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Energetic causal sets are causal sets endowed by a flow of energy-momentum between causally related
events. These incorporate a novel mechanism for the emergence of space-time from causal relations
[M. Cortês and L. Smolin, Phys. Rev. D 90, 084007 (2014); Phys. Rev. D 90, 044035 (2014)]. Here we
construct a spin foam model which is also an energetic causal set model. This model is closely related to the
model introduced in parallel by Wolfgang Wieland in [Classical Quantum Gravity 32, 015016 (2015)].
What makes a spin foam model also an energetic causal set is Wieland’s identification of new degrees of
freedom analogous to momenta, conserved at events (or four-simplices), whose norms are not mass, but the
volume of tetrahedra. This realizes the torsion constraints, which are missing in previous spin foam models,
and are needed to relate the connection dynamics to those of the metric, as in general relativity. This
identification makes it possible to apply the new mechanism for the emergence of space-time to a spin foam
model. Our formulation also makes use of Markopoulou’s causal formulation of spin foams [arXiv:gr-qc/
9704013]. These are generated by evolving spin networks with dual Pachner moves. This endows the spin
foam history with causal structure given by a partial ordering of the events which are dual to four-simplices.
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I. INTRODUCTION

The notions of causality and causal structure are central
to special and general relativity, yet it is controversial
whether they play a fundamental role in quantum gravity.
They play a prominent role in some approaches to quantum
gravity, including causal sets, causal dynamical triangu-
lations, relative locality and twistor theory—to mention a
disparate group. Most studies of spin foam models, on
the other hand, deemphasize the role of causal structure.
However there are exceptions. In [1] spin foams generated
by evolving a dual spin network with Pachner moves were
given a causal structure by establishing a partial order
between events. In [2] a more global construction was
proposed, similar to that explored in causal dynamical
triangulation models. Both these formulations, by provid-
ing a framework in which dual spin networks were evolved
causally, married loop quantum gravity to causal set
models.1

In [5,6] we introduced a version of causal sets in which
events are endowed with momentum and energy trans-
mitted along causal links, and playing a role in establishing
the causal structure. We call these energetic causal sets.
One feature they have which distinguish them from bare
causal sets is that they incorporate a novel mechanism for
the emergence of a classical space-time in the semiclassical
limit [5,6]. In this mechanism, space-time coordinates of

events, which are absent when the model is first formulated,
arise as lagrange multipliers used in the expression of
the constraints that enforce the conservation of energy-
momenta at events.
In this paper we establish that a new kind of spin foam

model, introduced by Wieland [7], can be understood as an
energetic causal set model, with additional structure. We
achieve this correspondence in three steps. The first is to
build a spin foam as a causally evolved spin network
following [1]. This construction is reviewed in the next
section. The second step is to add holonomy and flux
variables appropriate to the dynamics of loop quantum
gravity. The third step is to follow Wieland [7] in adding to
the spin foam model a conservation law for a new kind of
four-momentum, assigned to tetrahedra. The four-momenta
of a tetrahedron is normal to it, while its norm is propor-
tional to the tetrahedra’s volume. These momenta are
conserved at events, which are dual to four-simplices,
and the conservation enforces the closure of the four-
simplex, as made of its five constituent tetrahedra.
As shown by Wieland [7], this conservation law

realizes the imposition of the constraint that the torsion
of the space-time connection vanishes. This is necessary if
the dynamical connection is to carry information about the
metric and frame fields, necessary to turn the first order
dynamic of constrained BF theories into the metric
dynamics of general relativity.
This conservation law also makes possible the identi-

fication of the causal set model with an energetic causal set.
This is the main claim of this paper. This we expect will be

