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The unification of general relativity with quantum theory will also require a coming together of the two
quite different mathematical languages of general relativity and quantum theory, i.e., of differential geometry
and functional analysis, respectively.Of particular interest in this regard is the field of spectral geometry,which
studies towhich extent the shape of a Riemannianmanifold is describable in terms of the spectra of differential
operators defined on the manifold. Spectral geometry is hard because it is highly nonlinear, but linearized
spectral geometry, i.e., the task to determine small shape changes from small spectral changes, is much more
tractable andmay be iterated to approximate the full problem. Here, we generalize this approach, allowing, in
particular, nonequal finite numbers of shape and spectral degrees of freedom. This allows us to study howwell
the shape degrees of freedom are encoded in the eigenvalues. We apply this strategy numerically to a class of
planar domains and find that the reconstruction of small shape changes from small spectral changes is possible
if enough eigenvalues are used. While isospectral nonisometric shapes are known to exist, we find evidence
that generically shaped isospectral nonisometric shapes, if existing, are exceedingly rare.

DOI: 10.1103/PhysRevD.93.084033

I. INTRODUCTION

A fundamental difficulty with the quantization of general
relativity is to separate in the metric the true degrees of
freedom from spurious degrees of freedom that merely
express choices of coordinates [1–3]. It is of interest,
therefore, to obtain a description of curved manifolds in
terms of coordinate system independent quantities. Such a
set of invariants could be provided by the spectra of
canonical differential operators such as the Dirac operator
or Laplacians, at least in the case of Euclidean gravity
[4–6]. This approach is interesting also because by relating
curvature to spectra it naturally translates between the
differential geometric language of general relativity and the
functional analytic language of quantum theory [4].
The mathematical discipline concerned with the relation-

ship between the curvature or “shape” of a manifold and the
spectra of operators defined on it is known as spectral
geometry. Its origins trace back to Weyl [7] and predate
quantum mechanics. Concretely, spectral geometry asks to
what extent properties of manifolds, such as their curvature
and their boundaries (or also their boundary conditions),
can be determined by spectra of operators on them. The
case of the detection of the boundaries of a manifold from
spectra has been popularized by Kac’s paper entitled
“Can one hear the shape of a drum?” [8]. Kac’s question
has inspired investigations into acoustical engineering
applications of spectral geometry, see, e.g., the recent
[9]. For simplicity, we refer to both, the “hearing” of
curvature and the “hearing” of boundaries as the quest to
detect the “shape” of a manifold from spectra.
Indeed, it has been shown that, within suitable classes of

Riemannian manifolds, it is possible to determine the

curvature and/or the shape of the boundary of a (sometimes
assumed flat) manifold from spectra. A survey of such results
can be found in [10] and see also [11–13]. Examples are
reflection-symmetric domains in Rn and surfaces of
revolution.
If spectral geometry is to help with the quantization of

gravity, i.e., if eigenvalues are to serve as the dynamical
degrees of freedom of curvature, then the key question is
under which circumstances the spectra of suitable differential
operators can fully describe the curvature of a manifold.
Indeed, there exist classes of manifolds that contain

nonisometric but isospectral manifolds, i.e., there are circum-
stances in which the shape cannot be uniquely determined
from spectra. There are techniques for constructing such
isospectral nonisometric manifolds, see [14]. These tech-
niques apply only in special instances, however, and it
remains unknown how prevalent isospectral nonisometric
manifolds are among thegenericmanifolds that are of interest
in physics. A key question, therefore, has remained open,
namelywhether the relationship between shape and spectra is
in the generic case unique or ambiguous. Are isospectral
nonisometric manifolds the norm or the exception?
The reasonwhy this questionhas been difficult to answer is

that the map from the curvature or shape of a manifold to its
spectrum is highly nonlinear, whichmakes it hard to study its
invertibility properties. To make this problem tractable, our
approach here is to linearize the problem by applying
perturbation theory, so that we can then at least address
the question of local invertibility: we ask if knowledge of a
small change of spectrum suffices to reconstruct the small
change of shape that caused it. Locally inverting the map
between shape and spectrum then becomes a question of
(pseudo)inverting a linear operator. If this is possible, i.e., if it
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is possible to uniquely infer small shape changes from small
spectral changes, then the aim is to iterate these infinitesimal
steps to obtain finite shape changes from finite differences in
the spectrum. That should enable one to then address the
original question about the overall uniqueness or ambiguity
of shapes for given spectra. To summarize, the point of using
the linearization of the map from shapes to spectra is that it is
local and easier to invert than the full map. We thus trade a
global inverse that one cannot construct, and that may not
even exist, for a local (pseudo)inverse that one can construct.
As a concrete example of this approach, we here study

the case of domains in the plane whose shape can be
described by a finite number of degrees of freedom. We
then use finite element methods to compute the spectra of
those domains. Our observation is that it is almost always
possible to locally determine shape from spectrum, i.e., to
determine small shape changes from small spectral
changes. Indeed, pairs of isospectral yet nonisometric
manifolds appear to be of measure zero.

