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This work is devoted to the construction of slowly rotating neutron stars in the framework of the
nonminimal derivative coupling sector of Horndeski theory. We match the large radius expansion of
spherically symmetric solutions with cosmological solutions, and we find that the most viable model has
only one free parameter. Then, by using several tabulated and realistic equations of state, we establish
numerically the upper bound for this parameter in order to construct neutron stars in the slow rotation
approximation with the maximal mass observed today. We finally study the surface redshift and the inertia
of these objects and compare them with known data.
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I. INTRODUCTION

Nowadays, it is a well-accepted point of view that the
validity of general relativity (GR) is constrained by an
ultraviolet (UV) cutoff of the order of the Planck scale.
On the other hand, at low energy regimes GR becomes
increasingly accurate not only in the Solar System but also
in the strong-field regime, as witnessed by the recent
discovery of gravitational waves generated by the merger
of two black holes [1].
Nevertheless, despite the enormous success of GR in

describing the nature of the gravitational interaction [2,3],
based on the simplicity of its principles and the successful
experimental tests, there are still a number of phenomena
for which the theory is not able to give a meaningful
explanation. These phenomena are not only related to the
UV regime but also to processes occurring at infrared (IR)
energy scales. This is the main reason why theorists have
tried different roads toward the construction of an extension
of GR that is not in contrast with experimental data.
Historically, long before their experimental discovery in

the form of the Higgs field [4], scalar fields have played a
fundamental role in the theoretical construction of new
theories. Considering the UV scale, string theory contains
several scalar fields as essential elements of its scaffolding.
In particular, the dilaton field appears as an irreducible
representation of the first excited states [5,6]. Scalar fields
also arise naturally in other higher dimensional theories as
in Kaluza-Klein theory, where gravity and electrodynamics

can be formulated as different manifestations of the
gravitational field in a five-dimensional (5D) universe.
As a consequence of the dimensional reduction a scalar
field appears [7]. Scalar fields finally appear frequently in
supersymmetry and supergravity theories as auxiliary fields
ensuring off-shell realization of supersymmetry [8].
At IR energy scales the situation is similar. Since the very

beginning of GR, the cosmological constant has been one
of the most debated parts of the theory. The discovery of
the cosmic acceleration seemed to validate the existence of
a fundamental cosmological constant [9]. However, its
extremely small value, compared to the predictions from
quantum field theory seems to indicate that GR needs to be
modified also at IR scales [10].
One of the simplest ways to modify gravity is the

inclusion of new degrees of freedom. When these are in
the form of one or more scalar fields, we have the so-called
scalar-tensor theories of gravity. The first example was
studied in the pioneering work of Brans and Dicke in 1961
[11]. The possibility of constructing compact objects in the
context of Brans-Dicke theory was explored in many
works, beginning from the exotic “boson stars” [12] up
to neutron stars with minimal or nonminimal coupling of
the scalar field to matter; see, e.g., [13]. Finally, the most
general scalar-tensor theory constructed with a single scalar
field, in four spacetime dimensions, and with at most
second-order equations of motion was discovered by
Horndeski in the early 1970s [14], but this work remained
in the shadow for decades, until it was rediscovered in
terms of the so-called “Galileon” (see below).
In general, to be in agreement with observational and

experimental data, any new degree of freedom is expected to
modify gravity at large cosmological scales, but, at the same
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time, it is strongly suppressed at scales of the order of the
Solar System. This calls for some screening mechanism able
to “hide” the scalar field at short distances. One of the first
modifications of gravity with a proper screening mechanism
for the scalar field is the so-called Dvali-Gabadadze-Porrati
(DGP) model [15]. This higher dimensional model is based
on the existence of a 3-brane surface embedded on a 5D
Minkowski spacetime. In contrast toKaluza-Klein scenarios,
the extra dimension has an infinite size. Together with the
usual GR action in five dimensions, a scalar curvature term
on the brane, induced by matter fields living on the brane, is
included. The outcome of this construction is that, from a
four-dimensional point of view, gravity is mediated by a
massive graviton and one scalar degree of freedom. The
standard gravitational potential is recovered at small dis-
tances, while a fully five-dimensional potential dominates
when the scales are larger than a specific crossover limit. This
model was extensively analyzed due to its interesting
cosmological solutions [16–18]. In particular, one solution
branch shows a self-accelerating behavior without any
cosmological constant term. In the decoupling limit, the
theory exhibits an effective scalar field theory, with equations
of motion of second order, which turns out to be invariant
under Galilean transformations,1 and which naturally
includes the screening Vainhstein mechanism [19]. Soon
after these developments, the decoupling limit of the DGP
model was generalized into the Galileon theory [20].
Following the standard minimal coupling procedure, the
covariantized version of Galileon gravity was constructed in
[21], where it was shown that the resulting theory possesses
equations of motion of third order. Nevertheless, in the same
work, it was shown that, including proper nonminimal
couplings between the scalar field and curvature terms,
the second order character of the theory can be recovered.2

Later it was shown that this theory is equivalent to the
Horndeski theory and that its Lagrangian can be cast in a very
simple form [23]. In this framework, it is convenient to
partition theLagrangian ofHorndeski gravity into subsectors
according to

S ¼
X5
i¼2

Z
d4x

ffiffiffiffiffiffi
−g

p
Li; ð1Þ

where

L2 ¼ G2;

L3 ¼ −G3□ϕ;

