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Using a C-metric-type ansatz, we obtain an exact solution to conformal gravity coupled to a Maxwell
electromagnetic field. The solution resembles a C-metric spacetime carrying an electromagnetic charge.
The metric is cast in a factorized form which allows us to study the domain structure of its static coordinate
regions. This metric reduces to the well-known Mannheim-Kazanas metric under an appropriate limiting
procedure, and also reduces to the (anti)de Sitter C-metric of Einstein gravity for a particular choice of
parameters.
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I. INTRODUCTION

The C-metric is one of the earliest known exact solutions
to Einstein gravity, and still many of its features remain
relevant for various reasons today. Its compact and elegant
form appears almost oblivious to reality as the years unfold
as new features and applications have been found with each
passing decade.
The C-metric was one of the building blocks used to

construct the five-dimensional black ring [1], and to
provide a description of localized braneworld black holes
[2,3]. In the context of the AdS=CFT correspondence, the
C-metric with a negative cosmological constant was used to
describe black funnels and droplets [4,5]. Further analysis
of its physical properties and causal structure continue to
reveal many interesting physics. (See, e.g., Refs. [6–11]
and related references therein.) Not long ago, Hong and Teo
[12] cast the C-metric in a convenient factorized form in
which the solution is parametrized in terms of the roots of
its structure functions. Recently, in [13] this idea has been
extended to C-metrics with nonzero cosmological constant.
With the importance of the C-metric in Einstein gravity,

it is natural to study analogous solutions in non-Einstein
theories of gravity such as Weyl conformal gravity [14–16].
Instead of the usual Einstein-Hilbert action, this formu-
lation of gravity is based on local conformal invariance
where the action involves the square of the Weyl tensor.
Varying this action results in fourth-order equations of
motion for the metric functions, though in the vacuum case,
solutions of Einstein gravity are also vacuum solutions of
conformal gravity.
Among the most widely used solution in conformal

gravity is the spherically symmetric solution obtained by
Mannheim and Kazanas (MK) [17]. This solution resem-
bles the Schwarzschild-(A)dS solution, with an additional
linear term in its lapse function. The Newtonian limit of
these solutions were investigated in [18,19]. The charged
generalization of the MK metric was given by Riegert [20]

and also by Mannheim and Kazanas [21] where the rotating
generalization was also given. Other types of solutions
were obtained more recently, such as spacetimes with
cylindrical symmetry [22–24], the Kerr-NUT-(A)dS sol-
ution [25], and topological black holes [26–28]. Several
solutions have also been studied in theories beyond four-
dimensional conformal gravity, such as six-dimensional
conformal gravity [29], and a gravitational action that
includes both the Einstein and conformal gravity
terms [28].
One of the most promising features of conformal

gravity is that it provides a likely explanation of astro-
physical phenomena not accounted for in Einsteinian
gravity, such as the fitting of galactic rotation curves
without the need of introducing dark matter [30,31].
Furthermore, the constraints on the parameters obtained
from the fitting is also consistent with observations of
planetary perihelion precession [32]. Further investigations
of other experimental tests of gravity are also considered,
such as gravitational time delay [33] and gravitational
lensing [34–37].
The (neutral) C-metric in conformal gravity was studied

in detail recently by Meng and Liu in [38]. In their paper,
the C-metric solution also includes a conformally coupled
scalar field. A somewhat similar metric was briefly con-
sidered earlier in [28,39] where the metric is in the form
that is conformal to the Plebański-Demiański metric.
In this work, we attempt to derive a solution correspond-

ing to a charged C-metric in conformal gravity and
investigate its various properties, in a similar vein to what
was previously done for the C-metric in Einstein gravity. In
particular, we study the domain structure [13,40] of the
solutions which involves analyzing the structure of the
Lorentzian coordinate regions in a two-dimensional plot.1

We also aim to show that conformal gravity C-metric
contains reduces to the (charged) MK metric under an
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1The term “domain structure” should not be confused with the
formalism of the same name in Ref. [41].
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appropriate limit, similar to how theC-metric reduces to the
Reissner-Nordström solution in Einstein gravity [12,42].
This paper is organized as follows. In Sec. II we present

the derivation of the metric using a C-metric-type ansatz
and solve the Bach-Maxwell equations describing con-
formal gravity coupled to an electromagnetic field.
Subsequently in Sec. III we focus on a special choice of
parameters that affords various symmetries and provide a
convenient form in which one of the structure functions are
factorized. In Sec. IV we study the domain structure of the
metric and find its possible Lorentzian coordinate regions.
Some physical properties of the spacetime are studied in
Sec. V, and various interesting limiting cases of the metric
are considered in Sec. VI. This paper ends with some
closing remarks in Sec. VII.