1Other ways to impose causal structures on spin foam models
were studied in [3]. Another related approach is described in [4].
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useful as it gives a new route to the emergence of classical
space-time and general relativity from the semiclassical
limit of a spin foam model.
The spin foam model we describe here is then very

closely related to that presented by Wieland in [7]. The
main difference is that we work with an action that is purely
discrete, whereas Wieland uses an action continuous in a
time parameter that parametrizes the edges of faces of the
simplicial complex. This formulation realizes a beautiful
Hamiltonian structure. For some cases, the continuous of
the action, and the related symplectic structures, may be
derived as a limit of our discrete action, along the lines of
the derivation of the free particle action from the discrete
action in energetic causal sets in [5,6].
In this paper we aim to be pedagogical and so we assume

no prior knowledge of causal sets or spin foam models.
Indeed, the technical complexities of spin foam models can
be postponed until the last stage of the construction. In the
next section we recall the construction of causally evolving
dual spin networks from [1]. In Sec. III we add momenta
and turn these into energetic causal sets. In Sec. III we add
additional degrees of freedom that code geometrical infor-
mation and so turn the model into a spin-network model,
closely related to that of [7]. It is at this last step that the
identification of mass with volume is made.

II. RECALLING DUAL SPIN-NETWORK
CAUSAL EVOLUTION

The marriage of loop quantum gravity and causal sets,
leading to a formulation of causal spin foams, was
proposed by Markopoulou [1]. We’ll describe this first
for 2þ 1D, where it is simpler to analyze, then extend
to 3þ 1D.

A. 2þ 1D spin networks

In this section we introduce the dynamical triangulations
framework, building from the 2þ 1D case for ease of
visualization by the nonexpert reader, and progressing the
3þ 1D case from there. Note that the aim is not to develop
a full working model of causal dynamical triangulations for
the 2þ 1D. This is merely a stepping stone for the 3þ 1D
case which will be obtained by increasing the dimension of
each of the structures obtained here.
The reader interested in details of this kind of con-

struction in 2þ 1 dimensions can consult [8] where it is
worked out in detail.

(i) Causally evolving spin networks are constructed
from evolving states by one of a set of local
evolution moves. In 2þ 1D a state is represented
by a triangulation of a spacelike surface. An evo-
lution move is a discrete time step called Pachner
move. Each Pachner move performed on the spatial
slicing corresponds to an event.

(ii) Each triangle in the spatial triangulation represents
a locally flat piece of 2D space. The triangulation
is dual to a three-valent spin network Γi embedded
in a topological two manifold Σ. The center of each
triangle is dual to a node in the spin network, and
labeled by intertwiners. The sides of each triangle
are dual to edges in the spin network and labeled by
SOð2; 1Þ spins.

(iii) From this triangulation we evolve to the next state by
adding tetrahedra on top of it. There are different
kids of moves, each represented by a way to cover
one, two or three adjacent triangles with the faces of
the tetrahedra. For example, a so-called 1 → 3 move
is made by adding one more point to the future of a
given triangle, which creates a tetrahedron. The
initial triangle makes up the bottom (i.e. past) side
of the tetrahedra. This triangle is now replaced by
the three new triangles making up the top, or future,
side of the tetrahedron. This tetrahedron represents
the Pachner move and so generates the time step.

The tetrahedron is formed by 4 glued triangles,
part of these in the current spatial slice, the past, and
part of these in the new spatial slice, the future.
Splitting the 4 triangles in the tetrahedron between
the past and future slices gives origin to different
Pachner moves, and in 2þ 1D there are different 3
possibilities

(iv) In 2þ 1D the available Pachner moves are 1 → 3
triangles, 2 → 2, and 3 → 1. If the tetrahedron is
placed on top of one triangle in the current triangu-
lation then that triangle is in the past slice and the
three remaining triangles become part of the future
triangulation, forming a 1 → 3 move, which we
show in Fig. 1 in the dual spin foam/ dynamical
triangulation representation. If it is placed on top of
two adjacent triangles in the current triangulation,
then the two complementary triangles in the tetra-
hedron become part of the new representation,
forming a 2 → 2 move, shown in Fig. 2. Finally,
if it is placed on top of three adjacent triangles in
the existing triangulation, the remaining triangle
becomes part of the new triangulation forming a
3 → 1 move. This is just the reverse of the 1 → 3

of Fig. 1.
(v) The Pachner moves are repeated many times over,

creating a causal spin foam SF. In the language
of energetic causal sets (ECS) introduced in Sec. III
the Pachner moves represent events, VI . Each
tetrahedron VI is an event.

