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The mass formula for black holes can be formally expressed in terms of a Noether charge surface integral
plus a suitable volume integral, for any gravitational theory. The integrals can be constructed as an
application of Wald’s formalism. We apply this formalism to compute the mass and the Smarr formula for
static Lovelock black holes. Finally, we propose a new prescription for Wald’s entropy in the case of
Lovelock black holes, which takes into account topological contributions to the entropy functional.
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I. INTRODUCTION

The Smarr formula (SF) expresses the mass of a black
hole in terms of its geometrical and dynamical parameters
(angular momentum, electromagnetic potential, area, etc.),
and it was first derived in the context of general relativity.
For vacuum GR solutions the SF has a geometrical
interpretation: it is equivalent to the Komar integral, a
boundary surface integral of the covariant derivative of a
Killing vector field. The question naturally raises if it is
possible to find a similar geometrical interpretation of the
SF for arbitrary theories of gravitation, i.e., a generalization
of Komar’s construction to other theories than GR.
Progress in this direction has been made in recent years:

in particular, Kastor et al. [1] have shown that, for the
particular class of Lovelock theories, it is indeed possible to
construct a surface integral generalizing the Komar one.
If one weakens the requirement that Komar integral be a

pure surface integral, and allows for volume integral
contributions, then a strong result holds: any diffeomor-
phism invariant theory of gravity admits a geometrical
identity—we call it the Smarr identity (SI)—which reduces
to the Komar one in the GR case. In this paper, we show
that the volume term reduces for Lovelock theories to a
surface one, and the SI reproduces the Smarr formula found
in [1]. We will discuss extension beyond Lovelock theory
in the conclusion of the paper.
We proceed as follows: in Sec. II, we review Wald’s

derivation of BH entropy and illustrate the Smarr identity;
in Sec. III, we compute the mass and the SF for static
vacuum black hole solutions in Lovelock theories; in
Sec. IV, we discuss the role of topological contributions
to the Smarr formula; Sec. V contains an overview of the
results with concluding remarks.

II. THE SMARR IDENTITY

In [2], the first law of black hole mechanics is derived for
diffeomorfism invariant theories, by making use of the
conserved Noether current associated with a special vector
field. The BH entropy is then identified as a geometric

functional of the Noether potential: this is the main result of
Wald’s construction, that we briefly review.
Some comments are in order. The derivation makes

certain nontrivial assumptions on the spacetime geometry:
in particular one starts with a stationary spacetime with an
internal boundary, identified with the future event horizon
of a single black hole. In GR, it is proved that the event
horizon of a stationary BH is a Killing horizon generated by
a Killing field ξa; although there is no generalization of the
proof to higher curvature theories, all the known solutions
are of this kind. Therefore, we restrict our attention to black
holes whose event horizon is Killing, and we assume that
its generators can be regularly extended in both directions.
Hypersurface orthogonality ensures that ξa is tangent to
nonaffinely parametrized geodesics, whose inaffinity κ is
defined by

ξa∇aξb ¼ κξb: ð1Þ

If κ ≠ 0, one can show that (i) κ is constant over the horizon
and (ii) the horizon contains a spacelike (D − 2)-dimen-
sional surface where ξa vanishes, called the “bifurcation
surface” B. In the following, we will assume this to be
always the case.
Apart from time translations, the spacetime will admit

other possible spatial symmetries: we specialize to the case
of rotational symmetries generated by a set of vector fields
fψa

i g collectively denoted by ~ψa. The Killing field ξa can
then be expressed as

ξa ¼ ta þ ~Ω · ~ψa; ð2Þ

where Ωi is called the “angular velocity” of the horizon
around the ith axis.
Given this preliminary setup, let us review Wald’s

derivation. Consider a collection of dynamical fields in
D spacetime dimensions, collectively denoted by ϕ, includ-
ing a metric tensor gab plus other possible matter fields,
whose dynamics is determined by a Lagrangian D-form
L ¼ Lϵ, with ϵ the spacetime volume element.
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Under a generic variation δϕ of the fields, the variation
of L can be expressed as a sum of a bulk term plus a
boundary one,

