞ ¼ αδ − βγ ¼ 1.
The linear relations in conjunction with the dynamical

equations (36) further constrain the amplitudes:

jΨ1j2 ¼ jΨ2j2 ¼ jΨ3j2 ¼ r2: ð42Þ

Up to constant angles, this also leads to θ1 ¼ θ2 ¼ θ3 ¼ θ,
and thus we conclude that the L ≠ 0 class of solutions is

3The explicit relation is a ¼ 1
2
ðαþ δ − iðβ − γÞÞ;

b ¼ 1
2
ðα − δþ iðβ þ γÞÞ.
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described by a single planar rotor bound by a central
potential VðrÞ ¼ r4=2 and satisfying the EoM

̈r −
L2

r3
þ 2r3 ¼ 0: ð43Þ

The system is integrable via the energy constant

E ¼ 1

2
_r2 þ L2

2r2
þ 1

2
r4: ð44Þ

Defining the rescaled function u via

r2 ¼
ffiffiffiffiffiffi
8E
3

r
u

��
8E
3

�
1=4

ξ

�
; ð45Þ

it satisfies

_u2 ¼ 3u − 4u3 − λ; λ ¼ 4L2: ð46Þ

We scaled the constant ð8E=3Þ1=4 ¼ 1 in Eq. (45) by
absorbing it into the mass parameter m. Equation (46) is
solved by a Weierstrass elliptic function, P, which is a
doubly periodic function on the complex plane [12]. We
look for real, positive, bounded solutions to describe
periodic closed orbits on the ðr; θÞ plane and the suitable
solution is expressed in terms of the Jacobi elliptic
functions snðξ; k2Þ, cnðξ; k2Þ, dnðξ; k2Þ of elliptic modulus
k (or elliptic parameter k2),

uðξÞ ¼ e1 þ ðe2 − e1Þ
1

dn2ðαξ; k2Þ ; k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e3 − e2
e3 − e1

r
:

ð47Þ
The parameter α ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e3 − e1
p

and e1, e2, e3 are the three
real roots of 3u − 4u3 − λ ¼ 0. Three real roots exist only
for 0 ≤ λ ≤ 1 and are conveniently expressed via an angle
ϕ which satisfies λ ¼ cosϕ,

e1 ¼ − cosðϕ=3Þ;

e2 ¼
1

2
cosðϕ=3Þ −

ffiffiffi
3

p

2
sinðϕ=3Þ;

e3 ¼
1

2
cosðϕ=3Þ þ

ffiffiffi
3

p

2
sinðϕ=3Þ: ð48Þ

The solution (47) oscillates between e2 and e3 with a period
equal to T ¼ 2KðkÞ=α [KðkÞ is the complete integral of
the first kind of elliptic modulus k]. The angular field θ is
determined from

θ ¼
ffiffiffi
λ

p

2

Z
dξ
u

ð49Þ

and using properties of the Jacobi elliptic functions [12] is
written as

θðξÞ¼
ffiffiffi
λ

p

2e1

�
ξ−

e2−e1
αe2

Π
�
e1k2

e2
;amðαξ;k2Þ;k2

��
: ð50Þ

Πðn; x; k2Þ denotes the incomplete elliptic integral of the
third kind with modulus k and characteristic n, while
amðx; k2Þ is the Jacobi amplitude function, which satisfies
sinðamðx; k2ÞÞ ¼ snðx; k2Þ. A periodic solution for the
gauge fields is equivalent to a closed orbit for the rotor
(43) on the ðr; θÞ plane. Thus a “quantization” condition on
the parameter λ of the solution is enforced from the
periodicity of θ for integers N, N0 such that

θðNTÞ ¼ 2πN0: ð51Þ

This, in turn, leads to the highly nonlinear relation

N

ffiffiffi
λ

p

e1α

�
KðkÞ − e2 − e1

e2
Π̄
�
e1k2

e2
; k2
��

¼ 2πN0: ð52Þ

Π̄ðn; k2Þ ¼ Πðn; π=2; k2Þ here denotes the complete elliptic
integral of the third kind. Therefore we look for all values of
the angle ϕ in ð0; π=2Þ such that the function

QðϕÞ ¼
ffiffiffi
λ

p

2πe1α

�
KðkÞ − e2 − e1

e2
Π̄
�
e1k2

e2
; k2
��

ð53Þ

takes the value N0=N, i.e., on the set of rationals. From
known properties and a Taylor analysis of QðϕÞ for ϕ near
π=2, we deduce that QðϕÞ increases monotonically in the
ð1= ffiffiffi