L4 ¼ G4Rþ G4X½ð□ϕÞ2 − ð∇μ∇νϕÞ2�;
L5 ¼ G5Gμν∇μ∇νϕ

−
G5X

6
½ð□ϕÞ3 þ 2ð∇μ∇νϕÞ3 − 3ð∇μ∇νϕÞ2□ϕ�: ð2Þ

Here, Gi are arbitrary functions of the scalar field and of its
canonical kinetic term X ≡ −∇μϕ∇μϕ while GiX denote
their derivatives with respect to X.
In cosmology, Horndeski gravity became very popular

for its self-tuning property that allows one to circumvent
Weinberg’s theorem on the cosmological constant [24].
Shortly after, it was discovered that the nonminimal kinetic
coupling sector L5 (called “John” in the “Fab Four”
terminology of [24]) leads to an accelerated expansion
providedG5 is constant andG5X ¼ 0; see, e.g., [25–30] and
references therein. A lot of work was also done in
perturbation theory, with the goal of finding potentially
observable deviations from GR in large-scale structures and
the conditions on the parameter space that avoid too large
gravitational instabilities [31].
As mentioned above, any modification of GR must be

consistent with constraints at the Solar System level, which
are very stringent. In order to verify such compatibility, it is
important to study also spherically symmetric solutions of
the theory, starting with black holes. Initially, such sol-
utions appeared to be severely constrained by the existence
of a no-hair theorem [32]. However, static black hole
solutions with asymptotically anti–de Sitter behavior were
found in the following subsector of the Horndeski action
given by

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
κðR − 2ΛÞ − 1

2
ðαgμν − ηGμνÞ∇μϕ∇νϕ

�
;

ð3Þ

where κ ¼ ð16πGÞ−1, and α and η are two parameters
controlling the strength of the minimal and nonminimal
kinetic couplings [33–40]. One important feature of this
model is that the shift symmetry ϕ → ϕþ ϕ0 implies that
the equation of motion for the scalar field can be written as
the current conservation law ∇μJμ ¼ 0.
The first static exact black hole solution with Λ ¼ 0 and

α ¼ 1 was found in [33]. This solution has one regular
horizon and ϕ02 < 0 outside it (from now on, the prime
indicates a derivative with respect to the radial coordinate).
However, this does not imply any thermodynamical insta-
bility (besides a standard Hawking-Page transition) because
the physical scalar degree of freedom is ϕ02 and not ϕ0. A
more general solution that admits a scalar field that is real
everywhere is obtained when Λ < 0, as shown in [36]. In
particular, for any combination of parameters such that
αþ Λη < 0 the scalar field turns out to be real. In addition,
the thermodynamical analysis revealed the existence of a
Hawking-Page transition between a thermal soliton and a
large hairy black hole configuration.3 For further studies of
the thermodynamics of these black holes, see [41,42].

1The theory is invariant under transformations of the type
ϕ → ϕþ ϕ0 þ bμxμ, where ϕ0 and the vector bμ are constants.

2TheD-dimensional version of the theory was obtained in [22].

3This family of solutions is not continuously connected with the
(anti–)de Sitter maximally symmetric spacetime. However, there is
a unique regular solution when the mass parameter vanishes.
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Along the same lines, a more general family of solutions
was presented in [35] where the scalar field is time
dependent according to ϕðt; rÞ ¼ Qtþ FðrÞ, for some
function F and a constant Q. The scalar degree of freedom
no longer shares the same symmetries as its tensorial
partner but it maintains a static contribution to the equations
of motion.
A natural step forward in the investigation of this sector

of Horndeski gravity is to study compact objects, in
particular neutron stars. These astrophysical objects typi-
cally have mass and radius of the order of 1.3–2 solar
masses and 8–15 kilometers, respectively, so they are
extremely dense. These features make them excellent
candidates to probe the strong field regime and, hopefully,
to find observable deviations from standard GR [43,44].
As far as we know, the first attempt to build this kind of

configuration for the system (3) was proposed in [45].
There, neutron stars and white dwarfs were shown to exist
and constraints on the only free parameter of the model
(namely the product Q2η) were found. One of the most
attractive and surprising features of these solutions is that
the metric outside the surface of the star is identical to the
Schwarzschild metric; therefore, there are no conflicts with
Solar System tests.
The results presented in [45] were limited to the static

configuration. In the present work, we investigate the
structure of a rotating star for the theory (3) using realistic
equations of state. The plan of the paper is the following: in

Sec. II we review the spherically symmetric solutions
constructed in [35] that were used to construct static
configurations. Section III is devoted to the cosmological
solutions of the theory (3). Here we will focus on the
matching of the cosmological constants obtained from
spherically symmetric solutions and from cosmological
ones to show that the two are compatible and that the
approximations that we will use (namely Λ ¼ 0) are well
justified. In Sec. IV we study the equations for the slowly
rotating neutron stars. In Sec. V we present the results of
numerical computations, and we compare them to some
astrophysical data. We conclude in Sec. VI with some
remarks.

II. VACUUM SPHERICALLY
SYMMETRIC SOLUTIONS

In this section we review in detail the spherically
symmetric solutions constructed in [35] and used in [45]
for the modeling of static neutron stars. The equations of
motion coming from the action (3) are given by

Gμν þ Λgμν þHμν ¼ 0; ð4Þ

∇μJμ ¼ 0; ð5Þ

where

Hμν ¼ −
α

2κ

�
∇μϕ∇νϕ −

1

2
gμν∇λϕ∇λϕ

�
−

η

2κ

�
1

2
∇μϕ∇νϕR − 2∇λϕ∇ðμϕRλ

νÞ

−∇λϕ∇ρϕRμλνρ − ð∇μ∇λϕÞð∇ν∇λϕÞ þ
1

2
gμνð∇λ∇ρϕÞð∇λ∇ρϕÞ −

1

2
gμνð□ϕÞ2

þ ð∇μ∇νϕÞ□ϕþ 1

2
Gμνð∇ϕÞ2 þ gμν∇λϕ∇ρϕRλρ

�
; ð6Þ

Jμ ¼ ðαgμν − ηGμνÞ∇νϕ: ð7Þ

The spherically symmetric metric is chosen as

ds2 ¼ −bðrÞdt2 þ dr2

fðrÞ þ r2dΩ2: ð8Þ

The shift symmetry of the action allows static solutions
with a linearly time-dependent scalar field of the form