(vi) The resulting three dimensional simplicial complex
is made from the events, which have the structure
of a causal set. Two events VI and VJ have an
immediate causal link, LIJ if a triangle in the future
set of I is also in the past set of J. Causal links
between events are denoted edges. Edges represent
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timelike evolution and have a unique orientation
towards the future.2 The causal link LIJ can then
contain several triangles, making a chain. We say
event K is to the future of event I, J > I if there is a
chain of future pointing causal links beginning on I
and ending on K.

(vii) A Pachner move represents the transition amplitude
for an event to take place. This includes the gen-
eration of spins and intertwiners for the new edges
and nodes introduced in the evolution move, as well
as a choice of which of the available Pachner moves
takes place. This issue of identifying and attributing
transition amplitudes to all the available Pachner
moves will be addressed in future work, and is
outside of the scope of the current work, which is
purely quantum mechanical.

(viii) The edges and faces of the triangles are all spacelike.
Dual to each triangle, T is a timelike link, lτ
connecting two events which contain T as part of
the future or past set.

(ix) The causal network may include multiple timelike
links between two causally related events.

(x) Except for the initial triangulation, every triangle is
uniquely in the future set of one tetrahedron. Except
for the final triangulation, every triangle is uniquely
in the past set of one tetrahedron.

B. 3þ 1D spin networks

The 3þ 1D construction is obtained by increasing the
dimension of each of the structures in 2þ 1D. A time slice
is now a 3D surface triangulated by tetrahedra (instead of
the triangles in the 2Dþ 1 case).
The gauge group is also increased to the Lorentz

group, SLð2; CÞ.
Evolution moves, or Pachner moves are now represented

by 4-simplexes. 4-simplexes are simply tetrahedra lifted up
to four dimensions by adding a point in the extra dimension
and drawing an edge to it from each node of the original
tetrahedron. The difficulty of visualizing the 3þ 1D model
lies in the fact that we cannot draw tetrahedra in 4
dimensions but we can represent its projection in a 3D
volume which, by analogy with the 2D projection of a 3D
tetrahedron, is a tetrahedron composed of 4 internal
tetrahedra composing 5 tetrahedra in total, see Fig. 3.
4-simplexes in 3þ 1D have the same role as tetrahedra

in 2þ 1D i.e. they represent Pachner or evolution moves.
A 4-simplex takes one or more tetrahedra on a past space
slice in 3D and evolve it to new tetrahedra in the future 3D
slice. A four-simplex is composed of 5 tetrahedra; just as
before we decide which Pachner move by selecting a few
adjacent tetrahedra of the existing space foliation, placing

FIG. 1. 1 → 3 Pachner moves in 2þ 1D, in the dual spin-
network/dynamical triangulation representation. (Upper panel)
Spin-network move: one node becomes three nodes. (Middle
panel) 1 → 3 move in triangulations: the lower triangle becomes
the upper three triangles. (Bottom panel) View from top: both
triangulation and dual spin network superposed.

FIG. 2. 2 → 2 Pachner moves in 2þ 1D, in the dual spin-
network/dynamical triangulation representation.

2Note that this is different from the model of [7] where there is
no causal ordering.
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the 4-simplex on top of those, erasing the existing tetra-
hedra and replacing them by the remaining tetrahedra in the
4-simplex. The center of the tetrahedra is dual to a node and
each triangle in the tetrahedra dual to links making up the
four-valent spin network . The possible Pachner moves3 are
then m → 5 −m, where 1 ≤ m ≤ 4.

