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We perform real-time lattice simulations of out-of-equilibrium quark production in non-Abelian gauge
theory in 3þ 1 dimensions. Our simulations include the backreaction of quarks onto the dynamical gluon
sector, which is particularly relevant for strongly correlated quarks. We observe fast isotropization and
universal behavior of quarks and gluons at weak coupling and establish a quantitative connection to
previous pure glue results. In order to understand the strongly correlated regime, we perform simulations
for a large number of flavors and compare them to those obtained with two light quark flavors. By doing
this we are able to provide estimates of the chemical equilibration time.
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I. INTRODUCTION

There is considerable progress in understanding the early
stages of the non-Abelian plasma’s space-time evolution in
relativistic heavy-ion collisions. In fact, early times turn out
to be most amenable to a systematic theoretical treatment.
For instance, large-scale nonequilibrium lattice gauge
theory simulations [1] recently identified for the first time
which thermalization scenario [2] is realized in the limit of
very high collision energies, where the running gauge
coupling is weak. This is possible since in this case the
early-time quantum dynamics can be mapped onto a
classical-statistical problem, which can be solved on a
computer. The findings have been incorporated in state-of-
the-art kinetic descriptions [3,4] to compute the later stages
and thermalization of the quark-gluon plasma [5].
Remarkably, characteristic aspects of the weak-coupling
results might be even carried over to the strong-coupling
regime [6].
While most real-time lattice simulation studies so far

have concentrated on pure gauge theory, the understanding
of the quark dynamics still poses crucial open questions.
The inclusion of dynamical quarks became recently pos-
sible in real time in 3þ 1 dimensions due to novel lattice
techniques. Since identical fermions cannot occupy the
same state, their quantum nature is highly relevant and a
consistent quantum theory of quark production in non-
Abelian plasmas is envisaged using real-time lattice
simulations. First successful applications to quantum electro-
dynamics in 3þ 1 dimensions led to lattice simulations of the
phenomenon of electron-positron pair production for electric

field strengths exceeding the Schwinger limit [7]. Extending
these calculations to quarks in quantum chromodynamics
(QCD) is feasible, providing access to a wealth of phenom-
enologically relevant processes.
As an important step in this direction, we present in

this work calculations for QCD with Nc ¼ 2 colors and
different numbers of light quark flavors Nf. While we
restrict ourselves to nonexpanding systems, for the first
time fully 3þ 1-dimensional simulations with dynamical
quarks are performed, extending earlier estimates from
kinetic theory [8], boost-invariant 2þ 1-dimensional
simulations [9] or neglecting backreaction [10]. Our
simulations include the backreaction of quarks onto the
gluon sector, which is particularly relevant for strongly
correlated quarks. While our methods are restricted
to sufficiently small values of the gauge coupling
αs ≡ g2=ð4πÞ, backreaction effects are controlled by the
product g2Nf such that even the weak-coupling limit
becomes strongly correlated for a large enough number of
flavors. In view of applications to heavy-ion collisions,
taking g2Nf of order one is expected to be a reasonable
assumption and this opens the possibility to investigate
the importance of quark backreaction. We present our
simulation results for both perturbatively small and Oð1Þ
values of the backreaction strength g2Nf.
The paper is organized as follows. In Sec. II we describe

the lattice simulation method and how we extract observ-
ables. There we also discuss different sets of initial
conditions with large fields or occupancies. Section III
contains the results for quark production at weak coupling
for two light quark favors, while Sec. IV is devoted to quark
backreaction and physics at large Nf. We end with
conclusions in Sec. V.
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II. REAL-TIME LATTICE QCD

We employ classical-statistical lattice gauge theory
including fermions [7] to study the early-time dynamics
of QCD. In the following, we restrict ourselves to the gauge
group SU(2) with generators ta and adjoint gauge index
a ∈ f1; 2; 3g, which obey the algebra ½ta; tb� ¼ iϵabctc. The
traceless and Hermitian Pauli matrices

σ1 ¼
�
0 1

1 0

�
; σ2 ¼

�
0 −i
i 0

�
; σ3 ¼

�
1 0

0 −1

�

ð1Þ

form a basis according to

ta ¼ σa
2
: ð2Þ

A. Equations of motion

To manifestly preserve gauge invariance of the lattice
theory, we introduce group-valued link variables Uμ;x

which are located between lattice sites x and xþ μ̂ and
point in the direction of μ̂. They can be parametrized in
terms of the algebra-valued gauge field Aμ;x ¼ taAa

μ;x

according to

Uμ;n ¼ eigaμAμ;x ¼ eigaμt
aAa

μ;x ; ð3Þ

where no summation over μ is implied. Here, g is the gauge
coupling and aμ is the lattice spacing in the temporal
(a0 ¼ at) and spatial (ai ¼ as) directions. The gauge field
lattice action in Minkowski space is then constructed from
gauge-invariant plaquette variables

Uμν;x ¼ Uμ;xUν;xþμ̂U†
μ;xþν̂U†

ν;x; ð4Þ

with U†
μν;x ¼ Uνμ;x, such that

Sg ¼
2

g2
X
x

�X
j

as
at

½2 − trU0j;x� −
X
j<k

at
as

½2 − trUjk;x�
�
:

ð5Þ

The plaquette variablesUμν;x encode the non-Abelian field-
strength tensor F μν;x ¼ F a

μν;xta. In fact, to leading order in
the lattice spacing we find

F a
μν;x ¼ −

2i
gaμaν

tr½taUμν;x�: ð6Þ

The chromoelectric and chromomagnetic field components
are given by

Ea
i;x ¼ −

2i
gatas

tr½taU0i;x�; ð7aÞ

Ba
i;x ¼

i
ga2s

ϵijktr½taUjk;x�: ð7bÞ

In the fermionic sector, we employ a gauge-invariant
central derivative discretization of the Dirac action

S0ψ ¼ ata3s
X
x;μ

ψ̄x

�
iγμ

Uμ;xψxþμ̂ − U†
μ;x−μ̂ψx−μ̂

2aμ
−mψx

�
;

ð8Þ

along with a pseudoscalar Wilson term SWψ ½U; ψ̄ ;ψ � in order
to resolve the fermion doubling problem [11]

SWψ ¼ ata3s
X
x;j

ψ̄x

�
iγ5

Uj;xψxþĵ − 2ψx þU†
j;x−ĵψx−ĵ

2as

�
:

ð9Þ

In comparison to a scalar Wilson term as employed in, e.g.
Refs. [7,12–16], the pseudoscalar Wilson term reduces
lattice spacing artifacts as discussed in Ref. [17]. The total
action of the SU(2) gauge theory under consideration is
then the sum of the three contributions (5), (8) and (9). We
note that the action is by construction invariant under local
gauge transformations

U0
μ;x ¼ GxUμ;xG

†
xþμ̂; ð10aÞ

ψ 0
x ¼ Gxψx; ð10bÞ

with the gauge transformation matrix Gx ∈ SUð2Þ. Taking
advantage of the gauge freedom we may employ the
temporal-axial gauge condition U0;x ¼ 1 to simplify the
simulations afterwards.
The equation of motion governing the time evolution of

the fermionic degrees of freedom is then given by

ψxþt̂ ¼ ψx−t̂ − 2iat

�
m −

3i
as

γ5

�
γ0ψx −

at
as

γ0

×
X
j

½ðγj þ γ5ÞUj;xψxþĵ − ðγj − γ5ÞU†
j;x−ĵψx−ĵ�:

ð11Þ

Here, ψx can be taken as stochastic spinor fields in the
framework of the male/female method [13] employed
below or, equivalently, as mode functions in an expansion
of the Dirac field operator [12]. On the other hand, the
equation of motion for the chromoelectric field is given by
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Ea
j;x ¼Ea

j;x−t̂þ gatRetr½Fxþĵ;xðγjþ γ5ÞtaUj;x�

þ 2iat
ga3s

X
i≠j

ðtr½taUji;x�þ tr½taUj;xU
†
i;xþĵ−îU

†
j;x−îUi;x−î�Þ:

ð12Þ

The backreaction of the fermions onto the gauge fields is
determined by the statistical propagator

Fx;y ¼
1

2
h½ψx; ψ̄y�i: ð13Þ

The corresponding trace in Eq. (12) is taken over Dirac
indices and fundamental gauge indices. The system of
dynamic equations is closed by the time evolution equation
of the spatial link variables Uj;x, which is obtained by
reversing Eq. (7) and constructing the temporal plaquette
from Ea

j;x according to

U0j;x ¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
gatas
2

�
2X

a

ðEa
j;xÞ2

s
þ igatastaEa

j;x:

ð14Þ

Taking into account the definition of the temporal plaquette
U0j;x in temporal-axial gauge, we obtain the evolution
equation for the spatial link

Uj;xþt̂ ¼ U0j;xUj;x: ð15Þ

In addition to the dynamical equations of motion, we have
to impose the Gauss constraint in order to simulate in the
physical subspace of the theory

X
j

�
Ea
j;x þ

2i
gatas

tr½taU†
j;xþĵ

U0j;x−ĵUj;x−ĵ�
�

¼ −gasRetr½Fxþt̂;xγ
0ta�: ð16Þ

We emphasize that the time evolution conserves the Gauss
constraint. In practice, we enforce the Gauss constraint at
initial times via an iterative method and monitor its possible
violation due to rounding errors during runtime.

B. Male/female low-cost fermions

The fermionic contribution to the classical-statistical
dynamics can be evolved in time via a mode function
expansion without further approximations [12]. This
approach has been successfully applied for low-dimensional
systems [18–21]; however, its application for three-
dimensional systems becomes rather expensive as the
computational cost scales like the spatial volume squared.
Low-cost fermions may provide a numerically more
efficient method by replacing the mode functions by an
ensemble of fields of different “gender,” denoted as ψM

x

(male) and ψF
x (female) [13]. In this approach the statistical

propagator (13), which governs the backreaction of the
fermions onto the gauge fields, is described by