ϕðt; rÞ ¼ Qtþ FðrÞ; ð9Þ

where FðrÞ is an arbitrary function. This implies that even
if the scalar field does not share the same symmetries of
the spacetime background, the energy-momentum tensor
does, avoiding in this way the no-hair theorem of [32]

and allowing black hole configurations to have a scalar hair.
In fact, the key point of [32] is that shift symmetric theories
possess a scalar field equation given by a current conserva-
tion law (5). If we demand that the norm of the scalar field
current remains finite at the horizon, we find that Jr ¼ 0 at
any point in the domain of outer communications. For shift
symmetric theories like Eq. (3), where at least theLagrangian
contains a term of second order in the scalar field gradient,
the current can always be cast in the form

Jr ¼ ϕ0Θðϕ0; g; g0; g00Þ; ð10Þ

where g; g0, and g00 denote the metric functions and their first
and second derivatives. For asymptotically flat solutions, the
function Θ tends to a constant value, forcing the scalar field
to become trivial in order to satisfy the condition Jr ¼ 0,
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and naturally ruling out the existence of scalar hair. However,
for scalar fields like (9), the Einstein equations include a
nontrivial off-diagonal component of the form EtrðrÞ ¼ 0.
This equation holds if, and only if, Θ ¼ 0, implying no
conditions on the scalar field and satisfying, at the same time,
the vanishing current norm condition on the horizon located
at r ¼ rh, namely

jJj2 ¼ −bðrhÞðJtÞ2 þ
ðJrÞ2
fðrhÞ

¼ 0: ð11Þ

Then, configurations with a nontrivial scalar field exist.4

Note that the condition Θ ¼ 0 can be arbitrarily imposed
considering (anti–)de Sitter asymptotic geometry for solu-
tions where the scalar field depends exclusively on the radial
coordinate [33,36].5 From the equation Θ ¼ 0 we conven-
iently find one of the metric functions in terms of the other,
namely

fðrÞ ¼ ðαr2 þ ηÞbðrÞ
ηðrb0ðrÞ þ bðrÞÞ : ð12Þ

Inserting this relation into the rr component of the Einstein
equations, one finds

F0ðrÞ ¼ �
ffiffiffi
r

p
2bðrÞðαr2 þ ηÞ ½Q

2ηðαr2 þ ηÞb0ðrÞ

− κðαþ ηΛÞðbðrÞ2r2Þ0�1=2: ð13Þ

Finally, inserting both relations above into the tt component
of the Einstein equations yields a differential equation for
bðrÞ. The authors of [35] expressed this equation by
introducing the implicit definition

bðrÞ ¼ −
μ

r
þ 2

r

Z
KðrÞdr
αr2 þ η

; ð14Þ

where μ is an integration constant. This allows one to express
implicitly the function KðrÞ as the solution of the algebraic
equation of third order given by

Q2η

8
ðαr2þηÞ2−κ

�
ηþ

�
α−

1

2
ðαþηΛÞ

�
r2
�
KþC0K3=2¼0;

ð15Þ

where C0 is another integration constant. This algebraic
equation is very difficult to solve for the most general case.

However, there are some interesting and simple solutions
that can be obtained for specific choices of the parameters.
In the following, the quantities Λ, κ, and Q will often be
called “bare” as their observable value can change specific
solutions. In particular, and for the spherically symmetric
solutions, the physical value of Q is given by the value
measured by distant observers, i.e.,

Qp ¼ Qffiffiffiffiffiffi
b∞

p ; ð16Þ

where the constant b∞ is defined, for large radii r, by

gtt ≈ b∞

�
−
Λm

3
r2 þ 1 −

2M
r

�
: ð17Þ

Here, Λm is the measured (or physical) cosmological con-
stant, andM is the physical mass of the compact object. For
cosmological solutions, however,Q≡Qp; see next section.
It can be shown that the lapse function b can be written as

bðrÞ ¼ 1þ α½κðα − ηΛÞ þ αηQ2
p�

3ηκð3αþ ηΛÞ r2 −
2M
r

; ð18Þ

and the shift function f as

fðrÞ¼ αr2

3η
þ 7ακþηκΛþαηQ2

p

3αðκþηQ2
pÞ−3ηκΛ

þ 2Mκð3αþηΛÞ
r½κðα−ηΛÞþαηQ2

p�
:

ð19Þ

In order to avoid conical singularities, the constant term in
fðrÞmust be equal to one, and this leads to the constraint on
the bare cosmological constant given by

Λ ¼ −
α

η

�
1 −

Q2
pη

2κ

�
: ð20Þ

By substituting this result back into Eqs. (18) and (19)
we find

f ¼ b ¼ α

3η
r2 þ 1 −

2M
r

; ð21Þ

which describes an asymptotic Schwarzschild–(anti–)de
Sitter metric, with a mass parameter M and physical
cosmological constant

Λm ¼ −
α

η
: ð22Þ

Note also that

Q2
pη

2κ
¼ 1 −

Λ
Λm

: ð23Þ

In the next section, we verify if the physical cosmological
constant (22) is compatible with the one obtained by solving

4Another interesting way to circumvent the nonhair conjecture
of [32] is to considerer a subsector of the shift invariance
Horndeski Lagrangian in which a linear coupling between the
scalar field and the Gauss-Bonnet density is considered [46].