III. REVIEW OF ENERGETIC CAUSAL SETS

An energetic causal set is defined [5,6] as a causal set
with additional intrinsic momenta labels. These include
Dþ 1 dimensional momenta pa assigned to links, which
are conserved on events. In fact there are two momenta
associated to each link, I < J, an outgoing momenta from
I, pIJ

a and an incoming momenta to J, labeled, ~pIJ
a .

The conjugate quantities to the pa are space-time
coordinates xa on links, these arise as lagrange multipliers
which enforce constraints that ensure the conservation
and flow of momenta through the causal set. In particular,
there are lagrange multipliers za on events; these define an
embedding of the events into a Dþ 1 dimensional
Lorentzian space-time which emerges in the semiclassical
limit.
In [5,6] we proposed an action for an energetic casual set.

S0 ¼
X
I

Za
IP

I
a þ

X
ðI;KÞ

ðXaI
K RK

aI þN K
I C

I
K þ ~N K

I
~CIKÞ þ Sint

ð1Þ

where the momenta are subject to three sets of constraints.
(1) The first term in Eq. (1) results from the conserva-

tion law associated with each event:

PI
a ¼

X
K

pI
aK −

X
L

~pL
aI ¼ 0 ð2Þ

where the sum over K is over all events I is
connected to in the past and the sum over L is over
all events I is connected to in the future.

(2) The second term in Eq. (1) comes from the redshifts
constraint associated to each immediate causal link,

RK
aI ¼ ~pK

aI −UKb
a pK

bI ¼ 0 ð3Þ

where UKb
a ∈ SOðd − 1; 1Þ is a parallel transport

operator representing the timelike components of
the space-time connection.

(3) The third and fourth terms result from the energy-
momentum relations for relativistic particles, two for
each immediate link.

CIK ¼ 1

2
ηabpI

aKp
I
bK þm2 ¼ 0;

~CIK ¼ 1

2
ηabqIaKq

I
bK þm2 ¼ 0: ð4Þ

The equations of motion include

Za
I −Ua

bZ
b
K ¼ paI

K ð ~N K
I þN K

I Þ ð5Þ

which can be interpreted as situating the events at points in
an emergent space-time, separated by causal intervals
proportional to the four-momentum propagated between
them, followed by rotation by a parallel transport operator.
An interesting feature is that if we take Sint ¼ 0, as we

did in [5,6], the action is a pure linear combination of
constraints. However we sill see below that we need a
nonvanishing Sint to represent a spin foam model.
The usual symplectic structure

Z
xa _pads ð6Þ

is gotten by considering a chain of events with each having
a single input and a single output, as shown in [5,6].
We also gave a twistorial formulation of it for the null

case when the masses vanish. We represent null pIJ
a by a

two component spinor πIJA0 by the correspondence

pIJ
a ↔ πIJA0 π̄IJA ð7Þ

i.e. pa ¼ σA
0A

a πA0 π̄A for 3þ 1 dimensional Pauli matrices,
σA

0A
a .
qIJa are similarly represented by spinors χIJA .

qa ↔ χIJA0 χ̄IJA ð8Þ

The redshift constraints Eq. (3) are now

RK
AI ¼ π̄KAI −UB

Aχ̄
K
BI ¼ 0: ð9Þ

FIG. 3. 3 dimensional projection of 4-simplex. One large
tetrahedron composed of 5 tetrahedra, 4 inner tetrahedra plus
the large one formed by all others.

3Generically a Pachner move in nþ 1 dimensions is generated
by a nþ 1-simplex placed on top of m ¼ 1;…; n existing n-
simplices. The remaining nþ 1 −m n-simplices become part of
the new triangulation.

