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As a possible method to detect gravastars (gravitational-vacuum-star), which was originally proposed by
Mazur and Mottola, we study their gravitational lensing effects. Specifically, we adopt a spherical thin-shell
model of a gravastar developed by Visser and Wiltshire, which connects interior de Sitter geometry and
exterior Schwarzschild geometry, and assume that its surface is optically transparent. We calculate the
image of a companion which rotates around the gravastar; we find that some characteristic images appear,
depending on whether the gravastar possess unstable circular orbits of photons (Model 1) or not (Model 2).
For Model 2, we calculate the total luminosity change, which is called microlensing effects; the maximal
luminosity could be considerably larger than the black hole with the same mass.
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I. INTRODCUTION

Gravastars (gravitational vacuum stars) were originally
proposed by Mazur and Mottola [1] as a new final state
of gravitational collapse of stars, that is, an alternative to
black holes: they are spherically symmetric supercompact
objects which mimic black holes. In their model an
interior de Sitter region and an exterior Schwarzschild
background are connected by a shell of stiff matter (p ¼ ρ)
so that singularity in Schwarzschild spacetime is removed.
Although their formation process is unclear, the idea
is fascinating because it could solve two fundamental
problems of black holes: the singularity problem and
information loss paradox.
Since their original proposal, a number of models of

gravastars have been studied. Cattoen et al. [2] showed that
gravastars cannot be perfect fluids and hence anisotropic
pressure should be included. Therefore, the subsequent
models are classified into two types: one is continuous
matter with anisotropic pressure [2,3] and the other is an
infinitely thin shell [4–9]. The original thin-shell model of a
gravastar was developed by Visser and Wiltshire (VW) [4],
using Israel’s junction conditions [10]. In their model there
are not only static solutions but also stably oscillating
solutions; the latter class was studied carefully by
Rocha et al. [5]. Then, many extensive models have been
discussed: generalized equation of state [6], radiating shell
[7], including dark energy [8], and including electromag-
netic field [9].
If gravastars exist in the Universe, how can we identify

them by observations? Chirenti and Rezzolla [11] con-
sidered a question of how to tell a gravastar from a
black hole. They studied axial-perturbations on gravastars
and found that their quasinormal modes of gravitational
waves differ from those of black holes. Later more
general perturbations were analyzed by Pani et al. [12]

Broderick and Narayan [13] argued that, if observed black
hole candidates with matter accretion were gravastars,
they should heat up and emit radiation. With this thermal
process they discussed observational constraints on
gravastar models. Harko et al. [14] considered accretion
disks around slowly rotating gravastars and argued that
their electromagnetic properties can distinguish a grav-
astar from a black hole.
Recently Sakai, Saida and Tamaki [15] proposed a new

method to distinguish gravastars from black holes by
electromagnetic observations. They investigated the optical
images of the gravastars possessing unstable circular orbits
of photons, assuming its optically transparent surface and
two types of optical sources behind a gravastar: an infinite
optical plane and a companion star.
In this paper we focus on the latter case: assuming its

optically transparent surface, we investigate the image and
luminosity change of a companion rotating a gravastar in
more depth to answer the following questions.

(i) What is the image of the companion like when it is in
front of the gravastar?

(ii) What is the image of the companion like if the lens
gravastar is slightly larger and does not possess
unstable circular orbits of photons?

(iii) How does the total luminosity change when the
companion passes through the gravastar?

The last question is the most important because it is more
realistic to observe the total luminosity (i.e., microlensing
effects) than to observe the shape of the lensed image.
The present analysis is also applicable to the study of

boson stars [16] and other soliton stars composed of scalar
fields or gauge fields. Because such soliton stars are
optically transparent, we expect that they have similar
optical natures.
This paper is organized as follows. In Sec. II, we review

thin-shell models of a gravastar used in Ref. [15] and
discuss null geodesics for the two models: one possesses
an unstable circular orbits of photons and the other is not.*nsakai@yamaguchi‑u.ac.jp
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In Sec. III, we solve null geodesic equations numerically to
obtain the images of optical source around gravastar for the
two models; we also calculate the time-variation of the total
luminosity. Section IV is devoted to concluding remarks.

