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We study the ultraviolet stability of gravity-matter systems for general numbers of minimally coupled
scalars and fermions. This is done within the functional renormalization group setup put forward in
[N. Christiansen, B. Knorr, J. Meibohm, J. M. Pawlowski, and M. Reichert, Phys. Rev. D 92, 121501
(2015).] for pure gravity. It includes full dynamical propagators and a genuine dynamical Newton’s
coupling, which is extracted from the graviton three-point function. We find ultraviolet stability of general
gravity-fermion systems. Gravity-scalar systems are also found to be ultraviolet stable within validity
bounds for the chosen generic class of regulators, based on the size of the anomalous dimension.
Remarkably, the ultraviolet fixed points for the dynamical couplings are found to be significantly different
from those of their associated background counterparts, once matter fields are included. In summary, the
asymptotic safety scenario does not put constraints on the matter content of the theory within the validity
bounds for the chosen generic class of regulators.
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I. INTRODUCTION

The asymptotic safety scenario proposed by Weinberg
[1] almost 40 years ago has received growing attention in
the last decades. It provides a promising route towards the
formulation of quantum gravity as a nonperturbatively
renormalizable quantum field theory of the metric. In terms
of the renormalization group, the asymptotic safety sce-
nario conjectures the existence of a nontrivial ultraviolet
(UV) fixed point of the renormalization group flow.
The development of modern functional renormalization

group (FRG) techniques and their application to quantum
gravity [2,3] has led to strong evidence for the nontrivial
UV fixed point for pure gravity. It was first found in basic
Einstein-Hilbert approximations [2,4,5] and later con-
firmed in more elaborate truncations [6–24], for reviews
see [25–28].
One of the most interesting open physics questions

concerns the UV completions of the Standard Model of
particle physics. This requires the investigation of the UV
stability of interacting gravity-matter systems, and in
particular, those with large numbers of matter fields. The
first interesting results and developments in this direction
have been obtained in [29–36]. An interacting fixed point in
gravity-matter systems requires a nontrivial interplay of the
fluctuation dynamics of all involved fields. In other theories
it is well known, that the inclusion of additional fields may
change the nature of the theory. For example, in QCD with
many quark flavors asymptotic freedom is lost, thus
rendering the UV limit of the theory ill defined for a
large number of quarks. Analogously, matter fields could
potentially spoil asymptotic safety in combined systems of

gravity and matter. This has indeed been observed in [30]
in the background field approximation and in [34,35] with a
mixed approach, where the background field approxima-
tion for the couplings is augmented with dynamical
anomalous dimensions. In the background field approxi-
mation no distinction is made between dynamical and
background fields. However, the differences between these
fields are potentially of qualitative nature, see [32,37–41].
More recently, a more careful treatment of background
and dynamical fluctuating fields has been provided by, e.g.
the FRG setup with dynamical correlation functions in
[6–8], the use of the geometrical effective action and the
corresponding Nielsen identities [9,40–45], or bimetric
approaches [46,47].
In this work we analyze the influence of scalar and

fermionic matter on the nontrivial UV fixed point of
quantum gravity in the dynamical FRG setup put forward
in [6]. The matter contributions to the quantum gravity
system are extracted, for the first time, from the higher-
order dynamical correlation functions in the framework of
the FRG. As introduced in [6–8] we analyze a system of
vertex flows evaluated at flat Euclidean background. We
also introduce a validity bound on the generic class of
regulators used here, based on the size of the anomalous
dimensions. This regime includes an arbitrary number of
fermions, whereas it restricts the number of allowed scalars
that can be discussed with the present generic class of
regulators to a maximum ≲20. Within this regime of
validity we find that the UV fixed point persists and
remains UV stable. We also find that the UV fixed points
for the dynamical couplings are significantly different from
those of their associated background counterparts, once
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matter fields are included. In summary, the asymptotic
safety scenario does not put constraints on the matter
content of the theory within the validity bounds for the
chosen generic class of regulators.

II. FUNCTIONAL RENORMALIZATION GROUP

The basic quantity in the functional renormalization
group approach [3,48–50] is the quantum effective action
Γ½ḡ;ϕ�, where ϕ is a superfield containing the dynamical
fields of the theory and ḡμν is the background metric. For
our set of fields, ϕ reads

ϕ ¼ ðh; c; c̄;ψ i; ψ̄ j;φlÞ; ð1Þ

where hαβ and ðc̄μ; cνÞ are the fluctuating graviton and the
(anti)ghost fields, respectively. The fermion fields ðψ̄ i;ψ jÞ,
carrying the flavor indices i; j ∈ 1…Nf, and the real
scalars φl of flavor l ¼ 1…Ns constitute the matter con-
tributions to ϕ.
The scale-dependent effective action Γk½ḡ;ϕ� is formally

defined by introducing k-dependent IR regulators Rϕ
k for

the fluctuation fields ϕ on the level of the path integral. We
call the scale parameter k the renormalization scale. The
regulators are quadratic in the fluctuating fields, which
requires introducing a background metric ḡμν for metric
theories of gravity. The physical (full) metric gμν is given by
a linear split between the background metric ḡμν and the
fluctuation field hμν according to gμν ¼ ḡμν þ hμν. The
scale-dependent effective action Γk½ḡ;ϕ� obeys a one-loop
flow equation. For the given field content ϕ the latter reads

_Γk ¼
1

2
Tr

�
1

Γð2Þ
k þ Rk

_Rk

�
hh

− Tr

�
1

Γð2Þ
k þ Rk

_Rk

�
c̄c

− Tr
�

1

Γð2Þ
k þ Rk

_Rk

�
ψ̄ψ

þ 1

2
Tr
�

1

Γð2Þ
k þ Rk

_Rk

�
ϕϕ

: ð2Þ

Here, we have introduced the notation _f ¼ ∂tf, where t ¼
lnð kk0Þ is the renormalization time with some reference scale
k0. Figure 1 depicts Eq. (2) in terms of diagrams. Since (2)
is not solvable in general, Γk½ḡ;ϕ� is truncated to a finite
dimensional set of operators. In our approach, the latter set

is given by the n-point correlation functions ΓðhhÞ
k , ΓðhhhÞ

k ,

Γðψ̄ψÞ
k and ΓðϕϕÞ

k , where we employ the condensed notation
for the k-dependent 1 PI n-point functions

Γðϕ1…ϕnÞ
k ½ḡ;ϕ� ≔ δnΓk½ḡ;ϕ�

δϕ1…δϕn
: ð3Þ

The flow equations for this set of operators are obtained by
taking field variations of the flow Eq. (2) and expanding the
full scale-dependent effective action in powers of the fields
according to

Γk½ḡ;ϕ� ¼
X∞
n¼0

1

n!
Γðϕ1…ϕnÞ
k ½ḡ; 0�ϕ1 � � �ϕn

¼ Γk½ḡ; 0� þ ΓðhÞ
k ½ḡ; 0�hþ 1

2
Γð2hÞ
k ½ḡ; 0�h2

þ 1

3!
Γð3hÞ
k ½ḡ; 0�h3 þ 1

2
Γðc̄cÞ
k ½ḡ; 0�c̄c

þ 1

2
Γðψ̄ψÞ
k ½ḡ; 0�ψ̄ψ þ 1

2
ΓðφφÞ
k ½ḡ; 0�φ2 þ…: ð4Þ

This vertex expansion of the scale-dependent effective
action was introduced in [6–8] in the context of pure
quantum gravity. In other related works, anomalous dimen-
sions were computed with vertex expansions on a flat
background and were used in combination with the back-
ground field approach [20,34,51]. Together with [6],
however, the present work is the first minimally self-
consistent analysis of such vertex flows in quantum gravity.
Note that Γk½ḡ;ϕ� in (4) is expanded about an, a priori,

arbitrary fixed metric background ḡμν. As we see, however,
the present setup allows us to evaluate all relevant flow
parameters on a flat Euclidean background, i.e. ḡμν ¼ δμν.
In (4), the zero-point function Γk½ḡ; 0� and the one-point

function ΓðhÞ
k ½ḡ; 0� are nondynamical (background)

quantities that do not feed back into the flow of the
dynamical n-point functions. Therefore, we first focus
on the computation of the latter ones and afterwards, in
Sec. V, use the solution of the dynamical couplings for a
self-consistent computation of the background couplings.
Since the right-hand side of the flow Eq. (2) contains
second variations of the fields, the flows for the respective
n-point functions contain n-point vertices up to order nþ 2.
More precisely, the present setup requires the evaluation of
vertices with up to five fields.
We also want to briefly compare the present expansion

scheme with the standard heat kernel expansion in the
background field approximation. In this approximation it is
assumed that the scale-dependent effective action is a
functional of only one single metric field g ¼ ḡþ h.
Note that this approximation has the seeming benefit of
a diffeomorphism invariant expansion scheme and a closed,
diffeomorphism invariant effective action. However, the
background field approximation does not satisfy the non-
trivial Slavnov-Taylor identities for the dynamical metric h

FIG. 1. Flow equation for the scale-dependent effective action
Γk in diagrammatic representation. The double, dotted, solid and
dashed lines correspond to the graviton, ghost, fermion and scalar
propagators, respectively. The crossed circles denote the respec-
tive regulator insertions.
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as well as the Nielsen identity, that link ḡ dependences and
h dependences, see, in particular, [9,32,40,41,43–45].
Hence, while based on a diffeomorphism invariant effective
action, the background field approximation is at odds with
diffeomorphism invariance for this very reason. Note that
this also implies that background independence is at stake.
The potential severeness of the related problems has been
illustrated early on at the simpler example of a non-Abelian
gauge theory in [38]. These problems can either be resolved
in the present approach within a flat background expansion,
the geometrical effective action approach, see [9,40–42], or
in the bimetric approach, see [46,47]. Results within these
approaches also allow for a systematic check of the
reliability of the background field approximation. Note
also that the full resolution of the background indepen-
dcence within the bimetric approach requires the compu-
tation of h correlation functions of the order two and higher
as it is only these correlation functions that enter the flow
equation on the right-hand side. So far, this has not been
undertaken.
The heat kernel computation expands the solution in

powers of the Ricci scalar R, to wit

_Γk½g� ¼ c0

Z
d4x

ffiffiffi
g

p þ c1

Z
d4x

ffiffiffi
g

p
RþOðR2Þ: ð5Þ

The coefficients c0 ¼ c0ð _̄g; _̄λÞ and c1 ¼ c1ð _̄g; _̄λÞ are related
to flow of the background couplings. We compute the flow
for the graviton two-point function for this hypothetical
situation according to