6
p

; 1=2Þ interval (see Fig. 1). Effectively, Eq. (52)
becomes a “quantization” condition on the angular momen-
tum L of the rotor since λ ¼ 4L2. Numerical solutions of
Eq. (52) are easily obtained by selecting pairs of integers
ðN0; NÞ such that 1=

ffiffiffi
6

p
< N0=N < 1=2. The lowest pairs

of integers satisfying Eq. (52) are shown in Table I (see
Figs. 3–5). For a given (large) N, one expects based on the

FIG. 1. The function QðϕÞ, Eq. (53), as a function of ϕ. Each
rational value of Q provides a solution of the SU(3) EoM.
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density of primes that the number of solutions is
roughly ∼0.1N= logN.
The elliptic modulus k as determined from Eq. (47) takes

an enumerable, infinite set of values in the interval
0 ≤ k2 ≤ 1=2. A particularly interesting solution is repre-
sented by the circular orbit, λ ¼ 1 (ϕ ¼ 0), which has
the maximal angular momentum L ¼ 1=2 (see Fig. 2). At
this point k ¼ 0 and the Jacobi elliptic functions become
harmonic [snðξ; 0Þ ¼ sin ξ, cnðξ; 0Þ ¼ cos ξ, dnðξ; 0Þ ¼ 1].
Since r ¼ 1=

ffiffiffi
2

p
and θ ¼ ξ, a massive, harmonic wave

solution of the interacting YM EoM is given in the proper
frame by4

~A¼ 1ffiffiffi
2

p

0
B@

0 e−imt−iϕ1 ê1 eimtþiϕ2 ê2
eimtþiϕ1 ê1 0 e−imt−iϕ3 ê3
e−imt−iϕ2 ê2 eimtþiϕ3 ê3 0

1
CA: ð54Þ

FIG. 2. The harmonic plane-wave solution for L ¼ 1=2 corre-
sponds to the circular orbit on the plane.

FIG. 3. The nonlinear plane-wave solution, Eq. (57), with
N0 ¼ 3, N ¼ 7.

FIG. 4. The nonlinear plane-wave solution, Eq. (57), with
N0 ¼ 4, N ¼ 9.

FIG. 5. The nonlinear plane-wave solution, Eq. (57), with
N0 ¼ 5, N ¼ 11.

4We include also arbitrary phase shifts ϕ1, ϕ2, ϕ3 on the
complex pairs.
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The other limiting solution is obtained for ϕ ¼ π=2 (λ ¼ 0,
L ¼ 0) where the elliptic modulus takes the value
k ¼ 1=

ffiffiffi
2

p
. In this limit the solution degenerates to a

straight line on the plane (θ ¼ const). From known proper-
ties it can be shown that

rðξÞ ¼
� ffiffiffi

3
p

2

�
1=2

cnð31=4ξþ Kð1=
ffiffiffi
2

p
Þ; 1=2Þ: ð55Þ

In a general frame, the solution is obtained by a Lorentz
boost [Eqs. (10)–(11)]. The R3 basis (ê1, ê2, ê3) is boosted

to the three orthonormal spacelike5 polarization vectors εðσÞμ

given for σ ¼ 1, 2, 3 and μ ¼ 0, 1, 2, 3,

εðσÞμ ¼

0
BBBBBBBBBB@

−k1=m −k2=m −k3=m

1þ k21
mðωþmÞ

k1k2
mðωþmÞ

k1k3
mðωþmÞ

k1k2
mðωþmÞ 1þ k22

mðωþmÞ
k2k3

mðωþmÞ
k1k3

mðωþmÞ
k2k3

mðωþmÞ 1þ k23
mðωþmÞ

1
CCCCCCCCCCA
;

ð56Þ

and the color fields are written as

A1
μ þ iA2

μ ¼ 2εð1Þμ rðξÞeiθðξÞþiϕ1 ;

A4
μ − iA5

μ ¼ 2εð2Þμ rðξÞeiθðξÞþiϕ2 ;

A6
μ þ iA7

μ ¼ 2εð3Þμ rðξÞeiθðξÞþiϕ3 ð57Þ
for any selected L such that Eq. (52) is satisfied. The
harmonic plane-wave solution is recovered for r ¼ 1=

ffiffiffi
2

p

and θ ¼ ωt − ~k · ~x. Note that the solution (57) satisfies the
Lorentz gauge condition ∂μAμa ¼ 0 in any frame and this is
a direct consequence of the ansatz (27) chosen in the proper
frame. It may also be called “diagonal” in the sense that the
complex SU(3) algebra roots are aligned with the three
gluon polarization states. Global SU(3) transformations on
the solution (57) are allowed since they do not spoil the
Lorentz gauge condition. They rotate the solutions

Aμ → gAμg−1 ð58Þ

[where g is a constant SU(3) matrix in the fundamental] and
thus generate additional color fields in the Cartan sub-
algebra ðT3; T8Þ. The general field component Aa

μ is a linear
superposition of the “diagonal” solution (57) with weights
equal to the adjoint matrix elements RabðgÞ.