II. INFINITESIMAL SPECTRAL GEOMETRY

Most difficulties of spectral geometry can be ascribed to
the fact that the map between shape and spectrum is highly
nonlinear. A tried and true strategy to simplify such problems
is to locally linearize them. In the context of inverse spectral
geometry, this amounts to trying to determine changes in
shape from changes in spectra in a small (infinitesimal)
neighborhood of some reference shape. By iterating (similar
to integrating) such steps, onemay even obtain finite changes
in both shape and spectrum. That is, given an initial shape A
anda target shapeB, one can deformA in small (infinitesimal)
steps that take its spectrum closer and closer to that of B. We
dub any such approaches infinitesimal inverse spectral
geometry (IISG). Such an approach was used previously
in [15] for the spectra of a graph Laplacians on a special
family of graphs.
Here, our aim is to develop IISG in a setting that is suitable

for numerical investigations.Weuse the terminology that the
word shape denotes a Riemannian manifold picked from a
suitable class, G. Here, G can contain shapes that are
equivalent by isometry. The set of isometry equivalence
classes of G is denoted ½G�. We assume that G can be
parametrized in a well-behaved way by RM. We call the M
coordinates inRM the shape degrees of freedom. For brevity
we also refer to the points in RM as shapes. The space of
shapes G is equipped with a metric dGð·; ·Þ. This then allows
us to verify if shapes match up to some predetermined finite
threshold εG, as required by the inherent limitations of
numerical methods. Under additional mild conditions one
can obtain a metric d½G�ð·; ·Þ on ½G� by taking d½G�ð½A�; ½B�Þ ¼
infA∈½A�;B∈½B�dGðA;BÞ.
Given a shape in G one can compute a finite numberN of

lowest eigenvalues of its Laplacian. Let RN be the space of
spectra and suppose that it is equipped with a metric

dσð·; ·Þ. This metric is used to verify if the spectra are equal
up to some fixed finite threshold εσ. Moreover, the spectral
map must be continuous and differentiable with respect to
this metric. The usual Euclidean metric suffices for this
task, so it is the one we employ from now on. One can
construct a spectral map σ∶RM → RN between the shape
and spectral degrees of freedom. Since all the studied
spectra come from some shape in G, the notation for the
spectral distance can be simplified by writing dσðA; BÞ
instead of dσðσðAÞ; σðBÞÞ. Similarly, one can consider
variants of the spectral map that use the spectrum of the
Green’s operator (which is the spectrum used in what
follows) or any other function of the Laplacian. The study
of IISG is then reduced to the study of the map σ.
Given A; B ∈ RM, IISG strives to construct a parame-

trized path PðtÞ in RM starting at A and ending at B. This
path must be constructed only with the knowledge of the
desired spectrum σðBÞ and the behavior of σ in the
neighborhood of the current point PðtÞ. Since we cannot
a priori guarantee that the target spectrum will be reached
every time, we impose the milder condition that
dσðσðPðtÞÞ; σðBÞÞ must be nonincreasing along the path.
This ensures that even if the method used to construct the
path is imperfect and fails to reach a shape with the desired
spectrum, the resulting shape is at worst as far from the
target as the starting shape was. The simplest way to
achieve this is to use a gradient descent optimization
method on the spectral distance. This is also the approach
used in [15] to study the infinitesimal inverse spectral
geometry of Laplacians on graphs.

d
dt

PðtÞ ¼ −gradðdσðPðtÞ; BÞÞ ð1Þ

While simple, this approach presents a number of dis-
advantages. First, straightforward numerical implementa-
tions of the gradient descent are prone to meandering (see
[16], among many others). More importantly though, the
conceptual meaning of gradient descent optimization strays
from the intuitive idea of locally inverting the spectral map.
An improved version of this method can be obtained as
follows. Let vσ ¼ σðBÞ − σðPðtÞÞ be the desired spectral
direction and let J ðtÞ be the Jacobian matrix of σ at PðtÞ. It
is easy to show that if the spectral distance dσð·; ·Þ is chosen
to be the standard Euclidean metric on Rn, the path PðtÞ
defined by the gradient descent method of Eq. (1) is
equivalent to the path PðtÞ solving the following equation,
up to a reparametrization of t:

d
dt

PðtÞ ¼ −
1

2
gradð∥vσ∥2Þ ¼ J TðtÞvσ: ð2Þ

This form suggests the following improvement. Let
J ðtÞþ denote the pseudoinverse of the Jacobian and set
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d
dt

