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For black-hole binaries whose spins are (anti-) aligned with respect to the orbital angular momentum of
the binary, we compute the frequency-domain phasing coefficients including the quadratic-in-spin terms up
to the third post-Newtonian (3PN) order, the cubic-in-spin terms at the leading order, 3.5PN, and the spin-
orbit effects up to the 4PN order. In addition, we obtain the 2PN spin contributions to the amplitude of the
frequency-domain gravitational waveforms for nonprecessing binaries, using recently derived expressions
for the time-domain polarization amplitudes of binaries with generic spins, complete at that accuracy level.
These two results are updates to [K. G. Arun, A. Buonanno, G. Faye, and E. Ochsner, Phys. Rev. D 79,
104023 (2009).] for amplitude and [M. Wade, J. D. E. Creighton, E. Ochsner, and A. B. Nielsen, Phys. Rev.
D 88, 083002 (2013).] for phasing. They should be useful for constructing banks of templates that
accurately model nonprecessing inspiraling binaries, for parameter estimation studies, and for constructing
analytical template families that account for the inspiral-merger-ringdown phases of the binary.
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I. INTRODUCTION

Recently, there have been several improvements in
modeling spinning binaries within the post-Newtonian
formalism [1]. These developments include the computation
of relative 2PN spin-orbit (SO) effects (corresponding to the
3.5PN order) in the equations of motion [2–4] as well as in
the precession equations at the same relative accuracy level,
and the computation of the near-zone metric at the 2PN order
[5]. The work [5] also provided us with the energy function
at 3.5PN order including spin-orbit (linear-in-spin) effects at
the relative 2PN order, which is required to compute the
phase. Further, in Ref. [6], the 2PN SO contributions were
incorporated to the gravitational-wave energy flux, through
the computation of relevant source multipole moments [6,7],
and (time-domain) phasing at the 3.5PN order. The tail-
induced SO corrections to the two latter quantities were
investigated in Ref. [8] at the order 4PN, where they are the
only spin-orbit effects. On the other hand, the spin-spin
(quadratic-in-spin, SS) interactions were recently included at

the 3PN order [9], i.e., 1PN order beyond the leading SS
terms presented in Ref. [10], based on the next-to-leading-
order equations of motion [11,12] and the explicit expression
of the source moments [7,9]. In addition, the leading cubic-
in-spin terms entering the energy and the energy flux at
3.5PN were computed in [13]. The 2PN polarizations hþ;×
accounting for both the spin-orbit and spin-spin effects were
calculated explicitly in Ref. [14], extending the earlier works
of Refs. [10,15,16]. In principle, polarization waveforms can
now be computed to the 2.5PN order [17]. In addition, the
tail-type spin-orbit corrections entering the 3PN amplitude
are also available [18]. To summarize, all spin contributions
to the GW polarizations in the time-domain are known with
2PN accuracy, while the time-domain phasing is known to
the 4PN, 3PN, and 3.5PN orders, for the SO, SS, and SSS
effects, respectively.
Frequency-domain amplitudes for nonprecessing bina-

ries, with spins (anti-)aligned to the orbital angular
momentum vector, were first displayed to the 2PN order
in Ref. [10]. Their expression complements that of the 3PN
accurate polarizations for nonspinning binaries derived in
[19,20]. They model the spin-orbit effects at the leading
(1.5PN) order and partial spin-spin effects at the 2PN
order. More precisely, the spin-spin contributions to the
GW amplitude presented in Ref. [10] are only those that
arise due to couplings involving both spins, i.e., of the type
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[Spin(1)-Spin(2)], as at the time this work was achieved,
self-spin corrections [Spin(1)-Spin(1) and Spin(2)-Spin(2)]
were not yet available. In this work we make use of the
above mentioned recent time-domain results for GW
polarizations with all possible spin-dependent interactions
to construct their frequency-domain counterpart complete
up to the 2PN order, including in particular the new 2PN
SO and SS effects (besides those already present in [10]).
Frequency-domain phasing with all SO contributions up to
the 3.5PN order—except for those produced by the black-
hole absorption at the 2.5PN order—and with all SS
contributions at the 2PN order, was provided in
Ref. [21]. We extend that result by adding the tail-induced
spin-orbit effects at the 4PN order, as well as the quadratic
and cubic spin terms contributing to the phase at the 3PN
and 3.5PN orders, respectively.
This paper is organized in the following manner. We

begin Sec. II by showing the form of the Fourier domain
signal and defining our notations. The rest of the section is
split into two parts. Section II A presents the phasing
formula, which includes the spin-orbit contribution at the
4PN order, the quadratic spin terms at the 3PN order, and
the cubic ones at the 3.5PN order. In Sec. II B we list our
results, complementing the outcomes of Ref. [10], for the
frequency-domain amplitude of the (polarization) wave-
forms of nonprecessing binaries in quasicircular orbits.
Section III, on the other hand, contains the expressions of
the spherical harmonic modes of the 2PN accurate wave-
form. Finally, in Sec. IV, we summarize those results and
discuss their implications.

II. FREQUENCY-DOMAIN WAVEFORMS
FOR NONPRECESSING BINARIES

IN CIRCULAR ORBITS

Since we regard this report as an extension of [10], we
basically follow the definitions and notations adopted in
there. The reader must refer to that work for details.
Nonetheless, we shall provide below some minimal com-
pendium both to ensure a natural flow in the paper and to
facilitate the reading. The frequency-domain amplitude of a
signal hstrain produced by a gravitational wave hij can be
written, truncated at some accuracy level, in the following
way (see Sec. VI B of Ref. [10] for a derivation), using
geometrical units where G ¼ c ¼ 1:

~hstrainðfÞ ¼
M2

DL

ffiffiffiffiffiffi
5π

48

r X4
n¼0

X6
k¼1

Vn−7=2
k CðnÞ

k eiðkΨSPAðf=kÞ−π=4Þ:

ð1Þ
Here, ~hstrainðfÞ denotes the waveform in the frequency

domain1 as observed by the detector, whileM andDL stand

for the total mass and the luminosity distance of the source,
respectively. The index n indicates the PN order, whereas
the index k keeps track of different harmonics of the orbital
phase. Hence, the above waveform is 2PN accurate and
consists of six harmonics. For the kth harmonic, the PN
parameter v≡ vðtÞ entering the time domain waveform has
been replaced by a function Vk of the GW frequency f,
defined as VkðfÞ ¼ ð2πMf=kÞ1=3. The function ΨSPAðfÞ
represents essentially the phase of the first harmonic in the
frequency domain as obtained under the stationary phase
approximation (SPA) [22,23] (see Sec. VI B of [10] for

details). Finally, the coefficients CðnÞk depend on the intrinsic
parameters of the binary, such as the masses and the spins,
as well as the angular parameters specifying the binary’s
location and orientation.
The results of the present paper, along with those of

