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Gravitational-wave data is gauge dependent. While we can restrict the class of gauges in which such data
may be expressed, there will still be an infinite-dimensional group of transformations allowed while
remaining in this class, and almost as many different—though physically equivalent—waveforms as there
are transformations. This paper presents a method for calculating the effects of the most important
transformation group, the Bondi-Metzner-Sachs (BMS) group, consisting of rotations, boosts, and
supertranslations (which include time and space translations as special cases). To a reasonable
approximation, these transformations result in simple coupling between the modes in a spin-weighted
spherical-harmonic decomposition of the waveform. It is shown that waveforms from simulated compact
binaries in the publicly available SXS waveform catalog contain unmodeled effects due to displacement
and drift of the center of mass, accounting for mode mixing at typical levels of 1%. However, these effects
can be mitigated by measuring the average motion of the system’s center of mass for a portion of the
inspiral, and applying the opposite transformation to the waveform data. More generally, controlling the
BMS transformations will be necessary to eliminate the gauge ambiguity inherent in gravitational-wave
data for both numerical and analytical waveforms. Open-source code implementing BMS transformations
of waveforms is supplied along with this paper in the supplemental materials.
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I. INTRODUCTION

As the era of gravitational-wave astronomy approaches,
models of gravitational waveforms from physical systems
become crucial to the extraction of scientific results from
the data. The basic goal of this effort is to make the claim
that a waveform measured in a detector corresponds to
some particular physical model. But a treacherous gulf lies
between any waveform and its corresponding physical
model, abounding in subtle and delicate challenges—not
least of which is the gauge flexibility of general relativity.
This paper describes the gauge transformations most
relevant to studies of gravitational waves and shows
how to calculate their effects on waveforms. We will see
that, in order to obtain accurate waveform models, we must
account for gauge effects.
The literature on gravitational-wave analysis almost

universally allows for two standard gauge ambiguities: time
translations and phase rotations. For example, the standard
technique of matched filtering involves optimizing the
match over the time and phase of the signal [1,2].
Similarly, comparisons between numerical evolutions,
between numerical and analytical waveforms, and between
different approximate analytical waveforms have generally
allowed for time and phase offsets [3,4]. These trans-
formations alter the waveforms, but in well-behaved ways
which can be expressed fairly simply as functions of the
transformations. More recently, the harder problem of
analyzing precessing systems has required generalizing
phase rotations to include the full three-dimensional rotation
group, which induces slightly more complicated—though

still well understood—transformations of the waveforms
[5–8].
Because of the essential diffeomorphism invariance of

general relativity, it might seem that the natural end point of
this progression would include all possible gauge trans-
formations. This would be problematic, to say the least,
because accounting for the effects of arbitrary diffeomor-
phisms on a waveform would be intractable. Fortunately,
by making certain standard approximations, we can avoid
accounting for the complete diffeomorphism freedom, and
restrict to a smaller gauge group. The end result will be
somewhat larger than the familiar Poincaré group—in fact
infinitely so, at least in principle—yet entirely tractable and
far smaller than the diffeomorphism group.
To see how this is possible, we must first note that near-

field effects in the waveforms (effects appearing at second
order in the distance between the emitter and observer)
should be quite small in data collected in the vicinity of
Earth, because even the leading-order waveform will be
hard to detect. Thus, the model waveforms only need to
capture asymptotic features of the radiation far from the
source. In particular, we assume that the model spacetime is
asymptotically flat, and calculate the asymptotic waveform
in the limit of future null infinity, Iþ, which is described
below. Though it is not believed that our Universe is
asymptotically flat, this is a useful construction approxi-
mating an isolated source when the intervening curvature is
typically small. The gravitational-wave signal observed by
a detector in the vicinity of Earth will then be very well
approximated by the waves along some geodesic of Iþ—
up to a scaling related to distance from the source. The
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benefit of assuming such an asymptotic structure is that it
allows us to impose certain conditions on the gauge, the
most common of which is called Bondi gauge [9–14].
Essentially, Bondi gauge consists of a special class of

coordinates that manifest the asymptotic behavior of
the spacetime such that the metric and its derivatives,
when expressed in these coordinates, approach those of
Minkowski spacetime at large radii. The allowed gauge
transformations are symmetry transformations of this
metric, which form a group known as the Bondi-
Metzner-Sachs (BMS) group [9,10,12,15–18]. This group
simply extends the Poincaré group with generalized trans-
lations. Bondi coordinates exist in a neighborhood of Iþ

for any asymptotically flat system [12], and any two Bondi
coordinate systems are related by some BMS transforma-
tion [10]. This means that the BMS group encompasses all
possible gauge transformations we need to be concerned
with when discussing the limits of an asymptotically flat
spacetime.
Bondi gauge also has a particularly nice feature related to

the inertial observers in a neighborhood of Iþ. At very
large radii, curves of constant spatial coordinates para-
metrized by the retarded-time coordinate are nearly time-
like geodesics—becoming more exactly geodesic at larger
radii. Thus, if we extract a quantity on Iþ along a simple
curve of constant spatial coordinate, we approximate the
signal an inertial observer measures as a function of proper
time (up to the usual amplitude scaling with radius).
Moreover, in the approximately flat asymptotic region,
any two inertial observers are related by an element of the
Poincaré group. But that is a subgroup of the BMS group,
so we can use the BMS group to easily generate all possible
signals that might be measured by any inertial observer.
Taken together, these facts mean that Bondi gauge is not

only sufficiently general to describe any signal observed at
great distance from a source in the asymptotically flat
approximation, but is also a convenient choice that allows
us to construct waveforms using simple curves and BMS
transformations. We will therefore assume that any wave-
form is expressed in Bondi gauge, and narrow our focus to
the BMS group. These concepts are reviewed pedagogi-
cally in Sec. II; the eager reader may prefer to skim that
section, and simply refer to Eq. (8) for the key expressions
describing the BMS transformations.
Having understood the BMS group itself, we will then

need to understand its effects on waveforms, which can be
separated into two parts. First is the effect at a single
spacetime event. The transformation changes the differ-
ential structure in a neighborhood of that event, and since
the gravitational field is fundamentally a measure of that
differential structure, it should come as no surprise that the
waveform will change under a transformation. To make
these ideas more precise, however, we will need a careful
treatment of asymptotic flatness. Section III will review a
convenient formalism for developing asymptotic flatness,

then use that formalism to calculate the transformation
properties of a waveform at a point.
Of course, a waveform is not simply measured at a single

spacetime event: a gravitational-wave detector will measure
it along some worldline, whereas model waveforms are
typically expressed over an extended portion of the (future)
celestial sphere of the source, as a function of time. In
practical terms, this means expressing the waveform as a
function of some coordinate system, and that coordinate
system also changes under a BMS transformation. So the
second part of a BMS transformation involves rewriting
the waveform as a function of these new coordinates. This
is a fairly simple bookkeeping exercise in principle, but
involves numerous delicate manipulations and various
minor subtleties for practical implementation, as discussed
in Sec. IV.
Portions of the BMS group have been discussed pre-

viously in the context of transforming gravitational wave-
forms produced by numerical simulations. Gualtieri et al.
[19] considered rotations and boosts, neglecting quantities
of order v2=c2. Kelly and Baker [20] looked at the effect of
supertranslations on ringdown modes, to first order in the
time derivative of the waveform. This paper, however,
presents an exact algorithm for the full BMS group. The
practical implementation of the algorithm is only limited
by numerical precision and the accuracy of interpolation of
the input waveform as a function of time.
Section V will give a brief overview of the size of these

effects, for various types of BMS transformations and simple
waveforms. Basic analytical arguments will show that the
leading-order coupling due to a supertranslation will be
proportional to the size of the translation and the dominant
frequency of the coupled mode (or generally, the mode’s
logarithmic derivative); for boosts the leading-order cou-
pling will be proportional to the speed of the boost. In both
cases, the constants of proportionality are typically of order
1, though there are various geometric factors involved.
In Sec. VI, mode coupling will be demonstrated for a full

waveform from a numerical simulation of a binary black-
hole system in the public waveform catalog maintained by
the SXS collaboration [21,22]. This example system is
chosen for its seeming symmetry, being equal mass and
nonprecessing, though with a spin on one black hole
aligned with the orbital angular velocity. Indeed, simple
coordinate-based measures suggest that the center of mass
only strays from the coordinate origin by only about 0.1M
over the course of the simulation (whereM is the total mass
of the system). Nonetheless, we will find that near merger
more than 1% of each mode—most notably the dominant
(2,2) mode—will mix into other modes. In fact, in the raw
data the (3,3) and (3,1) modes are completely dominated by
power leaking in from the (2,2) mode. Overall, the third-
largest mode in the data, (2,1), is comprised of leaked
power by up to 30%. These couplings give rise to curious
features in the smaller modes that are not present in the

MICHAEL BOYLE PHYSICAL REVIEW D 93, 084031 (2016)

084031-2



post-Newtonian model of this system, for example. The
mode couplings, and resulting curious features, can be
dramatically decreased by measuring the motion of the
center of mass (in simulation coordinates), and applying the
opposite transformation to the waveform.
The example system was chosen so that we will be able

to see clearly that the unexpected features are removed.
More complicated systems—in particular, precessing
systems—will have more complicated waveforms, but also
larger anomalous motion of the center of mass. A survey of
the entire SXS catalog suggests that the center of mass in
more complicated simulations will drift from the origin by
larger amounts, up to 8M for the most extreme system. This
implies correspondingly larger mode couplings for these
systems. Ossokine et al. [23] showed that it is possible to
greatly reduce the size of these displacements by adjusting
the initial data, improving the outlook for future simula-
tions. Nonetheless, the current SXS waveform catalog must
still be adjusted, and any recoil that develops during future
evolutions will need to be accounted for. Moreover, boosts
and translations only account for six of the infinitely many
degrees of freedom in the BMS group; the general super-
translations in particular are still uncontrolled, even after
eliminating the drift of the center of mass.
Given the amount of work that needs to be done to

account for gauge effects in numerical waveforms, it is
reasonable to wonder how this affects searches for gravi-
tational waves in detector data. To understand this issue we
will need to know more about BMS transformations of
waveforms, and so we delay the full discussion until the
end of the paper, Sec. VII. The upshot is that, while we
must take BMS transformations into account when con-
structing waveforms, we do not need to search over all
waveforms generated by the BMS group. For an isolated
observer, the gauge ambiguities reduce to time translation
and Lorentz rotations, which are already known.
Open-source code, in the form of a Python module SCRI,

is supplied in the supplemental materials along with this
paper [24]. It implements the BMS transformations of the
most common gravitational waveforms, including the
Newman-Penrose quantity ψ4, the Bondi news function,
the shear spin coefficient σ, and the transverse-traceless
metric perturbation h—as well as the remaining Newman-
Penrose quantities ψ0 through ψ3. Several Appendices
describe details about various constructions and calcula-
tions from geometric algebra [25–27] used in this paper and
in the SCRI module, including the method of implementing
a boost of the sphere described in Sec. II A. A final
Appendix details the crude method of measuring and
removing the center-of-mass drift found in the numerical
data, which is used in Sec. VI.

A. A note on conventions

More extensive descriptions of the conventions used in
this paper are given in the Appendices, but a few basic

comments are appropriate here. We will assume that all
transformations are proper and orthochronous; both spatial
orientation and the direction of time are preserved. In
general, a strictly improper transformation can be written
as the product of a proper transformation and a parity
operator. The effects of parity operations on modes of a
spin-weighted spherical-harmonic decomposition are
described in Appendix B of Ref. [8]. Similarly, anachro-
nous transformations can be written as the product of an
orthochronous transformation and the time-reversal oper-
ator. The effect of the time-reversal operator is to simply
negate the time coordinate, and in some cases to change the
sign and labeling of waveform quantities. Since these can
be dealt with separately in ways that are already under-
stood, we dispense with them entirely, and will not bother
to repeat below that all transformations in this paper are
proper and orthochronous.
Points on the sphere will be labeled interchangeably by

the usual spherical coordinates ðθ;ϕÞ, by the standard
stereographic coordinate ζ, or by the unit spatial vector r
pointing in that direction from the origin when the sphere is
considered as being embedded in Euclidean 3-space and
centered on the origin. While stereographic coordinates are
the preferred representation throughout much of the liter-
ature, and do occasionally simplify theoretical calculations,
they are unsuited for practical computations because of
their infinite range and the nature of the point at infinity.
Perhaps surprisingly, ðθ;ϕÞ presents a more useful para-
metrization for practical applications. Despite the coordi-
nate singularities in its representation of the sphere S2,
it actually provides a nonsingular parametrization of a
portion of the rotation group that covers S2, which is
more relevant for dealing with spin-weighted functions.
As a result, software packages such as SPINSFAST [28,29]
that implement numerical routines involving spin-
weighted spherical harmonics use the ðθ;ϕÞ representation.
Consequently, the same representation is used by the SCRI

package accompanying this paper.