5In contrast to the solutions found in [33,36], the scalar field
and its derivative (9) not only are regular on the horizon but also
are analytic.
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the equations of motion with a Robertson-Walker metric. In
addition, sincewearegoing to study rotating compact objects
withΛ ¼ α ¼ 0, wewant to be sure that these conditions are
not incompatible with the cosmological solution.
By setting α ¼ Λ ¼ 0 Eq. (15) can easily be solved

yielding the vacuum solution corresponding to the so-called
stealth configuration. This means that even if the scalar
field has a nontrivial functional form, the tensor Hμν in (4)
vanishes identically. Then, the vacuum solution coincides
with the Schwarzschild solution. However, in the presence
of matter fluids, this property no longer holds, and this has
important consequences for neutron star configurations. In
particular, the metric outside the star is still exactly the
same as the Schwarzschild one, avoiding conflicts with
Solar System tests.

III. COSMOLOGICAL SOLUTIONS

In this section we study the cosmological solutions
obtained from the Lagrangian (3) implemented by

the contribution of a perfect fluid. We choose the
metric

ds2 ¼ −dt2 þ aðtÞ2ðdr2 þ r2dΩ2Þ; ð24Þ

where aðtÞ is the cosmological scale factor. In particular,
we want to compare the resulting cosmological dynamics
with the standard cold dark matter model implemented with
the cosmological constant (called in short ΛCDM). As
mentioned in the previous section, black holes (as well
compact objects) of this theory generically have an asymp-
totic de Sitter or anti–de Sitter geometry. In the first case,
we wish to compare the effective cosmological constant of
these solutions to the one that arises from cosmological
solutions. We will see that these are the same in a dust-
dominated universe and do not coincide with the bare
cosmological constant Λ.
Using the metric (24), we obtain from (3) the Friedmann

equations (H ¼ _a=a)

H2 ¼ 2ρþ 4κΛþ α _ϕ2

3ð4κ − 3η _ϕ2Þ ;

_H ¼ ρ½η _ϕ2ð1þ 3ωÞ − 4κð1þ ωÞ�
ð3η _ϕ2 − 4κÞðη _ϕ2 − 4κÞ −

2 _ϕ½ηHð3η _ϕ2 − 4κÞϕ̈þ 2κðαþ ηΛÞ _ϕ − αη _ϕ3�
ð3η _ϕ2 − 4κÞðη _ϕ2 − 4κÞ ; ð25Þ

where ρ satisfies the usual equation for a perfect fluid,

_ρþ 3Hρð1þ ωÞ ¼ 0: ð26Þ

Finally, there is the Klein-Gordon equation

ϕ̈þ 3H _ϕ

�
1þ 2η _H

αþ 3ηH2

�
¼ 0: ð27Þ

It is easy to check that all the equations depend on _ϕ and
thus are shift invariant.

A. Inflationary solutions

Before studying the ΛCDM model, it is interesting to
look at the vacuum solutions ρ ¼ 0. This case was studied
already in [27] and [30] for Λ ¼ 0 and α ¼ 1. In the present
case, it is convenient to find the effective equation of state
parameter for the scalar field that reads

ωϕ ≡ −1 −
2 _H
3H2

¼ ð−4κ þ 3ηϕ2Þð−ηα2ϕ4 − 14ηακΛϕ2 − 2α2κϕ2 þ 8κ2Λ2ηþ 8ακ2ΛÞ
ðαϕ2 þ 4κΛÞð3αη2ϕ4 þ 6η2κΛϕ2 − 6ηακϕ2 þ 8ηκ2Λþ 8ακ2Þ : ð28Þ

In the high energy limit, which is identified with the regime
where the kinetic term _ϕ2 is dominant, the equation of state
approaches the value −1, which is required in order to have
an inflationary phase. The advantage of this model, when
compared to the usual single-field inflation, is that there is
no need for an ad hoc potential for the scalar field: inflation
naturally occurs whenever ωϕ < −1=3. Thus the infla-
tionary phase exists just because η ≠ 0. However, it is easy

to see that ωϕ → −1 also when _ϕ vanishes, and this is
explained by the presence of the bare cosmological con-
stant Λ, which takes over the dynamics at low energy and in
the absence of matter fluids (i.e., with ρ ¼ 0). The
transition between the two accelerated phases is not
physically viable because it seems that no reheating
mechanism can be inserted without spoiling the full
model.
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If Λ ¼ 0, the equation of state parameter no longer
depends on α, and it varies from the value−1 at high energy
to the value þ1 at low energy. Therefore the model
becomes the same as the one described in Ref. [30], where
it is shown that there exists an inflationary phase followed
by a graceful exit. However, in order to have a sufficiently
long inflationary period, the initial value of _ϕ must be so
large in Planckian units that quantum gravitational correc-
tions cannot be ignored. In conclusion, the model (3) does
not seem suitable for describing the inflationary universe.

B. ΛCDM

We now study the equations of motion in a noninfla-
tionary universe and in the presence of a perfect fluid with
energy density ρ, governed by Eq. (26). Since we want to
match these solutions with the large radius limit of the
spherically symmetric solution, we set

ϕ ¼ Qtþ ϕ0; ð29Þ

which reduces Eq. (6) to

0 ¼ αþ ηð2 _H þ 3H2Þ: ð30Þ
By substituting Eqs. (3) and (4) and the ansatz (29) we find
the constraint

Λ ¼ αQ2

2κ
þ ηωρðtÞ − 2ακ

2ηκ
; ð31Þ

which generically holds if either ω ¼ 0 or ρðtÞ ¼ 0 for all t.
We choose the first option, which describes well our
present Universe filled with cold dark matter and dark
energy. Thus the bare cosmological constant becomes