Ref. [10], will allow one to write the amplitude corrections
up to the 2PN order with all possible spin effects. As
already stated, the waveform provided in [10] contains
terms that describe the spin-orbit effects at the leading order
(1.5PN) and part of the spin-spin effects (corresponding to
Spin(1)-Spin(2) interactions) at the 2PN order. The coef-

ficients CðnÞk through which they appear are explicitly listed
in Appendix D of Ref. [10]. Thus, for the brevity of
presentation and the sake of avoiding repetition, we shall

only show here those CðnÞk ’s that are modified due to the
inclusion of the spin-orbit and spin-spin effects at the 2PN
order, as discussed in Sec. I. Below, we shall display our
expressions for the GW phase and amplitude in two
separate subsections.

A. Corrections to the phasing formula

In order to obtain the frequency-domain phasing, we
follow the prescription of Ref. [24], which is based on an
energy balance argument. In the case of quasicircular
nonprecessing orbits, the two inputs needed for the phase
derivation are the time domain center-of-mass energy E and
the energy flux F of the binary, both given in terms of the
orbital frequency. The two relations are invariant for a large
class of gauge transformations.
Schematically, for the energy we can write

E ¼ −
ηm
2

v2½ENS þ ESO þ ESS þ ESSS�; ð2Þ

where ENS, ESO, ESS, and ESSS denote the nonspinning, the
spin-orbit (linear-in-spin), the spin-spin (quadratic-in-spin),
and the spin-spin-spin (cubic-in-spin) contributions to the
energy, while η ¼ m1m2=M2 represents the symmetric
mass ratio parameter, with m1 and m2 being the masses
of the two companions. The nonspinning part of the energy
is currently available to the 4PN approximation beyond the
Newtonian order [25]. However, for the present purpose,
the 3PN expression of Ref. [26], supplemented with the
results of [27], is sufficient, because there cannot be any

1For the Fourier transform, we adopt the convention that
~hðfÞ ¼ R

dte2πifthðtÞ.
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3.5PN terms in the energy for quasicircular orbits (see [1]
for a discussion). The spin-orbit (linear-in-spin) corrections
to the conservative part of the dynamics, starting from the
1.5PN order, are known with a relative 2PN accuracy, i.e.,
at the 3.5PN order beyond the Newtonian level [2,4,5]. The
same relative accuracy has been achieved for the spin-spin
(quadratic-in-spin) corrections [28–30], even though it
corresponds then to the 4PN order, as the leading terms
of that type arise at the 2PN approximation [10]. However,
since the energy flux has not been determined yet with such
accuracy, it will be sufficient for us to use the spin-spin part
of the energy at the 3PN order. The explicit expressions of
the 3.5PN spin-orbit and the 3PN spin-spin pieces of the
energy can be found in the works [5] and [9], respectively.
As for the cubic-in-spin pieces, which start to contribute at
the 3.5PN order, they were only computed recently [13].
Similarly, the energy flux has the following structure,

F ¼ 32

5
η2v10½FNS þ F SO þ F SS þ F SSS�; ð3Þ

where FNS, F SO, F SS, and F SSS again denote the non-
spinning, spin-orbit, spin-spin, and spin-spin-spin contri-
butions to the energy flux. The nonspinning contributions
up to the 3.5PN order beyond the leading quadrupolar flux
are given in Refs. [27,31]. For the spin-orbit terms, which
first appear at the 1.5PN approximation, our current
knowledge extends up to the 4PN order [8]. Let us point
out that the 4PN spin-orbit piece of the energy flux comes
from the next-to-leading-order contributions, ignoring non-
spin-orbit terms, to the so-called tail effect. This nonlinear
effect can be understood as resulting from the backscatter-
ing of the linear wave on the spacetime curvature. It is
hereditary in nature, which means that it depends on the
past history of the binary evolution. Note that terms of this
type (at the 3PN and 4PN orders) are absent from the
energy [8]. Spin-spin (or quadratic-in-spin) corrections,
starting from the 2PN order, can be found up to the 3PN

order in Refs. [10,9]. Finally, the cubic-in-spin terms at the
leading 3.5PN approximation were derived in [13].
With these time-domain expressions for the energy and

the energy flux in hand, we are in the position to write the
frequency-domain phasing entailed by the SPA. Like the
expressions above, it has the following general structure,

ΨSPAðfÞ ¼ 2πftc −ϕc

þ
�

3

128ηv5
½ψNS þψSO þψSS þψSSS�

�
v¼V1ðfÞ

;

ð4Þ

where ϕc denotes the orbital phase at the instant tc of
coalescence.
The complete 3.5PN accurate frequency-domain phasing

for nonspinning binaries is presented in Refs. [24,32] while
the spin-orbit corrections up to the 3.5PN accuracy level and
the spin-spin corrections at the 2PN order are given in
Refs. [10,21]. The contributions to the phasing we add here
include (i) the tail-induced 4PN spin-orbits terms, (ii) the
3PN quadratic-in-spin terms, and (iii) the 3.5PN cubic-in-
spin terms. The spin part of the phase will be decomposed as

ψSpin ≡ ψSO þ ψSS þ ψSSS ¼ v3½P3 þ P4vþ P5v2

þ P6v3 þ P7v4 þ P8v5 þ � � ��: ð5Þ

References [10,21] list the explicit expressions for P3,
P4, and P5 with the required accuracies. By contrast, the
coefficients P6 and P7 there only contain relative 1.5PN
(leading linear-in-spin tail) and relative 2PN linear-in-spin
contributions, respectively. In the present work, as dis-
cussed above, we add the relative 1PN quadratic-in-spin
and the leading-order cubic-in-spin corrections. In addition,
we introduce a new coefficient P8 of order 4PN that
corresponds to the tail-induced SO effect. The modified
coefficients P6, P7, and the new coefficient P8 take the
final following form:

P6 ¼ π

�
2270

3
δ χ a · L̂N þ

�
2270

3
− 520η

�
χ s · L̂N

�
þ
�
75515

144
−
8225

18
η

�
δ ðχ a · L̂NÞðχ s · L̂NÞ

þ
�
75515

288
−
263245

252
η − 480η2

�
ðχ a · L̂NÞ2 þ

�
75515

288
−
232415

504
ηþ 1255

9
η2
�
ðχ s · L̂NÞ2; ð6aÞ

P7 ¼
�
−
25150083775

3048192
þ 26804935

6048
η −

1985

48
η2
�
δ χ a · L̂N

þ
�
−
25150083775

3048192
þ 10566655595

762048
η −

1042165

3024
η2 þ 5345

36
η3
�
χ s · L̂N

þ
�
14585

24
− 2380η

�
δ ðχ a · L̂NÞ3 þ

�
14585

24
−
475

6
ηþ 100

3
η2
�
ðχ s · L̂NÞ3

þ
�
14585

8
−
215

2
η

�
δ ðχ a · L̂NÞðχ s · L̂NÞ2 þ

�
14585

8
− 7270ηþ 80η2

�
ðχ a · L̂NÞ2ðχ s · L̂NÞ; ð6bÞ
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P8 ¼ π

��
233915

168
−
99185

252
η

�
δ χ a · L̂N þ

�
233915

168
−
3970375

2268
ηþ 19655

189
η2
�
χ s · L̂N

�
ð1 − 3 ln vÞ: ð6cÞ

In the above, χ s and χ a represent symmetric and
antisymmetric combinations of the (dimensionless) spin
vectors associated with the binary individual components
χ 1 and χ 2, namely,

χ s ¼
1

2
ðχ 1 þ χ 2Þ;

χ a ¼
1

2
ðχ 1 − χ 2Þ: ð7Þ

The quantity L̂N is the unit vector pointing along the
Newtonian orbital angular momentum; the parameter δ ¼
ðm1 −m2Þ=m represents the difference mass ratio. Coor-
dinate frames and parameter conventions used here are
identical to the ones employed in Ref. [10]; more details
can be found in Sec. II there. It should be emphasized that
this result completes the SO phasing at the 4PN (relative
2.5PN) order, the SS phasing to the 3PN (relative 1PN)
order, and the SSS phasing to the (leading) 3.5PN order in
the frequency domain. In order to get the full 4PN phase,
ignoring at this stage possible absorption effects associated
with the black-hole horizons, one would still need to add:
(i) the 4PN nonspinning terms, which would require to
know the energy flux at that same accuracy level, and

(ii) the 3.5PN and 4PN SS terms, of tail and instantaneous
types, respectively. The full phasing formula including the
contributions listed in previous works [10,21] is being
provided, both for completeness and convenience, in a
Supplemental Material [33], readable by the commercial
calculus software MATHEMATICA.

B. Corrections to the amplitude: 2PN spin-orbit
and spin-spin effects

In this section, we present our results for the amplitude
of the GW signal emitted by nonprecessing black-hole
binaries. The general structure of the waveform is given
by Eq. (1). The frequency-domain amplitudes in the
absence of spins up to the 2.5PN order, the spin-orbit
corrections at the 1.5PN order, and part of the spin-spin
corrections at the 2PN order are listed in Ref. [10]. The
corresponding coefficients CðnÞk of Eq. (1) are defined in
Eqs. (6.13) and (6.14) of Ref. [10] and are listed in
Appendix D there. As discussed above, we shall only

provide here explicit expressions for those CðnÞk ’s that are
modified after including the 2PN spin-orbit and spin-spin
terms computed in the time-domain in Ref. [14].
They read

Cð4Þ1 ¼ sι

�
Fþ

�
δ

�
11i
40

þ 5π

8
þ 5i

4
log 2þ

�
7i
40

þ π

8
þ i
4
log 2

�
c2ι

�

þ δ χ s · L̂N

�
−
711

448
þ 33

16
ηþ

�
−

65

192
−
23

48
η

�
c2ι

�

þ χ a · L̂N

�
−
711

448
þ 173

48
ηþ

�
−

65

192
þ 83

48
η

�
c2ι

��
þ icιF×

�
δ

�
9i
20

þ 3π

4
þ 3i

2
log 2

�

þ δ χ s · L̂N

��
−
647

336
þ 41

24
η

�
−
η

8
c2ι

�
þ χ a · L̂N

��
−
647

336
þ 125

24
η

�
þ η

8
c2ι

���
ΘðFcut − fÞ; ð8aÞ

Cð4Þ2 ¼ 1ffiffiffi
2

p
�
Fþ

�
113419241

40642560
þ 152987

16128
η −

11099

1152
η2 þ

�
165194153

40642560
−

149

1792
ηþ 6709

1152
η2
�
c2ι

þ
�
1693

2016
−
5723

2016
ηþ 13

12
η2
�
c4ι −

�
1

24
−

5

24
ηþ 5

24
η2
�
c6ι þ ð1þ c2ι Þ

�
49

16
δ ðχ a · L̂NÞðχ s · L̂NÞ

þ ðχ a · L̂NÞ2
�
49

32
− 6η

�
þ ðχ s · L̂NÞ2

�
49

32
−
η

8

���
þ icιF×

�
114020009

20321280
þ 133411

8064
η −

7499

576
η2

þ ðχ a · L̂NÞ2
�
49

16
− 12η

�
þ 49

8
δ ðχ a · L̂NÞðχ s · L̂NÞ þ ðχ s · L̂NÞ2

�
49

16
−
η

4

�

þ
�
5777

2520
−
5555

504
ηþ 34

3
η2
�
c2ι þ

�
−
1

4
þ 5

4
η −

5

4
η2
�
c4ι

��
Θð2Fcut − fÞ; ð8bÞ
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Cð4Þ3 ¼ sιffiffiffi
3

p
�
Fþ

�
χ a · L̂N

�
195

64
−
141

16
ηþ

�
195

64
−
249

16
η

�
c2ι

�
þ δ χ s · L̂N

�
195

64
−
39

16
ηþ

�
195

64
þ 69

16
η

�
c2ι

�

þ δ ð1þ c2ι Þ
�
−
189i
40

þ 9π

8
þ 27

4
i log

�
3

2

���
þ icιF×

�
δ

�
−
189i
20

þ 9π

4
þ 27

2
i log

�
3

2

��

þ χ a · L̂N

��
195

32
− 21η

�
−
27

8
ηc2ι

�
þ δ χ s · L̂N

��
195

32
−
3η

2

�
þ 27

8
ηc2ι

���
Θð3Fcut − fÞ: ð8cÞ

Here, sι and cι are shorthand notations for sin ι and cos ι,
respectively, ι being the binary’s inclination angle, and
ΘðkFcut − fÞ are step functions to ensure that the contri-
bution from each harmonic vanishes beyond their respective
cutoff frequencies (f > kFcut). Note that, when deriving the
2PN terms in the SPA amplitude, we have taken into account
all the spin contributions at the 2PN order, instead of the
partial ones used in Ref. [10] to be consistent with the spin
inputs. We have thus resorted to the full expression of σ
displayed in Eq. (6.24) of [10] to compute the quantity S4

given by Eq. (6.11) there. We also provide the complete list

of the CðnÞk ’s that contribute to 2PN order in the same
MATHEMATICA file as before, i.e., [33].