II. THIN SHELL MODEL
AND NULL GEODESICS

A. Thin shell model

To begin with, we review thin-shell models of a gravastar
developed by Visser and Wiltshire [4], which was adopted
in Ref. [15]. The inside is a part of de Sitter spacetime,

ds2 ¼ −A−dt2 þ
dr2−
A−

þ r2−ðdθ2 þ sin2θdϕ2Þ; ð2:1Þ

with A−ðr−Þ≡ 1 −H2r2−; ð2:2Þ

and the outside is a part of Schwarzschild spacetime,

ds2 ¼ −Aþdt2 þ
dr2þ
Aþ

þ r2þðdθ2 þ sin2θdϕ2Þ; ð2:3Þ

with AþðrþÞ≡ 1 −
rg
rþ

; ð2:4Þ

where rg is a gravitational radius. We have denoted the field
variable on the outside (inside) by superscripts or subscripts
þð−Þ. To describe the geometry in vicinity of the boundary
hypersurface Σ, we introduce a Gaussian normal coordinate
system,

ds2 ¼ dn2 þ γ�ijdx
idxj

¼ dn2 − N�ðn; τÞ2dτ2
þ r�ðn; τÞ2ðdθ2 þ sin2θdϕ2Þ; ð2:5Þ

in which n ¼ 0 corresponds to Σ. N is normalized by
N�ð0; τÞ ¼ 1 so that τ implies the proper time of Σ. We
suppose that Σ contents infinitesimally thin matter,

Sij ≡
Z þ0

−0
Ti
jdn ¼ diagð−σ;ϖ;ϖÞ; ð2:6Þ

where σ and ϖ are the surface energy density and the
surface pressure, respectively. Following Visser and
Wiltshire [4], we assume 2þ 1 dimensional stiff matter,

ϖ ¼ σ: ð2:7Þ
What we are looking for is static and stable solutions of a

gravastar. To find the solutions which are stable against
spherical perturbations, we derive the equations of motion
of the shell.
Following Israel’s formalism [10,17], we can obtain the

junction conditions at Σ as follows. The metric continuity
γþij ¼ γ−ij implies

R ¼ rþ ¼ r−; ð2:8Þ

dτ2 ¼ Aþdt2þ −
dr2þ
Aþ

¼ A−dt2− −
dr2−
A−

: ð2:9Þ

The other junction conditions are reduced to the two
equations. One is

β− − βþ ¼ 4πGσR; ð2:10Þ

where

β� ≡ ∂r�
∂n ¼ ε�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
dR
dτ

�
2

þ A�

s
;

ε� ≡ sign
∂r�
∂n : ð2:11Þ

In a spacetime without Schwarzschild horizon nor de Sitter
horizon, ε� ¼ þ1 because the areal radius r� always
increases as n increases. The other equation is

d
dτ

ðσR2Þ þϖ
d
dτ

ðR2Þ ¼ 0: ð2:12Þ

For stiff matter (2.7), we find

σR4 ¼ const: ð2:13Þ

Introducing dimensionless quantities,

~R≡ R
rg
; ~τ≡ τ

rg
ð2:14Þ

h≡ rgH; s≡ 4πGσR4

r3g
¼ const; ð2:15Þ

we rewrite (2.10) as

�
d ~R
d~τ

�2

þ Uð ~RÞ ¼ 0: ð2:16Þ

Uð ~RÞ≡ 1 −
h2 ~R2

2
−

1

2 ~R
−

s2

4 ~R6

−
~R6

4s2

�
h2 ~R2 −

1

~R

�
2

: ð2:17Þ

We have to solve Uð ~RÞ ¼ 0 and U0ð ~RÞ ¼ 0 to obtain
static and stable solutions. This condition gives a constraint
on the three parameters h, s, and ~R. We survey static and
stable solutions and show their parameters s, ~R as a
function of h in Fig. 1. In the following analysis we adopt
the two cases, which are denoted by the bigger dots
in Fig. 1.
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(i) Model 1: h ¼ 0.1, ~R ¼ 1.303. Because R < 1.5rg,
unstable circular orbits of photons are existent.

(ii) Model 2: h ¼ 0.1, ~R ¼ 3.410. Because R > 1.5rg,
unstable circular orbits of photons are nonexistent.