II. THE BMS GROUP

We introduce the Bondi-Metzner-Sachs (BMS) group in
a simple and familiar setting. This will provide a common
basis and useful motivation for the coming sections.
Though more of the formalism of asymptotically flat
spacetime will be needed below, for our purposes in this
section, it will be sufficient to consider the standard
compactification of Minkowski space. In particular, this
compactification will provide all the understanding needed
for more general asymptotically flat spacetimes. We will
use null rays to relate coordinates of timelike geodesics
at finite radius to coordinates at future null infinity. By
relating timelike geodesics to each other, we will then be
able to describe the effect of a BMS transformation on the
coordinates of future null infinity.
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The conformal diagram displayed in Fig. 1 provides the
standard picture [17,30,31]. Here, i− and iþ are past and
future timelike infinity; i0 is spacelike infinity; I− is past
null infinity; and Iþ is future null infinity. We will be
concerned almost exclusively with Iþ, as that is the
asymptotic limit of outgoing gravitational radiation. Also
shown in the diagram is a pair of emitters, A and B,
traveling along timelike geodesics. We can extend coor-
dinates defined in a neighborhood of an inertial emitter to
coordinates throughout the spacetime and to Iþ using null
generators. For example, suppose A emits a null ray at
proper time τA ¼ 0 in a direction given in local coordinates
by the angular coordinates ðθ;ϕÞ, or equivalently the
stereographic coordinate ζ. Any point at finite distance
along that ray can be assigned coordinates ðu; r; ζÞ, where
u ¼ τA is the retarded time and r is an affine parameter
along the geodesic—in Minkowski spacetime, we can think

of this as the distance between the emitter and that point as
measured in the frame of the emitter. The future limit of the
null ray will represent a unique point on Iþ; we typically
assign that point the coordinates ðu; ζÞ, dropping r because
it will, of course, be infinite. Continuing in this way for all
directions, emitter A can provide coordinates for the entire
null cone N and, in particular, the sphere Sþ given by the
intersection of N with Iþ.
Of course, coordinates can equivalently be constructed in

the same way by emitter B. The set of points Sþ will
naturally be the same in both cases; any relative rotation of
the two emitters will simply take one null ray into another,
and a boost leaves null rays invariant. But the coordinates
labeling each null ray—hence the coordinates labeling each
point on Sþ—will be different for the two systems
whenever A and B are related by any Lorentz trans-
formation. We discuss the effect of these transformations
in Sec. II A.
But the Lorentz transformations only relate a subset of

possible emitters, and hence a subset of possible coordinate
systems on Iþ. In Minkowski spacetime, we are familiar
with translations as the remaining freedom relating coor-
dinate systems. However, a translation at finite radius has
somewhat surprising effects on the coordinates at Iþ. This
is explained more fully in Sec. II B. The conclusion will be
that a translation is equivalent to an offset of the retarded
time u that depends on direction, though in a simple way.
The surprising result of early studies [9,10] was that the

familiar Lorentz and translation groups are not sufficient
for describing all of the asymptotic symmetries of asymp-
totically flat spacetimes. It turns out that a focus on null
cones in Minkowski spacetime is too restrictive. Since we
are only prescribing the asymptotic behavior, we can
disregard all but a neighborhood of Iþ—which means
that our null “cones” need no longer look like cones, in the
sense that the generators need not meet at a point. In
general, then, the simple angular dependence of the offset
of the retarded time u induced by translations must be
generalized to an arbitrary (smooth) function of the angles.
These transformations are referred to as supertranslations.
Together with the Lorentz group,1 these form the complete
BMS group, as discussed further in Sec. II C.

A. Rotations and boosts

We first confine ourselves to a single null cone, and the
corresponding sphere Sþ on Iþ, by considering emitters
with coordinate systems having identical origins but which
are related by elements of the Lorentz subgroup: rotations
and boosts. The situation is depicted in Fig. 1, where two

FIG. 1. Extending local coordinates to Iþ. This conformal
diagram shows the worldlines of a pair of inertial emitters, with
emitter B moving at speed 0.5c relative to emitterA, and a distant
observer O stationary with respect to A. The origins of the
emitters’ coordinate systems coincide at τA ¼ τB ¼ 0. We con-
struct the null coneN emanating from that event, which allows us
to extend coordinates to Iþ. The intersection of N with Iþ is a
sphere; all points on that sphere are assigned time coordinate
uA ¼ 0 by emitter A and uB ¼ 0 by emitter B. Each point is also
labeled by the direction of the null generator extending from
the given emitter to that point. Note that a rotation obviously does
not affect the set of points comprising N , though the labeling
of points will change—except for the points along the axis of
rotation. Similarly, a boost leaves the null cone invariant, but will
change the labeling of any point not along the boost velocity
vector, as discussed in Sec. II A. The observer O can also be
assigned coordinates based on the null rays emitted by A and,
in the limit of very large separation, any field it observes will
approach the field observed on Iþ, up to a scaling based on
radius. This is the basic motivation for using asymptotically flat
spacetimes to model radiation.

1To be precise, the supertranslations form a normal subgroup
T of the BMS group, and the factor group of the BMS group by T
is precisely the Lorentz group SOþð3; 1Þ. However, the Lorentz
group is not a normal subgroup. Thus, the BMS group is the
semidirect product T⋊ SOþð3; 1Þ.
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emitters give off null rays at the same spacetime event. It is,
of course, one of the fundamental conclusions of basic
special relativity that boosts take null rays to null rays.
Thus, the collection of all null rays (the null cone)
originating at a particular spacetime event will be invariant
under boosts. However, the coordinates assigned to the
direction of a given null ray within that collection will
change under a boost. In the same way, a rotation maps the
null cone onto itself, while simply changing the coordinates
of individual rays. Our objective in this section, then, is to
find how directions in one coordinate system map to
directions in another system under rotations and boosts.
We begin with the simpler case, in which the coordinate

systems of A and B are simply related by some known
rotation, with no relative boost. For a scalar field, if we
suppose that the field is known in frame A, we can find the
value of the field at any point rB in frame B by simply
rotating that point back to rA in A and evaluating the field
there. However, for spin-weighted fields, there is an addi-
tional complication. A spin-weighted field at a point is
defined with respect to the basis of the tangent space to the
sphere at that point—usually represented by a complex
tangent vector m. But if A and B are rotated relative to one
another, the tangent vector mA at rA will also be rotated
relative to the tangent vector mB at rB by some angle λ,
referred to as the “spin phase.” (This factor λ is defined
more precisely in Appendix C.) This situation is depicted in
Fig. 2, where a standard grid is shown in frame B on the
left-hand side, and a grid representing the same physical
points in the coordinates of A is shown in the center, along
with the spin phase.
A simple way of dealing with the complication of the

spin phase is described in Appendix B of Ref. [8]. The

essential idea is to evaluate spin-weighted fields directly in
terms of a rotation operator. Thus, if the field value is
needed at ðθ;ϕÞ in B, this is represented by a rotation
operator Rθ;ϕ, described in Appendix B (of this paper).
Now, if frame B is obtained from frame A by a frame-
rotation Rf , then the value of the field can be found by
evaluating the field in A at RfRθ;ϕ. The spin phase is
automatically accounted for.
Similarly, we can find the value of the field in B if it is

related to A by a pure boost. We assume that B moves with
respect to A with three-velocity v, and use the conventions
established in the Appendices to directly compare compo-
nents in the two frames. Suppose that A measures an angle
ΘA between v and the spatial component, r of some null
direction. That is, we have cosΘA ¼ v · r=jvjjrj. Similarly
B measures an angle ΘB between v and the spatial
component of that same null direction. Note that the spatial
subspaces will, of course, generally be different for the two
frames, except along the axis containing v. Nonetheless, we
can relate the angles measured in the two frames, as shown
in Appendix C, by the formula

tan
ΘB

2
¼ eφ tan

ΘA

2
; ð1Þ

where φ ¼ arctanhjvj is the usual rapidity parameter.
We can use this equation to transform a physical scalar

field measured in one frame into the other frame. Suppose
that this physical field is known on Sþ as a function of the
null direction measured by A, and we wish to know the
value of the field in some null direction rB as measured by
B, noting that the angle between v and rB is ΘB. We first
take the direction r0B in the frame of A having the same

−π

−π/ 2

0

π/ 2

π
λ

FIG. 2. Transformation of a grid under Lorentz rotations. To decompose a spin-weighted field into spin-weighted spherical harmonics,
the values of the field are needed on the colatitude-longitude grid of frame B seen on the left-hand side. If the field is known in frameA,
and B is simply rotated relative to A, then the appropriate values can be found by evaluating the field in A on the grid shown in the
center. The points on the two grids represent the same physical points. Similarly if B is boosted relative to A (in this example with
velocity 0.5c to the right and out of the page), the values can be found by evaluating the field in A on the grid shown on the right-hand
side. However, for spin-weighted fields, the locations of the points alone are not sufficient; we also need to know the relative alignment
angle between the tangent basis constructed by A and the tangent basis constructed by B at each point. This angle is the spin phase λ
described in the text, represented here by the size and color of the marker at each grid point. The transformed grid positions and λ values
are calculated using Eq. (2).
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components with respect to the basis of A as rB has with
respect to the basis of B, even though this is a different
frame. We then rotate this vector in the v-r0B plane until we
arrive at a new vector rA that makes an angle with v of ΘA,
satisfying Eq. (1). The physical field measured at Iþ by A
in this direction is the same as the physical field as
measured by B, and is thus the result we sought.
Again, there are complications involved with spin-

weighted fields. However, as shown in Appendix C, these
complications are automatically dealt with when using the
rotation-operator approach described above. The scenario
is illustrated in Fig. 2, where the grid in B is shown on the
left-hand side, and the same grid of physical points is
shown in the coordinate system ofA on the right-hand side.
The basic idea is the same: the grid points are simply
moved around the sphere and associated with some spin
phase λ. Of course, in this case, the points are moved in
different ways, and λ is a different function of position.
Nonetheless, it is still beneficial to evaluate the field in A
directly in terms of the rotation operator. Here, however,
rather than the constant frame-rotation operator Rf account-
ing for the difference between frames A and B, we need to
use a position-dependent rotation operator B0. Using the
notation of quaternions, we can write this operator as

B0ðθ;ϕÞ ¼ exp

�
ΘB − ΘA

2

r0B × v
jr0B × vj

�
; ð2Þ

where r0B is the unit spatial vector in the ðθ;ϕÞ direction of
frameA, ΘB is the angle between that vector and v, and ΘA
is related to it by Eq. (1). This operator represents a rotation
through ΘB − ΘA about the r0B × v axis. In this case, the
field can be evaluated inA from B0Rθ;ϕ. More generally, an
arbitrary element of the Lorentz group can be written as the
product of a frame rotation and a boost, B0Rf , then the field
can be evaluated from B0RfRθ;ϕ.
It is worth exhibiting the effect of a Lorentz trans-

formation in terms of stereographic coordinates. Though
they are ill suited to actual computations involving data,
there are certain advantages to using the stereographic
formalism for theoretical calculations. In particular, if the
sphere Sþ is parametrized by the stereographic coordinate
ζA in frame A and by ζB in frame B, then under a general
Lorentz transformation the two are related by2

ζB ¼ aζA þ b
cζA þ d

; ð3Þ

where ða; b; c; dÞ is a collection of complex coefficients
satisfying ad − bc ¼ 1. Because of its compactness, the
representation in stereographic coordinates is useful for
descriptions, and occasionally for deriving results. We will
encounter this formalism again in Sec. III, though the
stereographic coordinates themselves will not appear in the
final results. For all other purposes, quaternions and related
formalism will be used because of their computational
superiority.
Finally, we also note that this transformation of a spin-

weighted field under Lorentz transformations is only part of
the story. More generally, different fields will mix with each
other because m remains neither tangent to the sphere nor
even purely spatial under a Lorentz transformation. For
example, to calculate the transformation of the Newman-
Penrose quantity ψ3 on Iþ we will also need a contribution
from ψ4. That simple behavior is only a result of the peeling
theorem; at finite radii all Newman-Penrose quantities
could mix with each other under a Lorentz transformation.
This will be discussed further in Sec. III B. Throughout
the remainder of this section, however, we will be able to
focus solely on the movement of points at which a field is
evaluated.

B. Translations and supertranslations

Now, having understood the transformations that pre-
serve the light cone, we can move on to more general
transformations—though still considering only inertial
emitters in Minkowski space. In particular, we have trans-
lations of both time and space. Generalizing these, we will
be led to the encompassing notion of supertranslations.
It is instructive to begin with the simple case of time

translations. As noted in the introduction to this section,
every point on a null cone originating at emitter A, at a
proper time of τA, is assigned the same retarded time
uA ¼ τA; similarly uB ¼ τB. Now, if the emitters’ time
scales are related by a simple time translation such that
τB ¼ τA − δt, we clearly have the simple relation between
retarded-time coordinates uB ¼ uA − δt. This is depicted in
Fig. 3. The notable feature of this transformation is that
it is isotropic; the change in the retarded-time coordinate
does not depend on the direction. This seemingly trivial
observation is important because it is not true of space
translations, and generalizing this notion will be key to
understanding the broader class of supertranslations.
We can now consider space translations as depicted in

Fig. 4. Emitter B is simply displaced from A by a spatial
vector δx but the two are stationary with respect to each
other. The null cone NB emanates from the origin of B,
uB ¼ 0, and intersects Iþ at two points on this diagram.
Those same points of Iþ are on null rays from two separate
null cones ofA—one in the −x direction with retarded time
uA1 ¼ −jδxj, the other in the x direction emitted at
uA2 ¼ jδxj. Of course, these two points correspond to
the two points of the sphere S0 because the three spatial

2The stereographic coordinates are usually thought of as
elements of the complex plane augmented by adjoining the point
at infinity, also known as the Riemann sphere. In this form,
the transformation shown here is usually known as a Möbius
transformation—an element of the Möbius group, which is
isomorphic to the group of conformal transformations of the
sphere, the projective special linear group PSLð2;CÞ, and the
proper orthochronous Lorentz group SOþð3; 1Þ ≅ SOþð1; 3Þ.
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dimensions have been collapsed to one in this simple
diagram. More generally, for any point on the sphere S2 the
relationship between the retarded time coordinates is
uB ¼ uA þ δx · r.
We can combine these two transformation laws into a

single law for general spacetime translations:

uB ¼ uA −
X

l∈f0;1g

Xl
m¼−l

αl;mYl;mðθ;ϕÞ; ð4Þ

where

α0;0 ¼
ffiffiffiffiffiffi
4π

p
δt; ð5aÞ

α1;−1 ¼ −
ffiffiffiffiffiffi
2π

3

r
ðδxþ iδyÞ; ð5bÞ

α1;0 ¼ −
ffiffiffiffiffiffi
4π

3

r
δz; ð5cÞ

α1;1 ¼ −
ffiffiffiffiffiffi
2π

3

r
ð−δxþ iδyÞ; ð5dÞ

using δx ¼ ðδx; δy; δzÞ. Note that the sum over l is
restricted to f0; 1g here. This suggests the final generali-
zation we need to arrive at the BMS group: expanding the
range of the sum over l to all positive integers, while
retaining the condition that αl;m ¼ ð−1Þmᾱl;−m to ensure
that the retarded-time coordinate remains real. More
precisely, we construct a transformation of the coordinates
such that

u0 ¼ u − α; ð6Þ

where α is any real-valued function on the sphere. To
simplify later analyses, we can also add the conditions
that α be square integrable and twice differentiable.
This transformation—which encompasses spacetime
translations—is referred to as a supertranslation. It can be
shown that supertranslations are asymptotic symmetries of
asymptotically flat spacetimes [9,10], and thus are indeed
members of the BMS group.
One way of thinking about supertranslations is to

imagine a network of observers located on a sphere
surrounding the source. Ideally, we could combine the
signals detected by these observers, but to do so we would
need some idea of how their time coordinates compared to
each other; we would need to have some synchronization
between their clocks. But if we now move the network to
Iþ, such a synchronization becomes impossible. We could
supply a separate time offset to each observer without
changing the physics. Roughly speaking, a supertranslation
is just the limit of this direction-dependent time translation

FIG. 3. Effect of time translation on coordinates of Iþ. Here,
we see two different local coordinate systems extended to Iþ: A
and B represent the same emitter with the same spatial coor-
dinates, but different origins for the time coordinate. The two null
cones correspond to the two origins of the time coordinate.
We see that the time translation τB ¼ τA − δτ affects the time
coordinates on Iþ isotropically—in fact, the transformation of
the retarded-time coordinate is simply uB ¼ uA − δτ.