III. FOURIER TRANSFORM OF THE GW MODES

In this section, we provide the GW modes (hlm) contrib-
uting to thewaveform at the 2PN order. For this purpose, we
must associate spherical coordinates ðR; θ;ϕÞ to the source
in such a way that, following the conventions of [10], ϕ
vanishes for an observer located on earth while θ coincides
with the inclination angle ι for the same observer. As usual,
the three vectors forming the standard orthogonal basis are
referred to as eir, eiθ and eiϕ. The complex polarization
h≡hþ− ih×≡−mimjhij, with mi¼eiθ− ieiϕ, can be con-
veniently expanded in terms of the spherical harmonics with
spin weight −2, the set of functions −2Ylmðθ;ϕÞ whose
precise definition is given by Eqs. (4.2)–(4.3) of Ref. [10]:

hðθ;ϕÞ ¼
Xþ∞

l¼2

Xl
m¼−l

hlm −2Ylmðθ;ϕÞ: ð9Þ

The hlm modes of GW polarization have the following
structure [10,20]:

hlm ¼ 2Mη

DL
v2

ffiffiffiffiffiffiffiffi
16π

5

r
ĥlme−imψ : ð10Þ

Their expression for nonspinning binaries are listed in
Eq. (9.4) of [20], whereas the hlm’s for spinning binaries
can be found in [10,14]. Fourier transforms of the individual
modes (as opposed to that of the full time-domainwaveform)
may be useful in many studies at the interface of analytical
and numerical relativity. Hence, we shall systematically
provide them below. The procedure for computing them is
similar to the one used by Ref. [22,23], which applied the
stationary phase approximation to the individual harmonics.
Following the same method, we obtain the Fourier trans-
formsof thehlm’s that are relevant for us. They have the form

~hlmðfÞ¼
M2

DL
π

ffiffiffiffiffi
2η

3

r
V−7=2
m e−iðmΨSPAðVmÞþπ=4ÞĤlmðVmÞ: ð11Þ

Our results for ĤlmðVmÞ≡ Ĥlm, consistently accounting
for all spin effects up to the 2PN order, read