B. Null geodesic equations

Next, we derive null geodesic equations with boundary
conditions for the static gravastar spacetime. The null
geodesic equations are

dkμ

dλ
þ Γμ

νρkνkρ ¼ 0; with kμkμ ¼ 0: ð2:18Þ

The geodesics in the θ ¼ π=2 plane for the outside ðþÞ and
the inside ð−Þ are given by

d
dλ�

ðA�kt�Þ ¼ 0;
d

dλ�
ðr2�kφ�Þ ¼ 0; ð2:19Þ

1ffiffiffiffiffiffi
A�

p d
dλ�

�
kr�ffiffiffiffiffiffi
A�

p
�
þ dA�

dr�

ðkt�Þ2
2

− r�ðkφ�Þ2 ¼ 0; ð2:20Þ

− A�ðkt�Þ2 þ
ðkr�Þ2
A�

þ r2�ðkφ�Þ2 ¼ 0: ð2:21Þ

Because Eq. (2.20) is also derived by (2.19) and (2.21), we
do not have to solve it. Equations (2.19) are integrated as

A�kt� ¼ const≡ E�; r2�k
φ
� ¼ const≡ L�; ð2:22Þ

and then (2.21) becomes

ðkr�Þ2 þ
A�L2

�
r2�

¼ E2
�: ð2:23Þ

It follows from (2.22) and (2.23) that

dr�
dφ

¼ kr�
kφ�

¼ r2�k
r
�

L�
¼ �r�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
E�r�
L�

�
2

− A�

s
; ð2:24Þ

which gives null geodesics in the exterior and interior
regions of the gravastar.
The equation for the interior region in (2.24) is

integrated as

r− ¼ rm secðφ − φmÞ; rm ≡
�
E2
−

L2
−
þH2

�−1
2

; ð2:25Þ

where φm is an integral constant. Since a black hole horizon
does not exist and the surface of the gravastar is transparent
in our situation, any incident light ray to the gravastar has
to penetrate the gravastar, as we will show in Fig. 3.
Therefore, there are two crossing points of the penetrating
null geodesic with the surface of gravastar Σ. Let φ1 and
φ2ðφ1 < φ2Þ denote the φ-coordinate values of those two
crossing points, they are determined by

φm ¼ φ1 þ arccos
rm
R

¼ φ2 − arccos
rm
R

: ð2:26Þ

On the other hand, the equation for the exterior region in
(2.24) cannot be integrated analytically. However, the
asymptotic solution at r → ∞ is obtained by putting
Aþ → 1:

rþ ¼ Lþ
Eþ

secðφ − φcÞ; ð2:27Þ

where φc is an integral constant.
Next, we discuss the boundary conditions of kμ at Σ.

In the case of a static gravastar, R ¼ const, the relation
between the Gaussian normal coordinates (2.5) and the
outer/inner coordinates (2.1) and (2.3) is given by

dτ2 ¼ Aþdt2þ ¼ A−dt2−;

R2dφ2 ¼ r2þdφ2 ¼ r2−dφ2: ð2:28Þ

Then we find

ffiffiffiffiffiffi
Aþ

p
ktþ ¼

ffiffiffiffiffiffi
A−

p
kt−; kφþ ¼ kφ−: ð2:29Þ

With the help of the null condition (2.21), we also obtain

krþffiffiffiffiffiffi
Aþ

p ¼ kr−ffiffiffiffiffiffi
A−

p : ð2:30Þ

R

s

h

FIG. 1. Parameters s and ~R as a function of h, when Uð ~RÞ has a
local minimum on Uð ~RÞ ¼ 0 as shown in Fig. 1. Only these
parameter values allow for static and stable gravastar solutions. h
has an upper limit, hmax ≈ 0.43. The large dots denote the two
cases, h ¼ 0.1, ~R ¼ 1.303 (Model 1) and h ¼ 0.4, ~R ¼ 3.410
(Model 2), which we analyze in the following.
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The relations among the integration constants are given by
(2.8), (2.22) and (2.29),

Lþ ¼ L−;
Eþffiffiffiffiffiffi
Aþ

p ¼ E−ffiffiffiffiffiffi
A−

p : ð2:31Þ

Hereafter we denote Lþ and L− simply by L because they
are identical.
To make a qualitative discussion on photon trajectories,

it is convenient to introduce the effective potential as
follows. Equation (2.23) is rewritten as

�
dr�
dλ�

�
2

þ L2A�
r2�

¼ E2
�: ð2:32Þ

To discuss the dynamics with a continuous “potential”
by analogy with the Newtonian mechanics, we introduce
unified variables as

r ¼ r− and λ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
A−ðRÞ
AþðRÞ

s
λ− ðinsideÞ;

r ¼ rþ and λ ¼ λþ ðoutsideÞ; ð2:33Þ

and define the effective potential as

Vðr < RÞ ¼ L2A−

r2
AþðRÞ
A−ðRÞ

¼ L2
AþðRÞ
A−ðRÞ

�
1

r2
−H2

�
;

Vðr > RÞ ¼ L2Aþ
r2

¼ L2

�
1

r2
−
rg
r3

�
: ð2:34Þ

Then we obtain the continuous equation of motion,

�
dr
dλ

�
2

þ VðrÞ ¼ E2þ: ð2:35Þ

Figure 2 shows VðrÞ for the two models. Model 1
represents the case where both stable and unstable circular
orbits of photons, while Model 2 represents the case where
no circular orbits of photons.