PðtÞ ¼ J þðtÞvσ: ð3Þ

In a sense, the pseudoinverse and gradient descent
approaches are unified by Eqs. (2) and (3). Most impor-
tantly, these equations show that the pseudoinverse method
provides an optimal approximation to the local inverse of
the spectral map, unlike the gradient method. Indeed, since
the pseudoinverse encodes the solution of a least-squares
problem, σðPðtÞÞ will locally evolve towards σðBÞ in a way
as close as possible to a straight line in the sense of the
Euclidean metric in the space of spectra RN .
Moreover, the pseudoinverse provides a useful canonical

generalization of the inverse of a linear map which is
applicable to maps also between vector spaces of different
dimensions. It allows one to study situations where the
numbers of shape and spectral degrees of freedom (M and
N) are not equal. In such situations the usual inverse function
theorem is not applicable. However, the pseudoinverse
approach can still give information about how well the
spectral degrees of freedom locally encode the shape degrees
of freedom. This is a significant technical advance compared
to the results of the related study concerning the spectral
geometry of graphs reported in [15], where, by construction,
the number of shape degrees of freedom always matched the
number of spectral degrees of freedom.
We should note that the partial derivatives of the

eigenvalues with respect to the degrees of freedom of
shape may be undefined at shapes whose Laplacians have
degenerate spectrum. While at such points in shape space,
Eq. (3) does not hold, fortunately, such cases are not
generic. Indeed, it is known that, on a fixed differentiable
manifold, metrics that induce Laplacians with nondegen-
erate spectrum form a residual set in the space of all smooth
metrics [17]. For the present paper, we restrict our analysis
to such generic cases.

III. NUMERICAL SETUP

Equation (3) is numerically integrated by the Eulermethod
with a variable step size. If the step results in a shape whose
spectrum is closer to the target one, the step size is increased.
Otherwise, the step is cancelled, and the step size is
decreased. The increase and decrease in step sizes are
accomplished bymultiplying the step size by constant factors
1.1 and 0.7, respectively. The precise choice of those values is
of course arbitrary. Increasing the step size speeds up the
execution of the algorithm, which can be quite lengthy if the
distance d½G�ðA;BÞ is large. The decrease in step size helps
the algorithm converge. The algorithm is stoppedwhen either
σðPðtÞÞ becomes close enough to σðBÞ, as dictated by the
tolerance εσ, or the step size becomes negligibly small,
indicating that the algorithm is stuck. The distance
d½G�ðPðtÞ; BÞ is then computed, and if it is smaller than the
tolerance threshold εG it is deemed that the algorithm has
succeeded. Otherwise, the run is deemed a failure. By

generating random pairs ðA;BÞ one can test how the success
rate depends on various factors such as the number of
considered eigenvalues and the initial distance d½G�ðA; BÞ
between shapes. Of particular interest is the questionwhether
the rate of success approaches 1 as d½G�ðA;BÞ is decreased,
provided that N is large enough, as compared to the number
of shape degrees of freedom M.
We apply this method to a class of domains in R2

equipped with the standard Laplacian with Dirichlet boun-
dary conditions. The spectra were computed using the
FreeFem++ [18] finite element solver. The boundary of
the studied domains is given by a radial function rðϕÞ of the
standard polar angle ϕ

rðϕÞ ¼ aþ b exp

 
C0 þ

XM−1
2

k¼1

½Ck cosðkϕÞ þ Sk sinðkϕÞ�
!
:

ð4Þ

The arbitrary positive parameters a and b were set to
a ¼ 0.1, b ¼ 0.9. The purpose of a is to set a small but
finite minimal radius to the studied shapes, a technical
condition that ensures proper functioning of the finite
element solver. The value of b is set so that rðϕÞ ¼ 1 if
all of the Fourier coefficients Ci and Si vanish. The space of
shape degrees of freedom is taken to be the space of the first
M Fourier coefficients. The studied range of the coeffi-
cients yields shapes with diameters roughly between 1 and
10. The shape tolerance threshold is set to be εG ¼ 0.005,
which is well smaller than the typical size of the studied
shapes. The spectral threshold is set to εσ ¼

ffiffiffiffiffiffiffiffiffi
10−9

p
≈

3.16 × 10−5, a number that was chosen to be compatible
with the threshold εG, as is discussed in more detail below.
An example shape is shown in Fig. 1.
A metric dGð·; ·Þ on this class of shapes is obtained by

using the Hausdorff distance between the boundaries
viewed as subsets of R2 [19]. A corresponding notion of
distance d½G�ð·; ·Þ on ½G� is obtained by minimizing dGð·; ·Þ
over the isometries of the plane. In practice, this is done by
translating both shapes so that their centers of mass
coincide with the origin and then minimizing the distance
over all rotations and reflections of one of the shapes.