Λ ¼ −
α

η

�
1 −

Q2η

2κ

�
; ð32Þ

which is the same as (20). Therefore, we have found the
common value of Λ such that spherically symmetric and
cosmological solutions have the same physical cosmologi-
cal constant. The important point is that the choice α ¼ 0
necessarily implies Λ ¼ 0, which means that the neutron
star models that we will present below are not in conflict
with cosmological solutions.
By replacing this expression back into (3) and (4),

implemented by the ansatz (29), we find

_H ¼ −
ρ

4κ − 3ηQ2
; ð33Þ

H2 ¼ 2ρ

3ð4κ − 3ηQ2Þ −
α

3η
: ð34Þ

These equations coincide with the standard ΛCDM
Friedmann equations

H2 ¼ Λm

3
þ ρ

6~κ
; ð35Þ

_H ¼ −
ρ

4~κ
; ð36Þ

where we identified the measured cosmological constant
Λm with

Λm ¼ −
α

η
; ð37Þ

and

~κ ¼ κ −
3ηQ2

4
: ð38Þ

Note that Eq. (37) implies that α and η must have opposite
signs. Note also that Eq. (38) implies that

η <
4κ

3Q2
; ð39Þ

which is the same upper limit found [45] from the require-
ment that the second derivative of the matter pressure inside
a compact object is negative. In turn, this is a necessary
condition for the existence of compact objects.
From these considerations, it appears that the parameter

η can be arbitrarily large and negative. However, there is an
argument to show that η should be positive only. Consider
the action (3) with α ¼ 0 and suppose that the backreaction
of the field is negligible so we can choose a de Sitter fixed
background with Rμν ¼ Λgμν. Suppose also that the field
depends on time only, for simplicity. It follows that, on
shell, the Lagrangian is L ∼ 2κΛþ ηΛ _ϕ2=2 and the cor-
responding Hamiltonian is H ∼ ηΛ _ϕ2=2 − 2κΛ. Therefore,
a negative η would give a negative definite Hamiltonian,
which inevitably leads to instabilities upon quantization.
Below we will consider negative η in the numerical
calculations, but one should take this case with a grain
of salt.
In summary, we have shown that cosmological solutions

and spherically symmetric solutions have the same bare
cosmological constant so there is no tension between the
large scale geometry of the compact object and the
cosmological evolution. This property holds only in a
dust-filled universe and for any value for the parameter
α, including α ¼ 0, which implies Λ ¼ 0 in both neutron
stars and current cosmological evolution.6

6The case α ¼ 0 does not necessarily mean that the current
physical cosmological constant vanishes, which would be in
contrast to observations. It simply means that the observed value
of Λ is due to other effects, such as contributions from the vacuum
expectation value of quantum fields or extra degrees of freedom,
such as quintessence.
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IV. SLOWLY ROTATING NEUTRON STARS

We now focus on the main topic of this paper, namely
stationary neutron stars with realistic equations of state. In
particular, we study neutron stars and pulsar configurations
within the slow rotation approximation (which is valid for
about 80% of the known pulsars) following the Hartle
formalism to first order in the rotation [47]. Very recently,
some results along these lines were presented in [48] where
a polytropic equation of state was considered. Our goal is to
work instead with more realistic tabulated equations of
state.
According to the prescriptions of [47], we first generalize

the metric (8) and the scalar field according to

ds2 ¼ −bðrÞdt2 þ dr2

fðrÞ
þ r2½dθ2 þ sin2θðdφ − ϵðΩ� − ωðrÞÞdtÞ2�; ð40Þ

Φðt; rÞ ¼ Qtþ FðrÞ þ ϵϕ1ðt; rÞ; ð41Þ

where ϵ is a small “bookkeeping” parameter and ϵðΩ� −
ωðrÞÞ is the coordinate angular velocity (to first order) of a
fluid element as seen by a free falling observer from
infinity.
The matter field is described by a perfect fluid, with the

usual stress energy tensor of the form

Tab ¼ ðρþ PÞuaub þ Pgab; ð42Þ

where P is the fluid pressure, and ρ ¼ ρðPÞ is the energy
density that depends on the pressure thought a (barotropic)
equation of state. Finally, ua is the proper 4-velocity of the
fluid, given by

ua ¼ ð−
ffiffiffi
b

p
; 0; 0; uφÞ; ð43Þ

where

uφ ¼ 2ϵr2
ffiffiffi
b

p ðω −Ω�Þsin2θ
Ω�½b − ðω −Ω�Þ2ϵ2r2sin2θ�

¼ 2sin2θðω −Ω�Þr2ϵ
Ω�

ffiffiffi
b

p þOðϵ2Þ ð44Þ

so that u2 ¼ −1þOðϵ4Þ. The equations of motion (4)
and (5) are modified by the matter source and now read as

Gμν þ Λgμν þHμν ¼ ð2κÞ−1TðmÞ
μν ; ð45Þ

∇μJμ ¼ 0; ð46Þ

∇μTμνðmÞ ¼ 0: ð47Þ

Using the metric (40), and expanding to first order in ϵ, we
obtain

rfb0 ¼ ð1 − fÞb; ð48Þ

ηfbF02 ¼ ð1 − fÞηQ2 þ bPr2;

f0 ¼ ðf − 1Þð4κb − 3ηQ2fÞ þ bðρþ 6fPþ fρÞr2
r½3ηQ2f − ðPr2 þ 4κÞb� ;

ð49Þ

P0 ¼ −
b0ðρþ PÞ

2b
; ð50Þ

which are identical to the static case [45]. The effect of the
slow rotation becomes apparent, even at the zeroth order in
ϵ, because the ðtφÞ component of the Einstein equations
yields a differential equation for ω, which reads

ω00ðrÞ ¼ K1ω
0 þ K2ω; ð51Þ

where

K1 ¼
b02ðPþ ρÞr4 − 2bb0ðP − ρÞr3 − b2ð3P − ρÞr2 − 16κbb0r − 4bð4κb − ηQ2Þ

br½ðPr2 þ 4κÞðb0rþ bÞ − ηQ2� ; ð52Þ

K2 ¼
8ðbþ rb0Þ2ðρþ PÞ

b½ðPr2 þ 4κÞðb0rþ bÞ − ηQ2� : ð53Þ

Finally, at the zeroth order in ϵ, we also find that

ϕ1ðt; rÞ ¼ 0; ð54Þ

which closes the system of equations.
Note that in vacuum (ρ ¼ P ¼ 0), the equation for ω

reduces exactly to its general relativistic counterpart

[49,50]. As a consequence, the vacuum solution for ω is
the same as in GR, namely