FIG. 4. Effect of space translation on coordinates of Iþ. Here,
A and B represent emitters displaced relative to each other. A
single null cone emanates from B and intersects Iþ in two points.
The same points of Iþ are found on two separate null cones
emitted by A. Thus, a space translation has a nonisotropic effect
on the retarded time coordinates of Iþ. More generally, allowing
for all three spatial dimensions, the effect of a translation δx
will transform the retarded-time coordinate in a direction r as
uB ¼ uA þ δx · r.
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where there is a different observer in every possible
direction.
Supertranslations present an interesting departure from

the other, more basic, types of transformations constituting
the familiar Poincaré group. If u is constructed as given
above by light cones emitting from an inertial world lineA,
then we know (by construction) that the null rays generat-
ing a surface of constant u meet in a common point—the
vertex of the null cone. On the other hand, if the function α
has any l > 1 components, the null rays generating a
surface of constant u0, as given by Eq. (6), do not meet in a
common point. This is why the notation changed in Eq. (6),
dropping the subscripts denoting the emitter, because
in general we do not require the retarded time to be
constructed by an emitter.
As another, possibly more enlightening, consideration of

this peculiar nature of supertranslations, we can imagine
light cones originating at an emitter in an asymptotically
flat spacetime containing some nontrivial geometry. In the
example shown in Fig. 5, we see a simple cartoon of a

merging binary. The emitterA gives off two null cones,N 1

followed byN 2. The rays given off to the right intersect Iþ

as we would expect, N 1 followed by N 2. The rays given
off to the left, however, behave more erratically. Here, the
first null ray interacts strongly with the black holes and is
delayed, arriving at Iþ after the null ray that was emitted
later. Obviously, coordinates constructed from null cones of
A will be “bad” coordinates, with singularities resulting
from caustics of the null rays.
So for general asymptotically flat spacetimes, it is simply

a bad idea to expect that the retarded time coordinate should
be constructible from null rays emitted from a timelike
worldline. Instead, we should only expect to have “good”
or “nice” coordinates in a neighborhood of Iþ. In fact, the
motivation for the original paper by Newman and Penrose
that introduced the ð operator [16] was to impose a
condition on u in a neighborhood of Iþ to fix the l > 1
supertranslation freedom. This is also (at least partially) the
motivation for the “good cut” construction [18], the “nice
section” construction [32], and the “regularized null cone
cut” construction [33].

C. The complete BMS group

One final element is needed to complete the construction
of the BMS group. In Sec. II A, we assumed that the origins
of the two emitters coincided, but only looked at the
effect of a boost on the null cone emitted at that common
origin. Obviously, at later times, the null cones by which
those emitters extend their local coordinates to Iþ will not
originate at the same event; there will also be some
translation involved. Thus, we expect that the simple
formula from the previous section u0 ¼ u − α must be
modified in some way by the boost.
The situation is easily described pictorially, as in Fig. 6.

The origins of proper time for the observers coincide where
their paths cross. At some later time τB, emitter B
constructs a null cone NB. A simple exercise in special
relativity shows thatA must emit a null ray in direction r at
time τA ¼ γð1 − v · rÞτB in order to reach the same point of
Iþ as the null ray emitted in that direction by B. Because
we will encounter this factor frequently, we define

k ≔
1

γð1 − v · rÞ : ð7Þ

As shown in Appendix D, this k factor is also the conformal
factor of a boost appropriate to the spherical metric. In this
case, where the spatial origins coincide at τA ¼ τB ¼ 0, we
have the transformation law u0 ¼ ku.
Finally, we can combine this with the supertranslation of

Eq. (6) and the angular effects of the Lorentz transforma-
tion given by Eq. (3) to find the general BMS trans-
formation of coordinates on Iþ, representing an initial
supertranslation, followed by a Lorentz transformation:

FIG. 5. Null rays in complicated spacetimes. When the interior
of the spacetime is not Minkowski, we cannot expect to construct
retarded time coordinates globally based on null cones. The
interior of this diagram is a rough cartoon, in which the shaded
region represents the space between two merging black holes.
Some of the null generators from any emitter in this spacetime
must pass through this region, and may be affected in erratic
ways. Given null rays near Iþ, we cannot say whether or not they
originated at the same point. Clearly, then, it is too much to
demand that general asymptotically flat spacetimes must have
their coordinates given by a construction like the one given
for Minkowski space. Instead, we simply place requirements on
the compactified spacetime in a neighborhood of Iþ. Conversely,
it is too much to ask that a “nice” coordinate system on Iþ
correspond to null cones that meet at one spacetime event
in general. This motivates our intuitive acceptance of super-
translations.
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u0 ¼ kðu − αÞ ð8aÞ

ζ0 ¼ aζ þ b
cζ þ d

: ð8bÞ

Again, ða; b; c; dÞ is a collection of complex coefficients
satisfying ad − bc ¼ 1, representing the Lorentz trans-
formation, and α is an arbitrary real-valued square-
integrable and twice-differentiable function on the
sphere. The implementation of these transformations to
be described below will use Eqs. (1) and (2) to represent
Lorentz transformations rather than the stereographic
coordinates shown here.
It is also important to note that the transformation is

constant; a, b, c, d, k, and α are all independent of time.
This may seem to give us a static transformation—though
we know that a boost should, in some sense, result in a
time-dependent translation. To simplify matters, we
assume no rotation and α ¼ 0, leaving only a boost.
The transformation law for time in this case might be
rewritten as γu0 ¼ uþ γv · ru0. We can interpret this as a
rescaling of the time coordinate, in agreement with the
standard time dilation, along with a translation by γu0v,
much as we might expect. Interestingly, it is awkward to
express this translation as being proportional to u [e.g.,
by expanding the factor of k as spherical harmonics in
Eq. (8a)], because this would imply that a boost gives

rise to a time-dependent supertranslation. This suggests a
minor subtlety of nomenclature when defining the super-
translation, due to noncommutativity of the boost and
supertranslation.
In this section, we have built up the BMS group through

heuristic arguments in order to come to an intuitive and
pedagogical understanding of how coordinates change
under a BMS transformation—though of course, the same
result is also obtained through more rigorous methods
[9,10,15]. In particular, Sec. IV C of Ref. [15] describes the
associated Lie algebra bms. In short, the rotations and
boosts correspond to the standard generators of infinitesi-
mal (Lorentz) rotations in a plane of Minkowski space,
while the generators of supertranslations are given by the
basis Yl;m∂=∂u. We will not find this infinitesimal pre-
sentation directly useful, however, because it is not easily
applicable to finite transformations. Moreover, we will see
in Sec. III B that these operators only account for the
change in how coordinates label points, but not changes in
the waveforms themselves.

III. ASYMPTOTIC FLATNESS AND
TRANSFORMATIONS AT A POINT

Now, having seen the effects of the BMS transformation
on coordinates on Iþ, we need to understand the effects on
waveforms measured at Iþ. We begin, in this section, by
examining the effect on the waveform at a single point,
where the transformation leaves that point fixed. This will
be extended in Sec. IV by allowing the point to vary, which
will involve the relatively simple task of evaluating the
known function at different points—in practice, requiring
mostly interpolation and other bookkeeping.
Though we will not yet vary the coordinates of our

selected point, the coordinates of neighboring points will
change. For our purposes, a waveform measures some
piece of the differential structure of spacetime. But wave-
forms are not true scalars, in the sense that they are not
invariant under coordinate transformations—in fact, they
are inherently defined with respect to coordinates. More
precisely, the tetrad with respect to which they are con-
structed is defined in terms of coordinates. It is, of course,
possible to perform a coordinate transformation while
leaving the tetrad fixed. But this is not relevant; waveforms
expressed in different coordinate systems use different
tetrads. Therefore, a BMS transformation that changes
the coordinates of nearby points should also change the
waveform at the given point.
To make these ideas precise, we need to be more

specific about our representation of Iþ, and the spacetime
in a neighborhood of Iþ. It will then be a relatively simple
matter to calculate the transformations of standard curva-
ture quantities. The reader who is willing to take these
results on faith may simply refer to Eqs. (17), (19), (21),
and (23), and otherwise skip this section.

FIG. 6. Effect of boost on coordinates of Iþ with u ≠ 0.
Here, A and B represent emitters related by a simple boost.
Though their origins coincide, at some later time τB emitter
B constructs the null cone NB. It is not hard to solve for the
time τA1 ¼ γð1 − vÞτB at which emitter A must construct a null
cone to overlap with the right-going null ray of NB. We can
similarly solve for the time τA2 ¼ γð1þ vÞτB at which emitter A
must construct a null cone to overlap with the left-going null
ray of NB.
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A. Asymptotically flat spacetime

Numerous formulations describe the basic idea of
asymptotic flatness, most prominently developed by
Penrose [30]. For definiteness, we will follow the develop-
ment by Moreschi [12,34]. The essential idea is to begin
with a physical spacetime ðM;ΓabÞ, and identify it with a
portion of a model spacetime ðm; γabÞ representing the
asymptotic completion of the physical spacetime. Here
and in the following, to simplify notation, quantities in
the physical spacetime will be represented by uppercase
characters, while quantities in the asymptotic spacetime
will be represented by lowercase.3

We beginwith the physical spacetime ðM;ΓabÞ, which has
Weyl spinor (the spinor form of the standard Weyl tensor)
ΨABCD. We impose the assumption of (future) asymptotic
flatness by requiring the existence of another spacetime
ðm; γabÞ, with boundary Iþ such that as topological spaces
Iþ ¼ S2 ×R and M ¼ mnIþ. In particular, for any point
P ∈ M we have a point identified as P ∈ m, so that we can
interchangeably describe any function at a point not onIþ as
being defined either on M or m. We further assume the
existence of a real-valued functionω that is continuous onm
and smooth on M, and satisfies the following conditions:
(1) ωjM > 0.
(2) ωjIþ ¼ 0.
(3) dωjIþ ≠ 0.

Given this function, the spacetimes are also required to obey
the following conditions:
(4) γabjM ¼ Γabω

2jM.
(5) At every point of Iþ, there ends a future-directed

null geodesic of m.
(6) In some neighborhood of Iþ, there exist quantities r̂

and ~r onm such that the Riemann tensor of ðM;ΓabÞ
satisfies

Rabc
d ¼ fðωÞr̂abcd þ ~rabcd; ð9Þ

where
(a) df=dω > 0,
(b) limω→0f ¼ 0,
(c) r̂ is regular at Iþ, and
(d) ~r goes to zero faster than f as ω → 0.

The last condition is to be understood componentwise, with
respect to an orthogonal tetrad of ðm; γabÞ that is regular at
Iþ, like the one constructed below inEq. (12).We alsodefine
a spinor onM byψABCD ≔ ω−1ΨABCD, whichwe can extend
continuously to Iþ. Note, however, that r̂ and ψ need not be
the Riemann tensor and Weyl spinor of ðm; γabÞ.
It is possible [10,12,15] to choose coordinates ðu; θ;ϕÞ

on Iþ, where u labels a slice of Iþ with topology S2 and
ðθ;ϕÞ are the standard coordinates of the unit sphere. The

latter are frequently expressed—at least for theoretical
work—as the usual stereographic coordinate ζ and its
complex conjugate ζ̄ [35]. These coordinates can be
extended into a neighborhood of Iþ by taking ω as an
additional coordinate along future-directed null geodesics,
where ðu; θ;ϕÞ labels the geodesics. Moreschi [12] showed
that, up to irrelevant gauge freedom, the ω function is
related to the luminosity distance rL by

ω ¼ 1

rL
þO

�
1

r3L

�
: ð10Þ

These coordinates are essentially what are known as Bondi
coordinates, and allow the metric to be put in a particularly
simple form [9,10]. This form of the metric is asymptoti-
cally invariant under BMS transformations.
An orthonormal spin dyad [11,35–38] ðOA; IAÞ and its

asymptotic counterpart ðoA; {AÞ can also be defined related
to these coordinates, such that we have orthonormal tetrads

la ≔ σaAA0oAoA
0
; La ≔ σaAA0OAOA0

; ð11aÞ
ma ≔ σaAA0oA{A

0
; Ma ≔ σaAA0OAIA

0
; ð11bÞ

m̄a ≔ σaAA0 {AoA
0
; M̄a ≔ σaAA0IAOA0

; ð11cÞ

na ≔ σaAA0 {A{A
0
; Na ≔ σaAA0 IAIA

0
; ð11dÞ

where σaAA0 are the Infeld-van der Waerden symbols, and at
leading order in ω we have

la ¼ ðduÞa ≃ La; ð12aÞ

ma ¼ −
ffiffiffi
2

p

1þ ζζ̄
ðdζ̄Þa ≃ ωMa; ð12bÞ

m̄a ¼ −
ffiffiffi
2

p

1þ ζζ̄
ðdζÞa ≃ ωM̄a; ð12cÞ

na ¼ −ðdωÞa ≃ ω2Na: ð12dÞ

We also denote by

Ð≃ ωð ð13Þ
the spin-raising differential operator introduced (at finite
radius as ð) by Geroch, Held, and Penrose [37].4

This completes the basic framework we use to describe
asymptotically flat spacetimes, allowing us to understand
the asymptotic behavior of the physical fields. Next, we

3Indices, of course, will not be included in this distinction.
Instead, lowercase indices will denote tensor indices, while
uppercase indices will denote spinor indices, as usual.