II. DERIVATION OF THE METRIC

Conformal Weyl gravity is described by the action2

I ¼ 1

2κ

Z
d4x

ffiffiffiffiffiffi
−g

p ðCμνρσCμνρσ − F 2Þ; ð1Þ

where C is the conformal Weyl tensor and F ¼ dA is the
Maxwell 2-form flux arising from a 1-form potential A.
Varying the action with respect to the metric g and A gives
the Bach-Maxwell equations

Wμν ≡ ð2∇ρ∇σ þ RρσÞCμρσν ¼ 2F μλF ν
λ −

1

2
F 2gμν; ð2Þ

∇μF μν ¼ 0: ð3Þ

We first solve Eq. (2) in the vacuum case (Wμν ¼ 0),
beginning with the ansatz

ds2 ¼ 1

ðx − yÞ2
�
QðyÞdt2 − dy2

QðyÞ þ
dx2

PðxÞ þ PðxÞdϕ2

�
;

ð4Þ

where PðxÞ and QðyÞ are functions of only x and y,
respectively. In the vacuum case, the linear combination
Wxx −Wyy ¼ 0 leads to

PP0000 þQQ0000 ¼ 0; ð5Þ

where primes denote derivatives with respect to their own
arguments. This suggests a separation constant K where
PP0000 ¼ K ¼ −QQ0000. Using this separation constant to
eliminate the fourth derivatives in Wtt and Wϕϕ leads to a
single equation,

2Q0Q000 −Q002 ¼ 6K þ 2P0P000 − P002; ð6Þ

which may also be separated with another separation
constant 4C. Solving the resulting third-order ordinary
differential equations gives third-order polynomials for P
and Q with the requirement that K ¼ 0. The result is

PðxÞ ¼ ðp2
2 þ CÞ
3p1

x3 þ p2x2 þ p1xþ p0;

QðyÞ ¼ ðq22 þ CÞ
3q1

y3 þ q2y2 þ q1yþ q0;

where p0;…; p2 and q0;…; q2 are constant coefficients.
To generalize this solution to include charges, we assume

a Maxwell potential that takes the form A ¼ eydtþ gxdϕ,
where e and g respectively denote the electric and magnetic
charge parameter. Solving the equations of motion requires
a slight modification of the Q polynomial. The result is a
nine-parameter metric

ds2 ¼ 1

ðx − yÞ2
�
QðyÞdt2 − dy2

QðyÞ þ
dx2

PðxÞ þ PðxÞdϕ2

�
;

PðxÞ ¼ ðp2
2 þ CÞ
3p1

x3 þ p2x2 þ p1xþ p0;

QðyÞ ¼ ½q22 þ Cþ 3ðe2 þ g2Þ�
3q1

y3 þ q2y2 þ q1yþ q0;

ð7Þ

which, together with the Maxwell potential A ¼ eydtþ
gxdϕ, solves the Bach-Maxwell equations (2) and (3).

III. ADDITIONAL SYMMETRIES

For certain special choices of pi and qi, the metric will
carry additional symmetries which allow further simplifi-
cations. For example, the solution considered in [38]
corresponds to the choice

C ¼ q22p1 − p2
2q1

q1 − p1

;

p2 ¼
1

2
C2; q2 ¼ −

1

2
ðC1e2 þ C2Þ;

p1 ¼ C3; q1 ¼
1

2
C1e22 þ C2e2 þ C3;

p0 ¼ C4; q0 ¼ −
�
1

6
C1e22 þ

1

2
C2e22 þ C3e2 þ C4

�
:

ð8Þ

In this form, there exists a three-parameter solution which
brings P and Q to a form where the neutral solution is
characterized by three parameters.