F∘ _Γð2hÞ
k ½ḡ�jḡ¼δ ¼ c0T ð2hÞð0Þ þ c1T ð2hÞðpÞ; ð6Þ

where F denotes the Fourier transform, and we observe
that the coefficients c0 and c1 are obtained analogously
from the momentum-independent and momentum-
dependent parts of the graviton two-point function, respec-
tively. The tensor structures T are defined later in (9). In
consequence, we extract exactly the same information from
the flow within the flat vertex expansion that is obtained in

the heat kernel approach. In case of higher-order operators,
we are even able to distinguish between the flows of, e.g.
R2 and RμνRμν. Considering the realistic situation that the
flow is not a functional of only one single metric but of a
background and a fluctuating field, the vertex expansion
further conveniently disentangles the flows of their corre-
sponding couplings. In summary the present approach
retains the results of the standard heat kernel computation
although it is evaluated on a flat background but has
significant advantages in the nonsingle metric of quantum
gravity.
In order to obtain running couplings from the flow of the

n-point functions we employ a vertex dressing according to

Γðϕ1…ϕnÞ
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiYn
i¼1

Zϕi
ðp2

i Þ
s

G
n
2
−1
n T ðϕ1…ϕnÞ; ð7Þ

where Zϕi
denote the wave function renormalizations of the

respective fields in ϕ which are functions of the field
momenta p2

i . Here, T
ðϕ1…ϕnÞ is the tensor structure of the

respective vertex and shall be defined in (9). In general, we
assign to any n vertex an individual, momentum-dependent
Newton’s constant GnðpÞ, with p ¼ ðp1;…; pnÞ. In this
work, however, we approximate all Gn as one, momentum-
independent coupling, GnðpÞ≡G3 ≕ G. Note that Zϕ and
G are scale dependent, although we drop the subscript k
here and in the following for notational convenience. In
Fig. 2 the vertex dressing of all involved three-point
vertices are given according to (7). Generalizations to
higher-order vertices can be inferred from (7). Note that
(7) suggests an expansion in rescaled fields ϕ̄ and rescaled
vertices Γ̄ðϕ1…ϕnÞ with

ϕ ¼ ϕ̄ffiffiffiffiffiffi
Zϕ

p ; Γ̄ðϕ1…ϕnÞ ¼ Γðϕ1…ϕnÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiQ
n
i¼1 Zϕi

ðp2
i Þ

q ≃ G
n
2
−1
n ; ð8Þ

see also [8,41,52]. Such a rescaling absorbs the RG running
of the vertices in the fields and hence is an expansion in RG
invariant, but cutoff-dependent, quantities; for more details

FIG. 2. Vertex dressing of all three-point vertices used in this work. The vertex dressing consists of the respective wave function
renormalizations, couplings and tensor structures. The first line in the figure depicts all pure gravity three-point vertices while the second
line shows the ones with gravity-matter interactions.
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on this aspect see [8,41,52]. The underlying structure is
elucidated by the kinetic term Γ̄ðϕ1ϕ2Þ: it has the classical
form without wave function renormalization and hence
does not scale under RG transformations. This discussion
highlights the role of the couplings Gn as RG invariant
running couplings.
The tensor structures T are given by variations of the

classical action S with respect to the fluctuation fields.
More precisely, the latter read

T ðϕ1…ϕnÞðp;ΛnÞ ¼ Sðϕ1…ϕnÞðp;Λ → Λn; GN → 1Þ: ð9Þ

In (9) the classical action S is given by the Einstein-Hilbert
action added by covariant fermion and scalar kinetic terms
according to

S ¼ SEH þ
Z

d4x
ffiffiffi
g

p
ψ̄ i∇ψ i þ

1

2

Z
d4x

ffiffiffi
g

p
gμν∂μφl∂νφl;

ð10Þ

where we used the conventional slash notation for the
contraction of the spin covariant derivative ∇μ with gamma
matrices. The covariant kinetic terms for the matter fields in
(10) lead to minimal coupling between gravity and matter
in the present truncation. For the formulation of fermions in
curved spacetime we use the spin base invariance formal-
ism introduced in [53–55]. This allows us to circumvent
possible ambiguities arising in the vielbein formalism and
relies on spacetime dependent γ matrices and the spin
connection Γμ. As a result, ∇ reads

∇ ¼ gμνγðxÞμ∇ν ¼ gμνγðxÞμð∂ν þ ΓðxÞνÞ; ð11Þ

if it acts on a spinor as in (10). In the following, we drop
the explicit spacetime dependence of the latter quantities
for a more convenient notation. The gauge-fixed Einstein-
Hilbert action SEH in (10) reads

SEH ¼ 1

16πGN

Z
d4x

ffiffiffi
g

p ð2Λ − RÞ þ Sgf þ Sgh; ð12Þ

where Λ denotes the classical cosmological constant and R
is the curvature scalar. The terms Sgf and Sgh are the gauge
fixing and the Faddeev-Popov-ghost action, respectively.
Both latter contributions are determined by the gauge
condition Fμ. The gauge-fixing action reads

Sgf ¼
1

32πα

Z
d4x

ffiffiffī
g

p
ḡμνFμFν: ð13Þ

In this work, we apply a De-Donder-type linear gauge
given by

Fμ ¼ ∇̄νhμν −
1þ β

4
∇̄μhνν; ð14Þ

with β ¼ 1. Furthermore, we apply the Landau limit of
vanishing gauge parameter, α → 0. The Faddeev-Popov
operator corresponding to (14) is of the form

Mμν ¼ ∇̄ρðgμν∇ρ þ gρν∇μÞ − ∇̄μ∇ν: ð15Þ

The Landau limit α → 0 is particularly convenient since it
provides a sharp implementation of the gauge fixing. This
assures furthermore that the corresponding gauge-fixing
parameter is at a fixed point of the renormalization group
flow [56].
The vertex flows discussed here carry additional space-

time and momentum indices. In order to obtain scalar flow
equations for the couplings the appropriate projection of the
flows is a crucial part of the present truncation and goes
along the same lines as in [6]. It can be summed up in a
three step procedure:

(i) We decompose T ðnhÞ, where nh is the number of
variations with respect to h, into its momentum-
dependent and momentum-independent part accord-
ing to

T ðnhÞðp;ΛnhÞ ¼ T ðnhÞðp; 0Þ þ ΛnhT
ðnhÞð0; 1Þ: ð16Þ

In (16), the first term on the right-hand side is
quadratic in the external graviton momenta p for the
current truncation. The second term is momentum
independent.

(ii) From (16) we take the dimensionless tensors
T ðnhÞðp; 0Þ=p2 and T ðnhÞð0; 1Þ and separately multi-
ply all spacetime index pairs of both tensors with
transverse traceless projection operators ΠTT. This

leaves us with the two tensors T ðnhÞ
TT ðp; 0Þ=p2 and

T ðnhÞ
TT ð0; 1Þ, each of them carries 2nh spacetime

indices.
(iii) We contract the left- and the right-hand side of the

vertex flow with these two tensors, in order to obtain
Lorentz scalar expressions. Hereby, the tensors

T ðnhÞ
TT ðp; 0Þ=p2 and T ðnhÞ

TT ð0; 1Þ are used to project
the tensorial flow onto the scalar flows of Gnh and
Λnh , respectively.

The projection operators are detailed in Appendix A. In
addition to the spacetime indices, the vertex flows carry
spinor, flavor and color indices. These, however, can be
trivially traced out after multiplying appropriately with γ
and 1 matrices.
After having traced out all discrete indices the resulting

flow still depends on the external field momenta p. This
dependence is dealt with by choosing a specific kinematic
configuration. Since all vertices obey momentum conser-
vation this choice is only relevant for n-point vertices with
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n ≥ 3. In this work, the flow of the graviton three-point
function is the highest-order vertex flow, and thus, it is the
only flow that needs a fixed kinematic configuration. For
the latter, we choose the maximally symmetric configura-
tion, to wit

jp1j ¼ jp2j ≕ p; ϑ ¼ 2π=3; ð17Þ

where ϑ is the angle between p1 and p2. Note that p3 was
eliminated using momentum conservation. This way, both
sides of the flow equations for all vertices only depend on
the scalar momentum parameter p. Note that due to the
vertex construction (7) and the choice of regulators Rϕ

k to be
specified below there are no single wave function renorm-
alizations Zϕi

in the flow. Instead, the latter always enter in
terms of the corresponding anomalous dimensions ηϕi

defined by

ηϕi
ðp2Þ ≔ −∂t lnZϕi

ðp2Þ: ð18Þ

Consequently, the flow of a generic ϕn vertex reads
schematically

FlowðϕnÞ ¼
Z
q
ð_rϕi

ðq2Þ − ηϕi
ðq2Þrϕi

ðq2ÞÞFðϕnÞ
i ðp; q;…Þ;

ð19Þ

where we have defined FlowðϕnÞ as

FlowðϕnÞðp2Þ ≔
_Γðϕ1…ϕnÞðp2ÞQ
n
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Zϕi

ðp2Þ
q : ð20Þ

In (19), rϕi
denotes the regulator shape function corre-

sponding to the field ϕi, and the functions F
ðϕnÞ
i encode the

contributions of the field ϕi to the flow of the ϕn vertex.
The functionsFi depend on the external and loop momenta,
p and q, respectively, as well as on the couplingsG and Λn.
The remaining p dependence in (19) is projected out
differently, depending on the quantity to be extracted.
The momentum projection is discussed below.
Summarizing the present truncation, we consider the

renormalization group flow for the n-point correlation
functions in a system of minimally coupled gravity and
matter. To this end, we employ a vertex expansion of the
scale-dependent effective action about a flat metric back-
ground to derive flow equations for the n-point correlators
up to order three. The RG invariant vertex dressing (7)
allows us to derive independently the flows of the momen-
tum-independent couplings G, Λ2 and Λ3 as well as the
momentum-dependent anomalous dimensions ηhðp2Þ,
ηcðp2Þ, ηψðp2Þ and ηφðp2Þ. The couplings G and Λ3 are
computed from the transverse traceless part of the graviton

three-point function in the symmetric momentum configu-
ration. Diffeomorphism invariant background couplings are
computed from the solution of the dynamical couplings.
Altogether, the present truncation yields the flow of the
scale-dependent parameters,

fḠ; Λ̄; G;Λ2;Λ3; ηhðp2Þ; ηcðp2Þ; ηψðp2Þ; ηφðp2Þg: ð21Þ

III. FLOWS OF CORRELATION FUNCTIONS

The properties of the given theory are completely
determined by the flows of the respective correlation
functions. Thus, the latter parametrize the nontrivial inter-
play between gravity and matter. Matter is known to have a
significant impact on the UV behavior of quantum gravity.
On the other hand, graviton fluctuations can lead to strong
correlations among matter fields. The resulting mutual
dependencies play a crucial role for the flow of the
complete system and are discussed separately in the
following sections.
The computation of correlation functions described in

this section involves the contraction of very large
tensor structures. These contractions are computed with
self-developed pattern-matching scripts. In this context we
make use of the symbolic manipulation system
FORM [57,58].