ω ¼ Ω�

�
1 −

2I
r3

�
; ð55Þ

where I is the moment of inertia of the star.7

7It is expected that this result no longer holds at a higher order
in the expansion.
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In [45] a polytrope equation of state was considered.
Here, we use instead the following tabulated equations of
state (EOS) described in [51]: BSk14, BSk19, BSk20,
BSk21, SLy4, and EOSL. These equations cover a wide

range of nuclear parameters, although not all are consistent
with astrophysical tests [52] within GR.
Indeed, some of these EOSs do not reproduce the

maximal neutron star observed mass (around 2M⊙), some
do only marginally, while some others reach the bound
without problems. Some additional tests are discussed
in [52]. The reliability of the EOSs is summarized in
Table I.
Even if some of the EOSs we use are disfavored within

GR, we will include them in our study for completeness.
It is important to point out that, as in the static case, GR is

not recovered in the limit Q2η → 0. This is related to the
fact that η is not a perturbative parameter, as already noted
in [33] for the black hole model.
The parameter ηQ2 is constrained from cosmology, which

gives the condition Q2η < 4κ=3 as seen in Sec. III. This
constraint emerges again by expanding the equations of
motion around the center of the star. By imposing the usual
requirements bð0Þ ¼ b0 > 0, b0ð0Þ ¼ 0, ϕðr ¼ 0Þ ¼ 0,
Pð0Þ ¼ P0 > 0, and ρð0Þ ¼ ρc > 0, we find that

TABLE I. We summarize the level of reliability of the EOS we
consider in this paper. The BSK19–21 and SLy tests are taken
from [52], and the BSK14 and eosL statuses are based on the
ability to reproduce a 2 M⊙ neutron star within GR. The column
“Reliability” is a qualitative level of reliability used in this paper:
þ;�, and − indicate, respectively, reliable, marginally reliable,
and not reliable.

EOS Status within GR Reliability

BSk14 Does not reach 2M⊙ −
BSk19 Does not reach 2M⊙ −
BSk20 Compatible with most observations þ
BSk21 Compatible with most observations þ
SLy4 Compatible with most observations,

maximal mass close to 2M⊙
�

eosL Compatible for maximal mass þ

FIG. 1. Mass-radius relations for various EOS and values ofQp. The upper (lower) panel shows the case η > 0 (η < 0). For η < 0, we
select the curves (hence the equations of state) that cannot reach a mass of 2M⊙ in GR.
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F02 ¼ ηQ2ð3P0 − 2ρ0Þ − 12κb0P0

3ηð3ηQ2 − 4κb0Þ
r2 þOðrÞ4; ð56Þ

PðrÞ ¼ P0 þ
b0ð3P0 þ ρ0ÞðP0 þ ρ0Þ

6ð3ηQ2 − 4κb0Þ
r2 þOðrÞr4; ð57Þ

which are the same conditions found in the static case [45].

From these equations we infer that Q2η < 4κb0=3 since, in
order to have a compact configuration, it is customary that

d2PðrÞ=dr2 < 0 at r ¼ 0. In principle, when η < 0 there is

no upper bound onQ2jηj but only a lower bound that comes

from the requirement thatF02ðrÞ > 0. However, as discussed
above, a negative value for η seems incompatible with the
quantum version of the theory. In any case, we will keep an
open mind and consider also η < 0 below. Without loss of
generality, we will set η ¼ 1;−1 since all the equations

depend only on the combination Q2η [except for the
decoupled equation for F0—see (49)—where a redefinition
of η must be accompanied by suitable rescaling of the
pressure, energy density, and bðrÞ].

V. NUMERICAL RESULTS AND COMPARISON
WITH OBSERVATIONS

In this section we show the results of the numerical
calculations. We focus in particular on the maximal mass as
a function of the parameter ηQ2

p, defined by (16), and of the
EOS. As mentioned in the previous section, the limit
ηQ2

p ¼ 0 does not lead to GR; however, it gives very
similar maximal mass values as in GR, so it can be used as a
reference in the plots below. In general, we find that, for
nonvanishing ηQ2

p, the maximal mass is generically lower
than in GR when η > 0 and larger when η < 0.
In particular, for η > 0, we find that the mass-radius

curve eventually terminates at the maximal value for the
mass, which depends on the chosen EOS and on the central
pressure. This is illustrated in Fig. 1, where we show a few
mass-radius curves for different values of Qp (we set
jηj ¼ 1).
In the case η < 0, there are no solutions when

Q2jηj < 12κPc=ð2ρc − 3PcÞ. When Q2jηj > 12κPc=
ð2ρc − 3PcÞ, we find that the maximal mass increases
according to Q2

p, which can have arbitrarily large values.
However, as we have seen above, negative values of η

FIG. 2. The mass-inertia curves for BSK20 and different values of Qp with η > 0 (upper panel) and η < 0 (lower panel).
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seems to be unphysical from a quantum point of view; thus

we do not really trust this result.
In the case η > 0, the compactness of the star as a

function of the mass increases with the value of Qp, but the

solitons cease to exist well before the black hole compact-
ness is reached. For η < 0, it is the other way around and
the compactness decreases at a fixed mass.
We also note, as can be inferred from Fig. 3, that for

