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We analyze the stability under time evolution of complexifier coherent states (CCS) in one-dimensional
mechanical systems. A system of coherent states is called stable if it evolves into another coherent state. It
turns out that a system can only possess stable CCS if the classical evolution of the variable z ¼ e−iLχCq for
a given complexifier C depends only on z itself and not on its complex conjugate. This condition is very
restrictive in general so that only a few systems exist that obey this condition. However, it is possible to
access a wider class of models that in principle may allow for stable coherent states associated with certain
regions in the phase space by introducing action-angle coordinates.
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I. INTRODUCTION

Coherent states have proven to be a powerful tool in
many areas of physics as well as mathematics. The name
“coherent” goes back to Glauber [1,2] who rediscovered
Schrödinger’s states in the context of quantum optics. They
are also used, for example, in geometric quantization [3],
harmonic analysis, and representation theory [4–6]. This
broad applicability entailed a vast number of generaliza-
tions, just to mention some [7–10].
In quantum gravity coherent states are employed to

derive a semiclassical limit of the model in question.
Especially in the absence of experimental data, this can
provide important insights on quantization ambiguities
and possible inconsistencies. In canonical loop quantum
gravity (LQG) one uses, for example, so-called com-
plexifier coherent states [11–15], going back to the
pioneering work of Hall [8], in order to define such a
limit. For constraint systems such as gravity one has to
decide on which space, the kinematical or the physical
Hilbert space, the states shall be defined. Which strategy
is chosen depends, of course, on the problem in question
but in many cases it is easier to build coherent states on
the kinematical rather than the physical Hilbert space.
This truly applies to LQG where physical states are only
known formally and brings in a new aspect that has to be
respected as the states designed on the kinematical
Hilbert space should not lose their properties when
solving the constraints.
From an heuristic point of view the implementation of a

constraint Ĥ is related to a sort of time evolution generated
by Ĥ since

ψphys ¼ δðĤÞψ ¼
Z

dteitĤψ ð1Þ

gives a formal solution. In fact, many strategies such as
group averaging and rigging map procedures (see e.g.
[16]) take this as a starting point. Evidently, this ansatz
is also advocating itself in order to solve the
Hamiltonian constraint of LQG and is the initial idea
from which spin foam [17–19] models arose. So instead
of asking “Is a coherent state maintaining its coherence
when solving the constraints?” it is tempting to simplify
matters and ask “Is the coherent state ψ z stable under
the evolution generated by ÛðtÞ ≔ eitĤ=ℏ?” or likewise
“Is ÛðtÞψ z still coherent?” These questions are of
interest in quantum mechanics as well because mostly
one is interested not only in the semiclassical behavior
at a certain time but in the dynamical evolution.
In this work, the necessary conditions for the existence of

stable complexifier coherent states are investigated. It is
found that in general it is very hard to construct a
complexifier adapted to the dynamics of a given model.
Nevertheless, the derived criteria are form invariant under
canonical transformation which opens the possibility to
excess a wider class of models, namely, those that show a
quasiperiodic motion.
In the following section, the semiclassical properties

of coherent states (Sec. II B) and the construction
principle of complexifier coherent states (Sec. II C)
are reviewed based on [16]. Thereafter, a stability
criterion for finite dimensional models will be derived,
and in Sec. III B we will discuss a simplified ansatz to
find solutions to this condition. Section III C contains a
proof that it is, in fact, not possible to use this
simplified ansatz to determine systems other than the
harmonic and radial oscillator that possess stable com-
plexifier states. A generalized construction principle
using so-called action-angle coordinates and the
Hamilton-Jacobi approach is given in Sec. IVA, and
some examples are analyzed in Sec. IV B. The paper
closes with a short discussion of the results.
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II. COHERENT STATES

A. Preliminaries and conventions

If not stated otherwise, it will be assumed that the phase
spaceM of a given system with a finite number of degrees
of freedom f is the cotangent bundle T�C of the configu-
ration space C. The Hamiltonian vector field χf of a
continuous differentiable function f on M is the vector
field that satisfies the condition 0≡ LχfΩ where Ω is the
symplectic 2-form on M and Lχf the Lie derivative along
χf. The Poisson bracket corresponding to Ω is given by

ff; gg ≔ Ωðχf; χgÞ ¼ χf½g�;

and multiple Poisson brackets are defined through the
recursion relation ff; ggðnþ1Þ ≔ ff; ff; ggðnÞg with
ff; ggð0Þ ≔ g. The Liouville measure is the measure on
M which is invariant under the action of the symplectic
group that preserves Ω.
Throughout the rest of this paper, x will denote the f-

tuple ðx1;…; xfÞ, x · y ¼ Pf
j¼1 xjyj the usual Euclidean

scalar product, and ðp;qÞ a canonical conjugated pair; that
is, they satisfy

fpj; qkg ¼ δjk and fpj; pkg ¼ 0 ¼ fqj; qkg:

Furthermore, O will denote a subalgebra of the Poisson
algebra C∞ðCÞ that separates the points of M and z̄ the
complex conjugate.
Under quantization we understand a map

ðM; f·; ·g;OÞ → ðH; 1
iℏ ½·; ·�; ÔÞ whereH is a Hilbert space

and Ô is a subalgebra of the algebra of linear operators
LðHÞ on H that is a representation of O. If not said
otherwise, the Hilbert space H is the space of square
integrable functions L2ðC̄; dμÞ on a suitable extension C̄ of
the configuration space with measure dμ. The scalar
product on H is usually given by

hf; gi ¼
Z

dμðxÞfðxÞgðxÞ:

B. Semiclassical and coherent states

In his lecture “Über die Spektraltheorie der Elemente”
[20], given in 1920 at a meeting of the German Physical
Society in Berlin, Bohr introduced the principle that the
behavior of a quantum system should mimic the classical
one for high energies. To formulate this statement in a more
precise manner it is useful to introduce the notion of
semiclassical states. These are elements ψm in the Hilbert
space H that are associated with points m in M. They are
constructed in such a way that the expectation value of a
quantum observable Ô in a given subalgebra Ô ⊂ LðHÞ
that separates the points ofM is close to the classical value

OðmÞ of the corresponding phase space function O. Stated
differently, the following properties have to hold for all
generic points m ∈ M [i.e. points for which the denom-
inators in (2), (3), and (4) are nonzero]:

(i) Expectation value property

���� hψm; Ôψmi
OðmÞ − 1

���� ≪ 1; ð2Þ

(ii) Ehrenfest property

���� hψm; ½Ô; Ô0�ψmi
iℏfO;O0g − 1

���� ≪ 1; ð3Þ

(iii) Fluctuation property

���� hψm; Ô
2ψmi

hψm; Ôψmi2
− 1

���� ≪ 1: ð4Þ

For most systems it is not possible to design semiclassical
states for all observables simultaneously but it highly
depends on the chosen subalgebra. Good examples are
the coherent states of the harmonic oscillator introduced by
Schrödinger in 1926 [21] which have “good” semiclassical
properties for the linear span of the annihilator â, the creator
â†, and 1. In addition, these states have several other
desirable properties which motivate the following definition.
Definition 1 (Coherent states). A system of states

fψmgm∈M ⊂ H is said to be coherent provided that in
addition to (2), (3), and (4) the states also obey as follows:

(i) Overcompleteness (Resolution of identity):

1H ¼
Z
M

dνðmÞjψmihψmj ð5Þ

for some measure ν on M.
(ii) Annihilation operator property: There exist oper-

ators ẑ such that ẑψm ¼ zðmÞψm.
(iii) Minimal uncertainty: For the self-adjoint operators

x̂ ¼ ðẑþ ẑ†Þ=2 and ŷ ¼ ðẑ − ẑ†Þ=ð2iÞ the Heisen-
berg uncertainty relation is saturated, i.e.

hðx̂ − hx̂2imÞ2im ¼ hðŷ − hŷ2imÞ2im
¼ ℏ

2
jh½x̂; ŷ�imj; ð6Þ

where h·im ≔ hψm; ·ψmi.
(iv) Peakedness property: For any m ∈ M, the overlap

function

m0 ↦ jhψm;ψm0 ij2 ð7Þ

is concentrated in a phase space cell of Liouville
volume 1

2
jh½p̂; q̂�imj.
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As stated in the Introduction, coherent states have a
broad application in many areas of physics and mathemat-
ics, which entailed a vast number of generalizations, so that
by now “coherent state” is not a clear-cut expression in the
literature. In the subsequent section the generalization
suggested in [11–15] is reviewed, which in most cases
preserves the properties mentioned in Definition 1.

C. The complexifier method

The central point of semiclassical/coherent states is that
they are continuously labeled by points in the classical
phase space M. In the case of the harmonic oscillator, this
is achieved by constructing the eigenstates of the operator â
corresponding to the complex parametrization

a ≔
ffiffiffiffiffiffiffi
mω

2

r �
q −

i
mω

p

�
: ð8Þ

It is, of course, just one possible choice out of many
different parametrizations of M, and therefore many other
state systems are imaginable that are coherent in the sense
of Definition 1. This is the starting point of the complexifier
method introduced in [11–15] that enables one to directly
relate a complex parametrization of M with a state system
in H.
Let C∶M → R be a positive definite function with the

dimension of an action that is smooth with respect to the
Liouville measure on M, has a nowhere vanishing
Hamiltonian vector field χC, and grows stronger than
linearly in p for each fixed point q ∈ C. A function
satisfying these properties is called a complexifier since

qi ↦ zi ≔ e−iLχC qi ð9Þ

yields a complex coordinate system on M for a given
parametrization fqiji ¼ 1;…; fg of the configuration space
C. The smoothness of C and the fact that χC is nowhere
vanishing guarantee that C induces a nondegenerate,
smooth transformation. If M ¼ T�C, then e−iLχC qi defines
a symplectomorphism1 that maps a pointm ∈ M to a point
zðmÞ in the complex extension CC of the configuration

space. For example, the complexifier C ¼ p2

2
generates the

symplectomorphism

M ¼ R2 → C; ðq; pÞ ↦ a ¼ q − ip:

According to Bargmann and Segal [4,5], the associated
coherent states ψa also give rise to a transformation from
L2ðR; dμÞ onto the space H2ðC; dνÞ of square integrable,
holomorphic functions on C through the integral transform

fðqÞ ↦ ½Bf�ðαÞ ¼
Z
R
dμðqÞψαðqÞfðqÞ: ð10Þ

If the measure ν is fixed by the resolution of the identity (5),
then (10) is even unitary. Thus, the harmonic oscillator
states play a similar role as plane waves for the Fourier
transformation. In fact, for this specific example with

C ¼ p2

2
one can show that up to a complex phase ψaðxÞ

is equal to

exp

�
−

1

2ℏ
ðx − aÞ2

�
∝

1

2π

Z
dke−k

2=ð2tÞeikðx−aÞ

¼ ½e−Ĉ=ℏδyðxÞ�y→a; ð11Þ

where y → a denotes analytic continuation.
Definition 2 (Complexifier coherent states). A coher-

ent state associated with a complexifier C ∈ C∞ðMÞ is an
element of H of the form

ψmðqÞ ¼ ½e−C=ℏδq0 ðqÞ�q0→zðmÞ; ð12Þ

where q0 → zðmÞ denotes analytic continuation to zðmÞ ¼
½e−iLχC q�ðmÞ.
This also explains why it was required that C has the

dimension of an action and has to satisfy a growth
condition. Namely, if Ĉ=ℏ would not be dimensionless,
then the exponential would not be well defined. Apart from
that, e−Ĉ=ℏ must decay fast enough to smooth out the
divergence of δ. In Eq. (11) this is achieved by the Gaussian
factor that is added through the action of e−Ĉ=ℏ.
By construction, the states (12) are eigenstates of the

annihilators

ẑi ¼ e−Ĉ=ℏq̂ieĈ=ℏ ð13Þ

resulting from quantizing (9) and therefore automati-
cally obey minimal uncertainty (6). Also condition (2)
is clearly satisfied for the subalgebra spanned by z and
z̄. All the other properties required in Definition 1 do
not follow directly but are very plausible since the
states are essentially a regularization of distributions.
Therefore, it is reasonable to expect that they generate a
resolution of identity and are well peaked on the
phase space.

III. STABILITY OF COHERENT STATES
IN QUANTUM MECHANICS

A. A stability criterion

Recall that the classical evolution is generated by the
flow of the Hamiltonian vector field χH of the Hamiltonian
H. For a not explicitly time dependent Hamiltonian
this means that a phase space function f evolves as

1This is no longer true for M ≠ T�C, but zi still provide good
local coordinates due to Darboux’s theorem.
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fðtÞ ¼ eðt−t0ÞLχH fðt0Þ and the quantum evolution of such a
model is described by the operator Ûðt; t0Þ ¼ e

1
iℏðt−t0ÞĤ.