4Note that the operator ðNP originally introduced by Newman
and Penrose [16] is generally different from the operator ðGHP ≡
Ð introduced by Geroch, Held, and Penrose, in that only the latter
has well-defined transformation behavior under boosts. There is
also a discrepancy in the normalization such that ðNP ¼ ffiffiffi

2
p

ðGHP
for scalar functions.
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will show how a BMS transformation alters this frame-
work, and use that result to find the changes in curvature
quantities expressed within this framework.

B. Transformations

Equation (8) describes the general BMS transformation.
However, this transformation is only defined on Iþ.
Because the curvature quantities we are interested in
measure the differential structure of spacetime, under-
standing those quantities requires understanding the trans-
formation in a neighborhood of Iþ. Moreschi [34] found
the general transformation to first order in ω that preserves
the leading-order Bondi form of the metric:

ŭ ¼ kðu − αÞ − ω
ðu0ð̄u0

k
; ð14aÞ

ζ̆ ¼ aζ þ b
cζ þ d

− ω
ðu0ð̄ζ0 þ ðζ0ð̄u0

k
; ð14bÞ

ω̆ ¼ kω: ð14cÞ

Here, u0 and ζ0 are the leading-order terms in their
respective equations—also given by the standard BMS
transformation of Eq. (8). This transformation is defined in
a neighborhood of Iþ, so we can evaluate the differentials
in Eq. (12) and take the limit as ω → 0, to find the
transformation laws for the tetrad and infer the effects
on the spinor basis:

o0A ¼ eiλ=2ffiffiffi
k

p
�
oA −

ðu0

k
{A
�
; ð15aÞ

{0A ¼ e−iλ=2ffiffiffi
k

p {A: ð15bÞ

Here, λ is the spin phase described in Sec. II A and
Appendix C. Because the curvature quantities are defined
with respect to these spinors and their spatial dependence,
this is enough to calculate the transformation laws of the
curvature quantities.
The first and simplest set of curvature quantities we will

need is the collection of Newman-Penrose scalars. The
following are the definitions of these scalars on Iþ, along
with their leading-order relationship to the corresponding
finite-radius scalars:

ψ0 ≔ ψABCDoAoBoCoD ≃ ω−5Ψ0; ð16aÞ

ψ1 ≔ ψABCDoAoBoC{D ≃ ω−4Ψ1; ð16bÞ

ψ2 ≔ ψABCDoAoB{C{D ≃ ω−3Ψ2; ð16cÞ

ψ3 ≔ ψABCDoA{B{C{D ≃ ω−2Ψ3; ð16dÞ

ψ4 ≔ ψABCD{A{B{C{D ≃ ω−1Ψ4: ð16eÞ

Because ψABCD is a geometric object, it does not transform
under a change of coordinates, so the transformation law
for these scalars is given simply by replacing the spinors oA

and {A with their transformed values, which leads to a
simple hierarchy with a basic combinatorial pattern:

ψ 0
0 ¼

e2iλ

k3

�
ψ0 − 4

ðu0

k
ψ1 þ 6

�
ðu0

k

�
2

ψ2

− 4

�
ðu0

k

�
3

ψ3 þ
�
ðu0

k

�
4

ψ4

�
; ð17aÞ

ψ 0
1 ¼

eiλ

k3

�
ψ1 − 3

ðu0

k
ψ2 þ 3

�
ðu0

k

�
2

ψ3 −
�
ðu0

k

�
3

ψ4

�
;

ð17bÞ

ψ 0
2 ¼

1

k3

�
ψ2 − 2

ðu0

k
ψ3 þ

�
ðu0

k

�
2

ψ4

�
; ð17cÞ

ψ 0
3 ¼

e−iλ

k3

�
ψ3 −

ðu0

k
ψ4

�
; ð17dÞ

ψ 0
4 ¼

e−2iλ

k3
½ψ4�: ð17eÞ

The simplicity of this result is surprising because the
Newman-Penrose quantities Ψn represent the components
of a tensor, so at finite radius all of these components would
mix with each other. However, in the limit as Iþ is
approached, the “peeling-off property” [10,15,30] of
asymptotically flat spacetimes comes into play, as seen
in the right-hand column of Eq. (17), so that the pattern
emerges with lower-index quantities (e.g., ψ0) being
irrelevant to the transformed values of higher-index quan-
tities (e.g., ψ 0

4). On the other hand, given this peeling
behavior, it may also seem surprising that effects from the
higher-index quantities do not overwhelm the lower-index
scalars. The reason is that at finite radii ð is replaced by
ω−1Ð, and since each higher-index scalar appears in the
expressions for lower-index scalars accompanied by
powers of ð, the resulting factors of ω−1 are exactly enough
to cancel the dominance of the higher-index scalars—to
leading order in ω.
The most interesting remaining quantity is the spin

coefficient representing the shear:

σ ≔ oAoB{̄B
0∇BB0oA: ð18Þ

Because of the derivative, this is somewhat more difficult to
evaluate than the Newman-Penrose scalars. However, after
the suitable limit has been taken, we arrive at the simple
formula [9,10,12]
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σ0 ¼ e2iλ

k
½σ − ð2α�: ð19Þ

This is consistent with Eq. (17e) and the asymptotic relation

ψ4 ¼ −
∂2

∂u2 σ̄ ð20Þ

because ∂=∂u0 ¼ 1
k ∂=∂u, and the BMS transformation is

constant, so that the λ, k, and α functions are independent of
u. The shear is also related to the more commonly used [39]
strain of the transverse-traceless metric perturbation5

h ¼ σ̄, which implies the transformation law

h0 ¼ e−2iλ

k
½h − ð̄2α�: ð21Þ

Similarly, the Bondi news function [9,10,40–42] satisfies

N ≃ n ¼ −
∂
∂u σ̄; ð22Þ

which implies the transformation law

n0 ¼ e−2iλ

k2
n: ð23Þ

We note, however, that these relationships between ψ4, σ,
h, and n are only valid asymptotically, and only in Bondi
coordinates; more generally, the relationships would be
more complicated.
The expressions given here for the transformations

of the waveform quantities are fairly simple, and can all
be constructed given the waveforms and a choice of
transformation—as described by the functions k, λ, and
α. However, these expressions hide a complication: all of the
quantities involved are functions of position. To actually
implement a BMS transformation, we need to know how to
express these functions in terms of the coordinates, both old
and new. This requires combining the ideas of the present
section with those of the previous section.

IV. IMPLEMENTATION OF BMS
TRANSFORMATIONS OF WAVEFORMS

We assume that the field is known in some observer’s
frameO, as a function of that observer’s Bondi coordinates
throughout some portion of Iþ. A second observer O0 is
related to the first by some known BMS transformation as
in Eq. (8). In particular the frame of O0 can be obtained
fromO by an initial supertranslation α, followed by a frame

rotation Rf , followed by a boost of velocity v. Our objective
will be to find the field as decomposed into modes of a
spin-weighted spherical-harmonic expansion, at a series of
discrete retarded times fu0i0g.
The first step is to find the mode weights of all quantities

we will need in frame O. At the most basic level, we need
the modes of the waveform in question. We denote this
waveform by f, which may represent h, ψ4, or any of the
other quantities discussed in Sec. III B. A waveform f of
spin weight s will be decomposed into modes of the spin-
weighted spherical harmonic expansion as

fðu; θ;ϕÞ ¼
X
l;m

fl;mðuÞsYl;mðθ;ϕÞ; ð24Þ

where the relevant data are the modes fl;mðuÞ. In practice,
the sum over l extends up to some maximum integer lmax.
If f represents a Newman-Penrose quantity ψn with

n < 4, we also need all the higher-index Newman-Penrose
quantities as shown in Eq. (17), as well as the quantity
ðu0=k. For σ and h, we will need ð2α (or its complex
conjugate). Given an arbitrary function w of spin weight s,
we can calculate the modes of the differentiated quantity ðw
in terms of the modes of the original function as6

ððwÞl;m ¼
8<
:

0 l < jsþ 1j;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl−sÞðlþsþ1Þ

2

q
wl;m otherwise:

ð25Þ

Similarly, we have

ðð̄wÞl;m ¼
8<
:

0 l < js − 1j;
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþsÞðl−sþ1Þ

2

q
wl;m otherwise:

ð26Þ

We will assume that the supertranslation α is given directly
in terms of its modes. This makes it trivial to compute either
ð2α or ð̄2α, noting that α has spin weight s ¼ 0, while ðα
has spin weight s ¼ 1 and ð̄α has spin weight s ¼ −1. On
the other hand, to compute ðu0=k ¼ uðk=k − ðα, we need
to know k in terms of its spherical-harmonic modes. This
could be done analytically with exact expressions involving
Wigner’s D and 3-j functions. For practical purposes, a
more efficient approach is to evaluate k as given in Eq. (7)
on a series of grid points, and feed the results into software
that computes the modes, as discussed below.
Now, given the modes of the various fields at some

discrete set of times fuig, we need to be able to interpolate

5It is worth pointing out that this relation is only true for the
asymptotic fields. Trivially, we have h≃ rH, whereas σ ≃ r2Σ.
That is, the two finite-radius fields behave differently in the limit
r → ∞. But terms at higher relative order in 1=r may differ more
substantially.

6These equations differ from the similar Eq. (3.22) of Newman
and Penrose [16] and Eq. (2.7) of Goldberg et al. [43] by the
factor 1=

ffiffiffi
2

p
here. As noted previously, this is because the

operator here is—up to the factor given in Eq. (13)—identical
to the one given by Geroch, Held, and Penrose [37], which
intentionally introduced the 1=

ffiffiffi
2

p
factor.
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as a function of time, because slices of constant u will not
typically correspond to slices of constant u0. Of course,
because of the direction dependence of these time slices,
interpolation of the mode weights themselves is not
possible in general. Instead, we must transform the modes
into a series of points in physical space, interpolate the
values of the field at each spatial point to the appropriate
time, and then transform back to modes. The current state-
of-the-art numerical code for transforming between physi-
cal space and modes is the SPINSFAST package [28,29]. The
points in physical space used by this package form an
equiangular grid in colatitude-longitude:

θ0j ¼
πj

Nθ − 1
for j ∈ f0; 1;…; Nθ − 1g; ð27aÞ

and

ϕ0
k ¼

2πk
Nϕ

for k ∈ f0; 1;…; Nϕ − 1g: ð27bÞ

Note that the poles, θ0j ¼ 0 and π are each covered by Nϕ

pairs of ðθ;ϕÞ values, but each such pair represents a
different alignment of the tangent basis at that point. For the
sake of accuracy, it is best to choose Nθ > 2lmax and Nϕ >
2lmax [29]. In practice, it seems to be sufficient to simply
choose Nθ ¼ Nϕ ¼ 2lmax þ 1. Of course, this grid is given
in the frame ofO0; since the waveform is given in the frame
of O, we need to know the points in that frame corre-
sponding to the points fðθj0;ϕk

0Þg. Moreover, a spin-
weighted field in O0 is defined with respect to the tangent
vectors to the sphere, canonically defined in terms of the
ðθ0;ϕ0Þ coordinates. Thus, we also need to know what these
tangent vectors correspond to in the basis of O.
Adapting the discussion of Sec. II A, we begin by

defining the rotor (in quaternion notation),

R0
j;k ≔ eϕ

0
kz=2eθ

0
jy=2; ð28Þ

where x, y, and z are the orthonormal basis vectors of O.
Note the mixing of coordinates fromO0 with basis elements
of O. We then define the unit vector

r0j;k ¼ R0
j;kzR

0−1
j;k ; ð29Þ

which points in the direction ðθ0j;ϕ0
kÞ as measured by O,

and define the angle

Θ0
j;k ≔ arccos

v · r0j;k
jv∥r0j;kj

: ð30Þ

The equivalent angle in the unprimed frame is

Θj;k ¼ 2 arctan

�
e−φ tan

Θ0
j;k

2

�
; ð31Þ

where ϕ ¼ artanhjvj is the rapidity. Then, we can define

B0
j;k ≔ exp

�Θ0
j;k − Θj;k

2

r0j;k × v

jr0j;k × vj
�
; ð32Þ

unless Θ0 ¼ Θ ¼ 0 or π, in which case we simply have
B0
j;k ¼ 1. Finally, we arrive at the required rotor

Rj;k ≔ B0
j;kRfR0

j;k: ð33Þ

The physical point labeled by ðθ0j;ϕ0
kÞ in O0 is

given by

rj;k ¼ Rj;kzR−1
j;k ð34Þ

in O, while the complex tangent vector m0
j;k at that point in

O0 corresponds to the vector

mj;k ¼ Rj;k
xþ iyffiffiffi

2
p R−1

j;k ð35Þ

in O. The spin phase is determined by the relative rotation
between mj;k as given here and the natural canonical m
vector given at the same point by O. This was depicted in
Fig. 2, and is explained in more detail in Appendix C.
More directly, we can evaluate any field, along with its

appropriate spin-phase factor, by evaluating the mode-
weighted spin-weighted spherical harmonics directly as
functions of Rj;k. As detailed in Appendix B of Ref. [8],
this is made possible by redefining the spin-weighted
spherical harmonics to be functions of a single unit-
quaternion argument in terms of Wigner’s D matrices as7

sYl;mðRÞ ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4π

r
DðlÞ

−s;mðRÞ: ð36Þ

Thus, for example, when transforming the strain h, part of
the right-hand side of Eq. (21) can be calculated very
simply as

7This relationship was originally noted by Goldberg et al. [43],
though they essentially restricted the possible rotations to rotors
of the form R ¼ eϕz=2eθy=2. The problem with such a limited
interpretation is that the spin-weighted spherical harmonics so
defined do not transform among themselves under rotations, and
are incapable of expressing the correct spin-phase behavior. By
expanding the meaning of the spherical harmonics in this way we
eliminate those problems, while maintaining agreement with the
original definition and standard usage.
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e−2iλ½h − ð̄2α�jθ0j;ϕ0
k

¼
X
l;m

½hl;m − ðð̄2αÞl;m�−2Yl;mðRj;kÞ: ð37Þ

Note that no additional manipulation is required to find the
spin-phase factor e−2iλ; it is implicitly calculated by

−2Yl;mðRj;kÞ. There is, however, the remaining factor of
1=k to calculate. Including this factor is best done by
evaluating this factor as [compare Eq. (7)]