δL ¼ Eϕδϕþ dΘðϕ; δϕÞ; ð3Þ

where the (D − 1)-form Θ is locally constructed out of ϕ
and δϕ. From (3) we read that the equations of motion
(EOM) are Eϕ ≐ 0 for each ϕ.1

In particular, one can consider infinitesimal variations
along a vector field ξ, δϕ ¼ £ξϕ. By diffeomorphism
invariance, to any vector field ξ there corresponds a
Noether current (D − 1)-form

J½ξ� ¼ Θðϕ; £ξϕÞ − ξ · L; ð4Þ

which is conserved on shell:

dJ½ξ� ¼ dΘðϕ; £ξϕÞ − dξ · L ¼ −Eϕ£ξϕ ≐ 0: ð5Þ

The conservation of J implies the existence of a (D − 2)-
form Q½ξ� [3]

J½ξ� ≐ dQ½ξ� ð6Þ

called the “Noether potential” associated to ξ.
Q enters in the definition of the conserved charges [4]:

indeed the Hamiltonian variation, associated with the flow
of ξ, over an initial value surface Σ with boundary ∂Σ, is
given by [2]

δH½ξ� ¼
Z
∂Σ
½δQ½ξ� − ξ · Θðϕ; δϕÞ�; ð7Þ

it is then natural to identify the variations of the energy E

and the angular momentum ~J at infinity as2

δE ¼
Z
S∞

½δQ½t� − t · Θðϕ; δϕÞ�; ð8Þ

δJ~¼ −
Z
S∞

½δQ½~ψ � − ~ψ · Θðϕ; δϕÞ� ¼ −
Z
S∞

δQ½~ψ �; ð9Þ

where S∞ is the outer boundary of ∂Σ, and the last equality
of (9) follows from the fact that ~ψ is tangential to S∞.
(Notice that, as usual, the angular charges are defined up to
a conventional minus sign.). If there is a D − 2 form BðϕÞ
such that

R
ξ · Θðϕ; δϕÞ ¼ δ

R
ξ · BðϕÞ, one defines the

conserved Hamiltonian charge as

H½ξ� ¼
Z
S∞

Q½ξ� − ξ · B; ð10Þ

in particular the angular momentum is exactly the Noether
charge at infinity, modulo a sign:

~J ¼ −
Z
S∞

Q½~ψ �: ð11Þ

If the field ξ is taken to be the Killing field (2) generating
the horizon, then Eq. (7) implies the first law of black hole
mechanics: let (i) ξ be a dynamical symmetry, meaning that
£ξϕ ≐ 0 for all the ϕ’s, and (ii) δϕ be a variation of the
dynamical fields around the BH solution, such that δϕ
solves the linearized EOM; then δH½ξ� ≐ 0, from which it
follows [2,5]

δE ≐ κ

2π
δSþ ~Ω · ~δJ; ð12Þ

where S is 2π=κ times the integral of Q over the bifurcation
surface:

S ¼ 2π

κ

Z
B
Q½ξ�; ð13Þ

and Eq. (12) is obtained by the vanishing of the integral (7)
over an initial value surface with boundary ∂Σ ¼ S∞∪B,
with B the bifurcation surface of the black hole. Since κ=2π
is the Hawking temperature, one interprets S as the
thermodynamical entropy of the BH.3

Notice that, in order for Eq. (12) to hold, the variation δϕ
doesn’t need to satisfy the same exact symmetries of the
background solution ϕ: in particular, δϕ can be nonsta-
tionary and not satisfying £ξδϕ ¼ 0.4

Finally, it is worth noting that for a general gravitational
Lagrangian Eq. (13) can be expressed as [5]

S ¼ −2π
Z
B
Eabcd
R ϵ̂abϵ̂cdϵ; Eabcd

R ¼ δL
δRabcd

; ð14Þ

where ϵ is the area element of B and ϵ̂ab is the binormal
to B.
As shown in [6], the integral (13) needs not to be

evaluated at the bifurcation surface, since it gives the
correct entropy on any other cross section of the horizon.
The proof makes use of the fact that, being ξ a dynamical
symmetry, Eq. (4) becomes

1From now on, the dot indicates equalities holding on shell.
2δE contains also work term contributions from long range

fields, such as gauge fields.

