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According to the Coleman-Mandula theorem, any gauge theory of gravity combined with an internal
symmetry based on a Lie group must take the form of a direct product in order to be consistent with basic
assumptions of quantum field theory. However, we show that an alternative gauging of a simple group can
lead dynamically to a spacetime with compact internal symmetry. The biconformal gauging of the
conformal symmetry of n-dimensional Euclidean space doubles the dimension to give a symplectic
manifold. Examining one of the Lagrangian submanifolds in the flat case, we find that in addition to the
expected SOðnÞ connection and curvature, the solder form necessarily becomes Lorentzian. General
coordinate invariance gives rise to an SOðn − 1; 1Þ connection on the spacetime. The principal fiber bundle
character of the original SOðnÞ guarantees that the two symmetries enter as a direct product, in agreement
with the Coleman-Mandula theorem.

DOI: 10.1103/PhysRevD.93.085002

I. INTRODUCTION

The Coleman-Mandula theorem [1] and generalizations
[2] show that, given certain assumptions likely true of a
satisfactory quantum field theory, any unification of general
relativity with internal symmetries based on Lie groups
must take the form of a direct product of the Poincaré or
conformal group with a compact internal symmetry group.
By extending to a graded Lie algebra, supersymmetric
theories escape this conclusion and give a nontrivial
unification of gravity with the standard model interactions.
In the present examination, we find an alternative to such
unification, using a quotient of the conformal group of
Euclidean space which doubles the original dimension to a
symplectic manifold. We show that the solution of the field
equations dynamically produces a Lorentzian metric on a
Lagrangian submanifold. The class of orthonormal frame
fields of this Lorentzian metric is invariant under
SOðn − 1; 1Þ and enters as a direct product with the
SOðnÞ symmetry of the original principal fiber bundle,
satisfying the Coleman-Mandula theorem. Of course, while
this approach satisfies the Coleman-Mandula theorem
without supersymmetry, it does not preclude supersym-
metric extension.
Our method uses the standard construction of a Cartan

geometry [3], in which a principal fiber bundle is produced
from the quotient of a Lie group by a Lie subgroup. The Lie
subgroup provides the local symmetry over the quotient
manifold. Group quotients allow group-theoretic insights
into gravity models, and thus improve on the early work of
Utiyama [4] and Kibble [5], who extended global Lorentz
and Poincaré symmetries, respectively, to local symmetries.
The group quotient method was first employed for gravity

by Ne’eman and Regge [6,7] who used it as a systematic
way to study general relativity and supergravity. Later,
Ivanov and Niederle used the same method to develop a
variety of gauge theories, including the biconformal gaug-
ing we use here [8,9], though the appropriate gravity field
equations appear to arise from the curvature-linear action
found by Wehner and Wheeler [10].
Starting from the generators of the conformal group of

Euclidean n-space, we present the biconformal gauging
(developed in [9–11] and presented concisely in [12]).
Rather than continuing by introducing Cartan curvatures,
we work directly with the homogeneous quotient manifold,
using a known solution to the flat Maurer-Cartan equations.
This solution is naturally expressed in terms of a pair of
involute 1-forms which together span a 2n-dimensional
symplectic manifold. The Killing metric induces a
Lorentzian metric on one of the resulting Lagrangian
submanifolds ([13], also see [12,14]), and we interpret
this submanifold as spacetime.
In previous work studying these solutions [12,14], the

SOð4Þ connection was separated into an SOð3; 1Þ piece and
additional fields. The additional fields, constructed from
certain invariant scalar fields, were interpreted as contri-
butions to dark matter and dark energy. The SOð3; 1Þ piece
of their decomposition becomes compatible with the usual
soldering of the base manifold to the fiber.
The novelty of our approach is to leave the SOð4Þ

symmetry intact and distinct from the Lorentzian symmetry
that necessarily [13] develops for the metric. Because the
gauging includes the SOðnÞ symmetry of the original
Euclidean space, the fiber symmetry includes its own
SOðnÞ connection. However, the solder form now fails
to “solder”, displaying instead a Lorentzian inner product
and inducing the spacetime metric. General coordinate
covariance induces local Lorentz symmetry on orthonormal
frame fields, so the final model has both SOðnÞ and
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SOðn − 1; 1Þ symmetries and corresponding connections,
in the direct product form required by the Coleman-
Mandula theorem. We introduce adapted coordinates that
enable us to clearly display the simultaneous presence of
the two symmetries.
In a further new contribution to understanding these

spaces, we include a discussion of the meaning of the full
biconformal manifold. We show that the homogeneous
solution permits identification of the full 2n-dimensional
space as the cotangent bundle of spacetime with orthogonal
Lagrangian submanifolds, one of which may be made flat
by conformal transformation.
While we deal with only the flat case here, we expect

further examination to permit curvatures of both connec-
tions. For the n ¼ 4 case, the SOð4Þ symmetry is naturally
replaced by SUð2Þ × SUð2Þ and interpreted as a left-right
symmetric electroweak model. Symmetry breaking of one
of the SUð2Þ groups should then give a grav-electroweak
unification. Larger n could incorporate SOðnÞ or SpinðnÞ
GUT models.