Definition 3 (Stable coherent states). A coherent state
ψ zðt0Þ is stable under the evolution Ûðt; t0Þ iff

Ûðt; t0Þψ zðt0Þ ¼ eiλðtÞψ zðtÞ ∀ t ∈ Rþ; ð14Þ

where zðtÞ follows the classical motion of zðt0Þ on
the phase space. The system of coherent states,
fψ zðmÞjm ∈ Mg, is called stable iff all states are stable.
A simple example for a stable state system is the original

coherent states ψa of the harmonic oscillator. By a short
calculation using ψa ¼ ejaj2=2

P
n
an
n! jni and Ĥhojni ¼

ℏωðnþ 1=2Þjni one finds

ÛhoðtÞψa ¼ eitω=2ψaðtÞ:

Even more general, the set fψag is stable under the
evolution generated by a Hamiltonian2 that satisfies
1
iℏ ½Ĥ; â� ¼ ifðâ; tÞ (see e.g. [24,25]). For complexifier
coherent states one can prove a very similar criterion.
Theorem 1. Suppose the set of complexifier states

St0 ≔ fψ zðmðt0ÞÞjmðt0Þ ∈ Mg is overcomplete and stable

and the time evolution Ûðt; t0Þ is unitary; then

d
dt
ẑjðt0Þ ¼ ifjðẑ1;…; ẑf; t0Þ ∀ j ¼ 1;…; f: ð15Þ

On the other hand, if Eq. (15) holds at t0, then there exists
an ϵ > 0 such that St is stable with respect to Ûðt; t0Þ for all
jt0 − tj < ϵ.
Proof.—According to Definition 3 the system St0 is

stable iff

ẑjðt0ÞÛðt; t0Þjψ zðt0Þi ¼ zjðtÞÛðt; t0Þjψ zðt0Þi
⇔ ẑjðtÞjψ zðt0Þi ¼ zjðtÞjψ zðt0Þi

⇒

�
d
dt
ẑjðt0Þ

�
jψ zðt0Þi ¼

�
d
dt
zjðt0Þ

�
jψ zðt0Þi:

Here, ẑjðtÞ ≔ Û†ðt; t0Þẑjðt0ÞÛðt; t0Þ is the time-dependent
operator in the Heisenberg picture. Since St0 is over-
complete, the last equation can hold only if d

dt ẑjðt0Þ is a
function of the annihilators ẑjðt0Þ, that is, if d

dt ẑjðt0Þ ¼
ifjðẑ1;…; ẑf; t0Þ where i is just introduced for
convenience.On the other hand, if Eq. (15) holds, then
in some region jt0 − tj < ϵ the Taylor expansion of ẑðtÞ
exists and reads

ẑjðtÞ ¼
X
n

tn

n!
dn

dtn
ẑjðt0Þ ¼ ẑjðt0Þ

þ iðt − t0Þfjðẑ1ðt0Þ;…; ẑfðt0Þ; t0Þ þ � � � :

Therefore ẑjðtÞjψ zðt0Þi ¼ zjðtÞjψ zðt0Þi in that region. □

This implies the following two conditions that are
necessary for coherent states to be stable.
Corollary 1. Stable coherent states can exist only if it is

possible to find a complexifier C such that z ¼ e−iLχCq
obeys

d
dt
zjðtÞ ¼ ifjðz1;…; zf; t0Þ ∀ j ¼ 1;…; f: ð16Þ

Corollary 2. If neither the complexifier C nor the
Hamiltonian H are explicitly time dependent, then eiLχCH
must satisfy

eiLχCH ¼ i
Xf

j¼1

pjfjðq1;…; qfÞ þ gðq1;…; qfÞ ð17Þ

for some functions fj and g on C in order that the
complexifier coherent states are stable.
Proof.—Since d

dt zjðtÞ ¼ fH; zjg and since e−iLχC is a
symplectomorphism, it follows from Corollary 1 that

0 ¼ fH; zjg − ifjðz1ðtÞ;…; zfðtÞÞ
¼ e−iLχC ½feiLχCH; qjg − ifjðq1;…; qfÞ�:

Yet, feiLχCH; qjg is equal to fjðq1;…; qfÞ if and only if
Eq. (17) holds. □

To summarize: The existence of stable states is
closely tied to the classical behavior of the model.
The subtlety hereby is that conditions (16) and (17) are
local. Even though it might be possible to find a
complexifier satisfying these conditions in a neighbor-
hood of a point ðp0;q0Þ∈M, it does not ensure that the
resulting parametrization z ¼ e−iLχCq is sensible. For
example, z might not be defined everywhere on the
phase space or it might be multivalued. Yet, for the
system S to be overcomplete it is important that z
provides a “good” parametrization.
Lemma 1. If the system S is overcomplete, then fzjg is

a proper parametrization of M in the sense that almost
every point m ∈ M is uniquely determined by a f-tuple
ðz1;…; zfÞ. Here, “almost” means up to a set of measure
zero with respect to the measure (5).
Proof.—If this were not the case, then there would exist a

subset U in M with a parametrization w such that states
ψwðmÞ associated withm ∈ U cannot be expanded in terms
of states in S. But then

2If H is required to be self-adjoint, then f must be linear in â
andH must be of the formH¼ωðtÞa†aþfðtÞa†þf�ðtÞaþβðtÞ.
Note there are even more general Hamiltonians under which
certain proper subsets of coherent states are stable (see [22,23]).
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Z
M−U

dνðmÞjψ zðmÞihψ zðmÞj ≠ 1H;

which contradicts the assumptions. □

Note this does not exclude parametrizations that break
down at single points nor does it exclude parametrizations
that differ in region A from this in region B if the resolution
can be modified accordingly, that is, if

R
M splits intoR

A þ
R
B. Especially the last point is of interest since in

many models the dynamics can be fundamentally different
in separated regions, and therefore it might be necessary to
consider different complexifiers for those regions. It is even
possible that in certain areas of M one cannot find stable
states while for others there exist some. For example, inside
a finite potential well the motion is periodic which suggests
that there exist stable states while outside the well the
motion is unbounded. These issues will play a significant
role in Sec. IV. For now the main aim is to find solutions
to (17).