2For the expression of the gravitational action we follow the
notation of [20], with ð−þþþÞ for a Lorentzian signature and a
convenient normalization of the coupling constant to the Maxwell
field.
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In this paper, we shall focus our attention to the
following choice of parameters:

p1 ¼ q1; jp2j ¼ jq2j: ð9Þ

Note that the second condition leads to two possible
choices, p2 ¼ �q2. We can encode the two distinct choices
with ϵ ¼ �1, and upon renaming the other constants, the
metric reduces to

ds2 ¼ 1

ðx − yÞ2
�
QðyÞdt2 − dy2

QðyÞ þ
dx2

PðxÞ þ PðxÞdϕ2

�
;

PðxÞ ¼ c0 þ c1xþ c2x2 þ c3x3;

QðyÞ ¼ αþ c0 þ c1yþ ϵc2y2 þ
�
c3 −

e2 þ g2

c1

�
y3: ð10Þ

In this form, Eq. (10) has additional similarities to their
counterpart in Einstein gravity which we will explore
further in the following sections.
To organize our discussion below, we shall denote the

case ϵ ¼ 1 as Class I and ϵ ¼ −1 as Class II. One notable
feature we see in (10) is that the charge term is qubic, not
quartic as in Einstein-Maxwell theory. Therefore, the
introduction of charges does not introduce an inner horizon
to the spacetime. This is similar to the case of the charged
MK solution where the inner horizon is also absent.
Furthermore we note another departure from Einstein-
Maxwell theory in the relation

QðξÞ − PðξÞ ¼ αþ ðϵ − 1Þc2ξ2 −
e2 þ g2

c1
ξ3; ð11Þ

so that in general, the two structure functions are not
identical up to a constant shift.
It follows from Eq. (11) that in the presence of charges

and/or ϵ ¼ −1, the metric does not have the continuous
coordinate-translation symmetries enjoyed by its Einstein-
Maxwell counterpart. This constrains our ability to fix or
eliminate the remaining parameters to cast the metric in a
convenient form.
Nevertheless, we can at least completely factorize one of

the structure functions. If we consider factorizing P, the
metric can be reparametrized by introducing

c0 ¼ −μabc; c1 ¼ μðabþ acþ bcÞ;
c2 ¼ −μðaþ bþ cÞ; c3 ¼ μ: ð12Þ

With this parametrization, Eq. (10) becomes

ds2 ¼ 1

ðx − yÞ2
�
QðyÞdt2 − dy2

QðyÞ þ
dx2

PðxÞ þ PðxÞdϕ2

�
;

PðxÞ ¼ μðx − aÞðx − bÞðx − cÞ;

QðyÞ ¼
�
μ −

e2 þ g2

μðabþ acþ bcÞ
�
y3 − ϵμðaþ bþ cÞy2

þ μðabþ acþ bcÞy − μabcþ α; ð13Þ

and the Maxwell potential remains unchanged,

A ¼ eydtþ gxdϕ: ð14Þ

This metric (13) and potential (14) will be the form used
throughout the rest of this paper. In this form, P is assumed
to have real roots.
In this form, the solution is invariant under the following

transformations:
(1) Rescaling symmetry,

x → λx; y → λy; t → λt; ϕ → λϕ;

μ →
μ

λ3
; a → λa; b → λb; c → λc;

e →
e
λ2

; g →
g
λ2

; ð15Þ

for a nonzero, positive constant λ.
(2) Reflection symmetry,

x → −x; y → −y; t → −t; ϕ → −ϕ;

μ → −μ; a → −a; b → −b; c → −c:

ð16Þ

(3) Parameter symmetry,

a ↔ b; a ↔ c; b ↔ c: ð17Þ

(4) Coordinate symmetry,

x ↔ y; ð18Þ

followed by double-Wick rotations on the pairs
ðt;ϕÞ and ðe; gÞ,

t → iϕ; ϕ → it;

e → ig; g → ie: ð19Þ

Clearly, allowing λ < 0 in the rescaling symmetry (15) is
equivalent to a positive rescaling followed by a reflection. If
we invoke coordinate symmetry on Eq. (13), we arrive at a
form where Q is factorized:
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ds2 ¼ 1

ðx − yÞ2
�
QðyÞdt2 − dy2

QðyÞ þ
dx2

PðxÞ þ PðxÞdϕ2

�
;

PðxÞ ¼
�
μþ e2 þ g2

μðabþ acþ cbÞ
�
x3 − ϵμðaþ bþ cÞx2

þ μðabþ acþ bcÞx − μabc − α;