MARINA CORTÊS and LEE SMOLIN PHYSICAL REVIEW D 93, 084039 (2016)

084039-4



The conservation law, Eq. (2) at each event is

PI
AA0 ¼

X
K

π̄IAKπ
I
A0K −

X
L

χ̄LAIχ
L
A0I ¼ 0: ð10Þ

We again form an action only the energy-momentum
relation constraints are not present because they are solved
for

Stwistor ¼
X
I

zAA
0

I PI
AA0 þ

X
ðI;KÞ

λAIK RK
AI þ ΩK

I D
I
K ð11Þ

where there is a new constraint, fixing the helicity,

D ¼ ωAπ̄A þ ω̄A0
πA0 − 2S: ð12Þ

Let us consider the case that the redshift constraint is
trivial, so that UB

A ¼ IdBA. In that case, we can solve the
redshift constraints and replace χ̄KBI by π̄KAI. The action
reduces to

Stwistor ¼
X
I

zAA
0

I PI
AA0 þ

X
ðI;KÞ

þ ΩK
I D

I
K: ð13Þ

The variation of the action by π̄KAI yields the twistor
incidence relation

ΩI
Kω

AI
K ¼ zAA

0
I π̄IA0K: ð14Þ

IV. WIELAND’S TWISTORIAL SPIN
FOAM ACTION

We can now see that Wieland’s twistorial action for spin
foams [7,9] is very similar. We construct a 3þ 1 dimen-
sional causal dual triangulation following Markopoulou’s
prescription described in Sec. II. Following Wieland’s
work we endow the elements of the dual triangulation,
T, with the following degrees of freedom. We begin with
the original spin-network degrees of freedom, which are
holonomies and fluxes assigned to edges of graphs
embedded in spatial slices. Consider a link γ of a spin
network, Γ, which joins two nodes, which we may call γi
and γf. To γ we can associate an initial flux Πγ ∈ slð2; CÞ,
and a final flux, ~Πγ ∈ slð2; CÞ. Conjugate to these are
holonomy, gτ ∈ SLð2; CÞ.
Now, dual to γ, in the triangulation of a spatial slice, is a

triangle τ. In the spatial slice the triangle bounds two
tetrahedra, these are each dual to one of the two nodes that γ
connects. (Note that in the four dimensional simplicial
complex there will be in general more tetrahedra bounding
a given triangle.) Therefore, for each triangle within a
spatial slice, we have an initial flux Πτ ∈ slð2; CÞ, and a
final flux, ~Πτ ∈ slð2; CÞ. These represent the area of the
triangle as seen from the frame of reference of each
tetrahedra that bounds it.

For building spacelike parallel transport we note that, for
each triangle in the tetrahedron, τ ∈ T, dual in the 3-surface
to spacelike link, there is an holonomy, gτ ∈ SLð2; CÞ.
They are related to the initial and final fluxes by the
conservation constraint,

Rτ
ab ¼ ~Πτ

ab − ðg−1τ · Πτ · gτÞab ¼ 0: ð15Þ

Given that the triangles and the links dual to them are
spacelike, g denotes spacelike components of the space-
time connection.
Similarly, each tetrahedron T has associated to it two

timelike four-momentum, pT
a and ~pT

a which are vectors in
an internal momentum space, P. They correspond to total
momenta incoming to, and total momenta outgoing from
the tetrahedron from past and to future events. They are
parallel to the normals to the tetrahedra as seen in the frame
of reference associated with the two four-simplices that
bound it, from the past and from the future.
For timelike parallel transport, or redshifts, we point out

that the pT
a and ~pT

a are also related by a parallel transport
constraint

RT
a ¼ ~pa −UðTÞbapb ¼ 0 ð16Þ

where UðTÞ is an independent degree of freedom which
is, in this case, the parallel transport of the space-time
connection in the timelike direction across the tetrahedron,
coming from the event associated with the four-simplex
that bounds it from the past, towards the event dual to the
four-simplex that bounds it to the future. In the case that we
can pick UðTÞ ¼ I, we can solve RT

a ¼ 0 and equate
~pa ¼ pa. The four-momenta and fluxes are related by three
constraints: the simplicity constraint, ensuring geometricity
of the fluxes,