3Note, however, that this identification fails if the dynamical
fields have divergent components at the bifurcation surface. This
circumstance occurs, for example, in the case of gauge fields, but
one can see that in this case the divergences at the horizon can be
gauged out by an appropriate gauge fixing, thus recovering the
correct expression for the entropy.

4In contrast, the first law derived in the next section requires
exact Killing symmetries over all spacetime.
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J½ξ� þ ξ · L ≐ 0; ð15Þ

provided Θðϕ; δϕÞ vanishes when δϕ ¼ 0. Indeed, the
authors of [5] suggest an algoritm giving a preferred
“canonical” Θ0, among all the possible Θ’s, which is
covariant, depends linearly on δϕ and vanishes if
δϕ ¼ 0. However, the definition of theta suffers of the
ambiguity associated to the freedom of adding a closed
form Θ → Θþ dα which, in principle, can spoil the above
properties: we follow the authors of [5,6] and restrict only
to those α’s preserving the mentioned properties of Θ.
Equation (15) is then ensured. Integration over Σ then gives

I
∂Σ

Q½ξ� þ
Z
Σ
ξ · L ≐ 0: ð16Þ

By linearity ofQwith respect to ξ, using Eqs. (11) and (13),
we obtain

I
S∞

Q½t� ≐ TSþ ~Ω · ~J −
Z
Σ
ξ · L ðSmarr identityÞ; ð17Þ

where we used ∂Σ ¼ S∞∪B. This is the Smarr identity,
corresponding to Eq. (29) in [2]: in the next section, we
implement it to derive a generalized Smarr formula for
Lovelock theories.

III. SMARR FORMULA FROM THE
SMARR IDENTITY

In the very simple example of four-dimensional GR, the
Smarr identity gives exactly the Komar integral

I
∂Σ

Q½ξ� ≐ 0 ð18Þ

because the Einstein-Hilbert Lagrangian vanishes on shell.
In the following, we show how the SI provides a gener-
alized Smarr formula for the more general class of
Lovelock theories. In III A, we review general features
of Lovelock theories; in III B, we obtain a general expres-
sion for the mass of static spherically symmetric Lovelock
black holes; finally, in III C, the desired Smarr formula is
obtained.

A. Lovelock theories

Lovelock theories generalize Λ-GR theory and are the
most general vacuum second order gravity theories in
higher-dimensional spacetimes [7]. The peculiar structure
of the Lagrangian makes them easier to deal with, if
compared with more general higher curvature theories.
The Lagrangian in D dimensions is

L ¼ Lϵ ¼
Xm
k¼0

ckLðkÞϵ;

LðkÞ ¼ 1

2k
δa1b1…akbk
c1d1…ckdk

Rc1d1
a1b1

…Rckdk
akbk

ð19Þ

for generic constants ck. Since for m > ½D
2
� the antisymme-

trized delta symbol vanishes, m is restricted to be m ≤ ½D
2
�;

moreover, if m ¼ ½D
2
�, the integral of LðmÞ is a topological

invariant proportional to the Euler characteristic in D
dimensions, and therefore it doesn’t contribute to the
dynamics. The EOM are

Xm
k¼0

RðkÞrs −
1

2
δrsL ≐ 0; ð20Þ

RðkÞrs ¼
kck
2k

δa1b1…akbk
c1s…ckdk

Rc1r
a1b1

…Rckdk
akbk

ð21Þ

Following the procedure described in [5], the “canonical”Θ
is

Θ0ðϕ; δϕÞ ¼
Xm
k¼0

kck
2k−1

δa1b1…akbk
c1d1…ckdk

∇d1δgc1b1…Rckdk
akbk

ϵa1 ð22Þ

and the corresponding Noether charge is

Q½ξ� ¼
Xm
k¼0

kck
2k−1

δa1b1…akbk
c1d1…ckdk

∇½a1ξd1�…Rckdk
akbk

ϵb1
c1 ð23Þ

where the squared brackets indicate total antisymmetriza-
tion. Through Eq. (14), this gives the entropy of a Lovelock
BH ([8], see also [9]):

S ¼
Xm
k¼0

4πkck

I
B
L
⃖

ðk−1Þϵ ð24Þ

where the under-left arrow means that the object is
evaluated with respect to the induced metric on B.
The Smarr identity (17) reads