III. GRAVITATIONAL LENS BY GRAVASTARS

A. Basics features of null geodesics

We review the basic features of null geodesics, which
was discussed in Ref. [15]. We define the rectangular
coordinates ðx; y; zÞ ¼ ðr cosφ sin θ; r sinφ sin θ; r cos θÞ.
We suppose that the center of the gravastar is located at
the origin and the observer at ðDo; 0; 0Þðφ ¼ 0Þ. Figure 3
shows the z ¼ 0ðθ ¼ π=2Þ plane. If we make a coordinate
rotation appropriately, any trajectory can be put on this
plane. On this plane, we denote the intersection of the
y-axis with the tangent to the ray at the observer by y ¼ α;
we can interpret α as the apparent length from the
gravastar’s center or the impact parameter.

r rg

(
)

r g
2

L2
V

(a)

r g
2

L2
)

(
V

r /

/

/

rg

R

(b)

FIG. 2. Graphs of the effective potential of null geodesics,
Vð ~RÞ. (a) Model 1 has both stable and unstable circular orbits of
photons. (b) Model 2 has no circular orbits of photons.

c

x

y

Do

FIG. 3. The z ¼ 0 plane in the 3-space ðx; y; zÞ ¼
ðr cosφ sin θ; r sinφ sin θ; r cos θÞ. The center of the gravastar
is located at the origin and the observer at ðDo; 0; 0Þ. The
intersection of the y-axis with the tangent to the ray at the
observer is denoted by ð0; α; 0Þ. The integral constant φc
corresponds to the angle indicated by this figure: tanφc ¼ Do=α.
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In this rectangular coordinate system the asymptotic
solution (2.27) is rewritten as

x cosφc þ y sinφc ¼
L
E
; ð3:1Þ

where the x-intercept and the y-intercept are given by

Do ¼
L
E
secφc; α ¼ L

E
cosecφc; ð3:2Þ

respectively. Recall that φc is an integral constant defined
by (2.27). Because (3.2) indicates

tanφc ¼
Do

α
; ð3:3Þ

we find that the integral constant φc corresponds to the
angle indicated by Fig. 3.
Furthermore, taking the limit of Do → ∞, we obtain

φc →
π

2
; α →

L
E
: ð3:4Þ

Therefore, if Do is large enough, we can regard L=E as the
apparent length from the center as well as the impact
parameter. In the following analysis we put Do ¼ 1000rg.
Figure 4 shows trajectories of photons which reach the

observer for (a) Model 1 and (b) Model 2. In de Sitter
region photons pass linearly. In Model 1 photons with
L=Erg ≈ 3

ffiffiffi
3

p
=2 twines around the unstable circular orbit.

In Model 2 lensing effects are smaller than those in model
1; however, the amplification of luminosity becomes more
important.

B. Gravitational lensing images

Next, supposing that a companion star rotates around a
gravastar, we investigate its image caused by gravitational
lens effects. Figure 5 shows the setting of our numerical
analysis. We suppose the companion is rotating around the
gravastar. We put the gravastar’s center and the compan-
ion’s center at the origin and on the z ¼ 0-plane, respec-
tively. We denote the distance between the companion’s
center and the gravastar’s center byDs and the radius of the
companion by rs. The angle δ is defined as the angle
between the direction of the companion’s center and the
opposite direction to x-axis. The image ~α ¼ ðαy; αzÞ is
defined as the intersection of the x ¼ 0 plane with the
tangent to the ray at the observer.
Henceforth we discuss the two models separately.
(i) Model 1 (h ¼ 0.4, ~R ¼ 1.303 < 1.5).
We show the relation between the apparent position

α ¼ L=Erg and the central angle δ in Fig. 6, which provides
us all information about lensing effects. The peak sharp
peak at α ¼ 1.5

ffiffiffi
3

p
≈ 2.5981 corresponds to the geodesics

which wind infinite times on the unstable circular orbits
r ¼ 1.5rg, and diverges at α ¼ 1.5

ffiffiffi
3

p
. While the photons

with α > 1.5
ffiffiffi
3

p
travel only in Schwarzschild background,

the photons with α < 1.5
ffiffiffi
3

p
pass through the gravastar

interior. In pure Schwarzschild spacetime only geodesics
with α > 1.5

ffiffiffi
3

p
exist.