Fx;y¼! Fsto
x;y ¼ hψM

x ψ̄
F
y isto ¼ hψF

x ψ̄
M
y isto; ð17Þ

where h� � �isto is understood as a stochastic ensemble
average over all pairs of male and female spinor fields.
Convergence to the exact correlator may be achieved,
provided that the ψg

x satisfy the Dirac equation (11) and
using that the initial value of the stochastically sampled
propagator reproduces the initial conditions for the exact
propagator.
To generate initial conditions corresponding to a fermion

vacuum at initial times t0, we choose

ψg
x¼ðt0;xÞ ¼

Z
d3p
ð2πÞ3 e

ipx 1ffiffiffi
2

p
X
s;i

½us;i;pξs;i;p � vs;i;−pηs;i;p�;

ð18Þ

with free particle spinors us;i;p and antiparticle spinors
vs;i;p. Here, s denotes the spin index and i is the funda-
mental gauge index. The complex random variables ξs;i;p
and ηs;i;p are sampled according to

hξs;i;pξ�s0;j;qisto ¼ hηs;i;pη�s0;j;qisto ¼ ð2πÞ3δss0δijδðp − qÞ;
ð19Þ

whereas all other correlators vanish. We note that the
spinors of different gender differ only by the sign in front of
the antiparticle component. The subsequent time evolution
of the fields ψg

x proceeds independently for each member of
the ensemble. In practice, the stochastic average h� � �isto,
which is required for calculating the backreaction onto the
gauge fields (12) or for computing fermionic observables,
is given by an average over a sufficiently large number Nsto
of pairs of male and female spinor fields.
We emphasize again that the computational cost of the

mode functions approach scales with the volume of the
phase space, thus being proportional to N2d in d dimensions
with N being the number of lattice points in each spatial
direction. Fortunately, the resource requirements of the low-
cost approach only scale with the spatial volume times the
number of stochastic spinor pairs NstoNd ≪ N2d, enabling
large-scale numerical simulations in three dimensions.

C. Gauge-field initial conditions

In the framework of classical-statistical field theory,
bosonic correlation functions hO½A�i are calculated as
ensemble averages by numerically solving the classical field
equations and sampling over the initial conditions [22–26]
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hO½A�i ¼
Z

DA
Z

DA0DE0ρ½A0; E0�O½A�δ½DμFμν − jν�:
ð20Þ

The initial conditions of the gauge field A0 and the chromo-
electric field E0 are sampled according to the Wigner trans-
formof the initial densitymatrix ρ½A0; E0�. On the other hand,
thedelta functionδ½DμFμν − jν� forces thegauge field to obey
the Yang-Mills equations (12) and (16). For further details
on the derivation of these equationswe refer to Ref. [7]. In the
following, we study fermion production for different gluonic
initial conditions corresponding to a saturated state of
overpopulated gluons or anisotropic classical fields. In order
to fulfill the requirements of the classical-statistical field
theory approximation to the underlying quantum dynamics,
we have to work at weak gauge coupling and large field
amplitudes or occupation numbers [22–26].
A corresponding Gaussian density matrix is determined

by the chromomagnetic and chromoelectric one-point
functions, hBa

i;x¼ðt0;xÞi and hEa
i;x¼ðt0;xÞi, along with their

two-point correlation functions. The chromomagnetic
fields are fully determined by the spatial gauge fields
Aa
i;x via Ba

i;x ¼ ϵijkFa
jk;x. We initialize the gauge field

fluctuations to represent a gas of particles with only
spatially transverse degrees of freedom, in close similarity
to a noninteracting photon gas in quantum electrodynamics
with additional internal group indices. At initial time t0, we
represent the gauge fields and the chromoelectric fields in
momentum space according to

Aa
j;ðt0;qÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fagðjqj; t0Þ þ 1=2

jqj

s X
λ

½baλ;qϵλ;j;q þ ba;�λ;−qϵ
�
λ;j;−q�;

ð21aÞ
Ea
j;ðt0;qÞ

¼ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jqjðfagðjqj; t0Þ þ 1=2Þ

q X
λ

½baλ;qϵλ;j;q − ba;�λ;−qϵ
�
λ;j;−q�:

ð21bÞ

Here, λ ∈ f1; 2g is the polarization index, ϵλ;j;q are the
components of normalized polarization vectors orthogonal
to the momentum of propagation q, and fagðjqj; t0Þ is the
initial gluonic occupation number. The polarization vectors
for a given momentum q are constructed numerically
according to ϵ1;q ¼ r × q=jr × qj and ϵ2;q ¼ ϵ1 × q=jqj,
with a random vector r. The complex random numbers baλ;q
are chosen such that the only nonvanishing, connected two-
point correlation functions read

hAa
i;ðt0;pÞA

b
j;ðt0;qÞiC ¼

1

jpj ðf
a
gðjpj; t0Þ þ 1=2ÞPijδðpþ qÞδab;

ð22aÞ

hEa
i;ðt0;pÞE

b
j;ðt0;qÞiC ¼ jpjðfagðjpj; t0Þ þ 1=2ÞPijδðpþ qÞδab;

ð22bÞ

with the transverse projector Pij ¼ δij − pipj=jpj2. We
emphasize that disconnected contributions of the two-point
correlation functions, which are initialized as macroscopic
classical fields in some of our scenarios, have been omitted
here for notational simplicity. In the following, we further
discuss our initial conditions corresponding to a state of
overpopulated gluons or anisotropic classical fields under-
going a rapid decay due to instabilities and particle
production.