QðyÞ ¼ μðy − aÞðy − bÞðy − cÞ: ð20Þ

Therefore we have two alternate forms, (13) and (20) in
which either P orQ is completely factorized. In both cases,
the Maxwell potential is still given by Eq. (14).
It should be noted that, in general, the two metrics (20)

and (13) describe different spacetimes. Thus, the analysis
of the parameter ranges and domain structure performed
below for (13) do not automatically apply to the form (20).
A separate, but similar analysis should be performed in
order to determine the properties of the latter spacetime.
The parameter symmetry can be used to fix the ordering

of the roots as

a ≤ b ≤ c: ð21Þ
We shall also use the reflection symmetry to fix

μ ≥ 0: ð22Þ

With the rescaling symmetry we can fix one of the roots to a
particular value. Throughout this paper we will find it
convenient to set

c ¼ bþ 1

μ
: ð23Þ

Note that this choice is consistent with (21) and (22).
We now have a solution specified by ðμ; a; b; α; e; gÞ,

which are four spacetime parameters plus two electromag-
netic charges. Altogether, we treat Eq. (13) as a six-
parameter solution.

IV. COORDINATE RANGES AND
DOMAIN STRUCTURE

A. Construction of domain structures
in conformal gravity

Since our metric is described by four spacetime param-
eters plus two charges, it is not possible to characterize its
solutions in a systematic manner using the methods of
[13,40], where the parameter space for (A)dS C-metric is
two dimensional. Furthermore, the fact that the coefficients
of P and Q are different leads to many different possible
orderings of the roots of P and Q.3

Nevertheless we can still consider the possible existence
of certain domains by seeking direct numerical examples.
We shall briefly review and outline our procedure in this
subsection and present the possible domains in Secs. IV B
and IV C. Our method to find the domain structure is as
follows.
The roots of P are already defined in terms of a, b and

c ¼ bþ 1=m, where we use the symmetries to set
a ≤ b ≤ c. Let us denote the roots of Q in increasing
order as

y1 ≤ y2 ≤ y3: ð24Þ

Furthermore, since in (13) our electric and magnetic
charges only appear in the combination e2 þ g2, it will
be useful to express the charges as a single quantity

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 þ g2

q
; ð25Þ

where we will simply refer to q as the total charge.
To determine the domain structure for a given set of

parameters, one has to first establish the order of these six
roots fa; b; c; y1; y2; y3g relative to each other. Knowing
the locations of the roots, we would then be able to
determine the coordinate ranges where QðyÞ < 0 and
PðxÞ > 0 which is required for the metric (13) to have a
Lorentzian ð−þþþÞ signature. Plotting these ranges on a
two-dimensional plot then gives us the domain structure of
the spacetime.
To demonstrate using a concrete example, let us take

ϵ ¼ 1, μ ¼ 1, α ¼ 0.2, q ¼ 0.5, a ¼ −1, b ¼ −0.2. With
these parameters we can easily sketch the curves of P and
Q on a common axis using, say, Maple or Mathematica.
From the sketch in the left-hand plot of Fig. 1, we can

read off the ordering of the roots as

a < y1 < b < y2 < y3 < c: ð26Þ

FIG. 1. An example showing the construction of a domain
structure for ϵ ¼ −1, μ ¼ 1, α ¼ 0.3, q ¼ 0, a ¼ −1, b ¼ 0.2,
and c ¼ 1. On the left is the sketch (not to scale) of the functions
P (solid) andQ (dotted) showing the ordering of the roots. On the
right is the two-dimensional plot where the horizontal (respec-
tively vertical) direction represents the x-(y-) coordinate. The
shaded regions represent the static Lorentzian regions of interest.

3This is in stark contrast in the Einstein gravity case, where
since P and Q only differ by a constant shift, there are only two
possible orderings of the roots. (See, for example, Fig. 1 of
Ref. [40].)
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As mentioned above, to have the correct Lorentzian ð−þ
þþÞ signature, we require PðxÞ > 0 and QðyÞ < 0. The
former is satisfied for the ranges a < x < b and x > c,
while the latter is satisfied for ranges y < y1 and
y1 < y < y3. We then plot the coordinate ranges together
on a two-dimensional diagram to find the ranges that satisfy
all the required conditions simultaneously. These are shown
in the shaded regions in the right-hand plot of Fig. 1. The
possible shapes of the shaded regions are what we refer to
as the “domain structure.”
These two-dimensional figures are plots where the