A. Matter contributions to gravity flows

For the present analysis of quantum gravity, the gravity
flows are extracted from the dynamical graviton two-point
and three-point functions. The impact of matter manifests
itself by matter loops in the diagrammatic representation of
the flow. Figure 3 depicts these contributions for the flow of
the graviton two-point function. The trace over the color
and flavor indices leads to weight factors of Ns and Nf for
scalar and fermion loops, respectively. The matter contri-
butions to FlowðhhÞ are thus proportional to Ns or Nf. From
FlowðhhÞ we extract the flow of the graviton mass parameter
defined asM2 ≔ −2Λ2 and the graviton anomalous dimen-
sion ηh. This procedure is discussed in more detail in the
following. A complete discussion can be found in [8].

FIG. 3. Diagrammatic representation of the matter-induced
flow of the graviton two-point function. Double, single and
dashed lines represent graviton, fermion and scalar propagators,
respectively; filled circles denote dressed vertices. Crossed circles
are regulator insertions.
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From (7) we obtain an equation for the transverse
traceless graviton two-point function by contracting all
external graviton legs with ΠTT. This leads to

ΓðhhÞ
TT ðp2Þ ¼ 1

32π
Zhðp2Þðp2 þM2Þ: ð22Þ

Taking a derivative with respect to renormalization time t
and dividing by Zhðp2Þ yields

FlowðhhÞ
TT ðp2Þ ¼ 1

32π
ð∂tM2 − ηhðp2Þðp2 þM2ÞÞ: ð23Þ

The right-hand side of the flow equation provides an

expression for FlowðhhÞ
TT ðp2Þ, which depends solely on

the couplings and the anomalous dimensions. The resulting
equation is evaluated at two different momentum scales p2.
Subtracting these two equations from each other allows for
an unambiguous extraction of ∂tM2 and ηhðp2Þ. We call
this procedure bilocal momentum projection; it is applied
for gravity in [6–8].
We extract the ghost anomalous dimension ηcðp2Þ from

the transverse part of the ghost two-point function. The
significance of the ghost contributions and details on their
extraction are explained in [7,8], and the explicit form is
given in Appendix B.
The matter contributions to the flow for the graviton

three-point function parametrize the impact of matter on the
dynamical gravitational couplings g and λ3. Figure 4 shows
the matter contributions arising via loops in the diagram-
matic representation. Again, the multiplicity of the matter
loops leads to contributions to FlowðhhhÞ proportional to Ns
andNf. The flow forG andΛ3 is extracted in a vein, similar
to the extraction of ηh and ∂tM2 from the graviton two-
point function. Projecting the flow of the three-graviton
vertex on the transverse traceless contributions of the
classical tensor structures as described above and

evaluating the kinematic configuration at the symmetric
point as described in (17) yields equations of the type

ΓðhhhÞ
TT;i ¼ Z3=2

h ðp2ÞG1=2ðN ip2 þMiΛ3Þ; ð24Þ

with i ¼ G;Λ for the projection on the tensor structures of
G and Λ3, respectively. The factors N i and Mi arise from
the tensor projection. They depend on the kinematic
configuration and are given explicitly in Appendix A for
the symmetric momentum configuration (17). Taking a
scale derivative and rearranging leads to

2ffiffiffiffi
G

p FlowðhhhÞ
TT;i ¼ 2Mi∂tΛ3

− ½ηG þ 3ηhðp2Þ�ðN ip2 þMiΛ3Þ; ð25Þ

with ηG ¼ −∂t lnG. Note that (25) is structurally very
similar to (23). For the extraction of the flows for the
couplings G and Λ3 we apply the bilocal momentum
projection discussed before. Thus, we evaluate the flow
of G at p ¼ k as well as at p ¼ 0 and subtract both
equations from each other. Since the term proportional to
∂tΛ3 in (25) is momentum independent, it drops out upon
the subtraction thus leaving us an equation for ∂tG. For the
flow of Λ3 it is then sufficient to evaluate (25) (with i ¼ Λ)
at vanishing external momentum p ¼ 0. The resulting flow
equations are identical to the ones in [6] and are given in
Appendix A.

B. Gravity contributions to matter flows

In the matter sector, we consider the flows of the matter
two-point functions. Since we do not admit matter self-
interactions within the given truncation, these flows are
driven solely by gravity-matter interactions. Furthermore,
the matter fields are treated as massless, which is a good
approximation for studies of the UV behavior of the theory.
Consequently, the only quantities that are extracted here are
the matter anomalous dimensions. The effective action
constructed from (10) is diagonal in both the color and the
flavor indices, i and k, respectively. We treat all scalars and
all fermions equally, providing them with one anomalous
dimension for each of the field species, ηφðp2Þ and ηψ ðp2Þ,

FIG. 4. Diagrammatic representation of the matter-induced
flow of the three-graviton vertex. Double, single and dashed
lines represent graviton, fermion and scalar propagators, respec-
tively; filled circles denote dressed vertices. Crossed circles are
regulator insertions. All diagrams are symmetrized with respect
to the interchange of external momenta p.

FIG. 5. Diagrammatic representation of the gravitationally
induced flows of the matter two-point functions. Double, single
and dashed lines represent graviton, fermion and scalar propa-
gators, respectively; filled circles denote dressed vertices.
Crossed circles are regulator insertions.
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respectively. This allows for an extraction of the matter
anomalous dimension from one representative field, since
FlowðφkφlÞ ¼ δklFlowðφkφkÞ and Flowðψ̄ iψjÞ ¼ δijFlowðψ̄ iψ iÞ.
Consequently, we drop the color and flavor indices in the
flows of the scalar and fermion two-point functions.
Figure 5 depicts the flows of the matter two-point

functions in diagrammatic representation which constitute
the respective right-hand sides of the flow equation. From
these flows we extract the matter anomalous dimensions.
For the scalar fields the left-hand side is given by

FlowðφφÞðp2Þ ¼ −p2ηφðp2Þ; ð26Þ

in complete analogy to the equation for the transverse
traceless graviton two-point function, (22). For the fer-
mions we have the additional spinor structure which needs
to be eliminated in order to obtain a Lorentz scalar
expression. The flow for the fermion two-point function
reads

Flowðψ̄ψÞðp2Þ ¼ −ipηψðp2Þ: ð27Þ

By multiplying this expression with p and taking the
trace over the spinor indices we obtain an expression,
which is identical to (22) and (26) up to the prefactors,
to wit

trðp Flowðψ̄ψÞÞðp2Þ ¼ −dip2ηψðp2Þ: ð28Þ

Here, d is the dimension of spinor space, which we set to
d ¼ 4 throughout. Since (22), (26) and (28) are of the same
form, we apply the same bilocal momentum projection for
the extraction of the respective momentum-dependent
anomalous dimensions. This crucial procedure is discussed
in more detail in the next section.

C. Anomalous Dimensions

Each of the field species is equipped with an anomalous
dimension ηϕi

ðp2Þ. The latter are extracted from the flow of
the respective field’s two-point function. In the context of
heat kernel methods, the anomalous dimensions are often
referred to as “RG improvement” [20,34,51,59]. In this
work, they arise naturally from the truncation, and as
further improvement we keep an approximated momentum
dependence of the anomalous dimension, similar to [6,8].
The expressions (19), (26) and (28), together with the

bilocal momentum projection lead to a coupled system of
Fredholm integral equations for the anomalous dimensions
~ηϕ ¼ ðηh; ηc; ηψ ; ηφÞ. The specific form of the latter is given
in Appendix B. It can be written as

~ηϕðp2Þ ¼ ~Aðp2; G;M2;Λ3Þ þ ~Bðp2; G;M2;Λ3Þ½~ηϕ�; ð29Þ

where ~A and ~B are momentum integral expressions. As the
square brackets suggest, ~B is a functional of ~ηϕðq2Þ.
Equation (29) can be solved iteratively which is, however,
computationally very expensive since it is a coupled system
of four equations. In order to get a handle on the solution of
(29), we evaluate the anomalous dimension in ~B at k2 and
move ηϕðk2Þ in front of the integrals. This is a good
approximation because all integrals of the type (19) are
sharply peaked around q ¼ k. This feature arises due to the
factor of q3 from the integral measure in d ¼ 4 spherical
coordinates. Since ~B is linear in ~ηϕ, we can now write it as a
matrix C multiplying the vector ~ηϕðk2Þ. Hence, (29)
simplifies to

~ηϕðp2Þ ≈ ~Aðp2; G;M2;Λ3Þ þ Cðp2; G;M2;Λ3Þ~ηϕðk2Þ:
ð30Þ

We now evaluate the latter equation at p ¼ k in order to
obtain an expression for ~ηϕðk2Þ. The result ~ηϕðk2Þ is
substituted back into the momentum-dependent Eq. (30).
This way, we obtain anomalous dimensions with an
approximated momentum dependence. Note, that the latter
approximation is considerably better than the assumption
of momentum-independent anomalous dimensions, since
we evaluate the functional dependence on ~ηϕ at the peak
position of the integrals. In particular, this procedure allows
for a distinction of ~ηϕðk2Þ and ~ηϕð0Þ, which is important
since they both appear explicitly in the flow Eqs. (C1), due
to the bilocal momentum projection. We show in Sec. IVA
that our approximation is justified for the case without
matter via comparison with the results from [6].
As an interesting fact, the scalar anomalous dimension

ηφðp2Þ vanishes for the given graviton gauge. Generally,
the scalar anomalous dimension comprises a term which is
proportional to the scalar mass and one mass-independent
term. The latter vanishes for the used harmonic gauge.
Obviously, the former term vanishes for massless scalars
which we consider here, leaving us with a vanishing scalar
anomalous dimension ηφðp2Þ ¼ 0. Note that this is only the
case for the scalar anomalous dimension in this particular
gauge; for all other gauges ηφðp2Þ is not equal to zero.