Ĥ22 ¼ −1þ
�
323

224
−
451η

168

�
V2
2 þ

�
−
27

8
δ χ a · L̂N þ χ s · L̂N

�
−
27

8
þ 11

6
η

��
V3
2 þ

�
27312085

8128512
þ 1975055

338688
η

−
105271

24192
η2 þ ðχ a · L̂NÞ2

�
113

32
− 14η

�
þ 113

16
δ ðχ a · L̂NÞðχ s · L̂NÞ þ ðχ s · L̂NÞ2

�
113

32
−
η

8

��
V4
2 þOð5Þ; ð12aÞ

Ĥ21 ¼ −
ffiffiffi
2

p

3

�
δV1 −

3

2
ðχ a · L̂N þ δ χ s · L̂NÞV2

1 þ δ

�
335

672
þ 117

56
η

�
V3
1 þ

�
χ a · L̂N

�
4771

1344
−
11941

336
η

�

þ δ χ s · L̂N

�
4771

1344
−
2549

336
η

�
þ δ

�
−
i
2
− π − 2i logð2Þ

��
V4
1

�
þOð5Þ; ð12bÞ

Ĥ33 ¼ −
3

4

ffiffiffi
5

7

r �
δV3 þ δ

�
−
1945

672
þ 27

8
η

�
V3
3 þ

�
χ a · L̂N

�
161

24
−
85

3
η

�
þ δ χ s · L̂N

�
161

24
−
17

3
η

�

þ δ

�
−
21i
5

þ π þ 6i log

�
3

2

���
V4
3

�
þOð5Þ; ð12cÞ
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Ĥ32 ¼ −
1

3

ffiffiffi
5

7

r �
ð1 − 3ηÞV2

2 þ 4η χ s · L̂NV3
2 þ

�
−
10471

10080
þ 12325

2016
η −

589

72
η2
�
V4
2

�
þOð5Þ; ð12dÞ

Ĥ31 ¼ −
1

12
ffiffiffi
7

p
�
δV1 þ δ

�
−
1049

672
þ 17

24
η

�
V3
1 þ

�
χ a · L̂N

�
161

24
−
73

3
η

�
þ δ χ s · L̂N

�
161

24
−
29

3
η

�

þ δ

�
−
7i
5
− π − 2i logð2Þ

��
V4
1

�
þOð5Þ; ð12eÞ

Ĥ44 ¼ −
4

9

ffiffiffiffiffi
10

7

r �
ð1 − 3ηÞV2

4 þ
�
−
158383

36960
þ 128221

7392
η −

1063

88
η2
�
V4
4

�
þOð5Þ; ð12fÞ

Ĥ43 ¼ −
3

4

ffiffiffiffiffi
3

35

r �
δ ð1 − 2ηÞV3

3 þ
5

2
ηðχ a · L̂N − δ χ s · L̂NÞV4

3

�
þOð5Þ; ð12gÞ

Ĥ42 ¼ −
1

63

ffiffiffi
5

p �
ð1 − 3ηÞV2

2 þ
�
−
105967

36960
þ 75805

7392
η −

439

88
η2
�
V4
2

�
þOð5Þ; ð12hÞ

Ĥ41 ¼ −
1

84
ffiffiffi
5

p
�
δ ð1 − 2ηÞV3

1 þ
5

2
ηðχ a · L̂N − δ χ s · L̂NÞV4

1

�
þOð5Þ; ð12iÞ

Ĥ55 ¼ −
125

96

ffiffiffiffiffi
5

33

r
δ ð1 − 2ηÞV3

5 þOð5Þ; ð12jÞ

Ĥ54 ¼ −
16

9

ffiffiffiffiffiffiffiffi
2

165

r
ð1 − 5ηþ 5η2ÞV4

4 þOð5Þ; ð12kÞ

Ĥ53 ¼ −
9

32
ffiffiffiffiffi
55

p δ ð1 − 2ηÞV3
3 þOð5Þ; ð12lÞ

Ĥ52 ¼ −
2

27
ffiffiffiffiffi
55

p ð1 − 5ηþ 5η2ÞV4
2 þOð5Þ; ð12mÞ

Ĥ51 ¼ −
1

144
ffiffiffiffiffiffiffiffi
770

p δ ð1 − 2ηÞV3
1 þOð5Þ; ð12nÞ

Ĥ66 ¼ −
18

5

ffiffiffiffiffiffiffiffi
3

143

r
ð1 − 5ηþ 5η2ÞV4

6 þOð5Þ; ð12oÞ

Ĥ65 ¼ Oð5Þ; ð12pÞ

Ĥ64 ¼ −
128

495
ffiffiffiffiffi
39

p ð1 − 5ηþ 5η2ÞV4
4 þOð5Þ; ð12qÞ

Ĥ63 ¼ Oð5Þ; ð12rÞ

Ĥ62 ¼ −
2

297
ffiffiffiffiffi
65

p ð1 − 5ηþ 5η2ÞV4
2 þOð5Þ; ð12sÞ

Ĥ61 ¼ Oð5Þ: ð12tÞ

Let us emphasize that the source frame used to express
the above polarizations (and hence the GW modes) is
identical to the one used in Refs. [10,14] (for spinning
black holes) but differs from that of Ref. [20] (for

nonspinning black holes). The former frame is defined
so that the azimuthal angle ϕ locating the earth observer
vanishes, while the latter is such that ϕ ¼ π=2. From
Eq. (9) and the property of the spin weighted spherical
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harmonics, we see that hð½1�Þlm ¼ imhð½21�Þlm . For the conven-
ience of the reader, we list again all the modes contributing
to the waveform at the 2PN level in Ref. [33], which we
provide as Supplemental Material to our paper.

IV. CONCLUSIONS

Based on the recent developments in modeling spinning
binaries [8,9,13,14], we have computed the tail-induced
4PN spin-orbit contributions, the 3PN quadratic-in-spin
corrections and the 3.5PN cubic-in-spin corrections to the
frequency-domain phasing of the GW signal, as well as all
spin contributions to the amplitude of the frequency-
domain waveform at the 2PN order. The 4PN phase
presented here only accounts for tail-induced spin-orbit
effects, which must still be supplemented by nonspinning
contributions at this order. Those contributions are cur-
rently out of reach due to lack of inputs. On the other hand,
some of the higher-order spin effects are still missing
beyond the 3PN order. Those are (i) the instantaneous
quadratic-in-spin contributions at the 4PN order (including
those resulting from the interactions between the two spins,
and from the effect of the spin-induced mass quadrupoles
of the two black holes) and (ii) quadratic-in-spin correc-
tions at the 3.5PN order coming from the gravitational-
wave tails. Moreover, when at least one of the two
companions is a spinning black hole, the imprint of the
resulting absorption has yet to be incorporated to the flux at
the 2.5PN order [34–36] beyond the leading quadrupole
formula, with a 1.5PN relative accuracy [37]. This will
generate additional terms at the 2.5PN, 3.5PN, and 4PN
orders in the energy balance equation that is used to
determine the orbital phase expression. Our new
frequency-domain amplitude corrections involve both
spin-orbit and spin-spin terms at the 2PN order. The
polarizations and the spherical harmonic modes of the
waveform in the frequency domain are now complete at this
approximation level.
Before we conclude, it is worth recalling that these PN

expressions are valid only during the inspiraling stage of
the binary motion, where a slow (adiabatic) evolution may
be assumed. This assumption breaks down during the late
stages (i.e., close to the last stable orbit). Moreover,
whether or not the stationary phase approximation (SPA)
can be used to compute the Fourier transform of the signal
depends crucially on the details of the amplitude and phase
evolution (see Sec. VI B of [10] for details). However, it
was shown in Ref. [38] that, as long as the total mass of the
binary is smaller than some critical value (∼12M⊙),
inspiral waveform models can serve in detecting
compact-binary coalescences (CBCs). On the other hand,
for systems heavier than this critical value, one must resort
to more accurate waveform prescriptions such as the ones
provided by the effective-one-body (EOB) formalism
[39–41]. Interestingly, the data accumulated during the

sixth science run of LIGO, and the second and third
science runs of Virgo were analyzed by means of an
inspiral-based template bank (constructed using 3.5PN
accurate (nonspinning) TaylorF2 waveform) aiming at
searching CBCs (M < 25M⊙) [42]. The choice of SPA-
based inspiral waveforms over EOB waveforms, even for
searching systems with masses as high as 25M⊙, was
motivated by the associated low computational cost for
the construction of the template bank. However, the
recent developments in fast-to-generate reduced-order
models, first proposed in Ref. [43], which allow one
to work with EOB models calibrated by means of
numerical relativity simulations [44–46], along with the
template placement methods developed in [47], have
made it possible to construct template banks for CBCs
with masses as low as 4M⊙. Nevertheless, waveforms
presented in this paper, because they include higher-order
spin effects (quadratic/cubic-in-spin) in phasing and
polarization modes, are suitable for the elaboration of
inspiral-only template banks, which would indeed be
useful in comparing the efficiency of the searches for low
mass nonprecessing binary black holes (M < 12M⊙)
with moderate spins [48,49].
Alternatively, in the past few years, there has been

significant progress in building analytical inspiral-
merger-ringdown waveform families phenomenologically.
These waveforms are calibrated with the so-called hybrid
waveforms, constructed by matching PN/EOB wave-
forms, which describe the early inspiral stage, to numeri-
cal relativity simulations, which describe the late inspiral,
merger, and ringdown stages of binary black-hole evo-
lution [50–53]. The SPA waveforms presented here can
prove to be crucial in the construction of analytical
inspiral-merger-ringdown models for nonprecessing
binary black holes, including the effect of higher modes.
In addition, they may be useful to investigate various
tests of strong field gravity proposed in the literature
[54–59] in the presence of spin.
The spin effects in the amplitude and phase of these

waveforms will also help in reducing the errors asso-
ciated with the parameter estimation of the spinning
binary signals [21,60]. However, again, parameter esti-
mation studies should be restricted to binary black holes
with total mass smaller than ∼12M⊙. It is important to
note that, with increasing binary mass, there are fewer
and fewer inspiral cycles in the detector band; hence, the
contributions from merger and ringdown become more
dominant. In the context of parameter estimation studies,
this calls for the use of inspiral-merger-ringdown wave-
forms for heavy stellar/intermediate mass binary black
holes [61–64].
Finally, we would like to comment on a concern raised

by the authors of Ref. [65] about the relevance of inspiral
waveforms, with an abrupt termination of the signal at a
certain cutoff frequency, for parameter estimation. They
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suggest that, unless the abrupt termination is motivated by
some physical arguments (such as the fact that the signal is
inspiral dominated), it can cause significant bias in error
estimates, and they suggest employing complete inspiral-
merger-ringdown waveforms instead. However, such edge
effects were studied in detail in Ref. [66] which suggests
that the bias introduced in the measurement of source
properties is probably negligible.