1

k
¼ γð1 − v · rj;kÞ; ð38Þ

then multiplying this result by the result of Eq. (37). In a
similar way, other waveforms can be computed as neces-
sary by pointwise combination of the relevant quantities
given in the transformation laws of Sec. III B.
Proceeding in this way for all values of the discrete

indices, we obtain the waveform values f0ðu0i;j;k; θ0j;ϕ0
kÞ,

where

u0i;j;k ¼ kðθ0j;ϕ0
kÞ½ui − αðθ0j;ϕ0

kÞ�: ð39Þ

Next, we simply need to interpolate these values in each
direction to a corresponding set of times fu0i0 g representing
some target time slices of observer O0. There is a minor
ambiguity here, in that this set of times is somewhat
arbitrary. In practice, the input data may be sampled
unevenly in time—for example, to provide better resolution
of the merger-ringdown portion of a waveform, while
reducing the amount of data representing the slow inspiral.
It would presumably be best to retain this sampling in the
transformed data set. To a reasonable approximation, this
can be done by assigning

u0i ¼
1

γ
ðui − α0;0=

ffiffiffiffiffiffi
4π

p
Þ; ð40Þ

which is the value of u0 for which the average value of u
over the sphere (on the slice of constant u0) is precisely ui.
To clarify the notation, fu0i;j;kg is the set of time coordinates
already present in the data, whereas fu0ig is the set of times
to which we might wish to interpolate.
However, we must deal with a subtlety first. In some

directions, interpolation to some of the values of u0i given
by Eq. (40) would require data at times earlier than u0 or
later than uNu−1. This is because we have simply used
the average value to derive Eq. (40), while neglecting
the direction dependence. To avoid extrapolation, then,
we must restrict the set fu0ig to the range of times
u0min ≤ u0 ≤ u0max, where

u0min ¼ max
j;k

u00;j;k; ð41aÞ

u0max ¼ min
j;k

u0Nu−1;j;k: ð41bÞ

We denote the resulting subset by fu0i0 g, which is the final
set of times to which we will interpolate the data. The index
i0 is used to indicate that it comes from a slightly different
indexing set than the index i used for the input data.
Though the construction of fu0i0 g suggested here is by no

means unique, we will always be limited to using a proper
subset of the input data, whenever the boost and super-
translation components with l > 0 are nontrivial, because
some of the input time steps will correspond to slices of u0
for which the input data represent an incomplete sphere,
and thus insufficient data for computing spin-weighted
spherical-harmonic modes. Nonetheless, this choice of
fu0i0 g is well defined and easy to implement, it roughly
preserves the sampling of the input data, and it uses the
input data to nearly the fullest possible extent.
Finally, for each value of ði0; j; kÞ, we interpolate the

waveform values f0ðu0i;j;k; θ0j;ϕ0
kÞ in time to f0ðu0i0 ; θ0j;ϕ0

kÞ.
For each i0, we then feed these values into a software
package like SPINSFAST to obtain the modes as measured by
observerO0, thus arriving at our goal: the set of modes f0l;m
for each time u0i0 . The entire transformation is implemented
in the Python module SCRI, which is included in the
supplemental materials provided with this paper [24].

V. EFFECTS OF TRANSFORMATIONS ON
WAVEFORM MODES

It will be instructive to observe the effect of typical
transformations on waveform modes. Because of the
peculiar nature of Iþ and the highly nonlinear behavior
of waveforms under these transformations, we will not
be able to rely on any intuition for transformations of
multipole moments that we may have gained in studying
electromagnetism, for example. However, we can take
advantage of the fact that mode decompositions are linear,
so that it is sufficient to observe the transformation of a
single mode at a time. In particular, we will define input
waveforms having a single nonzero mode. For further
simplicity, that mode will behave as a pure phase rotation at
constant angular velocity. We can then transform this model
waveform, and see how the power in the chosen mode leaks
out into other modes. Because rotations are already well
understood—in fact, they behave identically to the more
familiar rotations of spin-zero spherical harmonics—we
will focus here only on translations and boosts.
To be precise, let us choose the nonzero mode ðlnz; mnzÞ

and define our model waveform by its modes as

ψl;m
4 ðuÞ ¼ δl;mlnz;mnz

eiωu: ð42Þ

Here, ω represents an angular velocity. For purposes of
illustration, let us choose ω ¼ 0.3 1

M, which is a typical
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value for the ðl; mÞ ¼ ð2; 2Þ mode of comparable-mass
binaries just before merger, whereM is the total mass of the
system.
As a first example, we see the effect of translations in

Fig. 7. The four cases shown here correspond to
ðlnz; mnzÞ ¼ ð2; 2Þ or ðlnz; mnzÞ ¼ ð4; 2Þ, and translations
of α ¼ 0.1M sin θ cosϕ or α ¼ 0.1M cos θ. These are
displacements of 0.1M in the x and z directions, respec-
tively, corresponding to typical displacements found in the
publicly available catalog of waveforms from the SXS
collaboration [21], as will be discussed further in Sec. VI.

The z displacement evidently has a very simple effect on
the modes; power is transferred to all other l modes with
m ¼ mnz, where the transferred power goes roughly as
ϵjl−lnzj for some parameter ϵ ≈ 0.01. This simplicity is a
result of the fact that the waveform of Eq. (42) is effectively
rotating about the z axis, so a translation along that
direction preserves a great deal of the symmetry of the
system. A similar but far more complicated pattern can be
seen in the x translations, where now the power is trans-
ferred into essentially all modes. While there is a similar
dependence in l—where the coupling seems to get smaller

FIG. 7. Mode transformations under translation. These plots show the changes to the amplitudes of the waveform modes when the
system is translated. The modes are grouped by l value, with individualm values increasing from −l on the left to l on the right in each
group. In each case, the initial waveform ψ4 is made up of a single mode, as in Eq. (42). In the two upper panels, (a) and (b), the nonzero
mode is ðlnz; mnzÞ ¼ ð2; 2Þ; in the two lower panels, (c) and (d), the nonzero mode is ðlnz; mnzÞ ¼ ð4; 2Þ. These waveforms are then
transformed to ψ 0

4 by a translation of magnitude 0.1M. The panels on the left, (a) and (c), depict a translation in the x direction (the same
translation in the y direction would look almost identical here); the panels on the right, (b) and (d), depict a translation in the z direction.
We see that a translation in the x direction tends to move power into modes with a wide variety of ðl; mÞ values, whereas a translation in
the z direction only moves power into modes with the same m values as the original waveform. This is a result of the fact that the
simulated waveform is effectively rotating about the z axis, so a z translation preserves a certain amount of symmetry, whereas the x
translation violates that symmetry. As explained in the text, the power leakage is roughly given by powers of the product of displacement
and frequency, which is roughly 0.03 in this case. The frequency was chosen to be typical of frequencies seen just prior to the merger
stage of comparable-mass binaries. Earlier during the inspiral portion, the frequencies will be an order of magnitude smaller, and the size
of these effects correspondingly smaller.
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exponentially with jl − lnzj—there is a more complicated
dependence on m.
These patterns can be understood by looking at the effect

of a translation on the time coordinate. Kelly and Baker
[20] pointed out that the effect on ψ4 of a supertranslation α
(without any accompanying boost or rotation) can typically
be approximated by the first few terms of the Taylor-series
expansion8

ψ 0
4ðu0; θ0;ϕ0Þ ¼

X∞
j¼0

1

j!

�
−αðθ;ϕÞ ∂

∂u
�

j
ψ4ðu; θ;ϕÞ; ð43aÞ

where ðθ;ϕÞ ¼ ðθ0;ϕ0Þ. With Eq. (42), this specializes to

ψ 0
4ðu0; θ0;ϕ0Þ ¼

X∞
j¼0

1

j!
ð−iωαðθ;ϕÞÞj−2Ylnz;mnz

ðθ;ϕÞeiωu:

ð43bÞ
In each case shown in Fig. 7, α is an l ¼ 1 function, and
thus couples with −2Ylnz;mnz

to progressively higher
orders—and hence at larger “distances” from ðlnz; mnzÞ,
in some sense—with increasing values of the summation
index j. On the other hand, these couplings also include
progressively higher powers of ω times the amplitude of α,
roughly 0.03, and thus progressively smaller amplitudes.
Besides the factor of 1=j!, there are further geometric
factors involved in the normalization of the spin-weighted
spherical harmonics, which means that the ratios of power
in the various modes do not follow a particularly simple
pattern, but it is clear that these considerations lead to the
correct qualitative behavior and—when accounting for the
factorial and geometric factors—the correct quantitative
behavior.
The nonzero input waveform mode in each of these cases

has amplitude 1. Of course, the effect of mode mixing is
linear, so the plots in Fig. 7 should essentially be read as
fractional coupling between the modes. For example, in

Fig. 7(a), we see that a little more than 1% of the power in
the (2,2) mode is mixed into the (2,1) and (3,3) modes. But
in many cases, the physical (2,2) mode is strongly dominant
over either of these modes, so that the expected ratio of
amplitudes would be less than 1%. In such cases, the
measured (2,1) and (3,3) modes would actually be pri-
marily made up of power leaking from the (2,2) mode.
While we might typically expect the frequency of the (2,1)
mode in real binary systems to be roughly 1=2 that of the
(2,2) mode, and the frequency of the (3,3) mode to be
roughly 3=2 that of the (2,2) mode, the frequency of the
mixed component would be nearly the same as that of the
(2,2) mode. Taken together, these features can provide a
signature of mixing due to transformations.
As we have seen, translations comprise a special case of

supertranslations having l ¼ 1. Similar behavior results
from supertranslations with l > 1, except that the coupling
between modes is more extensive. For example, if the
original waveform has nonzero mode ðlnz; mnzÞ ¼ ð2; 2Þ, a
supertranslation with nonzero ðl; mÞ ¼ ð2; 0Þ component
couples power at a roughly equal level into both the (3,2)
and (4,2) modes of the transformed waveform. It should
also be noted that supertranslations with l > 1 can directly
alter the value of, for example, the strain waveform h
through the term −ð̄2α in Eq. (21). The operator ð̄2

eliminates the modes of α with l ≤ 1, as it must for a
field of spin weight s ¼ −2.
We can make a similar comparison of waveform modes

before and after a boost. Figure 8 shows essentially the
same thing as Fig. 7, except that instead of translations, the
waveforms have been subjected to boosts. The speed of
the boost is β ¼ 0.01c in each case, directed in either the x
or z direction. The most obvious feature here is the
remarkable similarity between Figs. 7 and 8. The coupling
due to translation falls off more quickly with increasing
distance from the dominant mode, but the general patterns
are very similar. The time has been chosen as u ¼ u0 ¼ 0,
so that only the boost itself factors into this transformation.
This means that the translation induced by the boost, as
discussed near the end of Sec. II C, is zero. In this case,
only the movement of the points around the sphere—as
depicted in Fig. 2—comes into the transformation. In
particular, the transformation law given by Eq. (17e) is

ψ 0
4ð0; θ0;ϕ0Þ ¼ e−2iλγ3ð1 − v · rÞ3ψ4ð0; θ0;ϕ0Þ: ð44Þ

The spin factor e−2iλ is primarily just transforming the
tangent bases to avoid singularities in the basis vector fields,
and has no strong effect on the modes in this case. The value
of γ3 is approximately 1.00015, which accounts for the
change to the (2,2) mode, to reasonable accuracy. The third
factormultiplies thewaveformby roughly 1 − 3β sin θ cosϕ
for the boost in the x direction, and roughly 1 − 3β cos θ for
the boost in the z direction. But this factor can only explain
coupling between modes with Δl ¼ �3, whereas we

8The term −α∂=∂u in Eq. (43a) is the generator of the
supertranslation α, as described at the end of Sec. II C and in
Ref. [15]. Thus, this equation is simply the exponentiation of that
element of the Lie algebra bms, which gives us the correspond-
ing element of the Lie group BMS. It must be noted, however,
that such exponentiation is not typically a sufficient method for
transforming waveform data. For example, Eq. (17e) shows that
we generally also have a factor e−2iλ=k3 in the transformation law.
In our particular case, this factor happens to be 1, which is why
exponentiation works. More generally, the generator of a boost
would not supply the correct factor of k. But even for super-
translations, exponentiation would fail to correctly transform
other quantities. For example, in transforming h [Eq. (21)], the
term −ð̄2α would not appear. A more extreme example is
provided by ψ0 [Eq. (17a)]; action of the bms generators would
fail to supply the terms ψ1 through ψ4. Moreover, because of the
infinite nature of this expansion, it may be useful for gaining
qualitative insight into the approximate coupling between
modes, but it is not useful for accurate implementation of these
transformations.
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clearly see more extensive coupling in Fig. 8. In fact, if we
expand the boost rotor of Eq. (2) in powers of β, and use that
to expand the argument of ψ4ð0; θ0;ϕ0Þ in a Taylor series, we
find another factor multiplying ψ4ð0; θ;ϕÞ:

1− jv× rj þ 1

2
jv× rjv · rþ � � �

¼
�
1− β sinϕþ 1

4
β2 sin2ϕ sinθþ… x boost;

1− β sinθþ 1
4
β2 sin2θþ… z boost:

ð45Þ

Because of the geometry, the largest couplings from this
factor are typically several times smaller than the couplings
from the ð1 − v · rÞ3 factor. That is, the largest peaks in Fig. 8

will be dominated by the 3β term, but smaller peaks with
jδlj > 3 will be dominated (and in fact made possible) by
the more complicated factor of Eq. (45).
In the plots of Fig. 8, 3β ¼ 0.03, which is also the

approximate scale of the effects of the translation for the
plots of Fig. 7. This explains why the magnitude of
the coupling is so similar in the two cases, at least for
the dominant coupling terms. Of course, there is no 1=j!
term for the boost couplings, as in Eq. (43). This explains
why the couplings in Fig. 7 should fall off so much faster
than those in Fig. 8.
In fact, this numerical equality between the couplings for

translations and boosts is the reason β ¼ 0.01c was chosen

FIG. 8. Mode transformations under boost. These plots show the changes to the amplitudes of the waveform modes when the system is
boosted. These are similar to the plots in Fig. 7, except that there is no translation, only a boost. Again, the initial waveform in the upper
panels has nonzero mode ðlnz; mnzÞ ¼ ð2; 2Þ; in the two lower panels, the nonzero mode is ðlnz; mnzÞ ¼ ð4; 2Þ. In this case, the two
panels on the left depict a boost of speed 0.01c in the x direction, while the two panels on the right depict a boost of speed 0.01c in the z
direction. The mode amplitudes change as a function of time in this case, because the boost is essentially a time-dependent
supertranslation, as described at the end of Sec. II C. The quantities shown here correspond to u ¼ u0 ¼ 0, so that the translation induced
by the boost is actually zero. Despite the difference in their construction, these results are qualitatively very similar to those of Fig. 7.
However, the boost used to produce these figures is orders of magnitude greater than any found in the numerical waveforms considered
below. The basic conclusion is that the boost matters in those cases only to the extent that even a small boost can induce a significant
translation over the course of a long simulation.
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for these examples, to ease comparison between the effects
of a translation and of a boost. But we must note that this
value was chosen entirely for the purpose of illustration; it
is an order of magnitude larger than the largest speed found
in the SXS catalog discussed below, and several orders of
magnitude larger than typical speeds. This might appear to
suggest that the effect of the boost itself is entirely
negligible for those simulations. However, we have thus
far only described the transformation due to a boost on the
u ¼ u0 ¼ 0 slice. At any later time u0, an additional
coupling is present, which is essentially identical to a
translation by γu0v, as we can see from the arguments
toward the end of Sec. II C. Even a very small boost can
build up to a significant translation over the course of a long
simulation. In fact, we will find that near merger, boosts
play a significantly more important role than translations in
the SXS catalog.