1. Overpopulated gluons

The overpopulation scenario is realized by an initial
distribution of the gluonic occupation numbers

fgðjpj; t0Þ ¼
1

g2
Θðjpj −QsÞ; ð23Þ

where the Heaviside function ensures that gluons pop-
ulate all infrared modes up to the characteristic scale Qs
with a parametrically large occupancy of the order of
1=g2. We emphasize that this initial distribution is
isotropic in momentum space and in all color indices.
In what follows, we refer to this as the “fluctuation”
initial condition.
The approach to thermal equilibrium from this kind of

initial conditions is marked by the transport of energy and
particles to short length scales and by an overall reduction
in the total number of gluons. The latter may also be seen
by a parametric estimate, which is valid in the weak-
coupling limit g2 ≪ 1. In fact, integration of the initial state
distribution fgðjpj; t0Þ yields ε ∼Q4

s=g2 for the total quasi-

particle energy and nð0Þg ∼Q3
s=g2 for the total quasiparticle

number. Because of energy conservation, the final temper-
ature of the thermal gluon gas is supposed to be
T ∼Qs=

ffiffiffi
g

p
, indicating that the number of particles in

the thermal ensemble should scale as nthg ∼ T3 ∼Q3
s=g3=2.

Accordingly, we find at weak coupling nð0Þg > nthg , eluci-
dating the notion of an overpopulated initial state at weak
coupling.

2. Plasma instability

The evolution of the overpopulated initial state will
be compared to a system where the overpopulation is
dynamically generated via a Nielsen-Olesen-type magnetic
plasma instability [27,28]. This instability is triggered by
an initial chromomagnetic field along the 3-direction,
hBa

i;ðt0;xÞi ¼ δ1aδi3B, where B is the chromomagnetic field

strength. In order to realize this configuration, we initialize
our simulations with macroscopic gauge fields [28]
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hAa¼2
1;ðt0;xÞi ¼ hAa¼3

2;ðt0;xÞi ¼
ffiffiffiffi
B
g

s
: ð24Þ

In the following, we denote this type of macroscopic gauge
fields as the Nielsen-Olesen-type or “condensate” initial
condition.
The initial gauge fields cause the longitudinal field

BðtÞ to perform damped oscillations in time, where the
damping is driven by interactions with exponentially
growing gluon fluctuations. The momentum-dependent
growth rate of these fluctuations in the linear regime is
γp ¼ ðgB̄ − p2

zÞ1=2, with B̄ being the time-averaged abso-
lute value of the chromomagnetic field. In fact, the Nielsen-
Olesen-type instability is accompanied by the phenomenon
of parametric resonance for this initial condition [28].
While the latter phenomenon is included in the simulation
results, we skip its discussion here since it does not
dominate the total particle production and refer to
Refs. [17,29,30] for further details.

3. Flux tube

According to the “color glass condensate” picture of the
early phase of heavy-ion collisions [31], the initial coherent
color fields form so-called flux tubes, which are regions in
space in which both chromoelectric and chromomagnetic
fields are aligned in the longitudinal direction. In fact, a
single flux-tube resembles the Nielsen-Olesen-type initial
condition plus an additional chromoelectric field
hEa

i;ðt0;xÞi ¼ δ1aδi3E, where E is the chromoelectric field

strength. The macroscopic chromoelectric field induces
damped plasma oscillations and simultaneously creates
gluons and quarks via the Schwinger mechanism
[32,33]. In the following section, we show how the
longitudinal flux tubes dissipate into fluctuations and
discuss the resulting spectrum of quarks and gluons.

D. Particle numbers

The notion of a particle number is uniquely defined only
in noninteracting relativistic field theory. In the following,
we define an adiabatic quasiparticle number which coin-
cides with the definition of free particles in the non-
interacting limit.
As our initial conditions (21) are transverse in momentum

space,we choose to enforce this property also inour definition
of the occupation number. Due to the fact that the temporal-
axial gauge conditionU0;n ¼ 1 is incomplete in the sense that
it leaves a residual gauge invariance under time-independent
gauge transformations [34], we may project onto the trans-
verse degrees of freedom at any instant of time

∇x ·Aa
x ¼ 0: ð25Þ

We emphasize that this condition will only be fulfilled locally
in time but not globally in the sense of a Coulomb-gauge

condition. Upon imposing Eq. (25), we are able to project on
the two transverse polarizationmodes per gluon at any instant
of time.
In order to read out the occupation number distribution,

we transform the gluonic and fermionic variables by a
gauge transformation G⊥;x ∈ SUð2Þ such that Eq. (25) is
fulfilled. Numerically, this is done via a stochastic over-
relaxation algorithm as described in Ref. [35]. The trans-
formation matrices G⊥;x computed by this algorithm are
then used to transform the variables according to

U⊥
i;x ¼ G⊥;xUi;xG

†
⊥;xþî

; ð26aÞ

U⊥
0i;x ¼ G⊥;xU0i;xG

†
⊥;x; ð26bÞ

ψ⊥
x ¼ G⊥;xψx: ð26cÞ

Our definition of the fermion occupation number distribu-
tion fψ ðp; t0Þ is essentially the same as the one employed
in Refs. [17,36]. To this end, we use the definition of the
momentum-space gauge-transformed equal-time statistical
propagator