I
S∞

Q½t� ≐ TSþ ~Ω · ~J −W: ð25Þ

Observe that the work term

W ¼
Xm
k¼0

ck

Z
Σ
LðkÞξ · ϵ ð26Þ

contains powers of the Riemann tensor up to degree m;
one can, however, use the EOM to lower the degree by
one, thus reducing W to an expression easier to work with:
it is sufficient to trace (20) and solve for LðmÞ, the resulting
L being
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L ≐ Xm−1

k¼0

�
2k − 2m
D − 2m

�
ckLðkÞ: ð27Þ

Plugging this expression into W, we get the equivalent
form,

W ≐ Xm−1

k¼0

�
2k − 2m
D − 2m

�
ck

Z
Σ
LðkÞξ · ϵ; ð28Þ

for the work term. For example, the Λ −GR Lagrangian in
D dimensions gives the Smarr identity

I
∂Σ

∇aξbϵab þ
4Λ
ðD − 2Þ

Z
Σ
ξaϵa ≐ 0 ð29Þ

in agreement with the results of [1,10].
So far, we have been general. The main difficulties of

Eq. (25) are that (i) the integral of Q½ξ� is not yet expressed
in terms of the massM of the BH, and (ii) the work termW
is a volume integral and, therefore, it requires the knowl-
edge of the solution over the entire spacetime. These
difficulties can be addressed under the additional hypoth-
esis of staticity. As a preliminary, we derive a general
expression for the mass of a static black hole in Lovelock
theories.

B. Mass of a static Lovelock black hole

Consider a black hole solution. One is tempted to define
the total mass as the value of the HamiltonianH½t� at spatial
infinity. However in general the Hamiltonian at infinity
receives divergent contributions from the maximally sym-
metric background. To regularize these divergences, we
define the total mass as H½t� −H0½t�, where H0½t� refers to
the background metric. Thus we can use the expression (7)
for δH:

M ¼ δH½t� ¼
Z
S∞

½δQ½t� − t · Θðϕ; δϕÞ�: ð30Þ

We need to identify the asymptotic form of the line
element: if we assume staticity, then the metric at infinity
approaches a maximally symmetric background, i.e.,
Minkowski or (anti–) de Sitter (AdS). It is known [11]
that static spherically symmetric BH solutions of Lovelock
theory are all of the form

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ rD−2dΩ2
D−2: ð31Þ

For definiteness, we specify to the AdS case and keep fðrÞ
to scale as

fðrÞ ¼ 1þ r2

l2
−

μ

rD−3 þ oðr−ðD−3ÞÞ: ð32Þ

The Minkowski case is recovered in the limit l → ∞.
Let us compute the two terms in (30) separately. For a

metric of the form (31) the integral of Q½t� simplifies
drastically: from Eq. (23), one gets

I
S∞

Q½t� ¼ lim
r→∞

Xm
k¼0

�
kckγkð1 − fÞk−1f0

r2k−2

�
rD−2ΩD−2; ð33Þ

where we defined γk ¼ ðD − 2Þ!=ðD − 2kÞ!. Therefore,
I
S∞

δQ½t� ¼ lim
r→∞

Xm
k¼0

kγkck
r2k−D

d
dr
½ð1 − fÞk−1δf�ΩD−2: ð34Þ

This is a variation around the maximally symmetric back-
ground, so we have to take

fðrÞ ¼ 1þ r2

l2
δfðrÞ ¼ −

μ

rD−3 ð35Þ

which yields

I
S∞

δQ½t� ¼
Xm
k¼0
ð−1Þkþ1 kγkckðD − 2k − 1Þ

l2k−2
μΩD−2

¼ ðσ − γÞμΩD−2; ð36Þ

where, for later convenience, we defined

γ ¼
Xm
k¼0
ð−1Þkþ1 kckðD − 2Þ!

l2k−2ðD − 2kÞ! ; ð37Þ

σ ¼
Xm
k¼0
ð−1Þkþ1 kckðD − 2Þ!

l2k−2ðD − 2k − 1Þ! : ð38Þ

In the same way, we compute the second piece of the lhs
of (30):