D. Anomalous dimensions and bounds
for the generic class of regulators

As part of the truncation, we choose a generic class of
regulators Rϕ

k that are proportional to the corresponding
two-point function, i.e.

Rϕ
k ðp2Þ ¼ ΓðϕϕÞ

k ðp2Þrϕk ðp2ÞjM2¼0; ð31Þ

in momentum space, where rϕk ðp2Þ is the regulator shape
function. Note, that the evaluation of the two-point function
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atM2 ¼ 0 ensures that only the momentum-dependent part
of the latter enters for the class of regulators defined by
(31). Since the effective graviton mass M2 is the only mass
parameter in the present truncation the above definition

implies that ΓðϕϕÞ
k ðp2ÞjM2¼0 is either the full two-point

function ΓðϕϕÞ
k ðp2Þ, or, in case of the graviton field,

its momentum-dependent part, i.e. ΓðhhÞ
k;TTðp2ÞjM2¼0 ¼

ð32πÞ−1Zhðp2Þp2, see (22). This generic class covers the
regulator choices in the literature and implements the
correct renormalization group scaling of the effective action
as discussed in [8,41,60]. It provides a RG covariant
infrared regularization of the spectral values of the two-
point function and is hence called RG or spectrally adjusted
[41,60,61]. It implies, in particular, that the regulator is
proportional to the corresponding field’s wave function
renormalization via the dependence of Rϕ

k on the two-point
function. Thus, the present choice leads to closed equations
in terms of the anomalous dimensions. However, for large
ηϕ the choice (31) leads to a peculiar RG scaling of Rϕ

k in
the UV. From the path integral point of view one expects a
UV scaling with

lim
k→∞

Rϕ
k ðpÞ ∼ lim

k→∞
Zϕki → ∞; ð32Þ

for all momenta p. In (32) we have i ¼ 1 for fermions and
i ¼ 2 for all other fields. Equation (32) entails that the
regulator diverges in the UV, and the related momentum
modes in the path integral are suppressed. Since the wave
function renormalization behaves like Zϕ ∼ k−ηϕ for large
k, Eq. (32) is violated if the anomalous dimensions exceed
the constraints

ηh < 2; ηc < 2; ηφ < 2; ηψ < 1: ð33Þ

Hence, if one of the bounds in (33) is violated, the
respective regulator vanishes in the UV. In the spirit of
the above path integral picture this may imply a decrease of
the effective cutoff scale for the respective field and hence a
flow towards the IR. Note, however, that this is far from
being clear from the flow equation itself. For example, with
the regulator (31) the TT component of the graviton
propagator is proportional to

1

Zhðp2Þ
1

ðp2ð1þ rhÞ þM2Þ ; ð34Þ

which implies a spectral, RG covariant regularization of the
momentum modes of the full propagator, as discussed
above. We conclude that if the bounds in (33) are exceeded,
the regulator may not suppress field modes in the UV
properly. Indeed, if the anomalous dimensions are large
enough, this not only leads to a decreasing regulator but

also ∂tR
ϕ
k turns negative. This can be seen from the

schematic expression

∂tR
ϕ
k ∼ Zϕð_rϕk ðp2Þ − ηϕr

ϕ
k ðp2ÞÞ: ð35Þ

The second term in Eq. (35) exceeds the first one for
p=k → 0 exactly at the critical values given in (33). Still,
this is not sufficient to change the sign of the respective
diagrams, which involves an integration over all momenta.
However, for even larger anomalous dimensions, ηsign > 2,
the sign of the respective diagrams changes. In the path
integral interpretation introduced above this change of
sign signals the global change from a UV flow to an IR
flow for the respective diagram. Naturally, this bound
depends on the shape function of the regulator. For the
present approximation, the first diagrams switch signs at
ηsign ¼ 4. This is already visible in the analytic, reduced
approximation derived later, see (C1). Note also, that the
sign of diagrams does not change for Zh-independent
regulators. Accordingly, for ηh > ηsign we have a regulator
dependence of the sign of diagrams, which has a qualitative
impact on the physics under discussion. Hence, for
ηh > ηsign the present approximation breaks down com-
pletely. In the present work, however, we resort to the
stricter, shape function-independent bound (33).
In summary, it is clear that if the bounds (33) are

violated, additional investigations of the regulator depend-
ence and hence of the reliability of the present approxi-
mation are required. Note, however, that small anomalous
dimensions, that obey (33), do by no means guarantee the
convergence of the results with respect to an extension of
the truncation. Such a convergence study requires the
inclusion of higher-order operators and detailed regulator
studies and is deferred to future work.

IV. RESULTS

In this section, the results of the above-presented setups
are displayed. As a main result, within the validity bounds
for the chosen generic class of regulators, we do not find an
upper limit for the numbers of scalars and fermions that are
compatible with the asymptotic safety scenario.
For the analysis we employ regulators of the type given

in (31) and use a Litim-type shape function [62], that isffiffiffi
x

p
rðxÞ ¼ ð1 − ffiffiffi

x
p Þθð1 − xÞ for fermions and xrðxÞ ¼

ð1 − xÞθð1 − xÞ for all other fields. We close the flow
equations with the identification Λ5 ¼ Λ4 ¼ Λ3. Further-
more, we work with the dimensionless quantities

g ≔ Gk2; μ ≔ M2k−2; λ3 ≔ Λ3k−2: ð36Þ

A. Pure gravity

In order to study the UV behavior of quantum gravity
interacting with matter, we start from the UV fixed point of
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pure quantum gravity found in [6] and study the deforma-
tion of this particular fixed point by the matter content. To
that end, we rederive the results for the pure gravity case
with the approximated momentum dependence of the
anomalous dimensions discussed in Sec. III C. We compare
these findings with the results in [6], where the full
momentum dependence of the latter was considered. The
fixed point values for the pure gravity system in the present
approximation read

ðg�; μ�; λ�3Þ ¼ ð0.62;−0.57; 0.095Þ; ð37aÞ

with the critical exponents θ1, θ2 and θ3 given by

ðθ1=2; θ3Þ ¼ ð−1.3� 4.1i; 12Þ: ð37bÞ

These fixed point values are in agreement with [6] within
an error of 6% (15% for the critical exponents). This
justifies the approximations described in Sec. III C. The
deformation of the fixed point (37) is calculated while
successively increasing the number of scalars and fermions,
Ns andNf, respectively. This way, we analytically continue
the fixed point of the pure gravity system towards a theory
of quantum gravity and matter, which contains Ns scalars
and Nf fermions. Although Nf and Ns are (half)integers in
the physical sense, we treat them as continuous deforma-
tion parameters for this analysis. With this procedure we
simulate the generic effect of gravity-matter interactions on
gravity theories. First, we analyze the influence of scalars
and fermions separately before we briefly discuss the
combined system of both matter types.

B. Scalars

We first consider the case Nf ¼ 0, Ns > 0, thus a theory
of Ns scalars minimally coupled to gravity. Note again, that
in the present approach, we neglect the influence of scalar
self-interactions in the action (10). Detailed analyses of the
potential impact of matter-matter couplings can be found
in, e.g. [63–65].
Before analyzing the full numerical flow equations we

try to anticipate the result from the analytic flow Eqs. (C1)
without anomalous dimensions. For Nf ¼ 0, Ns > 0 and
~ηϕ ¼ 0 the latter equations read

_g ¼þ 2gþ βgGravity −
43

570π
g2Ns;

_μ ¼ − 2μþ βμGravity þ
1

12π
gNs;

_λ3 ¼ − 2λ3 þ βλ3;Gravity −
1

60π

�
1 −

43

19
λ3

�
gNs: ð38Þ

In this set of equations we have split the running of the
dimensionless couplings ðg; μ; λ3Þ into the canonical run-
ning, the contribution from graviton and ghost loops, and

the contribution from scalar loops, in this ordering. In the
following, we analyze whether the respective signs of the
contributions potentially stabilize or destabilize the UV
fixed point. A matter contribution to a given flow equation
potentially destabilizes the UV fixed point of the pure
gravity system if it has the same sign as the canonical
running. In this case, the contributions from graviton and
ghost loops need to increase in to order to compensate for
the matter contribution and, thus, allow for a gravity-matter
fixed point. Conversely, if the canonical running and the
matter contributions have the opposite sign we consider the
matter contributions to potentially stabilize the fixed point.
Further, we argue that the matter contribution to the running
of μ has the largest impact on the flow compared to the
other equations of the system (38).
Using the above notion, the scalar contribution to ∂tg

potentially stabilizes the fixed point since the canonical
running of g is positive and the Ns-dependent term has a
negative sign. The positive sign of the Ns term in ∂tμ
potentially destabilizes the fixed point since we have found
μ� < 0 in the pure gravity case [see (37a)]. Moreover, the
contribution to ∂tλ3 is potentially destabilizing since we
consider a positive and small λ3 as in (37a). The behavior is
opposite for λ3 > 19=43 and for λ3 < 0.
We note that the flow equation for μ has the largest

impact on the complete system (38). For one, that is
because μ is the effective mass parameter of the graviton
and, consequently, appears in all diagrams with graviton
contributions in the loops. The second reason is that the
fixed point value μ� for the pure gravity system is close to
−1. The μ contributions to the flow equations generally
take the form ð1þ μÞ−n with n ≥ 1. Perturbations of μ are
therefore strongly amplified if μ is close to −1. To see this
we expand the general form of the μ contributions around
−1=2, namely μ ¼ −1=2þ ϵ, which is approximately the
fixed point value of the pure gravity system [see (37a)]. The
general form of the μ contributions is now given by