B. First solutions

For a one-dimensional not-explicitly time dependent
system Eq. (17) reduces to

X∞
n¼0

in

n!
fC;HgðnÞ ¼ ipfðqÞ þ gðqÞ; ð18Þ

where fC;HgðnÞ ¼ fC; fC;Hgðn−1Þg and f and g are
arbitrary smooth functions. To find a first solution of this
equation consider the following ansatz:

H ¼ p2

2m
þ VðqÞ; C ¼ p2

2mω
þ UðqÞ; ð19Þ

and fC;Hgð2Nþ1Þ ¼ 0 for some N ≥ 1: ð20Þ

Here, m is the mass, V and U are twice continuously
differentiable real valued functions, and ω > 0 is a free
parameter. Note that the even (odd) Poisson brackets in (19)
can only contain summands of even (odd) powers of the
momentum. Therefore, f and g in (19) have to be real and
satisfy

XN
n¼0

ð−1Þn
ð2nþ 1Þ! fC;Hgð2nþ1Þ ¼ pfðqÞ; ð21Þ

XN
n¼0

ð−1Þn
ð2nÞ! fC;Hgð2nÞ ¼ gðqÞ: ð22Þ

A model with f degrees of freedom can allow at most f
independent commuting Hamiltonian vector fields (first
integrals of motion), which is why for f ¼ 1 condition (20)
is equivalent to

fC;Hgð2NÞ ¼
XN
j¼0

βjCj: ð23Þ

The restriction on the degree of the polynomial is due to the
fact that fC;Hgð2NÞ can be at most a polynomial of degree
2N in p. For N ¼ 1 Eqs. (21), (22), and (23) are replaced
by

fC;Hg ¼ pfðqÞ; ð24Þ

H −
1

2
fC;Hgð2Þ ¼ gðqÞ; ð25Þ

and fC;Hgð2Þ ¼ β1Cþ β0: ð26Þ

For this choice the first two conditions in (19) are
equivalent to

ðω−1V 0 −U0Þ=m ¼ f and
p2

2mω
f0 − fU0 ¼ 2ðH − gÞ;

where 0 denotes the derivative with respect to q. Thus f0
must be equal to ω and β1 must be equal to 2ω. Inserting
this into (26) yields

fU0 ¼ −2ω½U þ β2�;

which is solved by f ¼ ωqþ α and U ¼ λ
ω ðqþ α=ωÞ−2 þ

β2 for some real constants λ and α. Since α just defines a
shift in the configuration variable, it can be set to zero
without loss of generality. Concluding,

H ¼ p2

2m
þm

2
ω2q2 þ λq−2; C ¼ p2

2mω
þ λ

ω
q−2 ð27Þ

solves (19) and (20) for N ¼ 1. If λ is zero, this reduces to
the usual Hamiltonian and complexifier of the harmonic
oscillator. The term λ=q2 can be interpreted as the angular
momentum contribution of a two-dimensional oscillator
with constant radius which justifies the name radial
oscillator. The complexification z ≔ e−iLχC q can be com-
puted by solving the “equation of motion”

d
ds

q ¼ fC; qg ð28Þ

for qðsÞ ≔ esLχC q and then extending it analytically
(s → −i). Instead of integrating Eq. (28) one can integrate

d
ds

�
1

2

�
dq
ds

�
2

þ λ

mω2
q−2

�
¼ 0 ⇒

1

2

�
dq
ds

�
2

þ λ

mω2
q−2

¼ C
mω
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since d
ds C ¼ 0 and fC; qg ¼ p=ðmωÞ. This finally gives

z ¼ qðs ¼ −iÞ ¼
��

q − i
p
mω

�
2

− 2
λ

mω2
q−2

�
1=2

:

Despite the fact that z depends on a square root, one
can derive a well-defined quantum operator whose eigen-
functions ψz ¼ ½e−Ĉ=ℏδy�y→z can be expressed in terms of
modified Bessel functions of the second kind. Furthermore,
the obtained states share all desired properties; that is, they
form an overcomplete set, minimize the uncertainty, have
small fluctuations, and are, of course, stable under the
dynamics. More details on the quantization of this system
can be found in Appendix A.

C. A no-go theorem

After the method applied in the preceding section has
been proven so successful, it is worth testing whether more
solutions to (18) can be found by generalizing the ansatz
(19). Given two real valued, strictly positive, continuously
differentiable functions α and β on the configuration
space let

H ¼ αðqÞp
2

2
þ VðqÞ and C ¼ 1

2
½βðqÞp�2 þ UðqÞ

and suppose fC;Hgð2Nþ1Þ ¼ 0 for some N > 1: ð29Þ

Since β should be nonzero in order that the complexifier is
well defined, there exists a canonical transformation send-
ing

p → pβðqÞ and q →
Z

q

0

dx½βðxÞ�−1

so that the first line in (29) may be exchanged through

H ¼ αðqÞp2 þ VðqÞ and C ¼ p2

2
þUðqÞ ð30Þ

without loss of generality. To compute the multiple Poisson
brackets of (30) it turns out to be handy to introduce the
operators X̂ ¼ p ∂

∂q and P̂ ¼ −U0 ∂
∂p which yields

fC;HgðnÞ ¼ X̂nH þ
Xn−1
ν¼0

X̂n−1−νP̂X̂νH

þ
Xn−2
μþν¼0

X̂n−1−ν−μP̂X̂νP̂X̂μH þ � � � : ð31Þ

The general strategy in the subsequent analysis is to
reorder the terms by powers in the momentum. The degree
in p of the terms X̂ν1P̂X̂ν2 � � � only depends on the number
of operators ♯Ô that are applied, i.e.

degpX̂
ν1P̂X̂ν2 � � �V ¼ ♯X̂ − ♯P̂

and

degpX̂
ν1P̂X̂ν2 � � �αp2 ¼ ♯X̂ − ♯P̂þ 2;

where degp denotes the degree in p. Note that the total
number of operators, ♯X̂ þ ♯P̂, corresponds to the grade n
of the bracket fC;HgðnÞ. For this reason the bracket
contains only either even or odd powers in p depending
on whether n is even or odd, respectively. This can be made
more explicit by replacing (31) through

fC;HgðnÞ ¼
X

0≤μ≤ðnþ2Þ=2
μ∈N

fnnþ2−2μp
nþ2−2μ: ð32Þ

The coefficients fnnþ2−2μ are derived from (31); that is,

fnnþ2 ≔ αðnÞ;

fnn ≔ −
Xn−1
ν

ðνþ 2Þ
� ∂
∂q

�
n−1−ν

U0αðνÞ þ VðnÞ;…; ð33Þ

where gðnÞ is the nth derivative of a function g with respect
to q and the upper index of fnm refers to the total number of
operators while the lower one indicates the power in p.
Instead of trying to directly compute these coefficients it is
much more useful to consider the following recursion
relation:

fnm ¼ ∂
∂q f

n−1
m−1 − U0ð2mþ 1Þfn−1mþ1; m ≤ nþ 2; ð34Þ

with f00 ≡ V and f02 ≡ α.
Furthermore, because of 1

2
degpfC;Hgð2NÞ ≤ N þ 1 and

fC;Hgð2Nþ1Þ ¼ 0 one finds that

fC;Hgð2NÞ ¼
XNþ1

m¼0

amCm ð35Þ

for some constants am. Apart from that, all summands in
(18) whose degree in p is exceeding one must cancel which
implies that