horizontal direction represents the x-coordinate and the
vertical direction represents the y-coordinate. The vertical
lines represent the symmetry axes (P ¼ 0) and the hori-
zontal lines represent the horizons (Q ¼ 0), while the
diagonal line is the conformal infinity where x ¼ y. The
left and right sides of the plots represent x → �∞, while
the upper and lower sides represent y → �∞. As we will
show explicitly in Sec. V, these limits generally contain
curvature singularities. The shaded areas are the static
regions of Lorentzian signature, where the darker shade
represents areas of particular interest. We are mainly
interested in static Lorentzian regions between a<x<b,
where we will eventually extract the Mannheim-Kazanas
spacetime in Sec. VI A below. Furthermore, our darker-
shaded static Lorentzian regions should not include the
sides where x; y → �∞which would correspond to having
an observer seeing a naked curvature singularity.
Indeed, an observer might pass through horizons to

access nonstatic regions that possibly have curvature
singularities. Nevertheless, we wish to view the spacetime
from a perspective that is exterior to the black hole. This is
partly motivated by physical reasons since, in the MK limit
of the metric which will be performed below, the darker-
shaded regions are the ones with the most observational
significance (for instance, gravitational lensing and other
observations mentioned in Sec. I).

B. Class I: ϵ= 1

First we note that, for Class I the two structure functions
are related by

QðξÞ − PðξÞ ¼ α −
ðe2 þ g2Þξ3

μðabþ acþ bcÞ : ð27Þ

In the uncharged case the structure functions differ by only
a constant shift. We will show in Sec. VI B below that the
uncharged Class I case is precisely the Einsteinian (A)dS
C-metric and has been studied in detail in [2–5,13,40].
Therefore we consider cases of nonzero charge unique to
conformal gravity.
By checking various numerical values of the metric

parameters, we obtain the possible domain structures
shown in Fig. 2. We find the same five possible shapes
that were present in the (A)dS C-metric in Einstein gravity,

namely the square box, “chipped” box (a box with a corner
cut off by conformal infinity), vertical trapezium, triangle,
and horizontal trapezium.
Figure 2(a) shows a square box which is analogous to the

de Sitter C-metric considered in [13]. It corresponds to a
Lorentzian region bounded by two symmetry axes x ¼ a
and x ¼ b, and two horizons y ¼ y2 and y ¼ y3. From the
perspective of an observer in this square box, the horizon
y ¼ y3 conceals the curvature singularity at y → ∞.
Therefore we shall interpret y ¼ y3 as the black hole
horizon. This horizon has a finite area, extending from
one symmetry axes at x ¼ a to the other at x ¼ a. Loosely
speaking, we may say that this black hole horizon has a
spherical topology. The second horizon is located at
y ¼ y2, which is also finite and it conceals the observer
from the conformal infinity, thus we shall refer to it as an
acceleration, or cosmological horizon.

(a) (b)

(c) (d)

(e)

FIG. 2. Possible Class I domain structures for μ ¼ 1 and
various values of α and q. For (a)–(d) the roots are chosen to
be a ¼ −1, b ¼ −0.2 and c ¼ 1, while for (e) the roots are a ¼
−1 and b ¼ 1. The shaded regions correspond to static regions
with Lorentzian signature ð−þþþÞ, one of which is the region
of our primary interest that is shaded in dark gray. The diagonal
line represents the conformal infinity x ¼ y.
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The “chipped box” and vertical trapezium in Figs. 2(b)
and 2(c) respectively shows similarly finite black hole
horizons of spherical topology. For the chipped box, the
second horizon at y ¼ y2 intersects the diagonal line x ¼ y.
Therefore the acceleration/cosmological horizon extends
all the way “to conformal infinity,” and does not intersect
the second symmetry axis. Such boxes in Einstein gravity
were interpreted as the “fast” accelerating AdS C-metrics,
where the acceleration parameter exceeds the AdS curva-
ture parameter, i.e., A > 1

l [9,13]. For the vertical trapezi-
ums there is no second horizon in the Lorentzian region;
this is the analogue of the “slow” acceleration case A < 1

l in
Einstein gravity.
The triangle and vertical trapezium of Figs. 2(d) and 2(e)

contain black hole horizons that extend to conformal

infinity and intersect only one symmetry axis. Thus we
conclude that the horizon is infinite in extent and has the
domain structure similar to the deformed hyperbolic black
holes in Einstein gravity [40].