II. BICONFORMAL GAUGING

A. Quotient manifold method

To develop the biconformal space, we use the quotient
manifold method [3,6,7]. Starting with a Lie group G, (in
our case the conformal group, C), we construct a principal
fiber bundle by taking the quotient by a Lie subgroup,H [in
our case the Euclidean Weyl group, W, comprised of
SOðnÞ transformations and dilatations]. This subgroup
becomes the local symmetry of the 2n-dimensional quo-
tient manifold.
Lie groups have natural connection 1-forms ωA dual to

the group generators GA, defined by the linear mapping
ωAðGBÞ ¼ δAB, with the coordinate bases being dual,
h ∂
∂xμ ;dxνi ¼ δνμ. Rewriting the commutation relations of
the generators

½GA;GB� ¼ cABCGC; ð1Þ

where cABC are the group structure constants, in terms of
these dual 1-forms, we arrive at the Maurer-Cartan structure
equations,

dωA ¼ −
1

2
cABCω

B ∧ ωC: ð2Þ

The integrability conditions of Eq. (2) follow from the
Poincare lemma, d2 ¼ 0, and exactly reproduce the Jacobi
identity,

½GA; ½GB;GC�� þ ½GB; ½GC;GA�� þ ½GC; ½GA;GB�� ¼ 0

so that Eq. (2) is equivalent to the Lie algebra.
It is convenient to define CA

B ≡ cACBω
C so the structure

equation becomes dωA ¼ 1
2
ωC ∧ CA

C.

The quotient of G by a Lie subgroup divides the
Maurer-Cartan into horizontal and vertical parts. Thus, if
we write the connection forms as ~ωA ¼ ð ~ωa

H; ~ω
m
MÞ with

~ωa
H; a; b; c ¼ 1;…K spanning H and ~ωm

M; m; n; p ¼
1;…N − K spanning the homogeneous quotient manifold,
MN−K ¼ G=H, then we have

CA
B ¼ cApBω

p
M þ cAbBω

b
H

with the condition cmab ¼ 0 guaranteeing the subgroup
condition. The structure equations for ~ωa

H and ~ωa
M are

d ~ωa
H ¼ −

1

2
Ca

B ∧ ωB

d ~ωm
M ¼ −

1

2
Cm

B ∧ ωB:

Because cmab ¼ 0, the second of these takes the special
form

d ~ωm
M ¼ −

1

2
cmnp ~ωn

M ∧ ~ωp
M − cmnb ~ω

n
M ∧ ~ωb

H

¼
�
−
1

2
cmpn ~ω

p
M − cmbn ~ω

b
H

�
∧ ~ωn

M

thereby placing ~ωm
M in involution. This involution means

there exist submanifolds found by setting ~ωm
M ¼ 0, and we

recover the subgroup Lie structure equations of the fibers.
The final step in the construction of a Cartan geometry is

to allow horizontal curvature 2-forms, ΣA ¼ ðΣa;ΩmÞ. This
changes the connection 1-forms, ð ~ωa

H; ~ω
m
MÞ to a new

connection, ðωa
H;ω

m
MÞ, and we have the Cartan equations,

dωA ¼ − 1
2
cABCω

B ∧ ωC þ ΣA, or

dωa
H ¼ −

1

2
Ca

B ∧ ωB þ Σa

dωm
M ¼ −

1

2
Cm

B ∧ ωB þΩm:

Separating out the subgroup components,

dωa
H ¼ −

1

2
cabcω

b
H ∧ ωc

H −
1

2
campωm

M ∧ ωp
M

− cambω
m
M ∧ ωb

H þ Σa

dωm
M ¼ −

1

2
cmnpωn

M ∧ ωp
M − cmnbω

n
M ∧ ωb

H þ Ωm: ð3Þ

The curvature forms are tensorial under H, and because
they are horizontal, describe curvature of M only.
Consistency requires the integrability of these equations,
which is no longer guaranteed by the Jacobi identity.
Integrability of dωA ¼ − 1

2
cABCω

B ∧ ωC þ ΣA requires
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0≡ d2ωA

¼ −
1

2
cABCdω

B ∧ ωC þ 1

2
cABCω

B ∧ dωC þ dΣA

¼ −
1

2
cABC

�
−
1

2
cBDEω

D ∧ ωE þ ΣB

�
∧ ωC þ 1

2
cABCω

B ∧
�
−
1

2
cCDEω

D ∧ ωE þ ΣC

�
þ dΣA

¼ 1

2
cAB½Cc

B
DE�ω

C ∧ ωD ∧ ωE þ dΣA −
1

2
cABCΣB ∧ ωC þ 1

2
cABCω

B ∧ ΣC

¼ dΣA þ cABCω
B ∧ ΣC

≡DΣA

where we use the Jacobi identity, cAB½Cc
B
DE� ≡ 0, and define

the covariant exterior derivative. The result holds for both
Σa and Ωa, leaving us with

DΣa ¼ 0

DΩa ¼ 0:

These are the Bianchi identities in gravitational models.
A locally H-invariant physical theory is now found

by writing any scalar Lagrange density built from the
tensors available from the construction of this principal
bundle, Ωa, Σm, along with tensors from the original linear
representation. The nonvertical basis forms ωm

M also
become tensors because the curvature breaks the corre-
sponding symmetries.