−
I
S∞

t ·Θ¼ lim
r→∞

Xm
k¼0

kγkckð1−fÞk−1f
r2k−2

2ra∇½bδgba�rD−2ΩD−2

¼ lim
r→∞

Xm
k¼0

kγkckð1−fÞk−1
r2k−2

�
−
dδf
dr

−
ðD−2Þδf

r

�

× rD−2ΩD−2

¼
Xm
k¼0
ð−1Þkþ1 kckγk

l2k−2
μΩD−2¼ γμΩD−2: ð39Þ

Putting the two pieces together, we get
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M ¼ σμΩD−2: ð40Þ
Notice that σ, and thus M, doesn’t receive contributions

from the topological term of the Lagrangian. Expression
(40) for the mass of a static asymptotically AdS Lovelock
BH had been already obtained in [12] by means of an
Hamiltonian analysis: in particular, the mass is there
defined as the ADM (Regge-Teitelboim) Hamiltonian
evaluated at spatial infinity. Our Lagrangian derivation
agrees, and shows that H½t� is exactly the ADM energy.

C. Smarr formula for Lovelock black holes

The expression (40) for the mass allows to rewrite the
Smarr identity (25) as a Smarr formula, namely, as an
identity expressing the mass in terms of geometric and
dynamical parameters. It is sufficient to plug the asymptotic
form of f, Eq. (32), into Eq. (33). The result is

I
S∞

Q½t� ¼ lim
r→∞

Xm
k¼1

ð−1Þkþ1kckγk
l2k−2

×

�
2rD−1

l2
þ ðD − 2k − 1Þμ

�
ΩD−2: ð41Þ

The first term in parentheses is divergent: this divergence
can be regularized as we did for the BH mass, i.e., by
subtracting the same integral evaluated with respect to the
background AdS metric. This subtraction cancels the
divergence exactly, and one has

I
S∞−AdS

Q½t� ¼
�
1 −

γ

σ

�
M: ð42Þ

Thus, by adopting this regularization prescription, the
Smarr identity (25) becomes

�
1 −

γ

σ

�
M ≐ TS − Ŵ; ð43Þ

where Ŵ is now the regularized work term

Ŵ ¼
Xm
k¼0

ck

Z
Σ−AdS

LðkÞξ · ϵ ð44Þ

and ~J ¼ 0 because of staticity.
Now we have to deal with the fact that the work term is

a volume integral. As we anticipated, this constitutes a
difficulty because it forces to know the solution on a whole
hypersurface; by contrast, a surface integral would allow to
specify only the asymptotic behaviors of the solution.
However, in the case of static solutions under consider-
ation, W becomes a surface integral over ∂Σ: this follows
from the fact that static solutions of Lovelock theories are
all of the form (31). Substitution into LðkÞ yields

LðkÞ ¼ γk
rD−2

d2

dr2
½ð1 − fÞkrD−2k� ð45Þ

and the regularized work term becomes

Ŵ ¼
Xm
k¼0

ck

I
∂Σ−AdS

WðkÞdΩD−2; ð46Þ

WðkÞ ¼ γk
d
dr
½ð1 − fÞkrD−2k�; ð47Þ

which, as anticipated, is a surface integral. Therefore, in
Lovelock theories the generalized Smarr formula (43) holds
for static Lovelock black holes, where Ŵ is now a surface
integral. It is interesting and insightful to compare (43) with
the expression obtained in [12,13]: the authors there start
from an Hamiltonian analysis and derive an extended first
law with dynamical Lovelock couplings; integration of
such a differential law produces the Smarr formula. The
two formulas can, of course, be shown to be equivalent; see
Appendix A.
In addition, notice that the expansion (31)–(32) of the

metric at infinity still holds in the case of rotating
asymptotically flat black holes: therefore, by taking the
limit of Eq. (42) for l → ∞, we obtain the Smarr formula,

ðD − 3Þ
ðD − 2ÞM ≐ TS − ~Ω · ~J −W; ð48Þ

for such BHs, where no regularization for W is needed in
the asymptotically flat case; now, however, W is not
generically expressible as a surface integral.