XN
n¼m−1

ð−Þn
ð2nÞ! f

2n
2m ¼ 0 and

XN−1

n¼m−1

ð−Þn
ð2nþ 1Þ! f

2nþ1
2mþ1 ¼ 0

ð36Þ

for all m > 1. Note there can be only one nontrivial term
of power 2N þ 2 and one of 2N þ 1 which is why f2N2Nþ2

and f2N−1
2Nþ1 have to vanish. This in turn implies

degCfC;Hgð2NÞ ≤ N and degqα ≤ 2N − 2 since f2N−1
2Nþ1 is
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proportional to αð2n−1Þ. The next nontrivial contributions
are those of degree 2N and 2N − 1. Because of Eq. (36) the
coefficients f2N2N and f2N−1

2N−1 must satisfy

f2N2N ¼ ð2NÞð2N − 1Þf2N−2
2N and

f2N−1
2N−1 ¼ ð2N − 1Þð2N − 2Þf2N−3

2N−1: ð37Þ

Yet, taking the derivative of the equation on the right hand
side and inserting equality (34) yields

∂
∂q f

2N−1
2N−1 ¼ ð2N − 1Þð2N − 2Þ ∂

∂q f
2N−3
2N−1 ⇔ f2N2N

¼ ð2N − 1Þð2N − 2Þf2N−2
2N ;

which obviously contradicts the first equation in (37). Thus,
fm2N must vanish for all m. With the next term one can
proceed in the same manner. Combining (36), (34), and
f2Nþ1
2N−1 ¼ 0 gives

0 ¼ ∂
∂q

XN
n¼N−2

ð−Þn
ð2nÞ! f

2n
2N−2 ¼

XN−1

n¼N−2

ð−Þn
ð2nÞ! f

2nþ1
2N−1:

This in turn contradicts the second equation in (37) and
therefore implies fm2N−1 ¼ 0 for all m which also reduces
the degree of the polynomials α and fH;Cg2N and proves
the following lemma.
Lemma 2. For N > 1 there exists an integer M with

2 ≤ M < 2N − 1 such that fnm ¼ 0 for allm > M and all n.
The above reasoning can be repeated to show also that

summands of a lower degree in the momentum have to
vanish. But note the number of conditions needed to derive
a contradiction is increasing when the degree in p is
decreasing since there are more and more nontrivial
coefficients that contribute. Nevertheless, one can obtain
a new condition for the coefficients f2nþ1� from

0 ¼
XN

n¼m−2

ð−Þn
ð2nÞ! f

2n
2m ∀ m > 0 ð38Þ

by taking the derivative and using (34). More specifically,
this yields

0 ¼
XN−1

n¼m−2

ð−Þn
ð2nÞ! ½f

2nþ1
2mþ1 − ð2mþ 2ÞU0f2n2mþ2�

¼
XN−1

n¼m−2

ð−Þn
ð2nÞ! f

2nþ1
2mþ1 ∀ m > 0: ð39Þ

From this one can deduce another condition,

XN−1

n¼m−2

ð−Þn
ð2nÞ! f

2nþ2
2mþ2 ∀ μ > 0; ð40Þ

by first taking the derivative and then applying (34) and
(39) and so forth. Repeating this procedure also for the odd
terms generates 2m − 1 independent conditions for the
terms of power 2m and 2mþ 1. On the other hand, the
number of nontrivial terms ♯f�m in a tower of constant
power m increases as ♯f�2m ¼ N −mþ 1 and ♯f�2mþ1 ¼
N −mþ 2. Since the procedure breaks up as soon as ♯f�m is
greater than the number of available conditions, namely if
♯f�2m=2mþ1 ≥ 2m − 1, another trick is needed to eliminate
more coefficients.
Lemma 3. Let C ¼ p2

2
þ UðqÞ, F ¼ P

m
n¼0 FnCn, and

let G ¼ Gðp; qÞ be a phase space function that is poly-
nomial in p.
(a) If degpG ¼ 2mþ 1, then fC;Gg ¼ FðCÞ has a sol-

ution iff U ¼ c1qþ c0 for some constants c1; c0 ∈ R.
(b) If degpG ¼ 2m − 1, then fC;Gg ¼ FðCÞ has a sol-

ution iff U ¼ c1ðqþ c2Þ−2 þ c0 for some con-
stants c2; c1; c0 ∈ R.

Proof.—Proof of (a): Recall that the complexifier is the
only constant of motion with respect to the flow generated
by C itself so that the homogeneous solutions to the first
order partial differential equations (PDE) fC;Gg ¼ FðCÞ
are functions of C. Therefore, the most general solution G
with degpG ¼ 2mþ 1 is of the form

G ¼ FðCÞgðp; qÞ þ ghðCÞ:

Here, gh is any polynomial of C whose degree is not
exceeding degC F and g ¼ gðp; qÞ is a linear function in p
for which

1¼! fC; gg ¼ p
∂g
∂q −

∂g
∂pU0:

Since U and ∂g
∂p are independent of p, this can be solved

only if g and U0 are constant in q.
Proof of (b):Without loss of generality one can assume that
F0 ¼ 0 because the Poisson bracket does not change when
C is shifted by a constant. Suppose g ¼ ph1ðqÞ þ h0ðqÞ;
then

G ¼ FðCÞ
C

gðp; qÞ þ ghðCÞ

is a generic solution that has the right degree in p iff

C¼! fC; gg ¼ pðph01 þ h00Þ − h1U0:

This implies that h0 is constant, h1 ¼ 1
2
ðxþ c2Þ, and 2U¼

−ðxþc2ÞU0 which is solved by U¼c1ðqþc2Þ−2þc0. □

Remember that Lemma 2 guarantees the existence of a
nonzero integer m0 < N, for which degCfC;Hgð2NÞ ¼ m0

and degpfC;Hgð2N−1Þ ¼ 2m0 � 1, and that the potential U
must be either linear in q (for 2m0 þ 1) or proportional to
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q−2 (for 2m0 − 1) according to Lemma 3. The degree in q
of the functions fμν can be directly determined from
Eq. (33), that is,

degqfnnþ2 ¼ degqα − n

and

degqfnnþ2−2m ¼ max ½degqα − nþmþmdegqU0; degqV

− nþm − 1þ ðm − 1ÞdegqU0�:

Suppose the coefficients f�2m0þ1 are not zero; then they have
to be constant as f�2m0þ2 ¼ 0. In this case, Lemma 3 states
that U0 also has to be constant, which is why

0¼! degqf2m0−1
2m0þ1 ¼ degqα − ð2m0 − 1Þ

and

0¼! degqf2m0þ1
2m0þ1 ¼ max ½degqα − ð2m0 þ 1Þ þ 1; degqV

− ð2m0 þ 1Þ þ 1 − 1�:

This forces degq α ¼ 2m0 − 1 and degqV ¼ 2m0 þ 1. Yet,

0¼! degqf2m0þ3
2m0þ1 ¼ max ½2m0 − 1 − ð2m0 þ 3Þ þ 2; 2m0

− ð2m0 þ 3Þ þ 1�
< 0

leads to an inconsistency, and thus f�2m0þ1 has to vanish,
which means that f�2m0

must be constant. By using Lemma
3(b) one can deduce that the potential U is proportional to
q−2 and consequently degq α must be equal to 2m0 − 2 and
degq V must equal 2m0. Again

0¼! degqf2m0þ2
2m0

< 0

leads to a contradiction so that all f�2m0
have to vanish. By

repeating this argument one can finally show that f�m must
vanish for all m > 2. Hence, f�2 is constant and fn−11 ¼
−fn2xþ cn−11 for some cn−11 ∈ R which can be achieved
only if α is constant as well and U is proportional to x−2.
Obviously, the brackets fH;Cgð2nÞ and fH;Cgð2mÞ, n,
m ≠ 0, can only differ by an overall constant so that
already fH;Cgð3Þ ¼ 0. This proves the following theorem.
Theorem 2. Suppose the Hamiltonian and the com-

plexifier are quadratic in the momentum p; then the only
system that solves fC;Hgð2Nþ1Þ ¼ 0 for some N > 0 and
(18) is the radial oscillator (27) and canonical conjugates
thereof. Furthermore, N equals 1.

Note all the equations used to prove this theorem are
directly related to Poisson brackets and for this reason only
hold up to canonical transformations. This point will be
exploited heavily in the next section to derive a more
general construction principle for a stable coherent state
system.

IV. ADAPTED COMPLEXIFIERS FOR
INTEGRABLE SYSTEMS

The preceding investigations have revealed that it is in
general very hard to construct a complexifier adapted to the
dynamics of a given model. Nevertheless, the derived
criteria are form invariant under canonical transformation
which opens the possibility to access a wider class of
models than those examined above. A common feature of
the harmonic and the radial oscillators is their periodic
motion, which is why integrable systems that show a
quasiperiodic motion seem to be especially promising
candidates. This idea is to be elucidated in more detail
in the subsequent section. In the first part a generalized
construction principle for adapted complexifiers will be
worked out using so-called action-angle coordinates and
the Hamilton-Jacobi approach. This will then be tested on
several examples.

A. Generalized construction principle

Throughout this section it will be assumed that the
mechanical models in question are not explicitly time
dependent and possess only a finite number f of degrees
of freedom.
A first integral of motion3 is a C1 function f on the phase

space M that Poisson commutes with the Hamiltonian H,
i.e. fH; fg ¼ 0 on the entire phase space. Two functions
g; f ∈ C1ðMÞ are said to be in involution if fg; fg ¼ 0 and
(functionally) independent on a subset U ⊂ M if the one-
forms df and dg are linearly independent on U. If f and g
are independent, then in particular df ∧ dg is nonzero
on U.
Definition 4 (Integrable system). A system with f

degrees of freedom is integrable if there exist f first
integralsHj, j ¼ 1;…; f, in involution that are independent
of a dense subset of M.
The name is motivated by the fact that such systems are

integrable by quadratures; that is, they are solvable by a
finite number of algebraic operations. This insight goes
back to Liouville and was later enlarged by Arnold by the
following (see e.g. [26]): If the system is integrable, then
the level sets

3The term “first integral” often refers to a global property while
“constant of motion” is used in a more local context. Yet, the
nomenclature is far from being unique; here the conventions of
[26] will be used.
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Mh ¼ fm ∈ MjHjðmÞ ¼ hjg ð41Þ

are smooth submanifolds that are invariant under the phase
flow generated by the HamiltonianH. IfMh is compact and
connected, then it is diffeomorphic to the torus Tf and the
motion is conditionally periodic. This means that Mh has
coordinates Θj which parametrize the circles S1 in Tf and
which evolve as

dΘ
dt

¼ ωðhÞ: ð42Þ

For this statement to hold it actually suffices that the
first integrals are independent on Mh. Furthermore, this
angle coordinates can be used to parametrize the phase
space (in the neighborhood of the invariant torus). Its
conjugated momenta Ij can be found by a canonical
transformation that, by definition, leaves the symplectic
structure invariant. So

Xf

j¼1

dpj ∧ dqj ¼
Xf

j¼1

dIj ∧ dΘj:

The parameters ðI;ΘÞ are called action-angle coordinates
in the literature and are widely used in classical perturba-
tion theory (see e.g. [26,27] for more details). Here, their
simple time dependence is of interest, which is given by

dI
dt

¼ 0 and
dΘ
dt

¼ ωðIÞ: ð43Þ

This immediately shows that the complex parametrization,

wj ≔
ffiffiffiffi
Ij

p
eiθj and wj ≔

ffiffiffiffi
Ij

p
e−iθj ; ð44Þ

is “stable” in the sense that it obeys

dwj

dt
¼ fH;wjg ¼ iωjðIÞwj: ð45Þ

In addition, the pair ðw;wÞ is canonical conjugated as

fwj;wkg ¼ iδjk and fwj;wkg ¼ fwj;wkg ¼ 0

and the polar decomposition of wj reads

wj ¼
1ffiffiffi
2

p ðQj − iPjÞ;

where

Qj ¼
ffiffiffiffiffiffiffi
2Ij

p
cos θj and Pj ¼ −

ffiffiffiffiffiffiffi
2Ij

p
sin θj:

Since ðP;QÞ are also canonical conjugated, wj can be
written as a complexifier coordinate,

wj ¼
1ffiffiffi
2

p e−iLχCQj;

with C ¼ 1
2
P · P. But note the parametrization given by

(44) does not satisfy the criteria of theorem 1 since the
frequencies4 ωj still depend on Ij ¼ wjwj. If the system is

nondegenerate, which is the case if det ∂ωj

∂Ik ≠ 0, then the
invariant tori are uniquely defined and independent of the
initial choice of the coordinates ðΘ; IÞ. This implies that,
no matter which action-angle coordinates are selected, the
frequencies will always depend on I. In other words (44)
can only give rise to stable states if the system is
degenerate. More specifically, if H ¼ P

jωjIj for constant
ωj, then the associated coherent states are stable because
∂ωj

∂Ik ¼ 0 for all j, k.
Before bothering about degeneracy one has to solve the

more practical problem of how to determine action vari-
ables in the first place. A very useful tool for that is the
Hamilton-Jacobi formalism: Given a Hamiltonian H as a
function of p and q, the goal is to find a function
Sðq1;…; qf; h1;…; hfÞ with det ∂2S

∂qj∂Hk
≠ 0 and ∂S

∂qj ¼ pj

such that

H

�
q1;…; qf;