VI. REMOVING DRIFT FROM
NUMERICAL WAVEFORMS

To demonstrate one way in which BMS transformations
are important at a practical level, we examine the publicly
available catalog of simulations from the SXS collaboration
[21,22]. First, we will illustrate a particular system to see
unexpected effects in its waveform modes, and see how
these effects can be reduced by applying a spatial trans-
lation and a boost derived from the simulation data. Then,
we will briefly examine the size of the translation and boost
for other simulations in the catalog.
The first simulation we consider is labeled in the

waveform catalog as SXS:BBH:0004, and represents an
(approximately) equal-mass system in which one black
hole has dimensionless spin S1=M2

1 ¼ 0.5 along the −z
axis, while the other black hole has no spin. This system is
interesting because it is not precessing, and so retains
enough symmetry to allow us to unambiguously identify
some curious features. But it is nonetheless not perfectly
symmetric, and thus exhibits those nontrivial features.
We can see the first example of nontrivial features in this

system by simply plotting the center of mass. Using the
Christodoulou masses and coordinate positions of the black
holes, we form the usual center of mass.9 The result is
plotted in Fig. 9. Because the system is not symmetric, we
expect to see some asymmetry in the emission of gravi-
tational waves in the orbital (x-y) plane [8,44], and thus
some force in this plane. But that force should have roughly
constant magnitude on the orbital time scale, and should
simply rotate with the system. So we expect the center of
mass to be pushed around in a circle. This is essentially
what we find in the data. The center of mass starts nearly at
the origin, so this circle is initially not centered on the

origin. But there is another strong effect: an overall drift.
Evidently, this drift is due to residual linear momentum in
the initial data. For future evolutions, Ref. [23] introduced a
method to eliminate such residual momentum from the
initial data. However, for the present waveform catalog and
any future simulations in which a large initial translation
is present, or a significant recoil develops during the
inspiral, we must transform the data to eliminate the offset
and drift.
The approach taken here is crude, but will serve the

purpose of illustration. By minimizing the average distance
between the center of mass and the origin, we can find the
optimal translation and boost, as described in Appendix E.
For this system, the results are

δx ¼ ð−9.1 × 10−3; 7.8 × 10−3;−4.0 × 10−9Þ; ð46aÞ

v ¼ ð9.4 × 10−6;−5.3 × 10−6; 2.6 × 10−12Þ: ð46bÞ

Over the course of this ∼11000M simulation, the small
boost grows into a larger translation than the initial offset
δx. Applying this transformation to the center of mass we
see a much cleaner-looking curve, essentially orbiting the
origin, in Fig. 9. Although the center of mass measured in
this way is based on coordinates, and thus susceptible to all
the vagaries of gauge in the most extreme regions of
the simulated spacetime, we will nonetheless find that the
same transformation applied to the waveform removes

FIG. 9. Center of mass motion. This plot shows the coordinates
in the x-y plane of the center of mass for system SXS:BBH:0004,
throughout the inspiral of the system. Motion in the z direction is
far smaller. The coordinates are given in units of M ¼ M1 þM2,
the total Christodoulou mass [45] of the system. The raw data
from the simulation results in the curve labeled “Original.” This is
the motion of the center of mass, as seen in the same frame in
which the waveforms are measured. There is a small initial offset,
as well as a strong drift velocity. We can also apply a spatial
translation and boost to the system, in which case the center of
mass appears to rotate more simply around the origin, as seen in
the curve labeled “Transformed.”

9These quantities are all stored in the waveform catalog in files
named HORIZONS.H5.
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features that we would not expect based on naive analytical
models.
Figure 10(a) shows the largest modes10 in the waveform.

This is the original data taken from the SXS catalog. The
(2,2) mode is entirely dominant, as expected. The post-
Newtonian model [44] of this system predicts smooth,
monotonic waveform amplitudes during the inspiral. Yet
the (2,1), (3,3), and (3,1) modes exhibit distinctive oscil-
lations that are not visible in the other modes. These modes
also have the largest couplings with the (2,2) mode under
translation in the x-y plane, as seen in Fig. 7(a), and the
oscillations are at the same frequency as the (2,2) mode.
These facts strongly suggest that the oscillations are caused
by mode coupling due to the motion of the center of mass.
In fact, we can even predict the size of these couplings. The
original system ends up translated from the origin by about
0.1M at merger, and the frequency of the (2,2) mode just
prior to merger exceeds 0.3=M. These were the parameters
used to construct Fig. 7(a), which means that the couplings
shown in that plot should be roughly the couplings found in
this waveform near merger. Specifically, we expect to find

mode couplings in this waveform starting at just over 1% of
the magnitude of the (2,2) mode near merger.
Figure 10(b) shows the dominant mode—which is not

visibly changed at this scale—and the oscillating modes
after the transformation of Eq. (46) has been applied to the
waveform. For comparison, the original modes are shown
in the same colors with lower opacity. In each case, the
effect of the transformation is smallest at the beginning of
the simulation, when the offset and frequency are smallest;
conversely, it is largest at merger, when the offset and
frequency are largest. This is just as we would expect, given
the arguments of Sec. V. Moreover, we can look at the
changes to these modes as a fraction of the (2,2) amplitude,
and find that they do agree nicely with Fig. 7(a): the (2,1)
and (3,3) modes change by just over 1.3% at merger, and
the (3,1) mode by around 0.35%. Finally, we can subtract
the transformed waveform from the original data and
measure the frequency of the difference; for each of these
three modes, we find that it matches the frequency of the
(2,2) mode, rather than the frequency of the transformed
mode. These facts all suggest that the changes to these three
modes are primarily undoing leakage of the (2,2) mode.
The oscillations have been essentially removed from the

(2,1) mode. This mode is the third-largest overall, after the
(2,2) and (4,4) modes. Yet its amplitude is altered in this
transformation-induced coupling by several percent
throughout the inspiral, growing to 30% at merger (relative
to the transformed values). The oscillations of the much

FIG. 10. Original and corrected waveform data. These plots show the waveform data for SXS:BBH:0004, and the effects of the
transformation. The plot on the left, (a), shows the raw waveform obtained from the SXS catalog, using extrapolation with polynomials of
orderN ¼ 3 [46,47]. The eight most significant modes are shown. Of these, the (2,1), (3,3), and (3,1) modes exhibit substantial oscillations.
Oscillations are somewhat unexpected because analytical models of this system contain no such features. However, these are also the
modes that couple most strongly to the dominant (2,2) mode under a translation in the x-y plane, as shown in Fig. 7(a). The plot on the right,
(b), shows the (2,2) mode and the three oscillating modes (removing the other modes for clarity) after the waveform has been transformed
by the translation and boost given in Eq. (46). For comparison, the original modes are also shown in the corresponding colors, with lower
opacity. The effect of the transformation is largest near merger, when the translation induced by the boost is largest and the frequency is
highest. Despite the crude way in which the transformation parameters were determined, the transformation itself eliminates the oscillations
of the (2,1) mode, while reducing the overall amplitudes of the (3,3) and (3,1) modes by as much as a factor of 20.

10This is as measured shortly before merger. We ignore modes
with negative m values because, for this system, they have
essentially the same magnitudes as their counterparts with
positive m values. Also, the (2,0) mode comes out above the
(4,2) mode when extrapolating with N ¼ 3 polynomials, but is
evidently not trustworthy [46], so we ignore it.
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smaller (3,3) mode are reduced substantially, though not
entirely eliminated. This is not surprising, given that the
change in the waveform is so large, and the method of
choosing the transformation of Eq. (46) so crude. In fact
small changes in the parameters used to choose the trans-
formation (ti and tf in Appendix E) lead to significant
changes in the smoothness of this transformed mode,
suggesting that there may be better choices. However,
the remarkable feature of this transformation is the size of
the change, which ranges up to 350% late in the inspiral
(again, relative to the transformed values). Even more
extreme is the change in the (3,1) mode, which reaches
typical values over 2000% toward the end of the inspiral.
We can conclude from this that throughout almost the

entire simulation, the (3,3) and (3,1) modes as given in the
original data from the SXS catalog are entirely dominated
by coupling from the (2,2) mode, while the (2,1) mode is
strongly affected—though not completely dominated. This
means that any attempt to use these modes without
accounting for the effect of the residual velocity in the
initial data will be prone to errors.
Themode couplings we have seen here are all caused by a

very small residual velocity, which leads to an anomalous
translation of just 0.1M around merger. It may be surprising
that such large effects can follow from such a seemingly
small cause. But it is more surprising that this anomalous
translation is typical of the simulations in the SXS catalog.
Figure 11 shows the initial and final displacements of the
center of mass for every system in the SXS catalog. We can
see that the size of the transformation in SXS:BBH:0004 is
fairly typical of systems in the catalog. In fact, the translation

near merger [Fig. 11(b)] for this system (0.108) is slightly
above the median (0.070), and just half the mean (0.216).
Closer inspection of the data show that all the systems

with very small translations [less than about 10−2 in
Fig. 11(b)] are symmetric, with equal masses and spins,
and the spins are all aligned with the orbital axis. If the
masses or spin magnitudes are not equal, there is generally
a larger translation. Still larger translations are typically
found in systems for which one or both black holes have
spin components in the orbital plane. On the other hand,
simulations that run for longer have more opportunity to
develop a large translation; the very largest values result
from very long simulations, rather than extraordinarily
asymmetric physics.
In this section, we have found that applying translations

and boosts determined from the orbital trajectories of a
simulation in the SXS catalog can have a very large
effect on the distribution of power in the modes, and can
diminish unmodeled features in the waveform. Moreover,
we have seen that this particular system is fairly typical of
systems in the SXS catalog, with numerous systems
expected to exhibit significantly larger mode couplings.
The mode transformations described in this paper can be
expected to substantially improve the agreement between
analytical waveform models and numerical waveforms in
these cases.

VII. EFFECTS ON DATA ANALYSIS FOR
GRAVITATIONAL-WAVE DETECTORS

The previous section showed that seemingly small
transformations can have pronounced effects on waveform

FIG. 11. Survey of translations and boosts in the SXS catalog. These plots show the number of systems with a given initial
displacement, (a), and a given displacement at merger, (b). In the latter plot, tCAH is the time at which a common apparent horizon is
found, which is a typical definition of the merger time. The data include every system in the SXS catalog, but only the highest-resolution
instance of each system. The vertical red line in each plot shows the value for the system SXS:BBH:0004, which is the one described in
Sec. VI and Figs. 9 and 10. Systems with small values in each plot are typically simple systems with little or no spin, or high symmetry;
larger values generally indicate asymmetries in the masses, unequal spins, and especially strongly precessing systems. The displacement
at merger is dominated in most cases by the translation due to boost, rather than initial displacement—though the boost actually reduces
the displacement from its initial value in roughly one fifth of the systems in the catalog.
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modes. Having understood the nature and origin of these
effects, we can now address the issue of what must be done
about them. This section briefly discusses the impact these
transformations have on two aspects of detections of
gravitational waves: the production of waveform models,
and the construction of template banks for searches in
detector data.
The first step in detecting a gravitational wave is to

devise a model of a waveform we might expect to find in
the data. From astrophysical arguments, the most reliable
candidates for detection are mergers of compact binary
systems. Because of the nonlinear nature of mergers, they
can only be modeled accurately by computers. On the other
hand, using a computer to generate the entire signal is
simply unrealistic for most of the expected systems [48].
Thus, at some level, waveform modeling must combine
numerical and analytical results. But because the wave-
forms come from different approaches, we should expect to
find differences in their gauges—as amply demonstrated by
the boosts and translations discovered in the SXS data,
which will not naturally appear in any analytical model.
These gauge differences will have real impacts on any

model that uses numerical waveforms. For example, when
“calibrating” effective-one-body models [49–51], the ana-
lytical waveform must be aligned to the numerical wave-
form. If the numerical waveform has spurious features, the
waveforms will appear to align poorly, so the calibration
will be less than optimal and result in inaccurate wave-
forms. Other phenomenological waveform models [52,53]
and surrogate models [54,55] would experience the same
biases, trying to fit simple formulas to waveforms with
effectively random gauge effects. Similarly, when con-
structing hybrid waveform models [48], the hybrids will be
imperfect or even discontinuous in the region where one
switches from analytical to numerical data.
As mentioned in Sec. I, some of these gauge freedoms—

time translations and rotations—are entirely familiar, and
routinely dealt with simply by applying a gauge trans-
formation to one waveform to minimize some measure of
the difference between the waveforms. In principle at least,
this approach could also be extended to the full BMS
group, though the supertranslations would obviously be
represented only up to some finite spherical-harmonic
order, and the numerical implementation may be delicate.
It may also be feasible to resolve the gauge ambiguities
using any of various methods presented in the literature
[33,56–58], though it is not clear that such an approach
would be numerically feasible. In any case, a simplistic
approach like the one found in Sec. VI is presumably a
helpful first step.
Now, assuming that we have a waveform model for a

particular astrophysical system produced with the appro-
priate care for gauge ambiguities, searches of detector data
require a family of template waveforms—specific instances
of waveforms from the broader class making up the model.