Sb
τ ¼ pT

aΠab
τ ¼ 0; ð17Þ

the volume shell constraint, establishing equivalence
between mass, in the energetic causal set language, and
volume,

CT ¼ papbη
ab þ V2

TðΠÞ ¼ 0 ð18Þ

where internal indices are raised and lowered by ηab, which
is a metric on the internal momentum space and VτðΠÞ is
the volume of the tetrahedron.
We will see below why it is interesting to regard the

volume to be expressed analogously to a four-momentum.4

4We note that this is a mathematical analogy, we are treating
the volume in the same way that momentum was treated in the
causal set models [5,6] but beyond this analogy pa is not intended
to be a momentum. Hence it has dimensions of volume and there
is no constant of proportionality turning a volume into an energy.
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There is also the Gauss’s law constraint, ensuring
geometric closure of the tetrahedra

Gi
T ¼

X
τ∈T

Πi
τ ¼ 0 ð19Þ

whereΠiðτÞ is the dual, in the three-space orthogonal to pa,
of the fluxΠabðτÞ. The three volume of a tetrahedron, T is a
function of the fluxes across any three of its four triangles.

VT ¼
ffiffiffi
2

p

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jϵijkΠiðτ1ÞΠjðτ2ÞΠkðτ3Þj

q
ð20Þ

The spin-network basis we used to represent the initial state
is related to the SLð2; CÞ connection representation in two
steps. First one transforms from the basis of SUð2Þ spins, j
to the basis of SLð2; CÞ representations, ðρ; kÞ by the map

j → ðρ ¼ βj; k ¼ jÞ ð21Þ
Then one performs a nonlinear Fourier transform

Ψðρ; kÞ → ~ΨðgÞ ¼
X
k

Z
dρTðρ;kÞðgÞΨðρ; kÞ: ð22Þ

Putting the two steps together we have

~ΨðgÞ ¼
X
k

Tðβk;kÞðgÞΨðβk; kÞ: ð23Þ

Now, one solves the constraints (15) in terms of two
twistors,

Tα ¼ ðωA; π̄A0 Þ; ~Tα ¼ ð ~ωA; ~̄πA0 Þ: ð24Þ
These are related to the holonomy and flux variables on the
edge (or dual tetrahedra) by

ΠAB ¼ ωðAπBÞ ð25Þ

~ΠAB ¼ ~ωðA ~πBÞ ð26Þ

gBA ¼ ωA ~π
B − πA ~ω

Bffiffiffiffiffiffiffiffiffiffiffi
ωAπ

A
p ffiffiffiffiffiffiffiffiffiffiffi

~ωB ~π
B

p : ð27Þ

These satisfy Poisson brackets

fωτ
A; π

B
τ0g ¼ δBAδττ0 ð28Þ

and similarly for the tilded twistor. The simplicity con-
straint (17) translates into a twisted helicity condition

V ¼ 1

β þ ι
ðωAπ

A þ ~ωA ~π
AÞ þ cc ¼ 0 ð29Þ

and a linear constraint

I ¼ pAA0
ωAπ̄A0 ¼ 0: ð30Þ

The condition det gBA ¼ 1 requires an area matching con-
straint on each triangle

Aτ ¼ ~πτA ~ω
A
τ − πτAω

A
τ ¼ 0: ð31Þ

Finally, the Gauss’s law constraint, Eq. (19), translates into

GT
AB ¼

X
τ∈T

ωðAπBÞ ¼ 0: ð32Þ

We can now write the action for a causal spin foam as an
example of an energetic causal set. Note that the sum over
events in the first term of Eq. (1) translates into a sum over
four-simplices, I, while the the sum over causal links in the
second term translates into a sum over tetrahedra, T. There
is also also sum over triangles ensuring the associated
redshift and simplicity constraints, Eqs. (15) and (17),