η > 0, the central pressure leading to a given value of the
mass increases with theQp, while it is again the other way
around for η < 0. This is consistent with the result for the
effective Planck mass (38) (recall that G ∝ 1=κ) where it
can be seen that η > 0 increases the effective gravitational
coupling, leading to a stronger gravity, with the conse-
quence that matter is more compacted with increasing
values of Qp. In the case η < 0, gravity becomes
weaker and the pressure takes the lead and dilutes the
configuration.
In Fig. 2, we plot the inertia as a function of the mass, as

a result of Eq. (55). In the case η > 0, the inertia is a strictly
increasing function of the mass of the star up to a maximal
value (depending on the value of the Qp parameter), where
the curve turns back. From this point on, both inertia and
mass decrease. Note also that the values of the mass and of
the inertia of the turning point decrease while increasing the
value of Qp.
On the other hand, for the case η < 0 the situation is a bit

different. For small values of Qp, the pattern of the curve is
similar to the case η > 0. But, for largerQp, the value of the
inertia for a given mass increases without a turning point.
So the inertia becomes a monotonic growing function of
the mass.
The most massive pulsar known to date is PSR J0348þ

0432 with a mass of 2.01� 0.04 solar masses and with an
orbital period of 2 hours and 27 minutes. In the case η > 0,
the existence of stars with this mass in our model is not
guaranteed for all values of the parameter Q2

pη. We
numerically found the constant mass curves in the plane
Pc −Qp (namely central pressure vs Qp) with M ¼ 2M⊙.
We find that, depending on the specific EOS, these curves
admit a maximum value of Qp. This is illustrated in Fig. 3.
For the specific cases of BSk21, BSk20, and EOSL we
observe that configurations with masses of the order of
M ¼ 2M⊙ can be obtained. This imposes a constraint on
the maximum value that Qp can take. For the remaining
equations of state, namely, BSK14, BSK19, and SLy the
maximal mass cannot reachM ¼ 2M⊙ for η > 0 (for η < 1
we have seen that the mass in basically unbounded for
most EOS).

A. Gamma ray burst repeater redshift

Among the physical quantities of interest, there is the
gravitational redshift z of the photons emitted from the
surface of a neutron star. For static configurations, it is
defined by [53]

z ¼
�
1 −

2M
R

�
−1
2

− 1: ð58Þ

FIG. 3. Constant mass curve with M ¼ 2M⊙ in the Pc −Qp
plan. The shaded region is the region leading to compact
solutions for all the considered EOS. The end points of the
curve correspond to the maximal value of the central pressure
available in the EOS tables that we use.

FIG. 4. Redshift range for z ¼ 0.23� 0.07, 1.3 < M < 1.5M⊙,
and η ¼ þ1 in the Pc −Qp plane. The shaded regions correspond
to the given z and various EOS.
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The value of the surface redshift can be inferred from
spectroscopic studies of gamma ray burst from the class of
gamma ray burst repeater. In our case, we use the data of the
gamma ray burst GRB 790305 from the soft gamma ray
burst repeater SGR 0526-066 [53]. Interpreting the emis-
sion line at 430� 30 keV as the annihilation of electron-
positron pairs leads to

z ¼ 0.23� 0.07: ð59Þ

In GR, the EOS BSk19; 20; 21, and SLy are consistent with
this value for neutron stars with mass around 1 − 1.5M⊙.
We computed the constant z curves in the Pc −Qp plane,
and we found that our model yields similar results for
values ofQp constrained by the mass range only; see Fig. 4.
Note that we assume here that the line is emitted at the

surface of the star. Assuming instead that it originated
around 10% further away would change the value of the
redshift of at most 10%, which is smaller than the error bars
in (59) that are of the order of 30%. In the following, the
redshift is computed for static configurations, which are
unaffected by first order corrections due to rotation.
We find that surface redshift observations lead to milder

constraints on Q2
pη than the maximal mass. This is due to

the fact that the surface redshift is related to the mass-radius
ratio, and the observed surface redshift range that we use is
typical of neutron stars with a mass lower than 2M⊙.
However, it is worth pointing out that, within the constraint
provided by the observation of a 2 solar masses neutron
star, the shift symmetric Horndeski model that we consider
is still compatible with surface redshift observations, so
there is no tension. More specifically, we find that neutron
stars with masses in the conservative range of 1.3 − 1.5M⊙
are compatible with surface redshift in the range
z ¼ 0.23� 0.07, using equations of state that are not
excluded in GR [52].
In Fig. 5, we superpose the mass-radius curves for a

given EOS, with constant surface redshift curves corre-
sponding to the minimum and maximum observed z.
This figure shows the expected mass range in our model
with the surface redshift inferred from GRB 790305.

B. Estimation of the inertia of the Crab pulsar

The moment of inertia of neutron stars is not yet
measured, but lower bounds can be inferred from pulsar
timing observations [54,55]. An interesting example is the
historical Crab pulsar. In general, according to GR, and
with the assumption that the energy loss of the pulsar

FIG. 5. Mass-radius relations for η > 0 (lower: η < 0), together with the constant surface redshift curves for z ¼ 0.29 and z ¼ 0.16 for
three different equations of states and different values of Qp (for η < 0, −Qpη ¼ 0.104). With these choices of Qp, the configurations
leading to surface redshift in the measured range has the expected typical values.
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spin mainly goes into the acceleration of the nebula, it
leads to

I ≥
Mnebv _v

Ωj _Ωj : ð60Þ

Here, Mneb is the mass of the nebula, v its expansion
velocity, _v its acceleration, Ω the angular frequency of the
pulsar, and _Ω its time derivative.
For the Crab nebula, it is estimated that Mneb ¼

4.6� 1.8M⊙. Within GR, this corresponds to the following
lower bounds for the inertia:

Mneb ¼ 2.8M⊙ ⇒ ICrab ¼ 1.4 × 1045 g cm2;