C. Class II: ϵ= − 1

Proceeding to Class II solutions, for ϵ ¼ −1 the structure
functions are related by

QðξÞ − PðξÞ ¼ αþ 2μðaþ bþ cÞξ2 − ðe2 þ g2Þξ3
μðabþ acþ bcÞ :

ð28Þ

Thus we see that the situation in Class II is more
complicated, difference between P and Q also contains a
quadratic term. It follows that there are three possible
intersection points between the two structure functions. In
the uncharged case, the difference in (28) is only quadratic,
and only leads to two distinct intersection points when α is
nonzero.
Seeking out various numerical examples, we find the

possible domain structures in Fig. 3. We find the same
possible domains as in Class I. Thus we conclude that in
general, Class I and Class II are physically similar in terms
of the horizon configurations and the symmetry axes. The
distinction between Class I and II, as we will discuss in
Sec. VI, lies in the uncharged case e ¼ g ¼ 0. In the
uncharged case Class I immediately reduces to the
Einsteinian C-metric while Class II does not, except for
a specific choice of parameters.

V. PHYSICAL PROPERTIES

Our domains of interest lie between a ≤ x ≤ b where the
boundaries are the symmetry axes where P ¼ 0. For a
given periodicity of the angular coordinate ϕ, the conical
deficit at these axes can be calculated as

δi ¼ 2π − κEiΔϕ; ð29Þ

where i ¼ a, b and κE is the Euclidean surface gravity [43],
or, the ratio between the circumference and the radius of an
infinitesimally small circle around the respective axes. For
our metric (13), they are given by

κEa ¼
1

2
jP0ðaÞj ¼ 1

2
μðb − aÞðc − aÞ; ð30Þ

κEb ¼
1

2
jP0ðbÞj ¼ 1

2
μðb − aÞðb − cÞ: ð31Þ

We can remove one of the two conical singularities by
appropriately fixing the periodicity Δϕ. The two possible
choices are

(a) (b)

(c) (d)

(e)

FIG. 3. Possible Class II domain structures for μ ¼ 1 and
various values of α and q. For (a)–(d) the roots are chosen to be
a ¼ −1 and b ¼ 0.2, while for (e) the roots are a ¼ −1 and
b ¼ 1. The shaded regions correspond to static regions with
Lorentzian signature ð−þþþÞ, one of which is the region of our
primary interest that is shaded in dark gray. The diagonal line
represents the conformal infinity x ¼ y.
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Δϕ ¼ 2π

κEa
∶ δa ¼ 0; δb ¼ 2π

b − a
c − a

; ð32Þ

Δϕ ¼ 2π

κEb
∶ δa ¼ −2π

b − a
c − b

; δb ¼ 0: ð33Þ

Therefore, we see that the first choice removes the
conical singularity at x ¼ a, leaving a conical excess at
x ¼ b, (δb > 0) which we regard as a cosmic strut pushing

against the black hole, while the second choice removes the
singularity at x ¼ b but leaves a conical deficit at x ¼ a,
(δa < 0) which is regarded as a cosmic string pulling the
black hole. (See, e.g., [12,44,45] and references therein.) In
either case, we have the interpretation that the black hole is
being accelerated along the x ¼ a axis.
Next we consider the curvature invariants of the space-

time. The Kretschmann invariant is, for Class I,

RμνρσRμνρσ ¼ 24α2 þ 12μ2ðx − yÞ6 þ 24yðe2 þ g2Þ
μðabþ caþ cbÞ ðμðx − yÞ5 − αxðxþ yÞÞ

þ 12ðe4 þ g4Þ
μ2ðabþ acþ cbÞ2 ð3x

3 þ y4 − 6x3y − 4xy3 þ 8x2y2Þ; ð34Þ

so in Class I, if either of μ, e or g are nonzero, there are
curvature singularities for x; y;→ �∞. Therefore in these
cases, the outermost edges of Figs. 2 and 3 represent a
curvature singularity.
As mentioned in Sec. IV, the uncharged case of Class I

reduces to the (A)dSC-metric of Einstein gravity.We also can
see this here if we put e ¼ g ¼ 0 in Eq. (34), the curvature

invariant simply becomesRμνρσRμνρσ ¼24α2þ12μ2ðx−yÞ6.
Comparing this to the Kretschmann invariant of the (A)dS
C-metric in Einstein gravity, we see that μ plays the role
of the “mass” parameter, where its vanishing leaves uswith an
empty, constant-curvature spacetime.
The Kretschmann invariant for Class II is more

complicated:

RμνρσRμνρσ ¼ 24α2 þ 16αμðaþ bþ cÞðx2 þ y2 þ 4xyÞ þ μ2ð12x6 − 16x5bþ 16x4b2

− 16ax5 þ 16a2x4 − 16x5cþ 16x4c2 þ 12y6 þ 180x4y2 − 240x3y3 − 72x5y

þ 16y4a2 þ 16y4b2 þ 16y4c2 þ 16y5aþ 16y5bþ 16y5c − 72xy5 þ 180x2y4

þ 128y2cax2 þ 128y2abx2 þ 128y2cbx2 þ 64y2x2c2 þ 64y2x2b2 þ 64y2a2x2

þ 160y3ax2 þ 32y4caþ 32y4abþ 32y4cb − 160x3y2a − 160x3y2b

− 160x3y2cþ 80x4ybþ 80x4ya − 80xy4a − 80xy4bþ 80x4yc − 80xy4c

þ 160y3cx2 þ 160y3bx2 þ 32ax4cþ 32ax4bþ 32x4bcÞ

−
8yðe2 þ g2Þ

μðabþ acþ bcÞ ½3xαðxþ yÞ þ μð6x4aþ 2ay4 − 6yax3 þ 14y2ax2

− 4y3axþ 6x4bþ 2y4b − 6ybx3 þ 14y2bx2 − 4y3xb − 15xy4 þ 15x4y

− 6ycx3 − 4xy3cþ 3y5 þ 14y2cx2 − 3x5 þ 30y3x2 þ 2y4c − 30y2x3 þ 6x4cÞ�

þ 12y2ðe4 þ g4Þ
μ2ðabþ acþ cbÞ2 ð3x

4 − 6x3yþ 8x2y2 − 4xy3 þ y4Þ: ð35Þ

Nevertheless, we have a similar result that in general, there exist curvature singularities at x; y → �∞.

VI. LIMITING CASES

A. Mannheim-Kazanas metric

For a spacetime with a domain structure bounded by two symmetry axes x ¼ a and x ¼ b, we have pointed out in Sec. V
that one cannot simultaneously remove both conical singularities by fixing an appropriate periodicity of ϕ. Upon removal of
a conical singularity at one axis, the other has either a conical excess or deficit given in Eqs. (32) or (33). Nevertheless, we
see from these two equations that in both cases, δa and δb can be rendered simultaneously zero if a → b.
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However, this entails shrinking the coordinate range
a < x < b to zero unless we scale x accordingly. To ensure
our coordinates are well defined in this limit, we introduce
the transformation

x ¼ b −
1

2
δðcos θ þ 1Þ; y ¼ bþ 1

r
;

ϕ ¼ 2φ

δ
; a ¼ b − δ: ð36Þ

Substituting this into the Class I (ϵ ¼ 1) case of (13), and
taking the limit δ → 0, we obtain

ds2 ¼ −fðrÞdt2 þ fðrÞ−1dr2 þ r2ðdθ2 þ sin2θdφ2Þ;
fðrÞ ¼ wþ u

r
þ vr − kr2; ð37Þ

where u, v, w and k are given by

u ¼ e2 þ g2 − 2μb − 3μ2b2

bð3μbþ 2Þ ;

v ¼ 3bðe2 þ g2Þ
2þ 3μb

;

w ¼ 2þ 3μbþ 3ðe2 þ g2Þ
2þ 3μb

;

k ¼ 2αþ 3αμb − b2ðe2 þ g2Þ
2þ 3μb

: ð38Þ

The resulting Maxwell potential, up to an irrelevant
constant term, is

A ¼ e
r
dtþ g cos θdϕ: ð39Þ

We can easily check that the parameters defined in (38)
satisfy

w2 − 1 − 3uv ¼ 3ðe2 þ g2Þ; ð40Þ

showing that this is the charged black hole in conformal
gravity [20,21], albeit with different parametrization.
In the uncharged case, the reduction to the

Schawrzschild-(A)dS can be seen by putting e ¼ g ¼ 0
in (38), the solution reduces to

ds2 ¼ −fðrÞdt2 þ fðrÞ−1dr2 þ r2ðdθ2 þ sin2θdφ2Þ;
fðrÞ ¼ 1 −

μ

r
− αr2; ð41Þ

corresponding to the Schwarzschild-(A)dS solution
with mass parameter μ ¼ 2m and curvature parameter
α ¼ − 1

l2 ¼ Λ
3
.