IV. TOPOLOGICAL WORK TERM

As we observed, if m ¼ D
2
the last term LðmÞ of the sum

(19) is topological, and it does not contribute to the EOM;
nonetheless, the Smarr formula (43) receives contributions
from it. This is evident already in the simple training case of
the Einstein-Gauss-Bonnet theory of gravity in four dimen-
sions: the Lagrangian of the EGB theory is

L ¼ 1

16πG
ðLð1Þ þ αLð2ÞÞ; ð49Þ

Lð1Þ ¼ R; ð50Þ

Lð2Þ ¼ R2 − 4RabRab þ RabcdRabcd: ð51Þ

The second term Lð2Þ is topological in four dimensions, and
therefore the BH solutions are the same as in vacuum GR;
since they are Ricci flat, the Smarr formula becomes

M
2
≐ TS −ΩJ −W; ð52Þ
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W ¼ α

Z
Σ
Kξ · ϵ ð53Þ

where K is the Kretschmann invariant RabcdRabcd.
On the other hand, the Smarr formula in vacuum GR is

known to be

M
2
≐ T

A
4G

− ΩJ: ð54Þ

Now, Wald’s entropy S in (52) is not simply the Bekenstein
entropy, but it receives a topological contribution Stop from
the Gauss-Bonnet part of the Lagrangian,

S ¼ A
4G
þ α

2G

I
B
L
⃖

ð1Þϵ ¼ A
4G
þ 2πα

G
χ; ð55Þ

where χ is the Euler characteristic of the bifurcation
surface. For a single BH χ ¼ 2, and therefore by consis-
tency the work term (53) must be equal to

W ¼ 2ακ

G
: ð56Þ

This is indeed the case (for example, for the Schwarzschild
solution the Kretschmann scalar is K ¼ 48G2M2=r6 and,
using κ ¼ 1=2rH, Eq. (56) follows).
By generalizing the above argument, we can conclude

that, if m ¼ D
2
, the Smarr formula always contains suitable

topological terms, performing the task of compensating the
topological correction to the entropy.
In the case of spherically symmetric solutions, it is very

easy to verify explicitly how the compensation arises (see
Appendix B): indeed, it turns out that the topological
counterterms sum up to give the temperature T ¼
f0ðrHÞ=4π, times a surface integral at the bifurcation
surface, which reproduces exactly Stop. Thus, the compen-
sation occurs between terms having the very same geo-
metrical nature.
This fact suggests that Stop and its counter terms are not

genuine physical contributions, respectively, to the entropy
and to the work terms, but they are rather an artifact of
Wald’s formalism.
Indeed, the topological correction to the Bekenstein

entropy in four dimensions has been addressed by several
authors [6,14,15], arguing that it can lead to possible
violations of the generalized second law5: this again
suggests that the physical entropy should be identified
with the Bekenstein one, rather than the Wald’s one.
After all, it would be quite strange that a physical quantity
like the entropy be affected by terms in the Lagrangian not
contributing to the dynamics.

How does this reconcile with Eq. (55)? One could simply
remove by hand the topological term from Wald’s entropy,
as suggested in [15]. However, having interpreted Stop as an
artifact of the formalism, we wonder if there is a natural
window inside the formalism itself: the answer is in the
affirmative. One can make use of a further ambiguity in the
definition of Q½ξ�, in addition to those listed in [5,6]: as
noted in [9], it is possible to rescale the Noether form by a
term proportional to the volume element ϵ

⃖
of S2,

Q½ξ� → Q½ξ� þ const · ϵ
⃖
; ð57Þ

where ϵ
⃖
is defined as

ϵ
⃖
¼ 1

2
sin θdθ ∧ dϕ; ð58Þ

without affecting the validity of Wald’s construction,
because dϵ

⃖
¼ 0, and

H
B∪S∞ ϵ

⃖
¼ 0.

Therefore, in four-dimensional EGB, we can redefine

Q½ξ� → Q½ξ� − κα

4πG
χϵ
⃖
; ð59Þ

so that the modified Noether potential gives the correct
physical entropy, i.e., the Bekenstein one. The procedure
can be straightforwardly generalized to higher dimensions.
Observe that ϵ

⃖
is well defined also in the rotating case, and

our prescription is thus completely general.