Mneb ¼ 4.6M⊙ ⇒ ICrab ¼ 2.2 × 1045 g cm2;

Mneb ¼ 6.4M⊙ ⇒ ICrab ¼ 3.1 × 1045 g cm2: ð61Þ

On the other hand, the Crab pulsar is expected to have a
mass around 1.3 − 1.4M⊙, from core collapse simulations
in GR. This value of the mass is close to the Chandrasekhar
limit (around 1.4M⊙) for white dwarfs, above which an
instability leading to the core collapse sets in. The col-
lapsing core then forms a neutron star with a mass close to
this value, up to the matter ejected after bouncing on the
forming star. The ejected mass from the collapsing core can
be estimated in core collapse simulations. Although such
simulations should be repeated in the precise model that we
study for a consistent analysis, we do not expect the
conclusion to change much, because potential deviations
due to the modification of gravity should affect only the
strong field regime of the process at the end of the collapse.
However, in order to remain as core-collapse model
independent as possible, we do not impose a strict range
for the mass of the pulsar, and we use a (large) inertia range
estimated from the mass of the Crab nebula remnant mass
(as explained in [52]). The range of values for the inertia
that we are dealing with reduces to

ICrab ∈ ½1.4; 2.2�1045 g=cm2 ¼ ½104; 163.4�; ð62Þ
where the last term gives the same values in units
where G ¼ c ¼ 1.
For our purpose of checking if the model we study is able

to produce a configuration with a mass and an inertia in the
rough estimates given above, we will take these estimates
for granted, and build the domain of the existence of stars in
these mass and inertia ranges.
In Fig. 6, we show the region in the Qp − Pc plane,

where the inertia is in the range described above, and the
mass is in the rangeM ¼ 1.3 − 1.5M⊙. As one can see, this
region is compatible with the strongest constraint that we
found above forQp. This is the case for all the EOS that we
considered. Interestingly, the largest value of Qp in the
region plot is close to our best constraint, suggesting that
inertia measurement might constrain the model parameter
almost as well as maximal mass measurements. Note that
for η > 0, the boundary of the domain are given by the

constant inertia curve with the smallest value (left boun-
dary) and the constant mass curve with the largest mass
(right boundary). Accepting 1.4M⊙ as an upper mass limit
for the Crab pulsar and the lower bound of the inertia as a
lower limit leads to the result presented here, even with

FIG. 6. Plot of the region where the mass of the Crab pulsar is in
the range ½1.3; 1.5�M⊙ and the inertia is in ½1.4; 2.2�1045 g=cm2

for η > 0 (upper panel) and η < 0 (lower panel) for some EOS, in
the Pc −Qp plane. The horizontal line corresponds to our best
constraint from the observation of the neutron star of two solar
masses. The left boundaries of the existence domain is the
constant inertia curve (the smaller bound for η > 0 and the larger
for η < 0) while the right boundary is a constant mass curve (the
largest bound for η > 0 and the smallest for η < 0.
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larger mass and inertia ranges. Note that for the case η < 0,
the argument is weaker because the domain is bounded by
the minimal mass and maximal inertia.

VI. CONCLUSION

We studied slowly rotating neutron stars in the shift-
symmetric sector of Horndeski gravity with realistic
equations of state, modeling dense nuclear matter. The
model that we built describes well most of the observed
pulsars, with the exception of the millisecond pulsar, that
are in the rapid rotation regime.
We also investigated the cosmological solutions in the

same theory. We found that cosmological and astrophysical
configurations are consistent provided the usual kinetic term
parameter (α) is vanishing together with the cosmological
constant. This choice leaves only one free parameter, namely
the derivative coupling strength η. The scalar field is chosen
to be linear in time, providing an additional degree of
freedom Qp that effectively combines with η, leading to a
single model parameter (apart fromNewton’s constant)Q2

pη.
We derived constraints on Q2

pη by requiring that our
model reproduces the mass of the largest neutron star
observed so far and checked the consistency with other
constraints. For example, we showed that there exist
neutron stars with a surface redshift compatible with typical
measurements. Additionally, we found that the inertia of
our neutron star is compatible with the inertia estimates for
the Crab pulsar, with masses in the expected range from the
core collapse scenario.
We confirmed previous suspicions that the external

structure of the spacetime is unaltered by the scalar field,
in the slow rotation limit, leading to a nontrivial effect of
the gravity modification inside the star only. From this
point of view, the nonminimal kinetic coupling model
considered here shares some similarities with models
having a modified matter coupling, as is the case of
Eddington-inspired Born Infeld (EiBI) gravity [56–59].
However, the Horndeski alternative is more promising

since its equations structure is different and should not
lead to surfaces singularity as in the EiBI model [60].
Since the configurations that we studied admit exactly

the same exterior solutions as in GR, binary pulsar tests are
expected to be valid with the shift-symmetric sector of
Horndeski gravity. Of course, regarding the gravitational
wave emission, we expect a modification due to the scalar
field and the nonminimal coupling, but the geodesic motion
itself, as long as backreaction effects, is expected to be
negligible. In conclusion, for slowly rotating solutions, the
effect of the nonminimal kinetic coupling is to effectively
modify the internal structure of the star. This is why we
expect tests based on binary pulsar observation to succeed
in this model. In order to fully address this question, we
plan to study spherically symmetric perturbations of
compact stars in the shift symmetric Horndeski model
with nonminimal kinetic coupling elsewhere.
Finally we comment on the constraints derived in this

paper. In the case η > 0, the constraint is provided by the
EOS BSK21, and it is given by Q2

pη ≤ 0.027. Note that the
EOS BSK20 leads to a more stringent constraint
(Q2

pη ≤ 0.011). However, as in GR, the maximal mass
for BSK20 is only slightly above 2 solar mass, and this is
the reason why we tend to not consider this constraint as the
most conservative one.
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