1

ð1þ μÞn ¼
2n

ð1þ 2ϵÞn ≈ 2nð1 − 2nϵÞ; ð39Þ

which suggests that small perturbations of μ around −1=2
are amplified by a factor of 2n compared to contributions of
order one which appear linearly in the numerators. Using a
Litim-type regulator we obtain terms of the latter type in
∂tg up to n ¼ 5. For these terms perturbations of μ around
−1=2 are amplified by 10 compared to the linear quantities
of order one. The impact of μ on the flow (38) becomes
even larger the closer μ is driven towards–1. For ∂tλ3 this
argument is additionally supported by the smaller scalar
contribution to ∂tλ3 compared to the respective contribu-
tions to ∂tg and ∂tμ. This also compensates for the fact that
the fixed point value in the pure gravity case is λ�3 ≈ 1=10
and therefore not of order one. For these reasons, the scalar
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contributions in the flow of μ have the largest impact on the
system (38).
In summary, we anticipate that the inclusion of scalar

degrees of freedom potentially destabilizes the UV fixed
point. Hence, the gravity contributions in (38) must
increase in order to compensate for the destabilizing Ns
contributions. This suggests that the couplings g� and λ�3
must increase with increasing Ns.
We now turn to the discussion of the UV fixed point for a

varying number of scalars Ns in the full truncation. The left
panel in Fig. 6 shows the fixed point values of the
dynamical quantities ðg�; μ�; λ�3Þ of the system as a function
ofNs. All fixed point values are continuous functions of the
number of scalars in the regime 0 ≤ Ns ≤ 66.4 ≕ Nsmax

.
Outside this regime (hatched area), the fixed point dis-
appears, thus, spoiling the asymptotic safety of the corre-
sponding theory. For 0 ≤ Ns ≤ 66.4 ≕ Nsmax

, the fixed
point value for the gravitational coupling g� (blue curve)
increases with increasing Ns, as conjectured from the
analytic Eq. (38). Both, λ�3 and μ�, depicted in red and
orange, respectively, remain almost constant, exhibiting
only minor variations close to Nsmax

. The gray-shaded area
in the left panel indicates where the regulator lies outside
the reliability bounds defined in Sec. III D due to a large
graviton anomalous dimension (see right panel). The
corresponding limiting number or scalars is given by Nstrunc.
The middle panel in Fig. 6 depicts the real parts of the

critical exponents of the fixed point ½ℜðθ1Þ;ℜðθ2Þ;ℜðθ3Þ�
as functions of Ns. The colors of the curves are chosen such
that the corresponding eigenvectors have the largest overlap
with the coupling of the same color in the left panel. All
critical exponents increase with increasingNs. The real part
of the complex conjugate pair of eigenvalues ℜðθ1;2Þ,

represented by the blue and orange curves, changes sign
at Nsstab ¼ 42.6. Consequently, the green and red areas
correspond to Ns regimes where the fixed point exhibits
attractive directions and regimes where it is fully UV
repulsive, respectively. In the regime Nsstab < Ns < Nsmax

the fixed point is fully UV repulsive (red area).
Furthermore, we observe that θ3 takes large values for
large Ns, which we see as further evidence for the
insufficiency of the truncation in this regime [10,21].
The right panel in Fig. 6 shows the anomalous dimen-

sions of all involved fields evaluated at the fixed point and
at the peak of the loop integrals, p ¼ k, as well as at
vanishing momentum, p ¼ 0. As discussed in Sec. III C,
the scalar anomalous dimension ηφðp2Þ (orange curve) is
zero for all p within the chosen gravity gauge. In
consequence, it does not appear explicitly in the legend
of the panel. The graviton anomalous dimensions ηhðk2Þ
and ηhð0Þ both increase with increasing Ns due to the
increase of g�. At Nstrunc ¼ 21.5, ηhð0Þ exceeds the critical
value of ηhcrit ¼ 2, discussed in Sec. III C. Consequently, in
the regime Nstrunc ≤ Ns ≤ Nsmax

, the graviton anomalous
dimension has exceeded the reliability bounds of the
generic regulator class used here, and we lose control over
the suppression of graviton field modes by the regulator.
In summary, we draw the conclusion that within our

truncation the inclusion of up to Ns ≈ 21 scalars is
consistent with the asymptotic safety scenario of quantum
gravity. We also find that beyond this limit our truncation
exhibits a large graviton anomalous dimension beyond the
critical value defined in (33). This suggests that the
truncation should be improved in order to draw definite
conclusions about the regime Ns > Nstrunc . Therefore, the

FIG. 6. Fixed point values (left), real parts of the critical exponents (middle), and the anomalous dimensions evaluated at p ¼ k and
p ¼ 0 (right) as functions of the number of scalars, Ns, respectively. The gray-shaded area in the left panel indicates where the regulator
lies outside the reliability bounds defined in Sec. III D due to a large graviton anomalous dimension (see right panel). The corresponding
limiting number or scalars is given by Nstrunc. The hatched regions in all three panels correspond to the Ns regime where the UV fixed
point does not exist. The green and red areas in the middle panel denote the region where the fixed point exhibits UVattractive direction
and the region where it is fully repulsive, respectively. Nsstab is the corresponding critical number. The colors of the curves in the middle
panel indicate with which coupling of the left panel the corresponding eigenvector has the largest overlap. The anomalous dimension of
the scalar ηφ (right panel) is zero due to the given graviton gauge.
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limits Nsstab and Nsmax
found above should be treated with

caution as they could be artifacts of the present truncation.
The Ns dependence of the couplings shown in Fig. 6 is

qualitatively different from that in [30,34,35]. This quali-
tative difference is also present in the fermion system
discussed in the next section. A detailed comparison and
evaluation of the reliability of the corresponding approx-
imations is deferred to Sec. V.
We conclude this analysis with a brief discussion of the

bound ηsign. We have argued in Sec. III C that for ηh > ηsign
the present approximation breaks down completely as the
sign of diagrams is regulator dependent. For the regulator
used here, see Sec. IV, we have ηsign ¼ 4, see also (C1).
Then the approximation breaks down for Nssign ≈ 65.4 that
is below but close to Nsmax

. As discussed in Sec. III C, Nssign

signals the global change from a UV flow to an IR flow for
the respective diagram and hence a mixed UVand IR flow.
Naturally, we expect the loss of the UV fixed point for such
a flow.

C. Fermions

In this section we discuss the effect of minimally coupled
fermions, thus Nf > 0 and Ns ¼ 0 in our notation. As
before, matter-self-interactions are neglected.
Again, we first analyze the generic behavior of the

system of analytic flow equations (see Appendix C) with
the simplification ~ηϕ ¼ 0. To that end, we again divide the
flow into canonical running, gravity and ghost loop
contributions, and matter loop terms. Consequently, the
latter equations read

_g ¼þ 2gþ βgGravity −
3599

11400π
g2Nf;

_μ ¼ − 2μþ βμGravity −
8

9π
gNf;

_λ3 ¼ − 2λ3 þ βλ3;Gravity þ
1

20π

�
47

7
þ 3599

1140
λ3

�
gNf: ð40Þ

Using the notion introduced in the last section, we conclude
that the fermionic contributions to ∂tg and ∂tμ potentially
stabilize the UV fixed point since they have signs opposite
to the respective canonical running. The fermionic con-
tribution to ∂tλ3, by contrast, is potentially destabilizing. As
we argued in the last section, the matter contribution to ∂tμ
is the most relevant one. Therefore, we expect that the
fermion-gravity system remains stable under the increase of
Nf. In particular, we expect smaller values for g� for
increasing Nf.
We turn now to the full numerical equations with

momentum-dependent anomalous dimensions. The left
panel in Fig. 7 shows the fixed point values of the
dynamical quantities ðg�; μ�; λ�3Þ as functions of the number
of fermions Nf. The fixed point value of g decreases with
increasing Nf and approaches g� → 0 asymptotically. At
the same time, μ� decreases with increasing Nf and
approaches μ� → μpole ¼ −1 for Nf → ∞. The fixed point
value of λ3 increases slightly with Nf and is driven towards
an asymptotic value of λ�3 ≈ 1=4. It is important to note that
the crucial negative sign of the fermionic contribution to
∂tμ, which is the same as in the analytic Eqs. (40), gives
rise to an interesting stabilizing effect: Since we start with a
negative μ� for Nf ¼ 0 the negative fermionic contribution
in ∂tμ drives μ� towards more negative μ and therefore
closer towards the propagator pole at μpole ¼ −1. This
increases the contributions from graviton loops, which have
the opposite sign compared to the fermionic terms to ∂tμ.
Thus, the latter contributions cancel each other, and the
system settles at small values of g�.
The middle panel in Fig. 7 depicts the real parts of the

critical exponents of the fixed point ½ℜðθ1Þ;ℜðθ2Þ;ℜðθ3Þ�
as functions of Nf. The colors are chosen such that the
corresponding eigenvectors have the largest overlap with
the coupling of the same color in the left panel. The critical
exponent of the repulsive direction θ3 first decreases
slightly and then increases to large values. The other

FIG. 7. Fixed point values (left), real parts of the critical exponents (middle), and the anomalous dimensions evaluated at p ¼ k and
p ¼ 0 (right) as functions of the number of fermions, Nf, respectively. The colors of the curves in the middle panel indicate with which
coupling of the left panel the corresponding eigenvector has the largest overlap. All quantities remain well behaved for any number of
fermions. In particular, the fixed point stays attractive (middle panel) and the anomalous dimensions remain small (right panel).
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two critical exponents θ1;2 form a complex conjugate pair
with a decreasing real part until they reach Nf ¼ 65.5. For
Nf > 65.5 all critical exponents are real. In this regime, θ1
decreases to smaller values, while θ2 remains almost
constant. The large absolute values of the critical exponents
θ1 and θ3 indicate, similar to the scalar case, the necessity to
extend the given truncation. Large critical exponents
appear, in particular, for large numbers of fermions.
The right panel in Fig. 7 shows the anomalous dimen-

sions of the graviton, the ghost, and the fermion, ηh, ηc and
ηψ , respectively, evaluated at the fixed point. The anoma-
lous dimensions are evaluated at the relevant momentum
scales, p ¼ 0 and p ¼ k. Each anomalous dimension
decreases at first and later increases slowly with increasing
Nf. Nevertheless, all anomalous dimensions remain small.
In particular, the graviton and the fermion anomalous
dimension stay below their critical values ηh < ηhcrit ¼ 2

and ηψ < ηψ crit
¼ 1, respectively.