B. L ¼ 0 solutions

Solutions satisfying L ¼ 0 are also possible. In that case
the angles θ1, θ2, θ3 are necessarily constants.

(i) The case Ψ1 ¼ Ψ2 ¼ Ψ3 ¼ 0 does not lead to
interesting (periodic) solutions.

(ii) The caseΨ1 ≠ 0,Ψ2 ¼ Ψ3 ¼ 0, from the “Group 2”
equations, in order to avoid unbounded solutions for
D2 and D3 also leads to D1 ¼ D2 ¼ D3 ¼ 0, and
finally forbids any bounded solution.

(iii) The case Ψ1 ≠ 0, Ψ2 ≠ 0, Ψ3 ¼ 0, from the “Group
3” equations, leads to D1 ¼ D2 ¼ 0. This allows the
following set of coupled equations for the remaining
fields:

r̈1 þ r1½r22 þD2
3� ¼ 0;

r̈2 þ r2½r21 þD2
3� ¼ 0;

D̈3 þ 6D3r21 ¼ 0;

D̈3 þ 6D3r22 ¼ 0: ð59Þ

In general this is a chaotic system but the following
integrable cases are included:

r1 ¼ r2 ¼ cn

�
ξ;
1

2

�
; D3 ¼ 0;

r1 ¼ r2 ¼
D3ffiffiffi
5

p ¼ cn

� ffiffiffi
6

p
ξ;
1

2

�
: ð60Þ

(iv) The case Ψ1 ≠ 0, Ψ2 ≠ 0, Ψ3 ≠ 0 leads to the
coupled system

r̈1 þ r1½r22 þ r23� ¼ 0;

r̈2 þ r2½r21 þ r23� ¼ 0;

r̈3 þ r3½r21 þ r22� ¼ 0; ð61Þ

which in general presents chaotic behavior. Inte-
grable cases are

r1 ¼ r2 ¼ r3 ¼ cn

� ffiffiffi
2

p
ξ;
1

2

�
;

r1 ¼ r2 ¼ cn

�
ξ;
1

2

�
; r3 ¼ 0; ð62Þ

and the similar permutations.

TABLE I. Solutions of Eq. (52) obtained numerically.

N0 N ϕ (deg) k2 L

3 7 61.0208 0.352594 0.348027
4 9 74.9299 0.423877 0.254951
5 11 80.5348 0.452263 0.202761
5 12 41.9829 0.251578 0.431087
6 13 83.4493 0.466980 0.168880

5Note that εðσÞμ εμðσ0Þ ¼ −δσσ0 and εðσÞμ kμ ¼ 0 hold.

GAUSS’ LAW AND NONLINEAR PLANE WAVES FOR … PHYSICAL REVIEW D 93, 085003 (2016)

085003-7



From the above analysis we conclude that the L ¼ 0
solutions are less interesting and are always of the
cnðξ; 1=2Þ type which also solves the SU(2) theory.

V. OTHER GAUGE GROUPS

A. SU(2)

For SU(2) we solve Gauss’ law via the following ansatz:

~A ¼ 1

2

�
Dê3 Ψ�

1ê1 þΨ2ê2
Ψ1ê1 þΨ�

2ê2 −Dê3

�
; ð63Þ

where D is a real function and Ψ1, Ψ2 are complex
functions of ξ. Gauss’ law is written as

GaTa ¼ ~A ·
_~A − _~A · ~A ¼ i

2

�
L1 − L2 0

0 L2 − L1

�
; ð64Þ

where we introduced

Lj ¼
i
2
ðΨj

_Ψ�
j −Ψ�

j
_ΨjÞ; j ¼ 1; 2: ð65Þ

The implementation of Gauss’ law requires L1 ¼ L2 ¼ L.
The EoMs for the ansatz (64) are

D̈þD½jΨ1j2 þ jΨ2j2� ¼ 0;

Ψ̈1 þΨ1D2 þ 1

2
Ψ�

2½Ψ1Ψ2 −Ψ�
1Ψ

�
2� ¼ 0;

Ψ̈2 þΨ2D2 þ 1

2
Ψ�

1½Ψ1Ψ2 −Ψ�
1Ψ

�
2� ¼ 0: ð66Þ

The above equations do not admit harmonic plane-wave
solutions. Assuming the ansatzΨ1 ¼ c1eiω1ξ,Ψ2 ¼ c2eiω2ξ

with constants c1, c2, ω1, ω2 and enforcing Gauss’ law
L1 ¼ L2, it is easily shown that such solutions are not
allowed. The only integrable case of Eq. (66) appears for
Ψ1 ¼ iΨ2 ¼ D, which is none other than the original
solution in Ref. [3].