Scsf ¼
X
I

Za
IP

I
a þ

X
T

ðXa
TR

T
a þN TCT þ ~N T ~CT þ Ai

TG
T
i Þ

þ
X
τ

ðYab
τ Rτ

ab þ uτaSa
τ Þ þ

X
wedges

Swedge ð33Þ

where the constraint that energy and momentum are
conserved at events, PI

a ¼ 0 becomes the condition that
volume is relativistically preserved in Pachner moves, i.e. a
sum over all tetrahedra, T in the four-simplex I,

PI
a ¼

X
T∈past set of I

pT
a −

X
T∈future set of I

pT
a ¼ 0: ð34Þ

The action Eq. (33) is a sum of constraints, plus the
wedge term, Swedge. Wedges divide the face in triangles for
summation and are constructed as follows, see Fig. 4.
A wedge is defined by selection of a triangle, τ and two

tetrahedra it bounds within a given four-simplex, VI. Let us

FIG. 4. Wedge integration in spin foam face. Figure courtesy of
Wolfgang Wieland.
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call the two tetrahedra bounding τ, by T and ~T. There will
be a spin-network link, lT joining a point, pðτÞ, on τ to the
point pðTÞ dual to, and within, T. There is another link, l ~T
joining the same point, pðτÞ on τ to the point pð ~TÞ dual to,
and within, ~T. Now dual to T is a causal edge, eðTÞ, joining
pðTÞ to the point dual to and inside the four-simplex, V.
Similarly the edge, eð ~TÞ, joins pð ~TÞ to pðVÞ. The wedge is
then the closed loop

wðτ; T; ~T; VÞ ¼ l−1T ∘l ~T∘eð ~TÞ∘eðTÞ−1: ð35Þ

The holonomy around w is given by

HðwÞ ¼ h½eð ~TÞ�∘h½eðTÞ−1�∘gðlÞ: ð36Þ

The wedge action can then be taken from Eq. (26) in
Wieland’s formulation of Hamiltonian Spin Foams [9]:

Swedge ¼ −
1

2
Mwðh½eð ~TÞ�h½eðTÞ−1�ÞABðωA ~̄πB þ π̄A ~ωBÞ þ cc

ð37Þ

where

Mω ¼ 1

2

� ffiffiffiffiffiffi
πω

p
ffiffiffiffiffiffiffi
~π ~ω

p þ
ffiffiffiffiffiffiffi
~π ~ω

p
ffiffiffiffiffiffi
πω

p
�
: ð38Þ

The spin foam partition function is then

Z ¼
Z Y

VI

dZI

Y
T

dXa
TdNTd ~NTdpT

ad ~pT
adAi

T

×
Y
τ

dYab
τ duτadΠτdgτA0eιS

csf
: ð39Þ

The theory can be expressed in terms of twistor varia-
bles, in which case the action is

Sctf ¼
X
I

Za
IP

I
aþ

X
T

ðXa
TR

T
a þN TCT þ ~N T ~CT þAAB

T GT
ABÞ

þ
X
τ

ðΩVþρIþατAτÞ ð40Þ

and the partition function is

Z ¼
Z Y

VI

dZI

Y
T

dXa
TdNTd ~NTdpT

ad ~pT
adAAB

T

×
Y
τ

dΩτdρτdωA
τ dπτA0dατeιS

ctf
: ð41Þ

We can then apply to these spin foam models the
mechanism for embedding a causal set into a Lorentzian
space-time the method we developed for energetic casual
sets [5,6]. Varying the action Scsf, Eq. (33), by the
momenta we find that the equations of motion fix intervals

between the Za
I , which transmute from lagrange multipliers

to coordinates of the events dual to the four-simplices. If I
and J are two events causally linked through a tetrahedron,
T, we have

Za
J −UðTÞabZb

I ¼ NTpa
T þ

X
τ∈T

uτbΠab
τ : ð42Þ

Like Eq. (5), this can be interpreted as situating the
events of the causal spin foam at points of an emergent four
manifold coordinated by the Za