B. Conformal structure equations
and the Cartan geometry

Applying the quotient method to the conformal group of
a compactified space with flat metric, ηab, of signature
ðp; qÞ, we express the generators as

Ma
b ¼

1

2
ðxa∂b − ηacηbdxd∂cÞ

≡ Δac
dbx

d∂c

Pa ¼ ∂a

Ka ¼ 1

2
ðx2ηab∂b − 2xaxc∂cÞ

D ¼ xc∂c

where the A index on the generators GA includes all
possible antisymmetric pairs for the group, i.e., A ∈
fðabÞ; ð ·aÞ; ða·Þ; ð··Þg and Δac

db ≡ 1
2
ðδadδcb − ηacηbdÞ is the anti-

symmetric projection operator on ð1
1
Þ tensors. The operators

Ma
b, Pa, Ka, D generate SOðp; qÞ transformations, trans-

lations, special conformal transformations, and dilatations,
respectively.
The commutators of the generators then give the Lie

algebra,

½Ma
b;M

c
d� ¼

1

2
½δcbδaeδfd þ ηbdδ

c
eη

fa þ ηacηedδ
f
b

þ δadηbeη
fc�Me

f

½Ma
b; Pc� ¼ Δad

cbPd

½Ma
b; K

c� ¼ −Δac
dbK

d

½Pa;Kb� ¼ 2Δbd
caMc

d − δbaD

½D;Pa� ¼ −δcaPc

½D;Ka� ¼ δacKc:

Then we introduce basis 1-forms dual to the generators

hMa
b; ~ω

c
di ¼ 2Δac

db

hPa; ~ωbi ¼ δba

hKa; ~ωbi ¼ δab

hD; ~ωi ¼ 1:

Notice that index position corresponds to conformal
weight, so ~ωa and ~ωa are distinct fields. These lead directly
to the Maurer-Cartan structure equations

d ~ωa
b ¼ ~ωc

b ∧ ~ωa
c þ 2Δad

cb ~ωd ∧ ~ωc

d ~ωa ¼ ~ωc ∧ ~ωa
c þ ~ω ∧ ~ωa

d ~ωa ¼ ~ωc
a ∧ ~ωc þ ~ωa ∧ ~ω

d ~ω ¼ ~ωc ∧ ~ωc: ð4Þ

With the quotient C=W, these equations describe a 2n-
dimensional homogeneous manifold spanned by ~ωc and
~ωc. Notice that d ~ω ¼ ~ωc ∧ ~ωc is a symplectic form since it
is manifestly both closed and nondegenerate.
To complete the construction of a Cartan geometry, these

connection forms are now generalized, ð ~ωa
b; ~ω

a; ~ωa; ~ωÞ →
ðωa

b;ω
a;ωa;ωÞ, to permit horizontal curvature 2-forms,
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dωa
b ¼ ωc

b ∧ ωa
c þ 2Δad

cbωd ∧ ωc þ Ωa
b

dωa ¼ ωc ∧ ωa
c þ ω ∧ ωa þ Ta

dωa ¼ ωc
a ∧ ωc þ ωa ∧ ωþ Sa

dω ¼ ωc ∧ ωc þ Ω: ð5Þ

The final step in producing a gravity model is to write the
most general action functional linear in the curvatures [10],

S ¼
Z

ðαΩa
b þ βδabΩþ γωa ∧ ωbÞεac…d

be…fωd ∧ …

∧ ωc ∧ ωe ∧ … ∧ ωf:

We will be concerned only with the solution to the
homogeneous geometry, Eqs. (4), but the complete
Ta ¼ 0 class of solutions has been shown to reduce to
locally scale-invariant general relativity on a Lagrangian
submanifold [15].
For the rest of our discussion, we return to the homo-

geneous manifold described by Eqs. (4). An extended
derivation, similar to that in [10,15] but straightforward to
verify by direct substitution, gives the general solution to
these structure equations up to gauge and coordinate
choices. The solution takes the form first given in [11],
but a coordinate choice removes the function αaðxÞ present
there. Here we use the symmetry between ~ωa and ~ωa to
recast that general solution as

~ωa
b ¼ −2Δac

dbx
ddyc ð6Þ

~ωa ¼ dxa −
�
xaxb −

1

2
ηabx2

�
dyb ð7Þ

~ωa ¼ dya ð8Þ

~ω ¼ xcdyc ð9Þ

where x2 ≡ ηabxaxb. For convenience, we define

bab ≡ 2xaxb − ηabx2 ð10Þ

which simplifies Eq. (8) to ~ωa ¼ dxa − 1
2
babdyb.

Our Euclidean starting point gives us a specific model
within which we can explicitly verify and more clearly
understand the signature theorem of [13]. Note that when
ηab ¼ δab is Euclidean, bab has Lorentzian signature

bab ¼ −jx2j

0
B@

−1
1

1

1

1
CA

but other initial signatures ðp; qÞ for ηab do not give
consistent signature for bab. Specifically, for non-
Euclidean ηab, if xa is timelike ðx2 < 0Þ, a transformation

to xa ¼ þ
ffiffiffiffiffiffiffi
jx2j

p
ð1; 0;…; 0Þ gives signature ðp0; q0Þ ¼

ðpþ 1; q − 1Þ for bab, while if xa is spacelike x2 > 0,
boosting and rotating to xa ¼ þ

ffiffiffiffiffiffiffi
jx2j

p
ð0; 1; 0; 0Þ at any

given point gives bab signature ðp00; q00Þ ¼ ðqþ 1; p − 1Þ.
Equating ðp0; q0Þ ¼ ðp00; q00Þ requires p ¼ q. Therefore,
bab only has a consistent signature for all xa if ηab is
Euclidean or if p ¼ q and in the Euclidean case bab is
necessarily Lorentzian. This is in agreement with the
signature theorem of [13]. For the remainder of this
investigation, we will take ηab ¼ δab ¼ diagð1;…; 1Þ so
that bab ¼ 2xaxb − δabx2 is Lorentzian for all xa.
We show in the next section that bab is the restriction of

the Killing metric to certain Lagrangian submanifolds. The
argument above then shows how the uniqueness of the
signature theorem occurs. If the initial signature differs
from Euclidean or p ¼ q, the restriction of the Killing
metric to the Lagrangian submanifolds is degenerate.