F⊥
ðt;xÞ;ðt;yÞ ¼

1

2
h½ψ⊥

ðt;xÞ; ψ̄
⊥
ðt;yÞ�i ¼

Z
d3p
ð2πÞ3 e

ipðx−yÞF⊥ðp; tÞ;

ð27Þ

and project onto its scalar, pseudoscalar and vector com-
ponents in Dirac space

FSðp; tÞ ¼
1

4
tr½F⊥ðp; tÞ�; ð28aÞ

FPSðp; tÞ ¼
1

4
tr½F⊥ðp; tÞγ5�; ð28bÞ

Fi
Vðp; tÞ ¼

1

4
tr½F⊥ðp; tÞγi�; ð28cÞ

where the trace is over Dirac, color and flavor indices.
Taking the ratio of the total energy density, which can be
expressed in terms of Eq. (28), with the single-particle
energy serves us as a definition of the fermion occupation
number

fψðp;tÞ¼
1

2
−
FSðp;tÞmþFi

Vðp;tÞp̄iþ iFPSðp;tÞp2
latas=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2þpipiþðp2
latas=2Þ2

p :

ð29Þ

Here, p̄i is the lattice momentum corresponding to a first-
order spatial derivative and p2

lat is the usual lattice momen-
tum squared
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p̄i ¼
1

as
sin ðpiasÞ; ð30aÞ

p2
lat ¼

4

a2s

X3
i¼1

sin2
�
pias
2

�
; ð30bÞ

with pi ¼ 2πni=ðasNÞ and ni ∈ f0;…; N − 1g. We define
the gluonic occupation number according to

fgðjpj; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trhAb;⊥

i;ðt;pÞA
c;⊥
j;ðt;−pÞitrhEb;⊥

i;ðt;pÞE
c;⊥
j;ðt;−pÞi

q
6

−
1

2
:

ð31Þ
Here, the trace is over both color and polarization indices
such that this particle number corresponds to an average
over all internal degrees of freedom.

III. ISOTROPIZATION AND QUARK
PRODUCTION AT WEAK COUPLING

We first consider two-color QCD with Nf ¼ 2 degen-
erate light quark flavors at weak coupling g2 ¼ 10−2 on a
643 spatial lattice. Parametrically, the backreaction of
quarks onto the gluons is expected to be important either
at strong couplings (which would be beyond the range of
validity of classical-statistical simulations) or for a larger
number of flavors Nf ≫ 1. Even though the backreaction
effects are supposed to be small for the parameters chosen
we still include it for consistency, most notably to obey the
conservation of the total energy during the simulation.
In the previous section, we introduced three generic

types of initial conditions which are potentially relevant for
the early-time dynamics in heavy-ion collisions. In fact,
the initial condition corresponding to gluonic overpopula-
tion is isotropic from the very beginning, whereas the initial
conditions corresponding to the flux tube or the Nielsen-
Olesen-type instability are highly anisotropic. However,
both plasma instabilities and the Schwinger mechanism
tend to isotropize an initially anisotropic system at later
times. This raises the question of whether the system will
become insensitive to details of the initial conditions, or
may even exhibit universal properties during its time
evolution. Accordingly, we first study the evolutions
starting with the flux tube or Nielsen-Olesen-type initial
conditions and focus on quantities which are a measure of
the system’s anisotropy.

A. Coherent field decay

We first consider the time evolution of the chromomag-
netic field along the 3-direction

BðtÞ ¼ hBa¼1
3 iðtÞ ¼ 1

2

ffiffiffiffiffiffi
gB

p
ðhAa¼2

1 iðtÞ þ hAa¼3
2 iðtÞÞ:

ð32Þ

Here B denotes a parameter determining the initial energy
density, whereas BðtÞ evolves as a function of time with,
initially, Bðt0Þ ¼ B according to Eq. (24). In Fig. 1, we show
the time evolution of the chromomagnetic field BðtÞ for
Nielsen-Olesen-type initial conditions. Starting from a large
amplitude, the field exhibits damped oscillations and finally
approaches zero at late times. Due to energy conservation, all
the energy initially contained in the one-point function is
then transferred to higher correlation functions.
A similar behavior is found upon adding a macroscopic

initial chromoelectric field to the chromomagnetic field,
corresponding to flux tube initial conditions. In Fig. 2 we
present the time evolution of the 3-component of the
chromoelectric field EðtÞ ¼ hEa¼1

3 iðtÞ along with the
corresponding chromomagnetic field BðtÞ. Again, both
macroscopic fields undergo damped oscillations and decay
by nonlinear interactions and particle production: the
magnetic field destabilizes gauge fluctuations and causes
exponentially growing infrared occupancies of modes
[28,37]. The electric field, on the other hand, directly
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FIG. 1. Time evolution of the chromomagnetic field BðtÞ
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conditions.
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produces quarks and gluons [38] and subsequently accel-
erates them via the non-Abelian Lorentz force.
We observe for both anisotropic scenarios (Nielsen-

Olesen-type, flux tube) a depletion of the initially macro-
scopic fields. In fact, the chromoelectric field vanishes after
about t≃ 30=

ffiffiffiffiffiffi
gB

p
whereas the decay of the chromomag-

netic field takes slightly longer, t≃ 50=
ffiffiffiffiffiffi
gB

p
. This suggests

that the energy transfer from the chromoelectric sector is
more efficient than from the chromomagnetic one. This
observation may be interpreted in analogy to the Lorentz
force in electrodynamics: electric fields perform work,
resulting in an increase of the particle’s momentum, whereas
magnetic fields alter only the momentum direction.