In summary, we find an attractive UV fixed point for all
numbers of fermions. Thus, all numbers of fermions are
compatible with the asymptotic safety scenario. We also
note that, in contradistinction to the scalar case, the
anomalous dimensions stay sufficiently small even for a
large number of fermions. However, the appearance of
large critical exponents is seen as an indicator for the
necessity to improve the truncation. In consequence, the
impact of higher-order operators will be studied in
future work.
As in the scalar case we find that the Nf dependence of

the couplings shown in Fig. 7 is qualitatively different from
that in [30,34,35]. A detailed comparison and evaluation of
the reliability of the corresponding approximations is
deferred to Sec. V.

D. Mixed Scalar-Fermion Systems

In this section, we consider the fixed point behavior of
mixed systems of scalars and fermions. The gravity-
fermion system is stable for all Nf in the present approxi-
mation. In turn, the gravity-scalar system exceeds the
bounds (33) far before the fixed point first becomes
unstable and finally disappears. Thus, it is interesting to
study the effect of a fixed number of fermions on the Ns

regime of validity. As discussed in Sec. IV B, there exists a
finite number of scalars Nstrunc for which ηh exceeds its
critical value. In Sec. IV C we observed that the inclusion of
fermions leads to a decrease of g�, which results in smaller
anomalous dimensions. Therefore, we expect that the Ns

regime of validity is extended if we increase Nf.
In Fig. 8 the fixed point value g� is plotted as a function

of Ns for different numbers of Nf. The vertical lines denote
the numbers of scalars for which the graviton anomalous
dimension exceeds its critical value in the UV. As displayed
in the figure, the expected behavior for the combined
systems is indeed realized. Thus, the increase of Nf lowers
the fixed point value g� and extends the Ns regime of
validity. For Nf ¼ 0, 5, 10 and 15 the corresponding
critical values Nstrunc ; Ns;5; Ns;10 and Ns;15 are given by
21.5, 57.9, 93.8 and 129.6, respectively. The maximum
number of scalars that defines the validity of the truncation
increases almost linearly with Nf. Thus, every additional
fermion stabilizes the combined system such that ≈7.1
additional scalars are admitted. The ratio between these
numbers suggests that fermions have a significantly
stronger impact on the system than scalars. This is true
for the complete truncation analyzed here and can also be
verified in the analytic equations by comparing the numeri-
cal values of the respective contributions (compare (38) and
(40). This imbalance between scalars and fermions was
also observed in [34]. The increase of Nf also shifts the
values ofNssign andNsmax

to larger values and extends theNs

regime where a fixed point is found considerably. In
summary, the inclusion of fermions stabilizes the system
and extends the Ns regime of validity for the given
truncation significantly.

E. Independence on the approximation
in the gravity sector

We close this section with a brief discussion of the impact
of the approximation in the pure gravity sector on our
results. Interestingly, the results agree qualitatively for all
approximations in the pure gravity sector used in the
literature. This includes the standard ones in the background
field approximation which are discussed in the next section.
We also note that the fixed point for our truncated system is
also present, if all anomalous dimension are set to zero. It is
interesting to note, however, that for Ns > 0, Nf ¼ 0 the
fixed point vanishes already for Ns ≈ 45 and therefore

FIG. 8. Fixed point value g� as a function of Ns for Nf ¼ 0, 5,
10, 15. The vertical lines denote the numbers of scalars for which
the graviton anomalous dimension exceeds its critical value in the
UV, for the respective number of fermions.
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earlier than with anomalous dimensions. Thus, the anoma-
lous dimensions stabilize the UV behavior of the system.
In order to combine the present matter contributions with

the pure gravity systems in the geometrical framework [9]
and with [8], we have to identify λ3 ¼ λ2 ≡ −μ=2. We find
that the matter contributions admit UV fixed points.
Furthermore, we observe the same generic effect of scalars
and fermions on the UV fixed point that was found for the
present truncation. Hence, scalars drive the fixed point to
larger values of g�, while fermions lead to a decrease of g�
and μ�, where μ� approaches −1. In summary, our
qualitative results are insensitive to the approximation in
the pure gravity sector.

V. BACKGROUND COUPLINGS AND
BACKGROUND FIELD APPROXIMATION

It is left to study the stability of the results under a
change of the approximation scheme in the matter sector.
This is even more important as the Ns andNf dependencies
of the couplings shown in Figs. 6 and 7 are qualitatively
different from those in [30,34,35]. The latter works use the
background field approximation for the computation of the
flows for the couplings, which are augmented with
dynamical anomalous dimensions in [34,35]. Hence, we
compare the present system of dynamical couplings with
the standard flows in the background field approximation.
In perturbatively renormalizable quantum field theories,

like the Standard Model, the gauge invariant background
couplings in the limit k → 0 directly enter S matrix
computations. For k → 0 the regulator, which typically
depends on the background field, vanishes. For these
reasons, these couplings are observables of the theory. In
direct analogy, we call the diffeomorphism invariant back-
ground couplings of quantum gravity also observables in
the limit k → 0. Note that these quantities have a clear
physical interpretation only in the limit k → 0. For k > 0,
on the other hand, the background couplings depend
inherently on the background field content via the non-
vanishing regulator. In this case, the couplings lose their
clear physical meaning, and their relation to observable
quantities becomes unclear [6,9].
In this section we use the notation ðg; λ2; λ3Þ for the

dynamical couplings, where we reintroduced λ2 ¼ −1=2μ.
We also give a brief summary of the discussion in [9,32,37–
41,66,67] on dynamical and background flows and the
impact on the background field approximation: Standard
approaches based on diffeomorphism invariant truncations
use the background field formalism for the definition of the
truncated effective action. The corresponding flow equa-
tion, however, is not closed since it depends on the
dynamical propagator. This is expressed schematically as

_Γk½ḡ; h� ¼ F

�
δ2Γk½ḡ; h�

δh2
; ḡ

�
; ð41Þ

where the separate dependence on ḡ stems from the
regulator. In order to close (41) the background field
approach amounts to the identification of the propagators
of fluctuating and background fields, i.e.

δ2Γk½ḡ; h�
δh2

≈
δ2Γk½ḡ; h�

δḡ2
: ð42Þ

The latter identification in known to pose severe problems
in QCD; for more details see [8,32]. However, at least for
pure quantum gravity the approximation (42) seems to
work rather well, leading to a reliable UV behavior of the
theory. In the more elaborate geometrical-effective action
approach [68,69], the differences between fluctuating and
background propagators are encoded in the (modified)
Nielsen Identities [40,41]. In [9] the latter identities
together with a minimally consistent extension to the
Einstein-Hilbert truncation were used to derive flow equa-
tions for the dynamical couplings ðg; λÞ and the background
couplings ðḡ; λ̄Þ in the absence of matter. In the geometrical
approach the flow equations for the background couplings
read schematically

∂t

�
k2

ḡ

�
¼ FR1ðg; λ;Ns;NfÞ;

∂t

�
λ̄k4

ḡ

�
¼ FR0ðg; λ;Ns;NfÞ; ð43Þ

for a theory with Ns scalars and Nf fermions. Note that the
right-hand side of the latter equation only contains dynami-
cal couplings. The dimensionful functions FR1 and FR0

correspond to the R1 and R0 terms of the required heat
kernel expansion, respectively. With the identification of
background and dynamical couplings ðg; λÞ ¼ ðḡ; λ̄Þ, one
retains the background field approximation from the
geometrical approach. Applying the derivatives in (43)
leads us to

1

ḡ

�
2 −

∂tḡ
ḡ

�
¼ fR1ðg; λ;Ns;NfÞ;

λ̄

ḡ

�
4þ ∂tλ̄

λ̄
−
∂tḡ
ḡ

�
¼ fR0ðg; λ;Ns;NfÞ; ð44Þ

where fRi ≔ FRik2ði−2Þ is dimensionless. The Eqs. (44) are
now used to compare our flows for the dynamical couplings
ðg; λ2; λ3Þ with the standard background field flows. Since
both the standard background field approximation and the
geometrical effective action approach are based on diffeo-
morphism invariant truncations, they do not distinguish
between the couplings of different order graviton vertices.
Hence, for the present analysis we set λ3 ≡ λ2 and identify
the remaining couplings ðg; λ2Þ with the running dynamical
gravitational coupling and the dynamical cosmological
constant in the geometrical approach, ðg; λÞ ¼ ðg; λ2Þ.
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We extract the expressions for fR1 and fR0 from the flow
equations in [14,34] reversing the identification of back-
ground and dynamical couplings. Explicit expressions for
fRi are given in Appendix D.
In order to determine the fixed points of the flows (44),

we set ∂tḡ ¼ ∂tλ̄ ¼ 0 and evaluate fRi at our fixed point
values for the dynamical couplings, ðg�; λ�2Þ. This way, we
arrive at simple fixed point equations for the background
couplings, to wit

ḡ� ¼ 2

fR1ðg�; λ�2;Ns; NfÞ

λ̄� ¼ fR0ðg�; λ�2;Ns; NfÞ
2fR1ðg�; λ�2;Ns;NfÞ

: ð45Þ

The fixed points provided by the latter equations are
compared to the results from flows in the standard back-
ground field approximation [14,34]. First of all, we note
that the matter terms in the flows of the dynamical
couplings ðg; λ2Þ have opposite signs relative to the
respective contributions to the flows of background cou-
plings. This can be seen most easily in the analytical
equations with ~ηϕ ¼ 0 where the matter contributions to
ðg; λ2Þ can be written as

∂tg∼ −
43

570π
g2Ns −

3599

11400π
g2Nf;

∂tλ2∼ −
1

24π
gNs þ

4

9π
gNf: ð46Þ

In [14,34] the contributions to the flows of the background
couplings ḡ and λ̄ read

∂tḡ∼þ 1

6π
ḡ2Ns þ

1

3π
ḡ2Nf;

∂tλ̄∼þ 1

12π
ð3þ 2λ̄ÞḡNs −

1

3π
ð3 − λ̄ÞḡNf: ð47Þ

For λ̄ < 3 every single term in (46) and (47) carries the
respective opposite sign.
Still, the signs of the matter contributions for the back-

ground flows are trivially the same. Accordingly, we expect
the explicit Ns, Nf scalings in the flows of the background
couplings to dominate the qualitative behavior of the
background fixed points. The implicit dependence of the
fixed points ðg�; λ�2Þ onNs,Nf is expected to be subleading,
resulting in a similar behavior of the fixed points of our
background quantities and those from studies in back-
ground field approximation.