Figure 7 shows the images of the companion projected
onto the x ¼ 0 plane when it is behind the gravastar
(δ > 90°), which was also discussed in Ref. [15]. The
gravastar’s center is fixed at the origin. We take Ds ¼ 10rg

-3

-2

-1

 0

 1

 2

 3

-3 -2 -1  0  1  2  3

r cos / rg

r
nis

/r
g

R = 1.303

r = 1.5rg

2.6

(a)

-10

-5

 0

 5

 10

-10 -5  0  5  10

rs
in

/r
gr

r cos / rg

R = 3.410

1
2
3

5

7

(b)

2

2.5
2.7

FIG. 4. Trajectories of photons which reach the observer for
(a) Model 1 and (b) Model 2. The observer is located at
r ¼ 1000rg, ϕ ¼ 0, the right side of the figure. In de Sitter

region photons pass linearly. In Model 1 photons with L=Erg ≈
3

ffiffiffi
3

p
=2 twines around the unstable circular orbit. In Model 2

lensing effects are smaller than those in model 1; however, the
amplification of luminosity becomes more important.
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and rs ¼ 2rg. We display five snapshots when δ ¼ 100°,
135°, 150°, 168° and 170°. The red images correspond to
geodesics which pass through the gravastar, while the blue
ones to those which pass only through Schwarzschild

0

2

3

ra
d

[
]

FIG. 6. Relation between the apparent position α and the central
angle δ for Model 1 ( ~R < 1.5). The sharp peak at α ¼ 1.5

ffiffiffi
3

p
≈

2.5981 corresponds to the geodesics which wind infinite times on
the unstable circular orbit r ¼ 1.5rg, and diverges at α ¼ 1.5

ffiffiffi
3

p
.

While the photons with α > 1.5
ffiffiffi
3

p
travel only in Schwarzschild

background, the photons with α < 1.5
ffiffiffi
3

p
pass through the

gravastar interior.

FIG. 7. Images of the companion for Model 1 when it is behind
the gravastar (δ > 90°). The gravastar’s center is fixed at the
origin. We choose Ds ¼ 10rg and rs ¼ 2rg. We display five
snapshots when δ ¼ 100°, 135°, 150°, 168° and 170° in (a), (b),
(c), (d) and (e), respectively. The red images correspond to
geodesics which pass through the gravastar, while the blue ones
to those which pass only through Schwarzschild background. The
dotted circles indicate the image in the absence of the gravastar.
We do not take account of light-dark contrast, which is generated
by gravitational redshift of the photons.

x

y

FIG. 5. Setting of our analysis of gravitational lens effects. We
suppose a companion around a gravastar. We put the gravastar’s
center and the companion’s center at the origin and on the
z ¼ 0-plane, respectively. We denote the distance between the
companion’s center and the gravastar’s center byDs and the radius
of the companion by rs. The angle δ is defined as the angle between
the direction of the companion’s center and the opposite direction
to x-axis. The image ~α ¼ ðαy; αzÞ is defined as the intersection of
the x ¼ 0 plane with the tangent to the ray at the observer.
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background. The dotted circles indicate the image in the
absence of the gravastar. Here we do not take account of
light-dark contrast, which is generated by gravitational
redshift of the photons. The characteristics of the gravastar
are the red images: a disk in the center and arcs in the sides.
Actually, there are infinite numbers of arcs between the red

arc and the blue arc. As the companion moves, the central
disk moves in the opposite direction. As δ increases, the
arcs in both sides become longer, and finally they are
combined into one image.
Figure 8 shows the images for the same model when the

companion comes in front of the gravastar (δ < 90°).
We display four snapshots when δ ¼ 10°, 12°, 20° and 50°.
The blue disc is a “direct” image which is insignificantly
affected by gravity. The rings and arcs correspond to
photons which go around the gravastar. When δ ⪅ 12°,
one disc and many rings appear; as δ increases, the rings are
broken into arcs.
(ii) Model 2 (h ¼ 0.1; ~R ¼ 3.410 > 1.5).
Next, we consider Model 2, which does not possess

unstable circular orbits of photons. Although lensing
effects in Model 2 are smaller than those in Model 1,
the amplification of luminosity would be more important
and observable.
Figure 9 shows the relation between the apparent

position α ¼ L=Erg and the central angle δ. The small
peak corresponds to the geodesics which pass the surface
of the gravastar.
Figure 10 shows the images of the companion for Model

2. Again we choose Ds ¼ 10rg and rs ¼ 2rg. We display
six snapshots when δ ¼ 130°, 150°, 160°, 167°, 170° and
175°. Although lensing effects are weaker than those in
Model 1, we find new features as follows.