B. Pressure isotropization

To answer the question of whether the observed decay of
the coherent fields corresponds to an isotropization of the
system, we investigate the time evolution of the diagonal
elements of the symmetrized energy-momentum tensor
Tμν
x , corresponding to the transverse and longitudinal

pressure components

hPTi ¼ −
1

2
hT1

1;x þ T2
2;xi; ð33aÞ

hPLi ¼ −hT3
3;xi: ð33bÞ

Isotropy would imply hPLi ¼ hPTi, as is the case in
thermal equilibrium. On the lattice, the pressure compo-
nents take the form

hPTi¼
1

2

X
a

½ðEa
3;xÞ2þðBa

3;xÞ2�

þ
X2
i¼1

Imtr½Fxþî;xðγiþγ5ÞUi;x−Fx−î;xðγi−γ5ÞU†
i;x�

2as
;

ð34aÞ

hPLi ¼
1

2

X
a

�X2
i¼1

½ðEa
i;xÞ2 þ ðBa

i;xÞ2� − ðEa
3;xÞ2 − ðBa

3;xÞ2
�

þ Imtr½Fxþ3̂;xðγ3 þ γ5ÞU3;x − Fx−3̂;xðγ3 − γ5ÞU†
3;x�

2as
:

ð34bÞ

In Fig. 3 we show the time evolution of the volume-
averaged longitudinal and transversal pressure components
for Nielsen-Olesen-type initial conditions. At early time,
the different components show strong oscillations. We
emphasize, however, that the isotropic fixed point PL ¼
PT is reached at a time scale which corresponds to the
decay time of the macroscopic field.

In fact, the same behavior is found for flux tube initial
conditions as shown in Fig. 4. Again, both pressure
components exhibit damped oscillations until they finally
converge to the isotropic limit PL ¼ PT . We note that the
isotropization for flux tube initial conditions proceeds
slightly faster than for condensate initial conditions. This
can be traced back to the rapid decay of the longitudinal
chromoelectric field by producing quarks and gluons.

C. Gluon distribution

We have seen that both condensate and flux tube initial
conditions result in pressure isotropization on time scales
which characterize the decay times of the initial macro-
scopic fields. This means that all initial condition scenarios
under consideration (overpopulation, Nielsen-Olesen-type,
flux tube) lead to isotropy. In the following, we investigate
whether the particle spectra and total particle numbers
resulting from initial conditions with either a large coherent
field or a large characteristic occupancy show similar
behavior.
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FIG. 3. Dynamics of pressure isotropization for Nielsen-Ole-
sen-type initial conditions.
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To this end, we consider the particle distributions and
particle numbers emerging from the Nielsen-Olesen insta-
bility and the gluonic overpopulation scenario. To allow for
a proper comparison, we choose comparable energy den-
sities at initial times and employ identical numerical
parameters (gauge coupling, lattice spacing, volume). In
Fig. 5, we present the gluon distribution for the two
different scenarios at three different instants of time.
At early times t ¼ 3=Qs, the two distributions are clearly

distinct: for condensate initial conditions we find that the
Nielsen-Olesen instability populates gluon modes in the
infrared at a considerably higher rate than in the ultraviolet.
Nonetheless, most of the energy is still contained in the
chromomagnetic field BðtÞ such that the overall gluon
occupancy is still rather small. This is in contrast to the
overpopulation scenario with an initial gluon occupation of
the order of 1=g2 up to jpj ¼ Qs. After a short time, the
rapid drop in occupancy around jpj ¼ Qs is still visible;
however, gluon modes at somewhat higher momenta
become populated as well.
At intermediate times t ¼ 30=Qs, the Nielsen-Olesen

instability has fully developed by increasing the gluonic
occupation in the infrared exponentially fast. Most notably,
this results in a gluon distribution at low momenta which
becomes even higher than the initial occupation 1=g2 in the
overpopulation scenario. In fact, the gluon distribution in
the overpopulation scenario has decreased for modes
jpj≲Qs.
For later times around t ¼ 210=Qs the two distributions

have become almost indistinguishable and exhibit a power-
law behavior towards the infrared with an approximate
exponent κ ¼ 3=2. At comparable time scales, this par-
ticular value of κ has been found previously [39]. At even
later times, the power-law exponent is supposed to further
decrease and approach κ ¼ 4=3 [40,41] before it becomes

indistinguishable from a classical, thermal exponent
κth ¼ 1 [42].
To emphasize the connection of our results to the

nonthermal fixed-point behavior found in Refs. [1,39],
we consider the self-similarity relation

fgðjpj; tÞ ¼ tαfSðtβjpjÞ; ð35Þ

which is valid for the gluon distribution in the scaling
regime. Here, α and β are universal scaling exponents and
fS is a time-independent scaling function. We determine
the scaling exponent β by fitting the total number of gluons

ngðtÞ ¼
Z

d3p
ð2πÞ3 fgðjpj; tÞ ð36Þ

with a power-law ansatz. In fact, the temporal scaling
ngðtÞ ∼ tα−3βngð0Þ in combination with energy conserva-
tion constrains the second scaling exponent, α ¼ 4β [1].
As shown in Fig. 6, we find for this scaling regime the
exponent β ¼ −1=5 to very good accuracy.