ACKNOWLEDGMENTS

This work was initiated during the ICTS program on
numerical relativity organized by the International Center
for Theoretical Sciences, Bangalore, in June–July 2013.
K. G. A. was partly funded by a grant from the Infosys
Foundation. Useful conversations with P. Ajith and B. Iyer
are gratefully acknowledged.

[1] L. Blanchet, Living Rev. Relativity 17, 2 (2014).
[2] J. Hartung and J. Steinhoff, Ann. Phys. (Berlin) 523, 783

(2011).
[3] S. Marsat, A. Bohé, G. Faye, and L. Blanchet, Classical

Quantum Gravity 30, 055007 (2013).
[4] M. Levi and J. Steinhoff, J. Cosmol. Astropart. Phys. 01

(2016) 011.
[5] A. Bohé, S. Marsat, G. Faye, and L. Blanchet, Classical

Quantum Gravity 30, 075017 (2013).
[6] A. Bohé, S. Marsat, and L. Blanchet, Classical Quantum

Gravity 30, 135009 (2013).
[7] R. A. Porto, A. Ross, and I. Z. Rothstein, J. Cosmol.

Astropart. Phys. 03 (2011) 009.
[8] S. Marsat, A. Bohé, L. Blanchet, and A. Buonanno,

Classical Quantum Gravity 31, 025023 (2014).
[9] A. Bohé, G. Faye, S. Marsat, and E. K. Porter, Classical

Quantum Gravity 32, 195010 (2015).
[10] K. G. Arun, A. Buonanno, G. Faye, and E. Ochsner, Phys.

Rev. D 79, 104023 (2009).
[11] R. A. Porto and I. Z. Rothstein, Phys. Rev. D 78, 044012

(2008); 81, 029904(E) (2010).
[12] R. A. Porto and I. Z. Rothstein, Phys. Rev. D 78, 044013

(2008); 81, 029905(E) (2010).
[13] S. Marsat, Classical Quantum Gravity 32, 085008 (2015).
[14] A. Buonanno, G. Faye, and T. Hinderer, Phys. Rev. D 87,

044009 (2013).
[15] L. Kidder, Phys. Rev. D 52, 821 (1995).
[16] C. Will and A. Wiseman, Phys. Rev. D 54, 4813 (1996).
[17] R. A. Porto, A. Ross, and I. Z. Rothstein, J. Cosmol.

Astropart. Phys. 09 (2012) 028.
[18] L. Blanchet, A. Buonanno, and G. Faye, Phys. Rev. D 84,

064041 (2011).
[19] K. G. Arun, L. Blanchet, B. R. Iyer, and M. S. S. Qusailah,

Classical Quantum Gravity 21, 3771 (2004); 22, 3115(E)
(2005).

[20] L. Blanchet, G. Faye, B. R. Iyer, and S. Sinha, Classical
Quantum Gravity 25, 165003 (2008); 29, 239501(E) (2012).

[21] M. Wade, J. D. E. Creighton, E. Ochsner, and A. B. Nielsen,
Phys. Rev. D 88, 083002 (2013).

[22] C. Van Den Broeck and A. Sengupta, Classical Quantum
Gravity 24, 155 (2007).

[23] C. Van Den Broeck and A. S. Sengupta, Classical Quantum
Gravity 24, 1089 (2007).

[24] T. Damour, B. R. Iyer, and B. S. Sathyaprakash, Phys. Rev.
D 66, 027502 (2002); 72, 029901(E) (2005).

[25] T. Damour, P. Jaranowski, and G. Schäfer, Phys. Rev. D 89,
064058 (2014).

[26] L. Blanchet, G. Faye, B. R. Iyer, and B. Joguet, Phys. Rev. D
65, 061501(R) (2002); 71, 129902(E) (2005).

[27] L. Blanchet, T. Damour, G. Esposito-Farèse, and B. R. Iyer,
Phys. Rev. Lett. 93, 091101 (2004).

[28] J. Hartung and J. Steinhoff, Ann. Phys. (Berlin) 523, 919
(2011).

[29] M. Levi, Phys. Rev. D 85, 064043 (2012).
[30] M. Levi and J. Steinhoff, J. Cosmol. Astropart. Phys. 01

(2016) 008.
[31] L. Blanchet, B. R. Iyer, and B. Joguet, Phys. Rev. D 65,

064005 (2002); 71, 129903(E) (2005).
[32] K. G. Arun, B. R. Iyer, B. S. Sathyaprakash, and P. A.

Sundararajan, Phys. Rev. D 71, 084008 (2005); 72,
069903(E) (2005).

[33] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevD.93.084054 for the com-
plete expressions of the polarization/mode amplitudes and
phasing readable in MATHEMATICA.

[34] K. Alvi, Phys. Rev. D 64, 104020 (2001).
[35] E. Poisson, Phys. Rev. D 70, 084044 (2004).
[36] R. A. Porto, Phys. Rev. D 77, 064026 (2008).
[37] K. Chatziioannou, E. Poisson, and N. Yunes, Phys. Rev. D

87, 044022 (2013).
[38] A. Buonanno, B. Iyer, E. Ochsner, Y. Pan, and B. S.

Sathyaprakash, Phys. Rev. D 80, 084043 (2009).
[39] A. Buonanno and T. Damour, Phys. Rev. D 59, 084006

(1999).
[40] T. Damour, Fundam. Theor. Phys. 177, 111 (2014).
[41] T. Damour and A. Nagar, Phys. Rev. D 90, 044018 (2014).
[42] J. Abadie et al. (VIRGO, LIGO), Phys. Rev. D 85, 082002

(2012).
[43] M. Pürrer, Phys. Rev. D 93, 064041 (2016).
[44] Y. Pan, A. Buonanno, M. Boyle, L. T. Buchman, L. E.