A. Background fixed points in the full system

The left panel in Fig. 9 shows the fixed point for the
dynamical quantities ðg; λ2Þ (solid lines) and that of their
corresponding background counterparts ðḡ; λ̄Þ (dashed
lines) calculated from (45) as a function of Ns. The fixed
point values of the background couplings have similar
values compared to the fixed points for the dynamical
couplings at Ns ¼ 0. However, both quantities evolve very
differently under the inclusion of scalars. In particular, ḡ
and λ̄ increase quickly with increasing Ns. At Nspole ¼ 25.8,

λ̄ crosses the propagator pole, which is impossible in the
background field approximation. Here, however, we do not
identify background and dynamical couplings, i.e. λ̄ ≠ λ2,
and in consequence crossing of the pole does not pose a
problem. The background couplings diverge forNs ¼ 60.8,
resulting in an invalid fixed point for Ns > 60.8 (dotted
area). The latter divergence, however, is not present for the

FIG. 9. Fixed point values of the dynamical couplings ðg; λ2Þ (solid lines) in comparison with their corresponding background
counterparts ðḡ; λ̄Þ (dashed lines) as functions of the number of scalars Ns (left panel) and the number of fermions Nf (right panel). The
fixed point values of the background couplings diverge for Ns ¼ 60.8 (left panel) and Nf ¼ 68.6 (right panel). The dotted regions
denote the regimes beyond the latter divergences.Nspole denotes the number of scalars at which λ̄would run into the propagator pole if the

identification λ2 ¼ λ̄, common in the background approximation is applied.
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dynamical couplings. It merely results from the fact that fR1

becomes zero at this point, leading to divergent expressions
for ðḡ; λ̄Þ in (45). Consequently, the fixed point for the
background couplings does in fact exist beyond Ns ¼ 60.8
until the dynamical fixed point is lost (hatched area). Since
fR1 has, however, changed sign in this regime ḡ� is negative
and, therefore, clearly unphysical.
The right panel in Fig. 9 compares the fixed points for

the dynamical couplings and the background couplings as a
function of Nf. Starting at similar values at Nf ¼ 0, the
fixed point for the background couplings again exhibits a
very different behavior from that of the corresponding
dynamical fixed points under the inclusion of fermions.
While g� decreases with increasing Nf, ḡ increases
strongly. Similarly, λ̄� is quickly driven to large negative
values, changing sign at Nf ¼ 3.7, whereas the dynamical
λ�2 remains almost constant. The fixed point for the back-
ground quantities diverges for Nf ¼ 68.6. The dotted
region denotes the regime where the background fixed
point is invalid. Again, the divergence appears only for the
background quantities. The dynamical couplings remain
well behaved for all Nf.
In summary, the fixed points for the background cou-

plings behave very differently from their dynamical coun-
terparts under the inclusion of matter fields. In particular,
the latter exhibit divergences which are not present for the
dynamical couplings. The dynamical couplings calculated
in this work are the ones which are relevant for probing the
consistency of gravity as a quantum field theory in the UV.
Thus, the above analysis suggests that divergences or the
disappearance of fixed points for the background couplings
do not reflect actual divergences of the dynamical cou-
plings. It is therefore indispensable to distinguish between
background and dynamical couplings in order to study the
UV behavior of quantum gravity once matter fields are
included.

B. Comparison to background fixed
points in the literature

We now compare the fixed points for the background
quantities that we obtained from the Eqs. (45) with the ones
obtained from a background field approximation as
reported in [34]. In our analysis, we disregard the use of
different regulators in the different approaches. Hence, we
assume that the generic behavior of the approaches is
independent of this choice.
The left panel in Fig. 10 depicts fixed points for

background couplings as functions of Ns. The dotted
curves represent fixed points of flows determined in
background field approximation in [34] (DEP) and the
dashed curves denote our background couplings, which are
calculated from the dynamical couplings (identical to the
respective curves in Fig. 9). The fixed point value for the
gravitational coupling ḡ�DEP increases with increasing Ns
and eventually diverges at Ns ≈ 27. For Ns > 27 no UV
fixed point exists, which is indicated by the gray dotted area
in the plot. Note that due to the identification of background
and dynamical couplings the graviton propagator pole is
located at λ̄ ¼ 0.5. This limit cannot be intersected by λ̄�DEP.
In consequence, λ̄�DEP first increases but exhibits a charac-
teristic kink at Ns ≈ 16 and then decreases again until the
fixed point ceases to exist at Ns ≈ 27.
For small numbers of Ns, the fixed points from the

background field approach ðḡ�DEP; λ̄�DEPÞ show a behavior
which is similar to that of our background couplings
ðḡ�; λ̄�Þ. For larger values of Ns the value of λ̄�DEP is driven
closer to the propagator pole, and the flow equations
receive growing contributions from the graviton loops,
which is not the case for our background couplings. Here,
the implicit dependence of the fixed point on Ns is large,
and we observe large deviations between our background
couplings and those in [34] in the regime Ns ≳ 10.

FIG. 10. Logarithmic plot of the fixed point values of the background field couplings ðḡ; λ̄Þ as a function of the number of scalars Ns
(left) and as a function of the number of fermions Nf (right) in comparison with results in background field approximation from [34]
(DEP). Our background couplings behave very similarly to the couplings in [34]. The gray- and black-shaded areas denote the regimes
where the fixed point for the couplings in [34] and for our couplings is lost, respectively.
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The right panel in Fig. 10 depicts the fixed points for
background couplings as functions of Nf. The notation for
the curves in the right panel is the same as in the left one
described above. The fixed point value ḡ�DEP strongly
increases with increasing Nf and runs into a divergence
for Nf ≈ 10. For Nf > 10 the fixed point does not exist
anymore, which is indicated by the gray dotted area in the
plot. The value for λ̄�DEP starts at small negative values and
decreases quickly with increasing Nf until the fixed point
ceases to exist at Nf ≈ 10.
For small numbers of Nf, our background couplings

ðḡ�; λ̄�Þ show again a similar behavior to the fixed points in
the background field approximation. For larger Nf, we
observe large deviations, though the generic behavior of the
fixed points is the same. An important common feature is
the existence of a singularity for the fixed point for a finite
number of fermions. As discussed in the previous section,
this divergence has no influence on the asymptotic safety of
the theory since it is clearly independent from the physical
dynamical couplings. Again, the divergence of the back-
ground fixed point is due to the fact that fR1 in (45) passes
zero. Beyond this divergence the background fixed point
still exists but has changed sign. This can be observed for ḡ�
in the lower right corner of the right panel of Fig. 10.
In summary, for sufficiently small Nf; Ns ≲ 10 the

couplings in the background field approximation (DEP)
behave similarly to the background field couplings of the
full dynamical system computed here. Note that both
computations show divergences in the background cou-
pling for a finite number of scalars and fermions. These
divergences are not reflected in the dynamical couplings,
and the current analysis strongly suggests their absence at
k ¼ 0. We conclude that the background field approxima-
tion provides an adequate qualitative picture of the behavior
of the physical background couplings for Nf; Ns ≲ 10. The
relevant quantities for studies of the UV behavior of
quantum gravity are, however, the dynamical couplings.
In turn, for Nf; Ns ≳ 10 the background field approxima-
tion fails, and it is necessary to compute dynamical flows
and couplings.

VI. SUMMARY

We have presented the first genuine calculation of
dynamical gravitational couplings based on a vertex flow
in gravity-matter systems with an arbitrary number of
scalars and fermions. We have calculated the matter
contributions to the dynamical graviton two- and three-
point functions and included momentum-dependent gravity
and matter anomalous dimensions. The UV behavior of the
resulting theory has been analyzed under the influence of
Ns scalars and Nf fermions.
In the scalar sector the increase of Ns leads to an

increasing Newton’s coupling at the UV fixed point and
thus to a strengthening of graviton fluctuations at high

energies. For large numbers of scalars Ns > 21.5 the
present generic class of regulators violates the bounds
(33) due to a large graviton anomalous dimension, i.e.
ηh > 2 in this regime. Deep in this regime the UV fixed
point first becomes repulsive and finally is lost, which
requires further investigation.
In the fermion sector the UV fixed point exists and is

stable for all Nf. Also, all fixed point values remain small,
and the anomalous dimensions stay below the bounds (33),
i.e. ηh; ηc; ηφ < 2 and ηψ < 1, for all Nf. Similar to the
scalar case the increase of Nf enhances graviton fluctua-
tions. Here, however, the enhancement is due to the shift of
the graviton mass parameter towards the propagator pole.
In summary, we always find an attractive UV fixed point

in the presence of a general number of scalars and fermions
within the validity bounds for the generic class of regulators
used here. Finally, we have discussed and embedded
previous results in the literature within our extended
setting. In particular, we have also compared the present
results within the full dynamical system to results that
partially rely on the background field approximation.
Interestingly, we find the signs of the matter contributions
to the flows of our dynamical couplings to be opposite to
those of flows in background field approximation. This is in
sharp contrast to the pure gravity flows whose signs agree
in all approximations. We have also computed the fixed
points of the background couplings in the present approach.
We have shown that the latter agree qualitatively with the
fixed point couplings in the background field approxima-
tion for Nf; Ns ≲ 10. In turn, for Nf; Ns ≳ 10 the back-
ground field approximation fails, and it is necessary to
compute dynamical flows and couplings.
Currently, we extend the present work to vector fields as

well as to improved approximations. This includes approx-
imations that are not sensitive to the validity bounds for the
generic class of regulators used here related to the size of
the anomalous dimensions as well as including higher
orders in the curvature scalar R.
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APPENDIX A: FLOW OF THE
THREE-POINT FUNCTION