D. Quark distribution

We have seen that the gluon distributions for both
Nielsen-Olesen and gluonic overpopulation initial condi-
tions become very similar at late times. The small
differences between the two curves may be traced back
to deviations in the total energy density and to the effects of
quarks. In the following, we analyze the behavior in the
quark sector.
In Fig. 7, we show the time evolution of the total quark

number

nψðtÞ ¼
Z

d3p
ð2πÞ3 fψ ðp; tÞ ð37Þ
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FIG. 5. Gluon distribution fgðjpj; tÞ at three different instants of
time for gluonic overpopulation (“Fluctuation IC”) and Nielsen-
Olesen-type initial conditions (“Condensate IC”). The distribu-
tions emerging from the different initial conditions converge to
the same isotropic form.
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for both the Nielsen-Olesen-type instability and the gluonic
overpopulation scenario. One observes that the quark
number increases abruptly at very early times in both
cases. The initial steep increase is caused by the free
fermion vacuum initial condition together with the sudden
switching on of the coherent gauge fields for the Nielsen-
Olesen-type initial conditions and of the high gluon
occupancies in the overpopulation scenario, respectively.
For a given energy density, one observes that initially the
quark production from coherent field decay is more
efficient than quark production from gluon scattering.
The rapidness of the initial production is also due to the
very small quark masses m ≤ 10−2Qs and the effective
absence of Pauli suppression for the low fermion occu-
pancies at sufficiently early times.
After the characteristic decay time of the macroscopic

field for Nielsen-Olesen-type initial conditions, the evolu-
tion of nψðtÞ exhibits a continuing but slower fermion
production at later times for both scenarios. We observe
from Fig. 8 that the production rates become rather

insensitive to the details of the initial state, which is in
line with the universality in the gluon sector at those times.
The quark production rates will be discussed further
in Sec. IV.
We have seen that the Nielsen-Olesen-type initial con-

dition results in a larger value of the total quark number
nψðtÞ than the overpopulation initial condition. In fact, this
is reflected in the corresponding momentum-dependent
quark distribution fψðp; tÞ at early times t ¼ 6=Qs as
shown in Fig. 8: the spectrum resulting from initial
overpopulation is lower in the whole momentum regime.
In Fig. 9, we compare the quark distributions at later time
t ¼ 210=Qs. Even though there are still more quarks
present starting from Nielsen-Olesen-type initial condi-
tions, there is an apparent resemblance. Most notably, a
power-law behavior in the intermediate momentum regime
is found in both scenarios, suggesting the late-time behav-
ior becomes very similar. In fact, the value of the fermion
power-law exponent is similar to the gluon exponent on
similar time scales. A related phenomenon, where the
quarks inherit approximate scaling properties of nonequili-
brium bosons in an intermediate momentum regime, has
been observed in a Yukawa theory before [17].

IV. QUARK BACKREACTION AND LARGE Nf

In the previous section we studied Nf ¼ 2 degenerate
light quark flavors in the weak-coupling regime with
g2 ¼ 10−2. While the initial large gluon fields or occupan-
cies are found to have a dramatic impact on quark
production, the backreaction of the quark sector on the
gluon distribution has only the expected minor conse-
quences at weak coupling. However, what controls this
backreaction is the product of the coupling squared and the
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number of quark flavors such that for fixed g2Nf of order
one even the weak-coupling limit becomes strongly corre-
lated for a large enough number of flavors. This opens the
possibility to increase the importance of quark backreaction
while staying within the range of validity of our real-time
lattice simulation techniques. It should be stressed that the
gauge coupling itself is still small, which is relevant for the
highly occupied regime at sufficiently high energies.
We find, however, that the corresponding numerical

simulations require substantially larger resources as the
numberNsto of pairs of male and female spinor fields has to
be significantly increased in this case. As a consequence,
we perform our numerical simulations on a somewhat
smaller 323 spatial lattice for g2Nf ¼ 1 as compared to the
643 spatial lattice for g2Nf ¼ 2 × 10−2. In the following,
we restrict ourselves to either gluon overpopulation or
Nielsen-Olesen-type initial conditions.
In Fig. 10 we study how the quark backreaction

influences the gluon quasiparticle energy distribution

EgðjpjÞ ¼ 6p3ngðjpjÞ ð38Þ

for different numbers of quark flavors and fixed g2 ¼ 10−2.
One observes that the peak gluon distribution is reduced for
g2Nf ¼ 1 as compared to g2Nf ¼ 0.02. However, most
remarkably we find that the shape of the gluon distribution
is almost unaltered. More precisely, the rescaling of both
width and height by a common factor causes both curves to
practically overlap as demonstrated in the inset of Fig. 10.
As a consequence, the universal properties of the gluon
sector endure the impact of strong quark backreactions, at
least at the level of accuracy considered.