As noted in Sec. I, the signal measured along any simple
curve on Iþ of constant spatial coordinates is a good
approximation for the signal measured by some inertial
observer, because the metric in Bondi gauge is manifestly
asymptotically flat. Here, we consider the signal to be
measured as a function of the retarded-time coordinate u
along some direction ðθ;ϕÞ, in which case the limiting
process as r → ∞ is well defined and the signals at finite
radius and on Iþ can be compared meaningfully. Of
course, since BMS transformations preserve Bondi gauge,
we can apply any BMS transformation to generate another
curve on Iþ, and another corresponding waveform. We
might worry that we would need a separate template for
each member of the BMS group—or at least for some
discrete sampling of the BMS group. But given its infinite
dimensionality, this could still be a very large or even
impossible task.
Fortunately, the situation is not quite so dire.Weonly need

to generate templates for elements of the BMS group that
produce detectably distinctwaveforms. But there are degen-
eracies among the templates created in this way, particularly
among the supertranslations. Given that our detector will lie
along a single direction from the source, the supertranslation
αwill be evaluated along a particular direction. Ignoring the
Lorentz transformation for the moment, the retarded time
transforms as u0 ¼ u − αðθ;ϕÞ. As far as its effect on the
time variable is concerned, all those infinitely many degrees
of freedom in α reduce to a single number. In principle, the
angular dependence of α does lead to a transformation of the
quantity h measured by a gravitational-wave detector, as
shown in Eq. (21). However, the term ð̄2α is constant in time,
and so is not detectable. Thus, for detections along a single
line of sight from the source, the entire supertranslation
sector of the BMS group is reduced to a single time offset.
Factoring the supertranslations out of the BMS group

leaves us with the familiar Lorentz group of rotations and
boosts. The rotations determine the sky position of the
detector relative to the source—or equivalently the ori-
entation of the source relative to the detector.11 We can
further separate rotations into a rotation along the line of
sight between detector and source, and 2 other degrees of
freedom that we might call latitude and longitude. This first
rotation is directly degenerate with the spin phase λ
described in Sec. II A. But both this and the time offset
are “extrinsic” parameters, already dealt with in searches by

11There is still another rotation that must be accounted for in
data analysis, related to the orientation of the detector relative to
the source—or equivalently the sky position of the source relative
to the detector. This second rotation is partially degenerate with
the first, in that it will also affect the spin phase. The other
2 degrees of freedom in this rotation determine the detector’s
sensitivity to the signal via the “antenna pattern.” However, since
this rotation relates the detector’s orientation to the coordinates
we have already been dealing with, it does not fit comfortably
within the scope of this discussion.
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simply finding the element of a discrete Fourier transform
with the largest magnitude [1,59,60]. The remaining rota-
tional degrees of freedom are described in more detail
elsewhere [61–63]. In brief, it appears that accounting for
them could provide benefits for localization and parameter
estimation, but could actually be counterproductive for
detection. The impact of the boost degrees of freedom is
likely to be much smaller, and indistinguishable from an
error in the total mass of the system.
To summarize this section, let us reiterate how it is that

supertranslations are so important for waveform modeling,
but not important for detection. Supertranslations are
important to waveform models for two reasons: (1) the
models must be able to describe the waveform in any
direction from the source; and (2) at some point we
generally need to compare or combine two different
models, so the gauge freedom must be accounted for.
On the other hand, a detector lies along a single direction
from the source, which means that all the degrees of
freedom in the supertranslation are degenerate. If we had
a network of detectors located in significantly different
directions from a source, and we wished to combine their
information, wewould need some control over their relative
time offsets which could be considered equivalent to
supertranslation degrees of freedom. This is not expected
to be a pressing concern in the near future.

VIII. CONCLUSIONS

There is no such thing as a gauge-invariant gravitational
waveform. It is possible to find a gauge-fixed waveform—
for example, one measured in the standard Bondi gauge.
However, even this is not a particular coordinate system,
but an infinite-dimensional class of equally acceptable
systems. We can transform between members of the class
using any element of the infinite-dimensional Bondi-
Metzner-Sachs group, which shows that the class is very
large indeed. Moreover, we have seen that such trans-
formations can affect the waveform dramatically, even
when the transformation seems to be small. This means
that any comparison between waveforms—whether
numerical, analytical, or even experimentally measured
waveforms—will be affected by the gauge in which the
waveform is expressed (or equivalently, the frame in which
the waveform is measured). There is no obvious preferred
frame. Instead, all we can (and should) do is to insist that
the waveforms are at least in the same frame. Doing so
requires understanding the BMS group, and how its
elements transform waveforms.
This paper has explored the BMS group, and illustrated

some of its impact on gravitational-wave analysis. We
began with a thorough and pedagogical introduction to the
group itself, to provide a common starting point to be used
in the remainder of the paper. We then examined asymp-
totically flat spacetime, and found how the BMS group
transforms various types of waveforms. We then used these

insights to see how such transformations can be imple-
mented in practice. This is applied in the Python package
SCRI accompanying this paper on its arXiv page. The
following section then showed how these transformations
should affect the spin-weighted spherical-harmonic modes
of a waveform with simplified numerical models, and we
found good agreement with analytical approximations for
the leading-order couplings. Anomalous translations and
boosts were found in the publicly available SXS catalog.
A particular example was used to show that the original
data contains large effects from these anomalies, including
modes that are several to dozens of times larger than they
would be expected to be. These modes can be transformed
to simplify their structure, and bring them more closely in
line with what is expected from analytical models.
However, more complicated systems will have even larger
mode couplings. The size of the coupling is expected to
scale roughly linearly with the size of the translation
involved—since the direct contribution of the boost is
relatively small compared to the influence of the translation
it gives rise to—and some simulations in the SXS catalog
have translations almost 100 times greater than the example
system. Finally, we discussed the effect of the BMS gauge
freedom on data analysis for gravitational-wave detectors,
showing that it must be accounted for when creating model
waveforms, but the supertranslations do not complicate
searches.
The waveforms found in the SXS catalog are not wrong,

per se; but they contain effects that may not be expected.
For example, they will not be consistent with the usual
post-Newtonian waveforms; using the raw waveforms to
construct hybrids with PN waveforms would result in
mismatches between the modes. Using raw waveforms
to calibrate effective-one-body waveforms [49–51], surro-
gate models [54,55], or other phenomenological waveform
models [52,53] would degrade the quality of the numerous
fits inherent to the calibration process, by subjecting them
to effectively random noise in the input. A broader and
deeper survey of the effects of these transformations on
waveforms in the SXS catalog will be the subject of an
upcoming paper [64].
Essentially, we have a more general form of the familiar

alignment problem in which arbitrary time and phase
offsets need to be removed. Those simple alignments are
just special cases of the one described here, restricted to the
subgroup of BMS transformations consisting of time
translations and rotations about the z axis. This more
general alignment problem will necessitate using more
general elements of the BMS group. With the algorithm
presented in this paper, we can begin to investigate ways to
achieve such alignment. Previous investigations have
suggested ways of using asymptotic data to determine
the center of mass, and more generally resolve the super-
translation ambiguity [33,56–58]. While these are prom-
ising theoretical developments, additional work will be
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needed to make these methods practicable—towards which
the present work is a crucial first step.
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APPENDIX A: CONVENTIONS

We start with some fiducial frame ðt; x; y; zÞ, and some
corresponding observer O. A spacetime event is a point p,
and is represented by some vector corresponding to the
displacement from the origin ofO to that point. The point p
can be given coordinates ðpt; px; py; pzÞ such that its
corresponding vector is pttþ pxxþ pyyþ pzz.

Another observer O
̯
moves at velocity v relative to O,

which means that the location of the spatial origin of O
̯

relative to the (absolute) origin of O is of the form ηðtþ vÞ
for some η, where we assume the speed of light is c ¼ 1.
We also define the following shorthand notations:

β ≔ jvj; ðA1aÞ

φ ≔ artanh β; ðA1bÞ

γ ≔
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − β2
p ; ðA1cÞ

φ ≔ φ
v
β
: ðA1dÞ

It is worth noting the convenient identities,

γ ≡ coshφ; ðA1eÞ

βγ ≡ sinhφ; ðA1fÞ

γð1þ βÞ≡ coshφþ sinhφ≡ eφ; ðA1gÞ

γð1 − βÞ≡ coshφ − sinhφ≡ e−φ; ðA1hÞ

1

2
ln
1þ β

1 − β
≡ φ: ðA1iÞ

The frame ðt̯ ; x̯ ; y̯ ; z̯ Þ of observer O
̯

is defined by the
relations

t
̯
≔ BtB−1; ðA2aÞ

x
̯
≔ BxB−1; ðA2bÞ

y
̯
≔ ByB−1; ðA2cÞ

z
̯
≔ BzB−1; ðA2dÞ

where B is a Lorentz rotor:

B ≔ e−φt=2 ¼ cosh
φ

2
−
φt
φ
sinh

φ

2
: ðA3Þ

Here, we use the formalism of geometric algebra [25–27] to
describe the boost. In particular, the term φt represents the
geometric (or Clifford) product between these two vectors.
Because φ is a spatial vector, this product φt is a pure
bivector φ ∧ t representing the hyperplane spanned by φ
and t. The quantity B is a mild generalization of a unit
quaternion (also called a rotor), except that now “rotations”
need not be confined to spatial planes; the vectors spanning
the plane of rotation can now include time components—as
in this case. For simplicity, we have also specialized to the
case where there is no additional rotation. If there is some
additional rotation, it can easily be absorbed by redefining
the frame of O, or simply replacing every occurrence of B
with BRf , where Rf represents the required (purely spatial)
rotation of the O frame.
Using the form of B given above, we have t

̯ ¼ γðtþ vÞ,
which agrees with our earlier statement, because any

point at the spatial origin of O
̯

will be of the form
η0t

̯ ¼ η0γðtþ vÞ ¼ ηðtþ vÞ for some η ¼ η0γ. We should

also note that O
̯

observes O moving with velocity
−v

̯ ¼ −BvB−1 ¼ −γðvþ β2tÞ, which is a purely spatial

vector in O
̯
, with magnitude β.

APPENDIX B: SPHERICAL COORDINATES

Spherical coordinates are defined as usual, so that a point
on the sphere at position r has coordinates ðθ;ϕÞ when the
angle between r and z is θ, and the angle between x and the
projection of r onto the x-y plane is ϕ. Then, any point r
may be represented by a rotor Rθ;ϕ as

TRANSFORMATIONS OF ASYMPTOTIC GRAVITATIONAL- … PHYSICAL REVIEW D 93, 084031 (2016)

084031-23



r ¼ Rθ;ϕzR−1
θ;ϕ; ðB1Þ

where

Rθ;ϕ ≔ eϕyx=2eθxz=2: ðB2Þ

Similarly, the observer O
̯
can represent a point as

r
̯ ¼ R

̯

θ
̯
;ϕ
̯ z
̯
R
̯ −1
θ
̯
;ϕ
̯ ; ðB3Þ

where

R
̯

θ
̯
;ϕ
̯ ≔ eϕ

̯
y
̯
x
̯
=2eθ

̯
x
̯
z
̯
=2 ¼ BR

θ
̯
;ϕ
̯ B−1: ðB4Þ

Note that the final form above is written using basis vectors
from the frame of O, but uses the coordinates measured

by O
̯
.

This presentation of spherical coordinates in terms of the
corresponding rotor is useful, not only because the point
itself may be expressed as in Eqs. (B1) and (B3), but also
because the corresponding tangent vectors are easily
expressed. For example, if θ and ϕ are the standard tangent
vectors, we have

t ¼ Rθ;ϕtR−1
θ;ϕ; ðB5aÞ

θ ¼ Rθ;ϕxR−1
θ;ϕ; ðB5bÞ

ϕ ¼ Rθ;ϕyR−1
θ;ϕ; ðB5cÞ

r ¼ Rθ;ϕzR−1
θ;ϕ: ðB5dÞ

This suggests the use of rotors more generally as a better
way to keep track of a basis frame than retaining all four
vectors separately. We also take this opportunity to define
another frame:

t0 ≔ R
θ
̯
;ϕ
̯ tR−1

θ
̯
;ϕ
̯ ≡ t; ðB6aÞ

θ0 ≔ R
θ
̯
;ϕ
̯ xR−1

θ
̯
;ϕ
̯ ; ðB6bÞ

ϕ0 ≔ R
θ
̯
;ϕ
̯ yR−1

θ
̯
;ϕ
̯ ; ðB6cÞ

r0 ≔ R
θ
̯
;ϕ
̯ zR−1

θ
̯
;ϕ
̯ : ðB6dÞ

In the frame of O, the last three are pure spatial vectors.
Once they are boosted they will be pure spatial vectors in

the frame of O
̯
and, along with t

̯
, will comprise the correct

frame for a point on the sphere at coordinates ðθ
̯
;ϕ
̯
Þ, as

measured by O
̯
:

t
̯ ¼ Bt0B−1; ðB7aÞ

θ
̯
¼ Bθ0B−1; ðB7bÞ

ϕ
̯
¼ Bϕ0B−1; ðB7cÞ

r
̯ ¼ Br0B−1: ðB7dÞ

This shows that we can extend Eq. (B5) to use
Lorentz rotors (generalizing from pure spatial rotors) to
keep track of all possible basis frames related by a Lorentz
transformation, rather than retaining all four vectors
separately.

APPENDIX C: ROTOR OF A BOOST

Any future-directed null vector may be represented byO
up to a positive scaling as

l ≔ rþ t≡ Rθ;ϕðzþ tÞR−1
θ;ϕ: ðC1Þ

Note that the rotor has no effect on t, as it is an entirely

spatial rotor. Similarly, observerO
̯
may express any future-

directed null vector via

l
̯
≔ r

̯ þ t
̯ ≡ R

̯

θ
̯
;ϕ
̯ ðz̯ þ t

̯ ÞR
̯ −1
θ
̯
;ϕ
̯ ðC2aÞ

¼ BR
θ
̯
;ϕ
̯ ðzþ tÞR−1

θ
̯
;ϕ
̯ B−1: ðC2bÞ

The final expression represents the conjugation by B of a
vector expressed entirely in the basis of O, though using

coordinates as measured by O
̯
.