V. DISCUSSION

In this work, we investigated a procedure to compute the
Smarr formula for black holes in diffeoinvariant theories of
gravity. The method makes use of Eq. (17), which is
obtained integrating and expanding Eq. (15).
To the extent of our knowledge, the above equations

have been considered before, but not in connection with the
Smarr formula: in particular, Eq. (15) was used in [6] to
show that Wald’s entropy formula can be evaluated not only
over the bifurcation surface, but over any spatial cross
section of the horizon.
We applied our procedure to the case of Lovelock black

holes, thus deriving the Smarr Fomulas (43) for static black
holes, and (48) for rotating asymptotically flat black holes.
In particular, static BHs show the preferable feature that the
work term W is a surface integral, which follows from the
simple form (31) that the line element assumes in the static
BH solutions of Lovelock gravity. The derivation cannot be
straightforwardly extended to the rotating case, because
there is no general form of the line element. It would be
interesting to investigate under which restrictions the
relative extension can be done.

5See, however, [16] in which the authors argue that such a
violation does not occur if the Gauss-Bonnet term is viewed as an
effective field theory contribution.

STEFANO LIBERATI and COSTANTINO PACILIO PHYSICAL REVIEW D 93, 084044 (2016)

084044-6



Moreover, one might wonder if the method presented
here can be further extended beyond Lovelock theories.
Indeed, one can realize that this is possible for scalar-tensor
and fðRÞ theories, by simply noticing that theorems
guarantee that in these theories black hole solutions are
coincident with those of GR under rather mild assumptions
[17,18]. A general proof of applicability of our method for
other extended theories of gravity is presently lacking, and
we hope to further investigate this issue in future work.
In the final part of the paper, we examined the behavior of

topological terms in the Lovelock Lagrangian; we argued
that the corresponding topological terms in the Smarr
formula, including the contribution Stop to the entropy, can
beviewed as unphysical artifacts of the formalism;motivated
by this, we proposed a modified prescription for the Noether
charge, which incorporates topological effects and reconciles
the results with the physical quantities.
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APPENDIX A: EQUIVALENCE BETWEEN THE
LAGRANGIAN AND THE HAMILTONIAN

SMARR FORMULAS

In this appendix, we show the equivalence between
the Smarr formula (43) for static Lovelock black holes
and the one obtained in Refs. [12,13] by means of an
Hamiltonian analysis.
Let us define the following quantities for later

convenience:

σn ¼
Xm
k¼0

ð−1Þkþnk!
ðk − nÞ!l2ðk−1Þ

ðD − 2Þ!bk
ðD − 2k − 1Þ! ðA1Þ

γn ¼
Xm
k¼0

ð−1Þkþnk!
ðk − nÞ!l2ðk−1Þ

ðD − 2Þ!bk
ðD − 2kÞ! ; ðA2Þ

where the bk are related to the Lovelock couplings ck
by bk ¼ 16πGck.
The strategy of [12,13] consists of first deriving an

extended first law for dynamical perturbations around static
Lovelock black hole solutions, in which also the Lovelock
coupling are allowed to vary:

δM ¼ TδS −
1

16πG

Xm
k¼0

δbkΨðkÞ: ðA3Þ

Then, regarding the mass as an homogeneous function of S
and the bk, one can use Euler’s theorem to extract the Smarr
formula:

ðD − 3ÞM ¼ ðD − 2ÞTS −
1

8πG

Xm
k¼0

bkðk − 1ÞΨðkÞ

¼ ðD − 2ÞTS −Ψ: ðA4Þ

The second term on the rhs can be split into three
contributions:

Ψ ¼ Θþ Bþ TS0; ðA5Þ

where B and S0 are given by

B ¼ 2
σ2
σ1

M ðA6Þ

S0 ¼ ΩD−2

2G

Xm
k¼0

kðk − 1Þ
r2k−DH

ðD − 2Þ!bk
ðD − 2kÞ! ; ðA7Þ

while Θ is defined as

Θ ¼ 1

8πG

Xm
k¼0
ðk − 1Þbk

I
∂Σ−AdS

ΘðkÞdΩD−2; ðA8Þ

ΘðkÞ ¼ ðD − 2Þ!
ðD − 2k − 1Þ! ð1 − fÞkrD−2k−1: ðA9Þ

We are going to manipulate Eq. (43) and show its
equivalence to Eq. (A4). First, tracing (20) and solving
for Lð1Þ, we obtain the following on-shell equivalent
expression for the Lovelock Lagrangian,