FIG. 1. An example shape for M ¼ 11.
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IV. NUMERICAL RESULTS

Rates of success of our approach were obtained by fixing
M−1
2

¼ 1…5 (i.e. M ¼ 3; 5;…; 11), generating random
pairs ðA; BÞ and running the algorithm for N ¼ 1…40.
The number of random pairs is between 1250 and 1750,
depending on M. Random pairs whose initial shape
distance was too small, i.e., less than the shape tolerance
threshold εG (i.e., automatic successes) were excluded. For
a fixedM, the success rate of the algorithm was analyzed as
a function of the isometry invariant shape distance
d½G�ðA;BÞ and of the number N of considered eigenvalues.
In our analysis we employ two ways to represent the

dependence of the success rate on the initial shape distance.
The first is to present Lðd1; d2; NÞ which is the proportion
of all pairs ðA;BÞ with d1 < d½G�ðA; BÞ ≤ d2 for which the
algorithm succeeds for a given N. Thus, it is simply the
intuitive notion of success rate in a bin ðd1; d2�. This
success rate is illustrated in Fig. 2 forM ¼ 11 and N ¼ 40.
Notice that the success rate decays rapidly with d½G�ðA; BÞ.
Still, at short distances, the success rate is quite
encouraging.
In order to probe the short distance behavior more

closely, we use a second, specialized way to represent
the dependence of the success rate on the initial shape
distance. Consider the pairs ðA; BÞ such that d½G�ðA;BÞ ≤ d.
Let RðdÞ denote the number of such pairs and let Sðd;NÞ
denote the number of such pairs for which the algorithm
has succeeded in finding a shape isometric to B when using
N eigenvalues. We then define the accumulated success rate
Aðd;NÞ ¼ Sðd;NÞ=RðdÞ. This allows us to better represent
the success rate as d½G�ðA;BÞ goes to zero, as Aðd;NÞ is the
success rate in a bin ½0; d�. For M ¼ 11 and N ¼ 1…40,
Aðd;NÞ is illustrated in Fig. 3. Two key features become
apparent. First, the success rate of the algorithm indeed
tends towards 1 as the distance between the starting and
target shape goes to zero, provided that N is large enough.
This indicates a success of the program of infinitesimal

inverse spectral geometry. The second feature is the thresh-
old at which N becomes large enough. Notice that the
success rate is rapidly increasing as N goes from 1 to
roughly M, and then plateaus near 1. This indicates that, at
least for the considered space of shapes, it is sufficient to
attain an approximate match betweenN andM to be able to
reconstruct infinitesimal changes in shape from infinitesi-
mal changes in spectrum. The reason this match is
approximate is that the description of the space of shapes
possesses redundancy. Indeed, since rotations about the
origin are isometries, one shape degree of freedom is
pure gauge. This suggests the possibility that the limit
M;N → ∞ of infinitely many shape degrees of freedom
and the full spectrum could be successfully treated by the
same approach as the finite dimensional case, although we
do not pursue this limit here.
Let us now investigate the cases where the algorithm

does not succeed. We start by considering the possible
outcomes of the algorithm. The four possibilities are
(1) both shapes and spectra match, (2) shapes match but
not spectra, (3) spectra match but not shapes and (4) neither
match. The first case is of course that of the algorithm
succeeding and warrants no further explanation.
The second case is an unavoidable artifact of finite

numerical precision and of the fact that identical balls in
shape space will correspond to domains in spectral space of
significantly varying volume and shape. It is thus not
possible to relate the size of those domains by the choice of
two constant thresholds. In other words, having picked a
constant εG, one cannot pick a constant εσ such that
isometry up to the threshold εG always implies isospec-
trality up to the threshold εσ . We sidestep this issue by,
conservatively, counting those ambiguous cases as failures.
Thus, the success rates that we report are lower bounds for
the success rates for the chosen spectral and shape
tolerances.
The third possible outcome is interesting, as it corre-

sponds to domains that are nonisometric but are isospectral
on their first N eigenvalues. That is, they are potential
counterexamples to the general program of infinitesimal