In Sec. II and Sec. III Awe discussed the projection and
the flow of the graviton three-point function. Here, we
provide the explicit form of the projection operators and
the corresponding projected flow equations. In the three-
step procedure outlined in Sec. II we presented a way to
construct two projection operators for the three-point
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function. From the momentum-independent part of T ð3Þ
we obtained a projection operator for ∂tΛ3, which we call
ΠΛ3

. In turn, the corresponding projection operator for
∂tG, ΠG, was constructed from the momentum-
dependent part of T ð3Þ. In a multi-index notation, ΠG
(in the symmetric momentum configuration) and ΠΛ3

are
given by

ΠABC
G ¼ ΠAA0

TT ðp2
1ÞΠBB0

TT ðp2
2ÞΠCC0

TT ðp2
3Þ
T ð3Þ

A0B0C0 ðp; 0Þ
p2
1

; ðA1Þ

ΠABC
Λ3

¼ ΠAA0
TT ðp2

1ÞΠBB0
TT ðp2

2ÞΠCC0
TT ðp2

3ÞT ð3Þ
A0B0C0 ð0; 1Þ; ðA2Þ

where A, B and C are multi-indices, e.g. A ¼ μν.

Contracting ΓðhhhÞ
k with these objects leads to scalar

expressions, which we call ΓðhhhÞ
TT;G and ΓðhhhÞ

TT;Λ , respectively.
The latter are given schematically in Eq. (24) and read
explicitly

ΓðhhhÞ
TT;G ðp2Þ ¼ G1=2 Z

3=2
h ðp2Þ
ð32πÞ2

�
171

32
p2 −

9

4
Λ3

�
; ðA3Þ

ΓðhhhÞ
TT;Λ ð0Þ ¼ G1=2 Z

3=2
h ð0Þ
ð32πÞ2

80

3
Λ3; ðA4Þ

where the subscript G and Λ refer to the different
projection schemes as described in Eqs. (A1) and (A2).
From these equations we take a scale derivative and
divide by the appropriate wave function renormalization,
i.e. Z3=2

h ðp2Þ for Eq. (A3) and Z3=2
h ð0Þ for Eq. (A4).

Afterwards (A3) is evaluated at p ¼ k as well as p ¼ 0.
The respective results are subtracted from each other. With
the usual dimensionless quantities introduced in (36) this
leads to the flow equations

_g¼ 2gþ3ηhðk2Þg−
24

19
ðηhðk2Þ−ηhð0ÞÞλ3g

þ 64

171

ð32πÞ2 ffiffiffi
g

p
k

ðFlowðhhhÞ
TT;G ðk2Þ−FlowðhhhÞ

TT;G ð0ÞÞ; ðA5Þ

_λ3 ¼ − 2λ3 þ
3

2
ηhð0Þλ3 þ

1

2
ð2g − _gÞ λ3

g

þ 3

80

ð32πÞ2ffiffiffi
g

p
k

FlowðhhhÞ
TT;Λ ð0Þ: ðA6Þ

Note that prefactors such as 24
19

or 64
171

depend on the
kinematic configuration. The present flow equations are
evaluated for the symmetric momentum configuration, see
(17). The prefactors in front of Flow also depend on the

norm of the projection operators. The present numbers are
obtained with unnormalized transverse traceless projec-
tion operators, i.e. ΠTT ∘ΠTT ¼ 5. These equations do not
have an analytic form. To obtain analytic equations, a
derivative projection is necessary, but this is less accurate
in capturing the momentum dependence of the flow, see
Appendix C.

APPENDIX B: ANOMALOUS DIMENSIONS

The anomalous dimensions obey a system of coupled
Fredholm integral equations. The latter is given by

ηhðp2Þ ¼ 32π
FlowðhhÞ

TT ð−M2Þ − FlowðhhÞ
TT ðp2Þ

p2 þM2
½~ηϕ�;

ηcðp2Þ ¼ −
Flowðc̄cÞðp2Þ

p2
½ηh; ηc�;

ηψ ðp2Þ ¼ i
trðp Flowðψ̄ψÞÞðp2Þ

dp2
½ηh; ηψ �;

ηφðp2Þ ¼ −
FlowðφφÞðp2Þ

p2
½ηh; ηφ�: ðB1Þ

The squared brackets denote functional dependencies on
the respective anomalous dimensions. The content of the
brackets also indicates which fields run in the loop of
corresponding two-point function. We approximate the
Eqs. (B1) by evaluating the anomalous dimension at the
momentum scale p ¼ k, see Sec. III C.

APPENDIX C: ANALYTIC FLOW EQUATIONS

Throughout this work we have used the full numerical
flow equations to compute the UV fixed points.
Nevertheless, we derived analytic flow equations, which
are, however, less accurate in capturing the momentum
dependence of the flow [6]. To obtain analytic flow
equations we need to employ

(i) a Litim-type regulator,
(ii) the momentum approximation of the anomalous

dimension from Sec. III C in each loop integral,
(iii) a derivative projection for ∂tg instead of the

usual bilocal projection (for bilocal projection see
Appendix A).

The latter implies the following: As usual, we take a scale
derivative of Eq. (A3) and divide by Z3=2

h ðp2Þ and p2. Then,
we take another derivative, this time with respect to p2 and
evaluate the result at p ¼ 0. Now, the loop integration can
be performed analytically. The resulting analytic equations
are
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_g ¼
�
2þ 3ηhð0Þ −

24

19
η0hð0Þλ3

�
g

þ g2

π

�
−
47ð6 − ηhðk2ÞÞ
114ðμþ 1Þ2 þ ð472ð6 − ηhðk2ÞÞ − 360ð4 − ηhðk2ÞÞλ3Þλ4 − 240ð6 − ηhðk2ÞÞλ3 þ 45ð8 − ηhðk2ÞÞ

342ðμþ 1Þ3

þ 16ð1 − 3λ3Þλ4
19ðμþ 1Þ4 þ 25920ð4 − ηhðk2ÞÞλ33 þ 3380ð6 − ηhðk2ÞÞλ23 − 1860ð8 − ηhðk2ÞÞλ3 þ 147ð10 − ηhðk2ÞÞ

1710ðμþ 1Þ4

þ 2
2336λ33 − 3640λ23 þ 1780λ3 − 299

285ðμþ 1Þ5 −
53ð10 − ηcðk2ÞÞ

190
þ 48

19

�

þ Nf
g2

π

�
−
521ð6 − ηψ ðk2ÞÞ

17100
−
3ð5 − ηψðk2ÞÞ

152
−

13

380

�

þ Ns
g2

π

�
10 − ηφðk2Þ

1140
−

8

95

�
;

_λ3 ¼
�
−1þ 3

2
ηhð0Þ −

_g
2g

�
λ3

þ g
π

�
8 − ηhðk2Þ − 4ð6 − ηhðk2ÞÞλ5

8ðμþ 1Þ2 þ ð−16ð6 − ηhðk2ÞÞλ3 þ 3ð8 − ηhðk2ÞÞÞλ4
6ðμþ 1Þ3

þ 80ð6 − ηhðk2ÞÞλ33 − 120ð8 − ηhðk2ÞÞλ23 þ 72ð10 − ηhðk2ÞÞλ3 − 11ð12 − ηhðk2ÞÞ
240ðμþ 1Þ4 þ 12 − ηcðk2Þ

10

�

þ Nf
g
π

�
8 − ηψðk2Þ

224
−
7 − ηψ ðk2Þ

56
þ 17ð6 − ηψ ðk2ÞÞ

240

�

þ Ns
g
π

�
12 − ηφðk2Þ

480
−
10 − ηφðk2Þ

80
þ 8 − ηφðk2Þ

96

�
;

_μ ¼ ð−2þ ηhð0ÞÞμ

þ g
π

�
8ð6 − ηhðk2ÞÞλ4 − 3ð8 − ηhðk2ÞÞ

12ðμþ 1Þ2 þ 320ð6 − ηhðk2ÞÞλ23 − 120ð8 − ηhðk2ÞÞλ3 þ 21ð10 − ηhðk2ÞÞ
180ðμþ 1Þ3 −

10 − ηcðk2Þ
5

�

þ Nf
g
π

�
7 − ηψðk2Þ

63
−
6 − ηψ ðk2Þ

6

�

þ Ns
g
π

�
10 − ηφðk2Þ

120

�
: ðC1Þ

APPENDIX D: BACKGROUND QUANTITIES

The functions fRi , which are discussed in Sec. V, are extracted from [34]. In our case they read

fR0ðg; λ; Ns; NfÞ ¼
1

48π

�
20ð6 − ηhðk2ÞÞ

1 − 2λ
− 16ð6 − ηcðk2ÞÞ þ 2ð6 − ηφðk2ÞÞNs − 8ð6 − ηψðk2ÞÞNf

�
;

fR1ðg; λ; Ns; NfÞ ¼
1

48π

�
52ð4 − ηhðk2ÞÞ

1 − 2λ
þ 40ð4 − ηcðk2ÞÞ − 2ð4 − ηφðk2ÞÞNs − 4ð4 − ηψðk2ÞÞNf

�
: ðD1Þ

In order to obtain the functions in Eq. (D1), we reversed the identification of background and dynamical quantities and
replaced ηϕ → ηϕðk2Þ in order to evaluate the anomalous dimension at the values where the integrals are peaked. Note that
the functions fRi depend on the dynamical gravitational coupling g only via the anomalous dimensions.
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