In Fig. 11, we show the quasiparticle energy distribution
of quarks

EψðjpjÞ ¼ 8Nfp3fψðjpjÞ: ð39Þ

In contrast to the gluon distribution, whose peak is around
p≃Qs, the dominant quark momenta have shifted to
higher values. In contrast to gluons, which can be highly
occupied, the quark occupancies are limited by the exclu-
sion principle such that more and more states at higher
momenta have to be filled to account for the increased
energy in the quark sector as g2Nf is enlarged. These
findings resemble results for Yukawa theories, where a
similar separation of momenta was found [17]. Apparently,
increasing g2Nf results in an efficient mechanism of
transporting energy from the infrared to the ultraviolet,
which should lead to a quickening of kinetic equilibration.
In order to achieve chemical equilibration, the total

number of produced quarks nψ ðtÞ needs to reach its
thermal equilibrium value. In view of the limitations of
the classical-statistical simulation method to describe the
long-time approach to chemical equilibrium, we consider
here a rough estimate of the chemical equilibration time
based on an extrapolation of the quark production rate.
To this end, we perform a linear fit of the time-dependent

particle number

nψðtÞg2Nf¼0.02 ¼ 0.055Q3
s þ 0.0003Q4

st; ð40aÞ

nψðtÞg2Nf¼1 ¼ 2.16Q3
s þ 0.01Q4

st; ð40bÞ

the latter being presented in Fig. 12. To estimate the
chemical equilibration time, we seek the point at which
agreement with the Stefan-Boltzmann limit of massless
noninteracting quasiparticles
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nSBψ ¼ 6ζð3Þ
π2

NfT3
SB; ð41Þ

with the Riemann zeta function ζðxÞ, is obtained. In fact,
the final temperature TSB of the closed system can be
determined from energy conservation. For gluon overpopu-
lation initial conditions, for instance, equating the energy
density in the Stefan-Boltzmann limit with the energy
density of the initial state

π2

30
ð6þ 7NfÞT4

SB¼!
3

4π2
Q4

s

g2
; ð42Þ

results in

TSB ¼ Qs

π

�
45

2ð6þ 7NfÞg2
�

1=4
: ð43Þ

The corresponding estimate for the chemical equilibra-

tion time tch then gives t
g2Nf¼0.02
ch ≃ 4500=Qs and t

g2Nf¼1

ch ≃
345=Qs, respectively. Without taking into account the
backreaction of quarks onto gluons, one would expect
the total quark production rates to be proportional to the
number of degenerate flavors for fixed coupling. However,
we find

13≃ t
ðg2Nf¼0.02Þ
ch

t
ðg2Nf¼1Þ
ch

<
Nf ¼ 1=g2

Nf ¼ 2
¼ 50; ð44Þ

which points to the reduction of scattering rates by the
diminished gluon occupation numbers for enhanced quark
backreactions.

V. CONCLUSIONS

We have studied gluon dynamics and quark production in
two-color QCD with light quarks from simulations in 3þ 1-
dimensional space-time. We concentrated on the weak-

coupling regime in order to guarantee the applicability of
the classical-statistical approximation for the gluon sector,
while we simulated the quark dynamics in a stochastic
approach taking into account the quantum nature of the
fermions. In order to understand the importance of quark
backreaction, we studied the dynamics for different g2Nf by
changing the number of quark flavors for fixed coupling.
Having considered three types of initial conditions with

large fields or occupancies for Nf ¼ 2, we confirmed the
universality of the dynamics near the nonthermal fixed
point existing in gluon systems. The scaling exponents we
found in the gluon sector are in agreement with earlier
investigations in pure Yang-Mills simulations. We demon-
strated that anisotropic initial conditions leading to plasma
instabilities and Schwinger pair production in QCD iso-
tropize rather quickly for the nonexpanding system, such
that their subsequent approach to thermal equilibrium via
energy cascade to short length scales can be described in an
entirely isotropic framework.
The universality of the gluon dynamics has profound

effects on quark production. Although very different at
early stages, the total numbers and spectral distributions of
quarks produced from the different gluon initial conditions
considered tend to approach each other at later times. The
corresponding spectral distributions of quark particle num-
bers acquire a shape marked by a power law at intermediate
momenta in the weak-coupling regime for small g2Nf.
While the initial large gluon fields or occupancies are

found to have a dramatic impact on quark production, the
backreaction of the quark sector on the gluon distribution
has only minor consequences for small g2Nf. We increased
the number of flavors such that g2Nf becomes of order
one leading to a strongly correlated fermion sector. Most
remarkably, we found that the shape of the gluon distri-
bution is almost unaltered by changing Nf despite the fact
that the peak gluon distribution can be reduced consid-
erably. Furthermore, for a strongly correlated fermion
sector the dominant quark momenta have shifted to
significantly larger values as compared to the characteristic
gluon momentum of p≃Qs. Our estimates for the chemi-
cal equilibration time indicate that calculations neglecting
the backreaction for strongly correlated quarks lead to
substantially shorter times than a full calculation taking into
account the impact on the gluon sector. Interestingly, a
prolonged chemical equilibration could have a phenom-
enological significance by contributing to the elliptic flow
of thermal photons [43], a quantity which appears to be
underestimated by hydrodynamic models [44,45]. The next
step would be to include the longitudinal expansion of the
plasma’s space-time evolution.
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