C. The Killing form

The Killing metric of the biconformal manifold is the
restriction of the conformal Killing form KAB ¼ trðGAGBÞ
(equal to cCADcDBC in the adjoint representation) to the
quotient manifold. The nondegeneracy of KAB allows us to
define the inner product

hωA;ωBi≡ KAB ð11Þ

in either the curved ðωAÞ or the homogeneous ð ~ωAÞ case.
Restricting KAB to its form on the quotient manifold, we
have

hωa;ωbi ¼ 0

hωa;ωbi ¼ hωb;ωai ¼ δab

hωa;ωbi ¼ 0 ð12Þ

which is readily seen to be nondegenerate. This means that,
unlike the Poincaré case, the group Killing form provides a
metric on the quotient manifold.
It is useful to express this inner product in terms of the xa

and ya coordinates as well. Substituting the solution of
Eqs. (6)–(9) into the Killing metric, Eq. (12), we find the
inner product of the coordinate basis forms to be

hdxa;dxbi ¼ bab

hdxa;dybi ¼ hdyb;dxai ¼ δab

hdya;dybi ¼ 0:

In the next section, we show that there is a Lagrangian
submanifold of flat SOðnÞ biconformal space with natural
Lorentzian signature and both SOðnÞ and spacetime
connections.
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III. AN SOðnÞ FIELD ON SPACETIME

We now come to our principal results: the simultaneous
presence on a Lagrangian submanifold of an SOðnÞ
connection and its Yang-Mills field strength, together with
Lorentzian metric, connection and curvature. The result is
achieved by using a different involution from that
of [12,14].
From the Maurer-Cartan equations, Eqs. (4), we see that

both basis forms, ~ωa and separately, ~ωa, are in involution.
This implies the existence of complementary submanifolds,
and the vanishing of the symplectic form when one or the
other basis form vanishes shows that the submanifolds are
Lagrangian. In this section, we use a general solution to the
flat structure equations to develop the Killing metric on
both the ~ωa ¼ 0 submanifold and the ~ωa ¼ 0 submanifold
and explore properties of the solution, showing the pres-
ence of an SOðnÞ Yang-Mills field on spacetime from the
elements of the solution.

A. The structure equations on the spacetime
submanifold

Consider the involution of the basis forms, ~ωa. This
means that there exist coordinates, found in the next
section, such that ~ωa ¼ αabdub, and holding ua constant
sets ~ωa ¼ 0 and selects a submanifold spanned by the
remaining basis forms. Setting ~ωa ¼ 0, Eq. (7) shows that
dya ¼ 2babdxb and the structure equations reduce to

~ωa
b ¼ −

4

x2
Δac

dbxcdx
d

~ωa ¼ 2babdxb

~ω ¼ dðln x2Þ:

These describe what we will call the spacetime submani-
fold; it is a Lagrangian submanifold since the symplectic
form d ~ω ¼ d2ðln x2Þ≡ 0 vanishes.

B. Symmetries

The inner products of the restricted basis forms ~ωa are
now

h ~ωa; ~ωbi ¼ h2bacdxc; 2bbddxdi
¼ 4bacbbdhdxc;dxdi
¼ 4bacbbdbcd

¼ 4bab

so the basis and coordinate differentials specify a
Lorentzian inner product.
Unlike previous treatments, this metric symmetry is

different from the symmetry of the connection, which is
constructed from SOðnÞ invariants including the antisym-
metric projection Δac

db. Since

Δac
db ~ω

d
c ¼ −

4

x2
Δac

dbΔde
fcδegx

gdxf

¼ −
4

x2
Δae

fbδegx
gdxf

¼ ~ωa
b

the infinitesimal change in the Euclidean metric δab
produced by ~ωa

b vanishes:

δac ~ω
c
b þ δbc ~ωc

a ¼ 0:

Therefore, ~ωa
b is a generator of SOðnÞ.

Evidently, though the biconformal bundle as a whole has
SOðnÞ fiber symmetry, and this symmetry together with
dilatations preserve the structure equations, the symmetry
of the metric restricted to this submanifold is Lorentzian.
We develop this further as follows.
Let the SOðnÞ gauge be fixed, and consider coordinate

transformations. The vielbein, ~ωa, gives rise to a
Lorentzian metric:

h ~ωa; ~ωbi ¼ 4bab ð13Þ

as do the coordinates

hdxα;dxβi ¼ bαβ:

Given a metric manifold we may construct the frame
bundle, Bðπ; G;MÞ. There then exists the subbundle of
orthonormal frames [16], Oðπ; SOðn − 1; 1Þ;MÞ, a prin-
cipal fiber bundle with Lorentz symmetry group. Therefore,
implicit in the set of general coordinate transformations, we
have all Lorentz transformations of the corresponding
orthonormal frame fields. In this way, we generate a
representation of SOðn − 1; 1Þ which is clearly indepen-
dent of the SOðnÞ fiber symmetry. The bundle structure
guarantees that these symmetries are independent, satisfy-
ing the Coleman-Mandula theorem. We regard the com-
bined bundle as having symmetry SOðnÞ × SOðn − 1; 1Þ×
SOð1; 1Þ.
We define the Christoffel connection, Γα

μν, and Riemann
curvature, Rα

βμν, in the usual way, from the metric bαβ and
without reference to the SOðnÞ bundle symmetry. The
orthogonal bundle symmetry has its own connection, ~ωa

b,
and corresponding Yang-Mills field,

Fa
b ¼ d ~ωa

b − ~ωc
b ∧ ~ωa

c:

This development within the solution of a Lorentzian
metric is in accordance with the signature theorem proved
in [13] and developed further in [12,14].
We now compute the spacetime curvature and the Yang-

Mills field strength of this model.
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C. Spacetime curvature of the Lagrangian submanifold

The inverse spacetime metric is

hdxα;dxβi ¼ bαβ

¼ 2xαxβ − δαβx2:

In these coordinates, δαβ ¼ diagð1;…; 1Þ. Inverting,

gαβ ¼
1

ðx2Þ2 ð2xαxβ − δαβx2Þ:

The Christoffel connection is readily found to be,

Γα
βμ ¼

1

x2
ðxαδβμ − δαβxμ − δαμxβÞ

and the curvature is

Rα
βμν ¼ Γα

βν;μ − Γα
βμ;ν − Γα

σνΓσ
βμ þ Γα

σμΓσ
βν

¼ 1

x2

��
δαμ −

1

x2
xαxμ

��
δβν −

1

x2
xβxν

�

−
�
δαν −

1

x2
xαxν

��
δβμ −

1

x2
xβxμ

��
:

Defining the projection operator Pα
μ ≡ ðδαμ − 1

x2 x
αxμÞ,

orthogonal to xα, we may write this as

Rα
βμν ¼

1

x2
ðPα

μPβν − Pα
νPβμÞ:

D. The Yang-Mills field strength

Finally, we compute the Yang-Mills field strength,

Fa
b ¼ d ~ωa

b − ~ωc
b ∧ ~ωa

c

where the SOðnÞ connection is given by

~ωa
b ¼ −

4

x2
Δac

dbxcdx
d:

We may find this directly from the SOðnÞ structure
equation,

d ~ωa
b ¼ ~ωc

b ∧ ~ωa
c þ 2Δad

cb ~ωd ∧ ~ωc

which shows immediately that

Fa
b ¼ −2Δad

cb ~ωd ∧ ~ωcj ~ωc¼0 ¼ 0:

The Yang-Mills field strength therefore vanishes on the
spacetime Lagrangian submanifold.
We easily check this directly. Substituting the submani-

fold form, − 4
x2 Δ

ac
dbxcdx

d leads after some algebra to

Fa
b ¼ 0 (see Appendix A). Naturally, this will change

when curved biconformal spaces are considered.
We end the section by finding a set of coordinates

adapted to the involution of ~ωa.

E. Adapted coordinates for the involution of the
translational gauge fields

The involution of ωa means that we may write ωa ¼
ααβdu

β for n coordinates uα. To find ααβ and uβ, we need to
solve

ααβduβ ¼ dxα −
1

2
bαβdyβ: ð14Þ

With the metric bαβ given by

bαβ ¼
1

ðx2Þ2 ð2xαxβ − δαβx2Þ

where we define xα ≡ δαβxβ, we rewrite Eq. (14) as
bαμαμβduβ ¼ bαμdxμ − 1

2
dyα and note that bαμdxμ ¼

−δαμdðxμx2Þ. Therefore,

2bαμαμβduβ ¼ −δαμd
�
2xμ

x2
þ δμβyβ

�
;

and we may identify

uα ≡ 2xα

x2
þ δαβyβ

and require

2bαμαμβ ¼ δαβ:

Inverting the metric on this expression now shows that

αμβ ¼ xαxβ −
1

2
δαβx

2:

In terms of the adapted coordinates uα, we may solve for
and replace xα,

xαðuα; yβÞ ¼
2ðuα − δαβyβÞ

u2 − 2uαyα þ y2

so that the full structure equations take the form

~ωa
b ¼ −2Δac

dbδ
d
μδ

ν
cxμðuα; yβÞdyν

~ωa ¼ δaβdu
β

~ωa ¼ δβadyβ

~ω ¼ xμðuα; yβÞdyμ; ð15Þ
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and we note that the second involution, for ~ωa, is simulta-
neously expressed in adapted coordinates yα. It is straight-
forward to check both directly and in terms of the ðxα; yβÞ
inner products that hduα;duβi ¼ 0.

IV. PHASE SPACE

The full biconformal space is a symplectic manifold, but
unlike our usual basis for phase spaces, the inner product of
the ð ~ωa; ~ωaÞ basis is off diagonal, Eq. (12). To make a full
connection between the background biconformal manifold
and a one-particle phase space, we introduce a further
change of basis.

A. An orthogonal basis of Lagrangian submanifolds

Having both metric and symplectic form, we may find a
subspace orthogonal to the spacetime manifold. To find it,
we introduce new coordinates za such that hdza;dxbi ¼ 0.
Making the ansatz dza ¼ ξa

bdyb þ Ξabdxb, we solve for
ξa

b and Ξab

0 ¼ hdza;dxci
¼ ξa

bδcb þ Ξabbbc:

This is satisfied if ξca ¼ δca and Ξab ¼ −bab, giving

dza ¼ dya − babdxb

for the differential of the coordinates.
These subspaces are better aligned with our usual notion

of a single particle phase space. In addition to the inner
product of the spacetime coordinate differentials
hdxa;dxbi ¼ bab, and orthogonality of the spacetime
and momentum directions, we have a metric on the
momentum space as well,

hdza;dzbi ¼ hdya − bacdxc;dyb − bbddxdi
¼ −bab:

In terms of the ðxα; zβÞ coordinates, the solution for the
connection is

~ωa
b ¼ −2Δac

dbx
dðdzc þ bcedxeÞ

~ωa ¼ 1

2
ðdxa − babdzbÞ

~ωa ¼ dza þ bacdxc

~ω ¼ xadza þ
1

x2
xadxa:

However, in order for ðxα; zβÞ coordinates to fully match
our expectations for canonically conjugate variables, space-
time and momentum space must be Lagrangian submani-
folds. Therefore the differentials dxα and dzα need to be

integrable. In general, this is not the case. If we substitute
dxa → κa and dza → λa in the structure equations and
solve for dκa and dλa, they are not involute. For dκa, for
example, we find

2dκa ¼ κc ∧ ~ωa
c þ κa ∧ ~ω − bacdbcbκb þ ~ω ∧ κa

þ bae ~ωc
e ∧ bcbκb − bcbλb ∧ ~ωa

c − ~ω ∧ babλb

þ dbabλb þ bab ~ωc
b ∧ λc þ babλb ∧ ~ω:

Therefore, in order for dxa and dza to span a pair of
Lagrangian submanifolds, we require the λa ∧ λb terms to
vanish. Equivalently, we must have

Λa ≡ −bcbλb ∧ ~ωa
c − ~ω ∧ babλb þ dbabλb þ bab ~ωc

b ∧ λc

þ babλb ∧ ~ω

linear in κa, with a similar condition Σa ∼ λa arising for the
involution of dλb.
As we show in detail in Appendix B, these conditions do

hold for the homogeneous solution above—substituting
the form of the connection into Λa and Σa so in the
model considered ðxα; zβÞ do characterize Lagrangian
submanifolds.
Restricting to the constant zα submanifold, the solution is

~ωa
b ¼ −2Δac

dbx
dbcedxe

~ωa ¼ 1

2
dxa

~ω ¼ 1

x2
xadxa ¼

1

2
d ln x2

with metric 4bab and SOð4Þ connection and ~ωa ¼ 2bac ~ωc,
as before. If instead, we hold xα constant, then the
solution is

~ωa
b ¼ −2Δac

dbx
d
0dzc

~ωa ¼ dza

~ω ¼ xa0dza

with ~ωa ¼ − 1
2
babdzb, constant metric −babðxc0Þ and con-

stant SOð4Þ connection.
While the constancy of the SOð4Þ connection does not

imply vanishing of the Yang-Mills field, it may be gauged
to zero by a conformal transformation. The constancy of the
metric, SOð4Þ connection, and Weyl vector show the
momentum space to be a Lagrangian submanifold with
vanishing curvature and vanishing Yang-Mills field. It is
therefore consistent to identify the entire biconformal
manifold with the cotangent bundle.
It is unclear which of these properties survive in curved

biconformal spaces. Torsion-free biconformal spaces are
known to be fully determined by the spacetime solder form
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and Weyl vector with ωa spanning the cotangent spaces,
but the solutions apply to different submanifolds than we
consider in this section. Still, it is conceivable that the
cotangent interpretation is always possible.
It is amusing to speculate on the meaning of the

momentum space if it is found to be curved in some
solutions. If so, it might provide a novel approach to
canonical field theory by allowing canonically conjugate
fields to coexist on what is essentially a particle phase
space. Expressing a relativistic field theory on a particle
phase space has had only measured success. Born [17]
suggested introducing a curved momentum space to
complement gravitating spacetime, but with no clear
indication of what would determine its curvature. In
the nonrelativistic case, the Wigner distribution extends
the wave function to a distribution on phase space, but it
is not obvious how this generalizes to the relativistic
case. Typically, phase space for field theory employs a
natural symplectic structure on field space, but what
occurs here seems to exist midway between the particle
and field cases. The symplectic base manifold allows
fields to acquire a momentum component automatically,
and the field equations determine the structure of the
entire phase space, apparently restricting these fields so
that the only independent degrees of freedom are those
from the spacetime Lagrangian submanifold.

V. CONCLUSION

The Coleman-Mandula theorem shows that unifying
gauge theories that include gravity and are based on Lie
groups require a direct product between the internal and
gravitational symmetries. This seemed to be an unnatural
starting point for a unified theory and led to an increased
emphasis on supersymmetric theories. These avoid being
direct products by allowing graded Lie groups, which in
turn give improved quantum convergence and useful
restrictions on possible models.
In the present work, we show that it is possible to write a

unified theory as a gauge theory of a simple Lie group
which dynamically enforces the Coleman-Mandula theo-
rem. Although the starting point is the conformal group
SOðn − 1; 1Þ of Euclidean n-space, the general solution of
the Maurer-Cartan structure equations shows that the
connection retains its original SOðnÞ symmetry but the
Killing metric (which is nondegenerate in these models)
restricts to a Lorentzian signature on certain Lagrangian
submanifolds.

We outlined the quotient manifold method and applied it
to the biconformal gauging of the conformal group. By
starting from the generators, we constructed the Maurer-
Cartan structure equations for the conformal group. The
known solution to these equations was introduced, though
we choose to use different coordinates better adapted to the
Lagrangian submanifolds.
Our principal contribution was to identify a comple-

mentary pair of Lagrangian submanifolds on which the
connection (of the principal fiber bundle) is orthogonal
[SOðnÞ] while the restriction of the Killing metric is
Lorentzian. The Lorentzian metric allows calculation of
its Christoffel connection and curvature, while the SOðnÞ
connection gives rise to a Yang-Mills field (trivial, since we
only consider the flat case). The Riemannian curvature of
the submanifolds was found to be constructible from
projection operators orthogonal to the time direction.
Notice that the time direction emerges dynamically in
accordance with the signature theorem of [13] and further
developed in [12].
By the definition of a fiber bundle, the SOðnÞ fibers are

in a direct product with the SOðn − 1; 1Þ symmetry of the
base manifold. This direct product relation naturally
satisfies the Coleman-Mandula theorem.
We showed that the full biconformal space may be

given the structure of a cotangent bundle to the curved
spacetime.
Preliminary work with curved biconformal spaces sug-

gests that these results extend to those cases as well, though
the computations pose some interesting challenges. Since
these constructions depend only on the Lie algebra they
will work in the same way with spinor representations.
There is no obstruction to considering supersymmetric
generalizations [18], which among other benefits provide a
principled way of introducing spinor fields into bosonic
field theories.