Kidder, H. P. Pfeiffer, and M. A. Scheel, Phys. Rev. D 84,
124052 (2011).

[45] A. Taracchini, A. Buonanno, Y. Pan, T. Hinderer, M. Boyle,
D. A. Hemberger, L. E. Kidder, G. Lovelace, A. H. Mroué,
H. P. Pfeiffer et al., Phys. Rev. D 89, 061502(R) (2014).

[46] Y. Pan, A. Buonanno, A. Taracchini, L. E. Kidder, A. H.
Mroué, H. P. Pfeiffer, M. A. Scheel, and B. Szilágyi, Phys.
Rev. D 89, 084006 (2014).

[47] C. Capano, I. Harry, S. Privitera, and A. Buonanno,
arXiv:1602.03509.

MISHRA, KELA, ARUN, and FAYE PHYSICAL REVIEW D 93, 084054 (2016)

084054-8

http://dx.doi.org/10.12942/lrr-2014-2
http://dx.doi.org/10.1002/andp.201100094
http://dx.doi.org/10.1002/andp.201100094
http://dx.doi.org/10.1088/0264-9381/30/5/055007
http://dx.doi.org/10.1088/0264-9381/30/5/055007
http://dx.doi.org/10.1088/1475-7516/2016/01/011
http://dx.doi.org/10.1088/1475-7516/2016/01/011
http://dx.doi.org/10.1088/0264-9381/30/7/075017
http://dx.doi.org/10.1088/0264-9381/30/7/075017
http://dx.doi.org/10.1088/0264-9381/30/13/135009
http://dx.doi.org/10.1088/0264-9381/30/13/135009
http://dx.doi.org/10.1088/1475-7516/2011/03/009
http://dx.doi.org/10.1088/1475-7516/2011/03/009
http://dx.doi.org/10.1088/0264-9381/31/2/025023
http://dx.doi.org/10.1088/0264-9381/32/19/195010
http://dx.doi.org/10.1088/0264-9381/32/19/195010
http://dx.doi.org/10.1103/PhysRevD.79.104023
http://dx.doi.org/10.1103/PhysRevD.79.104023
http://dx.doi.org/10.1103/PhysRevD.78.044012
http://dx.doi.org/10.1103/PhysRevD.78.044012
http://dx.doi.org/10.1103/PhysRevD.81.029904
http://dx.doi.org/10.1103/PhysRevD.78.044013
http://dx.doi.org/10.1103/PhysRevD.78.044013
http://dx.doi.org/10.1103/PhysRevD.81.029905
http://dx.doi.org/10.1088/0264-9381/32/8/085008
http://dx.doi.org/10.1103/PhysRevD.87.044009
http://dx.doi.org/10.1103/PhysRevD.87.044009
http://dx.doi.org/10.1103/PhysRevD.52.821
http://dx.doi.org/10.1103/PhysRevD.54.4813
http://dx.doi.org/10.1088/1475-7516/2012/09/028
http://dx.doi.org/10.1088/1475-7516/2012/09/028
http://dx.doi.org/10.1103/PhysRevD.84.064041
http://dx.doi.org/10.1103/PhysRevD.84.064041
http://dx.doi.org/10.1088/0264-9381/21/15/010
http://dx.doi.org/10.1088/0264-9381/22/14/C01
http://dx.doi.org/10.1088/0264-9381/22/14/C01
http://dx.doi.org/10.1088/0264-9381/25/16/165003
http://dx.doi.org/10.1088/0264-9381/25/16/165003
http://dx.doi.org/10.1088/0264-9381/29/23/239501
http://dx.doi.org/10.1103/PhysRevD.88.083002
http://dx.doi.org/10.1088/0264-9381/24/1/009
http://dx.doi.org/10.1088/0264-9381/24/1/009
http://dx.doi.org/10.1088/0264-9381/24/5/005
http://dx.doi.org/10.1088/0264-9381/24/5/005
http://dx.doi.org/10.1103/PhysRevD.66.027502
http://dx.doi.org/10.1103/PhysRevD.66.027502
http://dx.doi.org/10.1103/PhysRevD.66.027502
http://dx.doi.org/10.1103/PhysRevD.89.064058
http://dx.doi.org/10.1103/PhysRevD.89.064058
http://dx.doi.org/10.1103/PhysRevD.65.061501
http://dx.doi.org/10.1103/PhysRevD.65.061501
http://dx.doi.org/10.1103/PhysRevD.71.129902
http://dx.doi.org/10.1103/PhysRevLett.93.091101
http://dx.doi.org/10.1002/andp.201100163
http://dx.doi.org/10.1002/andp.201100163
http://dx.doi.org/10.1103/PhysRevD.85.064043
http://dx.doi.org/10.1088/1475-7516/2016/04/008
http://dx.doi.org/10.1088/1475-7516/2016/04/008
http://dx.doi.org/10.1103/PhysRevD.65.064005
http://dx.doi.org/10.1103/PhysRevD.65.064005
http://dx.doi.org/10.1103/PhysRevD.71.129903
http://dx.doi.org/10.1103/PhysRevD.71.084008
http://dx.doi.org/10.1103/PhysRevD.72.069903
http://dx.doi.org/10.1103/PhysRevD.72.069903
http://link.aps.org/supplemental/10.1103/PhysRevD.93.084054
http://link.aps.org/supplemental/10.1103/PhysRevD.93.084054
http://link.aps.org/supplemental/10.1103/PhysRevD.93.084054
http://link.aps.org/supplemental/10.1103/PhysRevD.93.084054
http://link.aps.org/supplemental/10.1103/PhysRevD.93.084054
http://link.aps.org/supplemental/10.1103/PhysRevD.93.084054
http://link.aps.org/supplemental/10.1103/PhysRevD.93.084054
http://dx.doi.org/10.1103/PhysRevD.64.104020
http://dx.doi.org/10.1103/PhysRevD.70.084044
http://dx.doi.org/10.1103/PhysRevD.77.064026
http://dx.doi.org/10.1103/PhysRevD.87.044022
http://dx.doi.org/10.1103/PhysRevD.87.044022
http://dx.doi.org/10.1103/PhysRevD.80.084043
http://dx.doi.org/10.1103/PhysRevD.59.084006
http://dx.doi.org/10.1103/PhysRevD.59.084006
http://dx.doi.org/10.1007/978-3-319-06349-2_5
http://dx.doi.org/10.1103/PhysRevD.90.044018
http://dx.doi.org/10.1103/PhysRevD.85.082002
http://dx.doi.org/10.1103/PhysRevD.85.082002
http://dx.doi.org/10.1103/PhysRevD.93.064041
http://dx.doi.org/10.1103/PhysRevD.84.124052
http://dx.doi.org/10.1103/PhysRevD.84.124052
http://dx.doi.org/10.1103/PhysRevD.89.061502
http://dx.doi.org/10.1103/PhysRevD.89.084006
http://dx.doi.org/10.1103/PhysRevD.89.084006
http://arXiv.org/abs/1602.03509


[48] A. H. Nitz, A. Lundgren, D. A. Brown, E. Ochsner,
D. Keppel, and I. W. Harry, Phys. Rev. D 88, 124039
(2013).