We need to know the coordinates ðθ;ϕÞ given

ðθ
̯
;ϕ
̯
Þ such that l is a positive scalar multiple of l

̯
,

which is possible if and only if ll
̯
¼ 0. (Again, juxtaposition

of the vectors l and l
̯
denotes the geometric product.) For

now, let us assume that B is a boost along z. Then clearly

ϕ ¼ ϕ
̯
since y and x are unaffected. We can calculate

ll
̯
¼ Rθ;ϕðzþ tÞR−1

θ;ϕBRθ
̯
;ϕ
̯ ðzþ tÞR−1

θ
̯
;ϕ
̯ B−1 ðC3aÞ

¼ eθxz=2ðzþ tÞe−θxz=2Beθ
̯
xz=2ðzþ tÞe−θ

̯
xz=2B−1: ðC3bÞ

The key expression here is the Lorentz rotor

L ¼ e−θxz=2e−φzt=2eθ
̯
xz=2 ðC4aÞ

¼ cosh
φ

2
cos

θ − θ
̯

2
− zt sinh

φ

2
cos

θ − θ
̯

2

þ xt sinh
φ

2
sin

θ þ θ
̯

2
− xz cosh

φ

2
sin

θ − θ
̯

2
: ðC4bÞ
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In particular, if ll
̯

is a scalar, we have

ll
̯
¼ ðzþ tÞLðzþ tÞL−1, and if the latter expression is to

be a scalar, Lðzþ tÞL−1 must have no x component. A
simple argument from geometric algebra shows that L can
only have terms involving x of the form xðzþ tÞ; terms of
the form xðz − tÞ must vanish. Using the coefficients of xt
and xz above, some simple algebra shows us that this
implies that

tan
θ

2
¼ e−φ tan

θ
̯

2
: ðC5aÞ

We can repeat this analysis for a past-directed null
vector, and find the condition that Lðz − tÞL−1 must have
no x component, which implies that

tan
θ

2
¼ eφ tan

θ
̯

2
: ðC5bÞ

This is equivalent to flipping the sign or direction of the
boost in Eq. (C5a). Note that Eq. (C5b) is the standard
formula for stellar aberration due to a boost,12 because an
observer detects photons moving into the future along past-
directed null vectors. Put another way, an observer receiv-
ing null rays assigns a direction to a ray according to where
it came from, rather than where it is going; an emitter
assigns directions according to where the ray is going,
rather than where it would have come from—this is the
reason for the sign difference.
By looking at this more geometrically, we can eliminate

the requirement that the boost be in the z direction. We first
dispense with the trivial case for which v and r are parallel
or antiparallel, in which case r ¼ r0. Assuming henceforth
the situation is not so trivial, we note that v, r, and r0 all lie
in the same plane, and angles between them are governed

by Eq. (C5). To be specific, define Θ
̯
to be the angle

measured by O
̯
between v

̯
and r

̯
, and similarly for Θ. We

can calculate Θ
̯
in the O frame as

Θ
̯
≔ arccos ½v̯ · r̯ �≡ arccos

h
v ·

�
R
θ
̯
;ϕ
̯ zR−1

θ
̯
;ϕ
̯

	i
: ðC6Þ

The corresponding value of Θ for future-directed (respec-
tively past-directed) null rays is simply

tan
Θ
2
¼ e∓φ tan

Θ
̯

2
: ðC7Þ

Using this equation, we can find another useful relation

between l and l
̯
: the latter can be rotated into the former

with a rotation that is purely spatial in O. Essentially, we

simply rotate by Θ − Θ
̯
in the r-v plane. The rotor that does

this is

B0 ≔ exp

�
Θ − Θ

̯

2

r ∧ v
jr ∧ vj

�
: ðC8Þ

With this rotor, we have

Rθ;ϕðzþ tÞR−1
θ;ϕ ¼ B0R

θ
̯
;ϕ
̯ ðzþ tÞR−1

θ
̯
;ϕ
̯ B0−1: ðC9Þ

Note that this equation does not imply Rθ;ϕ ¼ B0R
θ
̯
;ϕ
̯ ;

instead we have13

Rθ;ϕeλxy=2 ¼ B0R
θ
̯
;ϕ
̯ ; ðC10Þ

for some angle λ. It turns out that this angle is the spin phase
described in Sec. II A. Though it will never be necessary to
compute this directly (except for the purposes of visual-
izations like Fig. 2), we can rearrange Eq. (C11) and
express λ as

λ ¼ 2 log ½R−1
θ;ϕB

0R
θ
̯
;ϕ
̯ �yx: ðC11Þ

Of course, rather than computing this angle to evaluate
spin-weighted functions, we can just use the right-hand side
of Eq. (C10) directly, and evaluate the spin-weighted
function on that rotor.
It may be helpful to see why this spin phase is a

meaningful quantity under a boost. The fact that v, r,
and r0 lie in the same plane and the fact that angles between
them are governed by Eq. (C7) are purely geometric
statements; they are independent of our basis frame. We
can use these facts to express the value of a spin-weighted
function in the boosted frame in terms of the spin-weighted
function in the original frame. Assuming v and r are not
proportional to each other, we know that the products t ∧
v ∧ r and t ∧ v ∧ r0 are the same up to some nonzero scalar
multiple; they represent the same hyperplane. Under the
boost e−φt=2, the three vectors t, v, and r0 transform among
themselves, which means that t

̯ ∧ v
̯ ∧ r

̯
also represents the

same hyperplane.14 There is a unique axis orthogonal to this
hyperplane. In fact, we can construct a unique unit vectorΦ
along this axis by defining

12See, e.g., Eq. (1.3.5) of Ref. [35].

13We know that the extra factor in this equation is the most
general possible such factor because: (1) it must be an even-grade
element of unit norm, since all other elements of this equation
have even grade and unit norm; (2) it must be purely spatial inO,
since all other elements are purely spatial; (3) it must commute
with zþ t. Thus, it can only be a rotation in the x-y plane.

14That is, the latter product is the same as the former
two products up to some other nonzero scalar multiple.
In fact, a straightforward calculation shows that cscΘ

̯
t
̯ ∧ v

̯ ∧ r
̯ ¼

cscΘ
̯
t ∧ v ∧ r0 ¼ cscΘt ∧ v ∧ r.
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Φ ≔
t ∧ v ∧ r
β sinΘ

t ∧ θ ∧ ϕ ∧ r; ðC12aÞ

¼ t ∧ v ∧ r0

β sinΘ
̯ t ∧ θ ∧ ϕ ∧ r; ðC12bÞ

¼ t
̯ ∧ v

̯ ∧ r
̯

β sinΘ
̯ t

̯ ∧ θ
̯ ∧ ϕ

̯ ∧ r
̯
: ðC12cÞ

When v ¼ βz, we have Φ ¼ ϕ—the usual basis vector.
But the definition given in Eq. (C12) is geometrically
invariant. By construction Φ is orthogonal to v ∧ t, and so
is invariant under boosts. More specifically, Φ is a purely
spatial vector for both observers, orthogonal to the velocity,

and lies in the tangent space of the sphere at r
̯
forO

̯
and at r

for O. We can therefore use it to compare directions in the
tangent spaces for our spin-weighted functions.

These invariance properties of the Φ ¼ Φ
̯
vector field

allow us to identify the alignment of the tangent space. We
choose the point on the sphere designated by r

̯
, with

coordinates ðθ
̯
;ϕ
̯
Þ. This has a standard [39] alignment of

the tangent space given by

m
̯
≔

1ffiffiffi
2

p ðθ
̯
þ iϕ

̯
Þ≡ BR

θ
̯
;ϕ
̯
xþ iyffiffiffi

2
p R−1

θ
̯
;ϕ
̯ B−1: ðC13aÞ

Because this is a purely spatial vector in the frame ofO
̯
, but

has a time component in the frame of O, direct comparison
would be complicated. However, we can define the similar
vectors

m0 ≔
1ffiffiffi
2

p ðθ0 þ iϕ0Þ≡ B0R
θ
̯
;ϕ
̯
xþ iyffiffiffi

2
p R−1

θ
̯
;ϕ
̯ B0−1; ðC13bÞ

m ≔
1ffiffiffi
2

p ðθþ iϕÞ≡ Rθ;ϕ
xþ iyffiffiffi

2
p R−1

θ;ϕ; ðC13cÞ

and the products

m
̯
Φ
̯ ≔ m

̯
·Φ

̯
; ðC14aÞ

m0
Φ ≔ m0 ·Φ; ðC14bÞ

mΦ ≔ m ·Φ: ðC14cÞ

Almost by definition, we have m
̯
Φ
̯ ≡m0

Φ. Thus, the non-
trivial comparison is between m0

Φ and mΦ.
To make this comparison, suppose that l and l0 are as

given in Eqs. (C1) and (C2). We know that the rotors
involved in those expressions are related by Eq. (C10), so
we can calculate the relative alignment of the tangent
spaces as follows:

m0
Φ ≔ m0 ·Φ; ðC15aÞ

¼
�
B0R

θ
̯
;ϕ
̯
xþ iyffiffiffi

2
p R̄

θ
̯
;ϕ
̯ B̄0

�
·Φ; ðC15bÞ

¼
�
Rθ;ϕeλxy=2

xþ iyffiffiffi
2

p e−λxy=2R̄θ;ϕ

�
·Φ; ðC15cÞ

¼ eiλ
�
Rθ;ϕ

xþ iyffiffiffi
2

p R̄θ;ϕ

�
·Φ; ðC15dÞ

¼ eiλmΦ: ðC15eÞ

This relation is exactly the one implied by Newman and
Penrose’s original definition of spin at the beginning of
Sec. III in Ref. [16]: they defined spin with respect to the
transformationm0 ¼ eiλm. This describes the relative align-
ment of the m

̯
and m fields—except for any time compo-

nent orthogonal toΦ produced by the relative boost. Those
additional components cannot be accounted for simply by a
rotation; they must be accounted for by mixing between
different components of the tensor in question. This is why
we find various Newman-Penrose scalars on the right-hand
sides of Eqs. (17a) through (17d), for example.
This property of rotating the tangent space is very

important, and is the primary motivation for this more
geometric approach. That is because we are dealing with
spin-weighted functions, whichmeans that we need to know
not only howpointsmove around on the sphere, but also how
the tangent space to the sphere changes at each point under a
boost. Using rotors allows us to automatically track both the
change of position and the change of the tangent basis.

APPENDIX D: CONFORMAL
FACTOR OF A BOOST

We can use spatial directions to label all the null
directions from a point, which has the topology of a
sphere. We define the metric on this null sphere as the
metric induced on the sphere of spatial directions. In that
case, a boost induces a conformal transformation of the null
sphere, which means that we can find the conformal factor
of the boost. In particular, for future-directed null rays, by
simply applying the transformation of θ given by Eq. (C5a)
we can calculate

dθ
̯
2 þ sin2θ

̯
dϕ
̯
2 ¼

�
1

γð1 − v · rÞ
�
2

ðdθ2 þ sin2θdϕ2Þ;

ðD1aÞ

and similarly for past-directed null rays with Eq. (C5b),
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dθ
̯
2 þ sin2θ

̯
dϕ
̯
2 ¼

�
1

γð1þ v · rÞ
�
2

ðdθ2 þ sin2θdϕ2Þ:

ðD1bÞ

So we define the conformal factors for future-directed (kþ)
and past-directed (k−) null spheres as

k� ≔
1

γð1 ∓ v · rÞ : ðD2Þ

We know that the form of the metric is invariant under
rotations, and the form of this conformal factor is clearly
invariant under rotations, so this is the correct conformal
factor for boosts in any direction. In this paper, we are
always dealing with future-directed null rays, so we drop
the subscript and just use k ≔ kþ.

APPENDIX E: ESTIMATING TRANSLATION
AND BOOST IN SIMULATIONS

The coordinate center of mass of a simulated compact
binary presents an imperfect representation of its motion.
Obviously, this can be tainted by gauge effects, especially
because the data are drawn from the most dynamical and
nonlinear portion of the simulated spacetime. While this
may be a topic ripe for improvement, it is nonetheless
useful to have some way to illustrate the methods of this
paper for the waveform data of the SXS catalog. In that
spirit, this Appendix presents a simple method for estimat-
ing the translation and boost, given the coordinate tracks
and Christodoulou masses of the black holes. As noted in
Sec. VI, the data can be obtained from the HORIZONS.H5
file accompanying each waveform in the SXS catalog.
Denoting by xCoMðtÞ the coordinate location of the

center of mass, as a function of the coordinate time, and
in units where the total mass of the system is 1, we can
define the quantity

Ξðδx; vÞ ¼
Z

tf

ti

jxCoM − ðδxþ vtÞj2dt: ðE1Þ

This measures the distance between the origin and the
center of mass of a system transformed by ðδx; vÞ, inte-
grated over some range of times. We can minimize this
quantity over the transformation to find the optimal

transformation. This minimum can be found analytically
by defining two moments of the center of mass:

x0 ¼
Z

tf

ti

xCoMðtÞdt and x1 ¼
Z

tf

ti

txCoMðtÞdt:

ðE2Þ

Then, the minimum is given by

δx ¼ 4ðt2f þ tfti þ t2i Þx0 − 6ðtf þ tiÞx1
ðtf − tiÞ3

; ðE3aÞ

v ¼ 12x1 − 6ðtf þ tiÞx0
ðtf − tiÞ3

: ðE3bÞ

The moments can be computed by numerical integration
of the data, and simply plugged into these formulas to find
the desired transformation.
The only free parameters in this case are the limits of

integration, ti and tf. In principle, these could span the
entire time for which there are two separate apparent
horizons in the data. In some cases, as when a simulation
needs to be aligned with another simulation or an analytical
waveform, for example, it would likely be better to restrict
this time span to the same times over which the waveforms
are being aligned. In this case, however, where we are
simply interested in finding estimates for the motion of the
systems, we can be somewhat more liberal. The initial time
should be delayed slightly, to allow junk radiation to settle
down, so that the black holes can be measured accurately.
For simplicity and definiteness, we will set ti to be 1% of
the entire time for which data is available. On the other
hand, bizarre features are sometimes present in the SXS
catalog close to merger. To avoid these, and to lessen the
impact of true physical recoils that develop close to merger,
we similarly set tf to be 10% before the end of the data.
With this simple recipe in hand, we can apply it to the

entire SXS catalog very easily. The results are shown for
SXS:BBH:0004 inEq. (46), and are aggregated for the entire
catalog in Fig. 11. Again, this is a very crude and gauge-
sensitive measure of the motion of the system. It should no
doubt be improved in future work. But for the purposes of
illustration in this paper, it seems to be sufficient.
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