APPENDIX A: VANISHING OF THE
SUBMANIFOLD YANG-MILLS FIELD

The SOðnÞ Yang-Mills field strength is

Fa
b ¼ −Δad

cbb
cfðdzd ∧ dzf þ 2bdedxe ∧ dzfÞ;

which vanishes on the za ¼ constant Lagrangian sub-
manifold. To verify this explicitly, we substitute the
submanifold form of the connection, ~ωa

bjza¼z0a
¼

− 4
x2 Δ

ac
dbxcdx

d into Fa
b ¼ d ~ωa

b − ~ωc
b ∧ ~ωa

c:
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Fa
b ¼ d

�
−

4

x2
Δac

dbxcdx
d

�
−

4

x2
Δce

dbxedx
d ∧ 4

x2
Δaf

gc xfdxg

¼ 8

ðx2Þ2Δ
ac
dbxexcdx

e ∧ dxd −
4

x2
Δac

dbdxc ∧ dxd −
16

ðx2Þ2Δ
ce
dbΔ

af
gc xexfdxd ∧ dxg

¼ 8

ðx2Þ2Δ
ac
dbxexcdx

e ∧ dxd −
4

x2
Δac

dbδcedx
e ∧ dxd −

4

ðx2Þ2 ðδ
c
dδ

e
b − δceδbdÞðδagδfc − δafδgcÞxexfdxd ∧ dxg

¼ 8

ðx2Þ2Δ
ac
db

�
xexc −

1

2
x2δce

�
dxe ∧ dxd −

4

ðx2Þ2 ðδ
a
exbxd þ δbdxexa − x2δbdδaeÞdxd ∧ dxe

¼ 8

ðx2Þ2Δ
ac
db

�
xexc −

1

2
x2δce

�
dxe ∧ dxd −

4

ðx2Þ2
��

xbxd −
1

2
x2δbd

�
δae þ

�
xaxe −

1

2
x2δae

�
δbd

�
dxd ∧ dxe

¼ 8

ðx2Þ2Δ
ac
db

�
xexc −

1

2
x2δce

�
dxe ∧ dxd −

4

ðx2Þ2
�
xcxd −

1

2
x2δcd

�
ðδcbδae − δacδbeÞdxd ∧ dxe

¼ 4

ðx2Þ2Δ
ac
dbð2xexc − x2δceÞdxe ∧ dxd −

4

ðx2Þ2Δ
ac
ebð2xcxd − x2δcdÞdxd ∧ dxe

¼ 4

ðx2Þ2Δ
ac
dbð2xexc − x2δceÞdxe ∧ dxd −

4

ðx2Þ2Δ
ac
dbð2xcxe − x2δcdÞdxe ∧ dxd

¼ 0:

APPENDIX B: INVOLUTION OF THE
ORTHOGONAL SUBSPACES

We find the involution conditions for the ðdxa;dubÞ
basis and show that they are satisfied by the homogeneous
solution.
The ðdxa;dubÞ basis is related to the original basis

by

~ωa ¼ 1

2
ðdxa − babdubÞ

~ωa ¼ dua þ babdxb:

If we write this instead in the form of an alternative basis,

~ωa ¼ 1

2
ðκa − babλbÞ

~ωa ¼ λa þ babκb

and substitute into the original structure equations,

d ~ωa ¼ ~ωc ∧ ~ωa
c þ ~ω ∧ ~ωa

d ~ωa ¼ ~ωc
a ∧ ~ωc þ ~ωa ∧ ~ω

we find the structure equations for κa and λa,

dκa ¼ 1

2
ðκc ∧ ~ωa

c þ κa ∧ ~ω − bacdbcbκb þ ~ω ∧ κa þ bae ~ωc
e ∧ bcbκbÞ

þ 1

2
ð−bcbλb ∧ ~ωa

c − ~ω ∧ babλb þ dbabλb þ bab ~ωc
b ∧ λc þ babλb ∧ ~ωÞ

dλa ¼
1

2
ðbadbcbλb ∧ ~ωd

c þ ~ω ∧ λa − bacdbcbλb þ ~ωc
a ∧ λc þ λa ∧ ~ωÞ

þ 1

2
ð ~ωc

a ∧ bcbκb þ bacκc ∧ ~ω − dbabκb − babκc ∧ ~ωb
c − bab ~ω ∧ κbÞ:

Therefore, involution of the new basis requires

Λa ≡ −bcbλb ∧ ~ωa
c − ~ω ∧ babλb þ dbabλb þ bab ~ωc

b ∧ λc

þ babλb ∧ eω
to be proportional to κa and

Σa ≡ bae ~ωc
e ∧ bcbκb þ κa ∧ ~ω − bacdbcbκb − κc ∧ ~ωa

c

− ~ω ∧ κa

to be proportional to λa.
The involution does not generically hold, but it only

needs to hold for the solution. Expressing the solution in
terms of ðκa; λbÞ,
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~ωa
b ¼ −2Δac

db

�
xdduc − bcfxddxf þ

2

x2
xcdxd

�

¼ −2Δac
db

�
xdλc − bcfxdκf þ

2

x2
xcκd

�

~ωa ¼ 1

2
ðκa − babλbÞ

~ωa ¼ λa þ babκb

~ω ¼ xaðλa − babκbÞ þ dðln x2Þ

substitution into Λa gives

Λa ≡ bab ~ωc
b ∧ λc − bcbλb ∧ ~ωa

c − 2 ~ω ∧ babλb þ dbabλb

¼ bab
�
−2Δce

db

�
xdλe − befxdκf þ

2

x2
xeκd

��
∧ λc

− bcbλb ∧
�
−2Δae

dc

�
xdλe − befxdκf þ

2

x2
xeκd

��
− 2ðxeðλe − befκfÞ þ dðln x2ÞÞ ∧ babλb þ dbabλb:

Dropping the irrelevant κa terms (since only λa ∧ λb terms
violate the involution),

Λa ≅ babð−2Δce
dbx

dλeÞ ∧ λc þ bcbλb ∧ 2Δae
dcðxdλeÞ

− 2ðxeλe þ dðln x2ÞÞ ∧ babλb þ dbabλb:

Also, since bab depends only on xa, the derivatives dbab
depend only on κa and may be dropped,

Λa ≅ ðbbc2Δae
dbx

d þ bab2Δce
dbx

d þ 2xebacÞλc ∧ λe

¼ ðbbcðδadδeb − δaeδbdÞxd þ babðδcdδeb − δceδbdÞxd
þ 2xebacÞλc ∧ λe

¼ ðbacxe − xbbbcδaeÞλc ∧ λe

¼ ð2xaxcxe − x2ðδacxe þ δaexcÞÞλc ∧ λe

¼ 0:
Therefore, κa is in involution for this solution.
For the involution of λa we require Σa to be linear in λa.

In fact, it vanishes identically:

Σa ≡ bae ~ωc
e ∧ bcbκb þ κa ∧ ~ω − bacdbcbκb − κc ∧ ~ωa

c − ~ω ∧ κa

¼ bae
�
−2Δcg

de

�
−bgfxdκf þ

2

x2
xgκd

��
∧ bcbκb − κc ∧

�
−2Δab

dc

�
−bbfxdκf þ

2

x2
xbκd

��
þ 2κa ∧ ðxað−babκbÞ þ dðln x2ÞÞ − bacdbcbκb

¼ 1

ðx2Þ2 ðx
2δafxb − xað4xfxb − 2xbxf − 2xbxf þ x2δbfÞ þ 4xaxbxf − 2x2δafxbÞκf ∧ κb

þ 1

ðx2Þ2 ð2x
axcxf − δafxcx

2Þκc ∧ κf þ 2

x2
xcκc ∧ κa − 2

1

ðx2Þ2 xbx
2κa ∧ κb þ 2

x2
2xcκa ∧ dxc

þ 1

ðx2Þ2 ð2x
2xbδac þ 2xa2xbxc − 2xaδbcx2 − 4xbxcxa þ 2δabxcx

2Þdxcκb

¼ −
1

x2
δafxcκ

f ∧ κc þ 1

x2
δafxcκ

f ∧ κc þ 2

x2
xcκc ∧ κa þ 2

x2
2xcκa ∧ dxc − 2

1

ðx2Þ2 xbx
2κa ∧ κb

þ 1

ðx2Þ2 ð2x
2xbδac þ 2xa2xbxc − 2xaδbcx2 − 4xbxcxa þ 2δabxcx

2Þdxcκb

¼ 1

x2
ð2δacxb þ 2δabxcÞκcκb

¼ 0

where we use dxb ¼ κb in the last step.
The description of the spacetime and momentum

submanifolds follow from the solution,

~ωa
b ¼ −2Δac

db

�
xdduc − bcfxddxf þ

2

x2
xcdxd

�

~ωa ¼ 1

2
ðdxa − babdubÞ

~ωa ¼ dua þ babdxb

~ω ¼ xaðdua − babdxbÞ þ dðln x2Þ:

When we hold ua constant

~ωa
b ¼ 2Δac

db

�
bcfxddxf −

2

x2
xcdxd

�

~ωa ¼ 1

2
dxa

~ω ¼ 1

2
dðln x2Þ

with ~ωa ¼ babdxb. The submanifold is clearly Lagrangian,
the connection SOð4Þ, and inner product of the basis forms
is Lorentzian,
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h ~ωa; ~ωbi ¼ 1

4
hdxa;dxbi

¼ 1

4
bab:

On the momentum submanifold, with xa ¼ xa0 constant,

~ωa
b ¼ −2Δac

dbx
d
0duc

~ωa ¼ dua

~ω ¼ xa0dua

where ~ωa ¼ − 1
2
babðxα0Þdub. This is again Lagrangian with

inner product

h ~ωa; ~ωbi ¼ hdua;dubi
¼ babðxα0Þ:

Since the metric is now constant, the momentum submani-
fold is flat. The Yang-Mills field strength has the form

Fa
b ¼ d ~ωa

b − ~ωc
b ∧ ~ωa

c

¼ −4Δec
dbΔ

af
ge xd0x

g
0duc ∧ duf

¼ −Δac
bdb

df
0 duc ∧ duf;

which is of the form of a pure rescaling and can therefore, be
made to vanish by a conformal transformation, ϕ ¼ −xα0uα.
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