0 0.05 0.1 0.15 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FIG. 2. Success rate as a function of initial shape distance for
M ¼ 11 and N ¼ 40.
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FIG. 3. Success rate for runs with initial shape distance less
than d for M ¼ 11 and varying N.
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inverse spectral geometry. Figure 4 illustrates the propor-
tion of isometric runs among isospectral ones for varying
N. Notice that this proportion goes to 1 as N increases.
This indicates that, at least for the studied space of
shapes, nonisometric isospectral shapes form a set of
measure zero.
Finally, the fourth outcome is the algorithm getting stuck

when the right hand side of Eq. (3) vanishes. Since the
transpose and the pseudoinverse of a matrix share their
kernels, J þðtÞvσ ¼ 0 if and only if J TðtÞvσ ¼ 0. It is
straightforward to show that J TðtÞvσ ¼ 0 if and only if
PðtÞ is a critical point of dσð·; σðBÞÞ. That is, our mini-
mization algorithm gets stuck in a local minimum, as
minimization algorithms are prone to do. It could be useful,
therefore, to employ more sophisticated methods for over-
coming trapping in local minima.

V. CONCLUSIONS AND OUTLOOK

It is of great interest for the quantization of gravity
to be able to separate the true degrees of freedom of a
(pseudo)Riemannian manifold (i.e., the curvature of both
the bulk and/or the boundary) from the spurious degrees of
freedom in the metric that merely express choices of
coordinates.
To this end, we started with the observation that the

eigenvalues of Laplacians and other natural differential
operators on the manifold are true degrees of freedom of the
metric because they are geometric invariants, i.e., they are
independent of diffeomorphisms. The key question, how-
ever, is whether these eigenvalues encode all of the true
degrees of freedom. Answering this question is compli-
cated by the fact that the relationship between the metric
and the associated eigenvalues is nonlinear. For this reason,
we introduced a perturbative approach, namely we re-
examined the task of reconstructing the curvature of a
boundary from knowledge of the eigenvalues by turning the
usual question “Can one hear the shape of a drum?” into
the much more manageable local question “Does a small

change of sound tell the corresponding small change of
shape?”. This method of “infinitesimal” inverse spectral
geometry allowed us to study the invertibility properties of
the nonlinear map from shapes to spectra both (a) in the
neighborhood of a shape and (b) to some extent also in the
nonlinear regime via iteration:

(a) We considered the “limit” behavior for decreasing
distances between the initial and target shape for
varying numbersM, N of shape and spectral degrees
of freedom, respectively. We found that as soon as
the number N of spectral degrees of freedom
matches or exceeds the threshold ofM shape degrees
of freedom the success rate tends towards 100%.
This confirms analytic expectations on the basis of
linearizing the nonlinear map from RM to RN . Note
that this reasoning applies equally to the case of a
curved manifold whose metric is parametrized by
RM. The fact that the threshold is indeed M, rather
than some function of M, is encouraging regarding
the limit M;N → ∞.

(b) We investigated cases of considerable shape distance
by iterating the small steps. In particular, we focused
on those runs of the algorithm that found a final
shape with the desired target spectrum. We found
that as the number, N, of considered eigenvalues is
increased beyond the number of shape degrees of
freedom, M, those runs that also found the desired
shape became dominant. In fact, the proportion of
such cases seems to rapidly go to 1 as N increases.
This strongly suggests that counterexamples to
inverse spectral geometry are of measure zero or
even absent within the considered class of shapes.
This is consistent with the fact that, to the best of our
knowledge, all counterexamples to the spectral
geometry program in the plane [20–22] are not in
our class of shapes because they are nonstar-shaped
domains with nonsmooth boundaries. The counter-
examples are thus not only not part of the set of
shapes we studied, but cannot even be approximated
by shapes from the considered set, no matter how
many Fourier coefficients are used. It will therefore
be interesting to further study the properties of this
class of shapes using, in particular, methods inspired
by those used in, for example, [11–13]. There, the
proofs rely on the fact that the boundaries are
analytic functions, which is also true in our case.

Returning to our original motivation, in order to apply
our infinitesimal inverse spectral geometry technique to the
quantization of (Euclidean) gravity, it is necessary to
generalize our new pseudoinverse-based method, see
Eq. (3), to the degrees of freedom of the metric on the
bulk of a compact manifold. Ultimately, this will involve
developing a functional analytic generalization of the
pseudoinverse-based method in order to handle infinitely
many shape and spectral degrees of freedom.
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FIG. 4. Proportion of isometric runs among isospectral ones for
M ¼ 11.
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