[49] T. D. Canton, A. H. Nitz, A. P. Lundgren, A. B. Nielsen,
D. A. Brown et al., Phys. Rev. D 90, 082004 (2014).

[50] P. Ajith, M. Hannam, S. Husa, Y. Chen, B. Bruegmann
et al., Phys. Rev. Lett. 106, 241101 (2011).

[51] L. Santamaría, F. Ohme, P. Ajith, B. Brügmann, N.
Dorband, M. Hannam, S. Husa, P. Mösta, D. Pollney, C.
Reisswig et al., Phys. Rev. D 82, 064016 (2010).

[52] S. Husa, S. Khan, M. Hannam, M. Pürrer, F. Ohme,
X. J. Forteza, and A. Bohé, Phys. Rev. D 93, 044006
(2016).

[53] S. Khan, S. Husa, M. Hannam, F. Ohme, M. Pürrer, X. J.
Forteza, and A. Bohé, Phys. Rev. D 93, 044007 (2016).

[54] K. G. Arun, B. R. Iyer, M. S. S. Qusailah, and B. S.
Sathyaprakash, Classical Quantum Gravity 23, L37
(2006).

[55] K. G. Arun, B. R. Iyer, M. S. S. Qusailah, and B. S.
Sathyaprakash, Phys. Rev. D 74, 024006 (2006).

[56] C. K.Mishra,K. G.Arun, B. R. Iyer, andB. S. Sathyaprakash,
Phys. Rev. D 82, 064010 (2010).

[57] N. Yunes and F. Pretorius, Phys. Rev. D 80, 122003
(2009).

[58] T. G. F. Li, W. D. Pozzo, S. Vitale, C. Van Den Broeck, M.
Agathos, J. Veitch, K. Grover, T. Sidery, R. Sturani, and A.
Vecchio, Phys. Rev. D 85, 082003 (2012).

[59] M. Agathos, W. D. Pozzo, T. G. F. Li, C. Van Den Broeck,
J. Veitch, and S. Vitale, in Proceedings, 13th Marcel
Grossmann Meeting on Recent Developments in Theoreti-
cal and Experimental General Relativity, Astrophysics, and
Relativistic Field Theories (MG13) (2015), p. 1710;
arXiv:1305.2963, URL http://inspirehep.net/record/
1233350/files/arXiv:1305.2963.pdf.

[60] M. Favata, Phys. Rev. Lett. 112, 101101 (2014).
[61] B. P. Abbott et al. (Virgo, LIGO Scientific),

arXiv:1602.03840.
[62] P. B. Graff, A. Buonanno, and B. S. Sathyaprakash, Phys.

Rev. D 92, 022002 (2015).
[63] J. Veitch, M. Pürrer, and I. Mandel, Phys. Rev. Lett. 115,

141101 (2015).
[64] C.-J. Haster, Z. Wang, C. P. L. Berry, S. Stevenson, J.

Veitch, and I. Mandel, Mon. Not. R. Astron. Soc. 457,
4499 (2016).

[65] I. Mandel, C. P. L. Berry, F. Ohme, S. Fairhurst, and W.M.
Farr, Classical Quantum Gravity 31, 155005 (2014).

[66] T. Damour, B. R. Iyer, and B. S. Sathyaprakash, Phys. Rev.
D 62, 084036 (2000).

READY-TO-USE POST-NEWTONIAN GRAVITATIONAL … PHYSICAL REVIEW D 93, 084054 (2016)

084054-9

http://dx.doi.org/10.1103/PhysRevD.88.124039
http://dx.doi.org/10.1103/PhysRevD.88.124039
http://dx.doi.org/10.1103/PhysRevD.90.082004
http://dx.doi.org/10.1103/PhysRevLett.106.241101
http://dx.doi.org/10.1103/PhysRevD.82.064016
http://dx.doi.org/10.1103/PhysRevD.93.044006
http://dx.doi.org/10.1103/PhysRevD.93.044006
http://dx.doi.org/10.1103/PhysRevD.93.044007
http://dx.doi.org/10.1088/0264-9381/23/9/L01
http://dx.doi.org/10.1088/0264-9381/23/9/L01
http://dx.doi.org/10.1103/PhysRevD.74.024006
http://dx.doi.org/10.1103/PhysRevD.82.064010
http://dx.doi.org/10.1103/PhysRevD.80.122003
http://dx.doi.org/10.1103/PhysRevD.80.122003
http://dx.doi.org/10.1103/PhysRevD.85.082003
http://inspirehep.net/record/1233350/files/arXiv:1305.2963.pdf
http://inspirehep.net/record/1233350/files/arXiv:1305.2963.pdf
http://inspirehep.net/record/1233350/files/arXiv:1305.2963.pdf
http://inspirehep.net/record/1233350/files/arXiv:1305.2963.pdf
http://arXiv.org/abs/1305.2963
http://dx.doi.org/10.1103/PhysRevLett.112.101101
http://arXiv.org/abs/1602.03840
http://dx.doi.org/10.1103/PhysRevD.92.022002
http://dx.doi.org/10.1103/PhysRevD.92.022002
http://dx.doi.org/10.1103/PhysRevLett.115.141101
http://dx.doi.org/10.1103/PhysRevLett.115.141101
http://dx.doi.org/10.1093/mnras/stw233
http://dx.doi.org/10.1093/mnras/stw233
http://dx.doi.org/10.1088/0264-9381/31/15/155005
http://dx.doi.org/10.1103/PhysRevD.62.084036
http://dx.doi.org/10.1103/PhysRevD.62.084036