L ≐ 1

8πG

Xm
k¼0

bk
ðk − 1Þ
ðD − 2ÞL

ðkÞ; ðA10Þ

which is the analogous of Eq. (27) for m ¼ 1. The work
term Ŵ is, thus, equivalent to

Ŵ ≐ 1

8πG

Xm
k¼0

ðk − 1Þ
ðD − 2Þ bk

I
∂Σ−AdS

WðkÞdΩD−2: ðA11Þ

With the help of (47), one can easily show that

ðD − 2ÞŴ ≐ Θþ TS0

−
ΩD−2

8πG

Xm
k¼0
ð−1Þkþ1 kðk − 1Þ

l2ðk−1Þ
ðD − 2Þ!bk
ðD − 2kÞ!

× ðD − 2k − 1Þμ: ðA12Þ

Moreover,
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�
1 −

γ

σ

�
M ¼

�
1 −

γ1
σ1

�
M

¼ ðD − 3Þ
ðD − 2ÞM −

ΩD−2

16πG

�
σ1

ðD − 2Þ − γ1

�
μ

¼ ðD − 3Þ
ðD − 2ÞM −

ΩD−2

8πGðD − 2Þ

×
Xm
k¼0
ð−1Þkþ1 kðk − 1Þ

l2ðk−1Þ
ðD − 2Þ!bk
ðD − 2kÞ! μ:

ðA13Þ
Combining (A12) with (A13), we get

ðD − 2Þ
�
1 −

γ

σ

�
M þ ðD − 2ÞŴ

≐ ðD − 3ÞM þ Θþ TS0 þ ΩD−2

8πG
σ2μ

¼ ðD − 3ÞM þ Θþ TS0 þ 2
σ2
σ1

M

¼ ðD − 3ÞM þΨ: ðA14Þ
Inserting (A14) into (43), the desired Eq. (A4) follows.

APPENDIX B: COMPENSATION OF THE
TOPOLOGICAL TERMS IN THE

SMARR FORMULA

Consider the Lovelock Lagrangian in even-dimension D
and with m≡ D

2
, such that LðmÞ is topological and doesn’t

contribute to the EOM; nevertheless, the Smarr formula (43)
contains three different topological contributions: the first
is the topological entropy component

Stop ≔ cm
dS
dcm
¼ 4πmcm

I
B
L
⃖

ðm−1Þϵ: ðB1Þ

Given that

R 
cd
ab ¼

δbdac
r2H

; ðB2Þ

where δbdac is the antisymmetrized delta on the (D − 2)-
dimensional bifurcation surface, Stop becomes

Stop ≡ 2πD! cD=2ΩD−2

ðD − 1Þ : ðB3Þ

The other two contributions, as anticipated before in
Sec. IV, compensate exactly TStop. Let us show how the
compensation occurs. The second contribution is the
topological part of Ŵ,

Ŵtop ≔ cm
dŴ
dcm
¼ cD=2γD=2

I
∂Σ−AdS

d
dr
ð1 − fÞD=2dΩD−2

¼ D!cD=2

2ðD − 1Þ
I
B
ð1 − fÞD2−1f0ðrÞdΩD−2

−
D!cD=2

2ðD − 1Þ
I
S∞−AdS

ð1 − fÞD2−1f0ðrÞdΩD−2: ðB4Þ

Finally, the last contribution comes from the lhs
of (43):

Mtop ≔ cm
d

dcm

�
γ

σ
M

�
¼ð−1Þ

D
2
−1D! cD=2 μΩD−2

2ðD−1ÞlD−2 : ðB5Þ

Using (32), a direct calculation shows that the second term
in (B4) cancels exactly (B5). Therefore, TStop is ultimately
compensated by the first term on the rhs of (B4): this
consists of a surface integral over the bifurcation surface B;
moreover, using fðrHÞ ¼ 0 and T ¼ f0ðrHÞ=4π, it is
immediate to see that it factorizes precisely as T times Stop.
This shows that the topological terms in the Smarr

formula compensate with the same geometrical structure.
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