I . But this time the relation
between the two causally related events is more complex,
the momenta are timelike rather than null and the other
factors may be indicative of curvature.
Note that, because in this model time is discrete, initially

there can be no notion of time derivative, and consequently
the action does not feature the usual symplectic terms.
However this is recovered in the limit of a chain of events
with a large number of moves, and in that limit time
becomes continuous, as we discussed around Eq. (6). This
is explained in more detail in [7,9] and [5,6]. In particular
this is Eq. (12) of [7], which may be compared with
Eq. (18) of [5].
Note also that, on any single edge we can choose to go to

the analogue of A0 ¼ 0 gauge, which is U ¼ I.
Then ~pa ¼ pa, the redshift constraints can be dropped

and the twistorial action simplifies to

Sctf ¼
X
I

Za
IP

I
a þ

X
T

ðN TCT þ AAB
T GT

ABÞ

þ
X
τ

ðΩV þ ρI þ ατAτÞ ð43Þ

while the partition function becomes

Z ¼
Z Y

VI

dZI

Y
T

dNTdpT
aAAB

T

Y
τ

dΩτdρτdωA
τ dπτA0dατeιS

ctf
:

ð44Þ

The equation of motion from varying pT
a is

Za
Tþ − Za

T− ¼ NTpa
T þ σaAA0

X
τ∈T

ρτω
A
τ π̄

A0
τ ð45Þ

where T� are the four-simplices to the future and past of the
tetrahedron T.
There are equations of motion from varying the πA

0
’s

and ωA’s.

ω̄A0
τ

�
ατ þ

Ωτ

β þ ι

�
þ AA0B0

τ ω̄τ
B0

þ
X
Tjτ∈T

�
ρτnAA

0
T ωA þ 2NVT

∂V
∂πA0

τ

�
¼ 0: ð46Þ
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Note that in terms of twistors

VT ¼
ffiffiffi
2

p

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðωAπ̄AÞðτ1ÞðωAπ̄AÞðτ2ÞðωAπ̄AÞðτ3Þj

q
: ð47Þ

However, the U ¼ I gauge cannot be picked simulta-
neously on all the causal edges dual to tetrahedra, because
there are in general multiple ways to connect an event to
one in its causal future by future pointing sequences of
causal edges. By going forward on one such sequence and
returning to the starting point by going backwards along
another one forms closed loops, to which are associated
gauge covariant holonomies. These code information about
the curvature of the space-time geometry.

V. CONCLUSION

In a work appearing in parallel, Wieland [7] introduces a
spin foam model which associates energy-momentum
variables to the volume of tetrahedra in the spin network.
These momenta are conserved in evolution moves, thereby
introducing energy-momenta as fundamental variables of
the model. Here we have shown that a closely related model
can be associated to the energetic causal set we proposed in
[5,6] thus establishing a correspondence between this spin
foam model and energetic causal sets. This endows the spin
foam with a causal structure of its nodes and allows for
the mechanism whereby space-time emerges in ECS to be
considered also in the context of spin foams. This work
suggests a new strategy for deriving a classical space-time
from the semiclassical limit of the spin foam model, which
makes use of the dynamically generated causal structure
coded into every quantum history.

We note that, the usual way to attain the semiclassical
regime, the large spin-Regge limit, does not refer explicitly
to the causal structure. Furthermore it is well understood
for only one large four-simplex, and it has often been
commented that this is not what one actually wants for the
semiclassical limit of quantum gravity path integrals; one
would also like to understand a coarse graining of many
small four-simplices, with small values of the spin. Our
approach may give a way to that goal.
There remains much to do, this paper supplements

Wieland’s pioneering work [7] which launches a new
direction of research in spin foam models. We may hope
that the new approach to a semiclassical limit, which the
relationship with energetic causal sets makes possible, will
aid in the development of methods of coarse graining which
do not rely on the large spin limit, and can be applied to
histories with many four-simplices. But this is at this point a
formidable goal. One first step towards it may be to study
the 2þ 1 case as developed by Wieland in [8].
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