B. SU(4)

For the case of SU(4) gauge theory we propose the
following ansatz for the gauge potential which [similar to
Eq. (27)] has by construction rows (columns) that are
orthogonal to each other:

~A ¼

0
BBB@

0 Ψ1ê1 Ψ2ê2 Ψ3ê3
Ψ�

1ê1 0 Ψ6ê3 Ψ5ê2
Ψ�

2ê2 Ψ�
6ê3 0 Ψ4ê1

Ψ�
3ê3 Ψ�

5ê2 Ψ�
4ê1 0

1
CCCA: ð67Þ

Gauss’ law for the above ansatz is written as

GaTa ¼ ~A ·
_~A − _~A · ~A

¼ −2idiagðL1 þ L2 þ L3;−L1 þ L5 þ L6;−L2

þ L4 − L6;−L3 − L4 − L5Þ; ð68Þ

where we introduced

Lj ¼
i
2
ðΨj

_Ψ�
j −Ψ�

j
_ΨjÞ; j ¼ 1; 2;…; 6: ð69Þ

The implementation of Gauss’ law requires

L1 þ L2 þ L3 ¼ 0; − L1 þ L5 þ L6 ¼ 0;

−L2 þ L4 − L6 ¼ 0; − L3 − L4 − L5 ¼ 0: ð70Þ

The EoMs contain cubic terms of the fields Ψi and a
general solution goes beyond the scope of this work. Here,
we simply note that SU(3) solutions can be readily
immersed in SU(4) in four different ways:

Ψ1 ¼ Ψ2 ¼ Ψ3 ¼ 0; Ψ1 ¼ Ψ5 ¼ Ψ6 ¼ 0;

Ψ2 ¼ Ψ4 ¼ Ψ6 ¼ 0; Ψ3 ¼ Ψ4 ¼ Ψ5 ¼ 0: ð71Þ

For each of the choices, the remaining three fields are
identified with the SU(3) solution, Eq. (57). Thus, plane
waves (and particularly harmonic waves) can also propa-
gate in the SU(4) theory, but are non-Abelian to the SU(3)
subspaces.

VI. CONCLUSIONS AND OUTLOOK

We have presented plane-wave solutions for the SU(3)
Yang-Mills EoM in 3þ 1 dimensions. The solutions
represent massive nonlinear plane waves, for arbitrary
values of the mass parameter (reflecting the scale invari-
ance of the action) and obeying the relativistic dispersion
relation. The solution is designed by aligning the non-
diagonal color fields with the polarization states of the
massive vector boson. Via a global SU(3) transformation all
the octet fields participate in the solution. The functional
form is described by the dynamics of a planar particle
bounded with the r4 potential. The periodic particle orbits
on the plane are characterized from the value of the angular
momentum L which is bounded (in scaled units) between
zero and 1=2. The value of the angular momentum is
related to the elliptic modulus k of the Jacobi elliptic
functions which describe the solution. Each rational num-
ber in the ð1= ffiffiffi

6
p

; 1=2Þ interval gives a solution, and at the
edge of the interval, with L ¼ 1=2, a harmonic massive
plane-wave solution of the interacting YM theory is
recovered. Compared to the SU(2) theory which possesses
only the k2 ¼ 1=2 plane wave, the SU(3) theory presents a
far richer spectrum of solutions, with k2 obtaining an
infinite, enumerable set of values densely covering the
interval 0 ≤ k2 ≤ 1=2.
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The coupling to fermions is straightforward for static
quark matter in the Cartan ðT3; T8Þ subalgebra. Gauss’ law,
Eq. (29), admits quark densities on the rhs if angular
momenta values L1 ≠ L2 ≠ L3 are used.
Plane-wave solutions, and in particular the harmonic

ones, may be of use in quantization schemes or particular
perturbative treatments of the quantum theory since they
automatically incorporate a gluon mass. The impact
of such configurations on the properties of the quantum
theory is worth exploring. In addition, classical

Minkowskian solutions may also be useful in the study
of gluon radiation, or the thermodynamical properties near
the phase transition where semiclassical configurations
become relevant.
Finally, we note that higher-rank gauge groups admit a

similar treatment. For the SU(4) theory, Gauss’ law can be
solved by following the same strategy. In the SU(3)
subgroups the plane-wave solutions remain valid, while
the issue of existence of more generic SU(4) solutions is
left for future investigations.
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