(i) When δ ⪅ 160°, only blue-colored images, which
denote geodesics which pass only through
Schwarzschild background, appear. The number
of images are only one or two, contrary to
Model 1, where infinite numbers of arcs appear.

(ii) When δ⪆ 167°, one or two red images, which
denote geodesics pass through the gravastar, also
appear.
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FIG. 8. Images of the companion for Model 1 when it comes
in front of the gravastar (δ > 90°). We display four snapshots
when δ ¼ 10°, 12°, 20° and 50° in (a), (b), (c) and (d),
respectively. The disc is a “direct” image which is insignificantly
affected by gravity. The rings and arcs correspond to photons
which go around the gravastar.

dar
]

[

0

2

3

2

FIG. 9. Relation between the impact parameter α and the
companion angle δ for Model 2 ( ~R > 1.5). The small peak
corresponds to the geodesics which pass the surface of the
gravastar.
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FIG. 10. Images of the companion for Model 2. The gravastar’s center is fixed at the origin. Again we chooseDs ¼ 10rg and rs ¼ 2rg.
We display six snapshots when δ ¼ 130°, 150°, 160°, 167°, 170° and 175° in (a), (b), (c), (d), (e) and (f), respectively. The red images
correspond to geodesics which pass through the gravastar, while the blue ones to those which pass only through Schwarzschild
background. The dotted circles indicate the image in the absence of the gravastar. We do not take account of light-dark contrast, which is
generated by gravitational redshift of the photons.
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(iii) As δ increases, the two asymmetric red images
merge into one. The image when δ ¼ 170° is in
the shape of a disc with a hole.

(iv) When δ⪆ 170°, the area of the inside disc becomes
larger than the outer ring. This indicates that the
amplification of luminosity by this gravastar is
observable.

To see how much the luminosity of the companion is
amplified by this gravastar, we plot light curves for Model 2
gravastar and for the Schwarzschild black hole with the
same mass in Fig. 11. The ordinate is normalized by the
maximum value of the gravastar. We assume that gravita-
tional redshift is negligible; then, the total luminosity is
proportional to the apparent area, which is shown in
Fig. 10. When δ⪆ 160°, luminosity from the gravastar
becomes larger than that from the black hole because
photons passing through the gravastar also come to the

observer. The maximal luminosity from the gravastar
becomes more than twice as large as that from the
black hole.

IV. CONCLUDING REMARKS

We have proposed a new method to detect gravastars, by
using gravitational lensing effects. We have adopted a
spherical thin-shell model of a gravastar developed by
Visser and Wiltshire, which connects interior de Sitter
geometry and exterior Schwarzschild geometry, and
assumed that its surface is optically transparent. We have
calculated the image of a companion which rotates around
the gravastar; we have found that some characteristic images
appear, depending on whether the gravastar possess unsta-
ble circular orbits of photons (Model 1) or not (Model 2).
For Model 2, we have calculated the total luminosity
change, which is called microlensing effects; the maximal
luminosity could be so large that the gravastar can be
distinguished from the black hole with the same mass.
Finally, we discuss reasonability of our assumption of

the optically transparent surface. In the original scenario of
gravastars [1], they are assumed to be formed by an
unknown phase transition. Therefore, their physical proper-
ties are not known, and hence there are three possibilities.

(i) The surface emits electromagnetic waves. In this
case one could detect the electromagnetic waves,
and hence a gravastar can be distinguished from a
black hole observationally.

(ii) The surface is black and does not emit electromag-
netic waves. In this case there is no chance to
identify a gravastar.

(iii) The surface is electromagnetically transparent.
Because only the last case leads to nontrivial observational
consequences, it is worth investigating. Furthermore, if we
consider boson stars and other soliton stars composed of
scalar fields or gauge fields, they are essentially electro-
magnetically transparent. Therefore, the present analysis on
the assumption of the optically transparent surface is also
useful to survey such soliton stars.
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