If we apply this limiting procedure to Class II with
ϵ ¼ −1, we obtain the same form as (37), but with different
coefficients of r:

u¼ e2 þ g2 − 2μb− 3μ2b2

bð2þ 3μbÞ ;

v¼ b½3ðe2 þ g2Þ− 8− 36μ2b2 − 36μb�
2þ 3μb

;

w¼ 3ðe2 þ g2Þ− 2− 15μb− 18μ2b2

2þ 3μb
;

k¼ 18m2b4 þ 18mb3 þ 2αþ 3αmbþ 4b2 − b2ðe2 þ g2Þ
2þ 3μb

;

ð42Þ
where they also satisfy Eq. (42). This is again the
charged Mannheim-Kazanas spacetime with yet another
parametrization.
For the uncharged case, taking e ¼ g ¼ 0 in Eq. (42) and

further identifying

m ¼ βð2 − 3βγÞ; b ¼ −
1

6β
; α ¼ k −

γ

12β
; ð43Þ

we see that (37) reduces to

ds2 ¼ −fðrÞdt2 þ fðrÞ−1dr2 þ r2ðdθ2 þ sin2θdφ2Þ;

fðrÞ ¼ 1 − 3βγ −
2ðβ − 3βγÞ

r
þ γr − kr2; ð44Þ

which is precisely the well-known Mannheim-Kazanas
vacuum solution [17].

B. (A)dS C-metric

As mentioned above, the main feature of the conformal
gravity C-metric that distinguishes it from its Einsteinian
counterpart can be traced to the fact that QðξÞ − PðξÞ is not
equal to a constant. Nevertheless, by inspection of
Eqs. (11), (27) or (28) the difference can be equal to
constant α by a suitable choice of parameters.
To remove the cubic term from QðξÞ − PðξÞ, we require

e ¼ g ¼ 0. Then, the entire Class I metric with ϵ ¼ 1
satisfies

Rμν ¼ 3αgμν; ð45Þ
showing that it is a solution to Einstein’s equation with
cosmological constant Λ ¼ 3α.
For Class II, Eq. (28) tells us that QðξÞ − PðξÞ can

be made constant by setting mðaþ bþ cÞ ¼ 0 in addition
to e ¼ g ¼ 0. Recalling (23), the former condition is
equivalent to

aþ 2bþ 1

m
¼ 0: ð46Þ

VII. CONCLUSION

In this paper we have attempted to derive a charged C-
metric-type solution in conformal gravity. Starting with an
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anstaz that resembles the C-metric in Einstein gravity, we
obtained a nine-parameter solution to the Bach-Maxwell
equations. By construction, two of these parameters are the
electric and magnetic charges, though at this stage, we have
no reason to conclude that all the remaining seven
parameters carry physical significance, as some of them
are possibly kinematical parameters.
We have focused our attention to a six-parameter subset

of the solution. The motivation for doing so is twofold.
First, this subset contains some additional symmetries and
it allows us to rewrite one of the structure functions in a
convenient factorized form. Second, this choice is inspired
by the analogy that the charged Einsteinian C-metric is a
one-parameter generalization of the Reissner-Nordström
solution, hence we expect a conformal gravity C-metric to
also be a one-parameter generalization of the charged
Mannheim-Kazanas solution. Since only one of the struc-
ture functions is fully factorized, we obtain the possible
domain structures of the C-metric by directly searching for
numerical examples. Our charged C-metrics contain five
possible domain shapes that are similar to those in the
neutral (A)dS C-metric in Einstein gravity.
In this paper we have mostly confined ourselves within

one static Lorentzian region of interest. A further explora-
tion of the metric can be done by extending across the
horizons into different regions to study its global and causal

structure. Since this requires extension of the spacetime
across its horizons, it is probably more convenient to use
the form given in Eq. (20) instead of (13). Furthermore, we
have only considered a specific choice of parameters as
given in Eq. (9). It would be interesting to explore other
parameter choices in further detail, for instance a choice
that contains the solution described by [38].
It would also be interesting to consider null and timelike

geodesics for this spacetime. In the spherically symmetric
case of the Mannheim-Kazanas metric, it was shown in [33]
that conformal gravity affects timelike and null geodesics
very differently from Einstein gravity. Thus it would be
interesting to see its corresponding cases for the C-metric.
Furthermore, since solutions to the Bach-Maxwell equa-
tions are conformally invariant, it might be worth studying
a metric with a gauge in which the overall conformal factor
ðx − yÞ−2 is removed, for example, one of the gauges
considered in [38]. For metrics of this form the geodesic
equations of timelike particles would possibly be separable,
as it is this factor that originally prevented the separation of
the timelike geodesic equations of the EinsteinianC-metric.
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