∂S
∂q1 ;…;

∂S
∂qf

�
¼ Kðh1;…; hfÞ: ð46Þ

Note S generates a canonical transformation since

dS ¼
X
j

ðpjdqj þ ΘjdhjÞ ⇒
X
j

dpj ∧ dqj ¼ dhj ∧ dΘj

ð47Þ
with Θj ≔ ∂S

∂hj. Suppose one can find such a solution S to

the first order PDE (46); then, by (47), one has also found f
independent constants of motion5 hj in involution. If

det ∂2S
∂qj∂Hk

≠ 0 as required, then hj ¼ hjðp;qÞ can be

extracted out of the equation ∂S
∂qj ¼ pj due to the inverse

function theorem. Apart from that the dynamics of Θj also
simplifies, i.e.

dΘj

dt
¼ fH;Θjg ¼ ∂K

∂hj :

By setting Kðh1;…; hfÞ ¼ E ¼ h1 the dynamics becomes
especially simple, instead of f constants of motion one now
has 2f − 1 constants. This seems rather odd, notably if it
would hold globally, as it effectively reduces the system to
a one-dimensional free particle. Astonishingly, the

4In general, ∂ωj

∂Ik ¼ ∂2H
∂Ik∂Ij ¼

∂ωk∂Ij .
5We here use the term “constants of motion” to indicate that

they are in general not globally defined.
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Hamilton-Jacobi equation (46) with K ¼ E always has a
local solution6 given by the classical action functional (see
e.g. [26–28]). This demonstrates that in the above con-
struction the global properties are essential. On the other
hand, one can also fix Kðh1;…; hfÞ ¼

P
jhj locally which

proves the following lemma.
Lemma 4.—For each generic point m ∈ M exists a

neighborhood Um on which the functions

wj ≔
ffiffiffiffiffi
hj

q
eiωjΘj and wj ≔

ffiffiffiffiffi
hj

q
e−iωjΘj ; j ¼ 1;…; f;

are well defined, are functionally independent, are canoni-
cal conjugated (fwj;wkg ¼ iωjδjk), and obey

H ¼
X
j

wjwj and fH;wjg ¼ iωjwj:

Similarly one can introduce coordinates Qj ≔ffiffiffiffiffiffi
hj
2ωj

q
cosωjΘj and Pj ≔ −

ffiffiffiffiffiffi
hj
2ωj

q
sinωjΘj which are well

defined, functionally independent, and canonical conju-
gated on Um. In terms of these coordinates wj can be
rephrased as

wj ¼
1ffiffiffiffiffiffiffiffi
2ωj

p e−iLχCQj with C ¼ 1

2
P2:

As already mentioned the wj’s will in general not define
good coordinates on M but can only be defined locally.
Below it will be demonstrated on the simplest example of a
free particle what happens if the global properties are
ignored (see Sec. IV B 2). In contrast to that the complex
parametrization defined through proper action-angle coor-
dinates is at least well defined in the neighborhood of the
whole torus.7

In order to better understand what are the necessary
criteria for the existence of well-defined parametrizations
wj it is a good idea to investigate further the relation
between the w variables and those obtained by the com-
plexifier method. The question is whether zj ¼ eiLχC qj can
be obtained by Lemma 4 given that z define good
coordinates, i.e. they are everywhere defined and function-
ally independent, and given that

fH; zjg ¼ ifjðzÞ: ð48Þ

In general, zj will not be equal to wj since wj is canonically
conjugated to its complex conjugate w̄j, but

fz̄j; zkg ¼ feiLχC qj; e
−iLχC qkg ¼ eiLχCfqj; e−2iLχC qkg

is generically not even constant (see Sec. III B for an
example). The momenta conjugated to zj and z̄j are Πj ¼
e−iLχC ðpj þ ujðqjÞÞ and Πj ¼ eiLχC ðipj þ ujðqjÞÞ where
uj is any function that should depend only on qj to ensure
that the momenta are Poisson commuting. Note that the uj
are not arbitrary but, because of the stability criterion (17),
must be such that

H ¼
X
j

ðifjðzÞΠj þ gjðzÞÞ ¼
X
j

ð−if̄jðz̄ÞΠ̄j þ ḡðz̄ÞÞ

ð49Þ

with gjðqÞ ¼ 1
f gðqÞ − ujðqjÞ. In general the functions fj,

uj, and gj can depend on complex parameters, which is

why fjðzÞ ¼ f̄jðz̄Þ.
Even though the z and w-parametrizations are generi-

cally different, they are still closely related. To see this let
us first derive a set of f constants of motion of (49). A
function Hk is a constant of motion of (49) iff

feiLχCH; eiLχCHkg ¼
�X

j

fjðqÞpj þ gðqÞ; Fk

	
¼! 0;

where Fk ≔ eiLχCHk. Additionally, the maps Fk must be in
involution which suggests the ansatz F1 ≔ eiLχCH and
Fj ¼ FjðqÞ for j ¼ 2;…; f. This yields a system of f − 1

linear, first order PDE

0¼!
X
j

fjðqÞ
∂Fk

∂qj ð50Þ

that can be solved locally by the method of characteristics
(see Appendix B). A local solution of such an equation
depends on a set of f arbitrary initial functions so that it
should in general not be problematic to find f − 1 func-
tionally independent ones at least for a sufficiently small
neighborhood. Yet in practice, it can be very hard to
actually determine them, and it might be easier to use
the Hamilton-Jacobi formalism. In the following, let

Fðp;qÞ ≔ eiLχCH ¼
X
j

ðifjðqÞpj þ gjðqÞÞ ð51Þ

and

F̄ðp;qÞ ≔ e−iLχCH ¼
X
j

ð−if̄jðqÞpj þ ḡjðqÞÞ: ð52Þ

6That means that a solution exists in a neighborhood of any
generic point m ∈ M on which H is not extremal.

7In fact, this parametrization only breaks down at separatrices
where Mh even ceases to be a manifold. Such separatrices divide
the phase space into several regions on which the level sets may
have different properties. An example for that is the mathematical
pendulum where the phase space divides into an oscillatory and a
rotational branch (see e.g. [26]).
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As before, we want to find maps Sðq1;…; qf; F1;…; FfÞ
and ~Sðq1;…; qf; F̄1;…; F̄fÞ that satisfy ∂S

∂qj ¼ ∂ ~S
∂qj ¼ pj,

F

�
q1;…; qf;

∂S
∂q1 ;…;

∂S
∂qf

�
¼

X
j

Fj and

F̄

�
q1;…; qf;

∂ ~S
∂q1 ;…;

∂ ~S
∂qf

�
¼

X
j

F̄j: ð53Þ

If det ∂2S
∂qj∂Fk

≠ 0 and det ∂2 ~S
∂qj∂F̄k

≠ 0, then S and ~S are

generators of canonical transformations that map ðp;qÞ
on the conjugated pairs ðF;ΦÞ and ðF̄; ϕ̄Þ, respectively,
where ∂S

∂Fj
≔ Φj and ∂ ~S

∂F̄j
≔ ϕ̄j. In these variables the reality

condition (49) can be replaced by

e−iLχCFj ¼ ifjðzÞΠj þ gjðzÞ ¼ −if̄jðz̄ÞΠj þ ḡjðz̄Þ
¼ eiLχC F̄j ≔ hj: ð54Þ

Together with the angles

Θj ≔
1

2
ðe−iLχCΦj þ eiLχC ϕ̄jÞ ð55Þ

the action variables hj build a new canonical pair ðh;ΘÞ
because

fhj;Θkg ¼ 1

2
½e−iLχCfFj;Φkg þ eiLχCfF̄j; ϕ̄kg� ¼ δjk;

which can be used to construct a w-parametrization as in
Lemma 4. Since Φj and ϕ̄j only depend on q and F and F̄,
the new angle coordinates are of the form

Θj ¼
1

2
½Φjðz;hÞ þ ϕ̄jðz̄;hÞ�: ð56Þ

It still remains to check whether wj ¼
ffiffiffiffiffi
hj

p
eiωjΘj are good

coordinates that are everywhere defined and independent.
For this it is unavoidable to solve the Hamilton-Jacobi
equations (53). This is particularly easy if the Hamilton-
Jacobi equation is completely separable, that is, if F is such
that F ¼ P

jFjðqj; ∂S1∂qjÞ. In this case, S ¼ P
jSjðqj; FjÞ

and ~S ¼ P
j
~Sjðqj; F̄jÞ are solutions of (53) with

Sjðq; FÞ ¼ cjðFÞ þ
Z

q

q0

dx
Fj − gjðxÞ
ifjðxÞ

;

~Sjðq; F̄Þ ¼ ~cjðF̄jÞ −
Z

q

q0

dx
F̄j − ḡjðxÞ
if̄jðxÞ

ð57Þ

Here, cj and ~cj are arbitrary functions which will be set
to zero in the following. To simplify the notation also the

label j will be left away. From ansatz (57) one can deduce
that

ΦðqÞ ¼ −i
Z

q

q0

dx
1

fðxÞ and

ϕ̄ðqÞ ¼ Φ̄ðqÞ ¼ i
Z

q

q0

dx
1

f̄ðxÞ ; ð58Þ

which yields

Θ ¼ −
i
2

�Z
z

z0

dx
1

fðxÞ −
Z

z̄

z̄0

dx
1

fðxÞ
�
:

Thus,

dΘ ¼ −i
2
ðfðzÞ−1dz − fðzÞ−1dz̄Þ ð59Þ

is well defined for all points m ∈ M on which
fðmÞ ¼ fðqÞ ≠ 0. Moreover, since the Hamiltonian is real,
it will in most cases be a function of zz̄ so that

dw ∧ dw̄ ¼ iω
2
dΘ ∧ dh

¼ ω

4

�
fðzÞ−1 ∂h∂z̄ þ fðzÞ−1 ∂h∂z

�
dz ∧ dz̄ ð60Þ

is most likely nonvanishing and w ¼ ffiffiffi
h

p
eiωΘ will provide a

good parametrization if z does.
The last thing that remains to check is whether the level

sets (41) are compact, that is, whether ðΘ;hÞ are proper
action variables. Note that if Θ is not a proper angle, then w
is multivalued and therefore the parametrization will break
down on the points where Θðm0Þ ¼ ΘðmÞ þ nπ.
Concluding, if (59) and (60) are well-defined nowhere
vanishing differential forms, then Θ is most likely a
parametrization of an invariant torus (for a counterexample
see Sec. IV B 2).
Even though the above considerations do not prove that

integrability and compactness of the level sets are necessary
conditions for stable coherent states, it nevertheless
uncovers a close relation between the existence of (global)
action-angle coordinates and those states. In particular, one
can only hope to find a good global z-parametrization if the
system is integrable, has compact level sets, and has a
degenerate dynamics (det ∂2H

∂Ij∂Ik ¼ 0).

B. Examples

To illustrate the construction principle described in
Sec. IVA and to emphasize its advantages and drawbacks,
some examples will be discussed.
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1. Radial oscillator

Apart from the harmonic oscillator the radial oscillator
with Hamiltonian

H ¼ p2

2
þ ω2

2
q2 þ λq−2

and phase space M ¼ fðp; qÞ ∈ R2jq ≠ 0g was the only
one-dimensional model with stable coherent states found in
Sec. III B. To obtain stable states one has to consider the
complexifier

C ¼ 1

ω

�
p2

2
þ λq−2

�

for which

eiLχCH ¼ iωpqþ gðqÞ ≔ F

and

z ≔ e−iLχC q ¼
��

q −
i
ω
p

�
2

− 2
λ

ω2
q−2

�1
2

:

Starting with that, it is possible to construct a w para-
metrization displaying all the properties mentioned in
Lemma 4 by applying the Hamilton-Jacobi method with
generating function

S ¼ −i
Z

q

q0

dx
1

ωx
ðF − gðxÞÞ:

One easily verifies ∂2S
∂q∂F ¼ − i

ωq ≠ 0 for all m ∈ M,
∂S
∂q ¼ p, and Fðq; ∂S∂qÞ ¼ F. The angles, which are canoni-

cally conjugated to F and F̄, are

Φ ¼ ∂S
∂F ¼ −

i
ω
ln x and Φ̄ ¼ ∂S̄

∂F̄ ¼ i
ω
ln x; ð61Þ

and the angle conjugated to h is

Θ ≔ −
i
2ω

ðln z − ln z̄Þ:

This shows that the w-parametrization is given by

w ≔
ffiffiffi
h

p
eiωϕ ¼

ffiffiffiffiffi
hz
z̄

r
¼

ffiffiffiffiffi
h
z̄z

r
z ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωh=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h2=ω2 − 2λ
p

s
z;

where the last equality follows from

zz̄ ¼
��

q2 −
p2

ω2

�
2

þ 4
λ

ω2

�
λ

ω2
q−4 þ p2q2

ω2
− 1

��1
2

¼ 2

ω

�
h2

ω2
− 2λ

�1
2

:

Of course, the functional dependence of w and w̄ on the
original parametrization ðp; qÞ is much more complicated
than for z and z̄. However, their algebraic properties are
nicer. By construction fw̄;wg ¼ iω, while for z and z̄ holds

fz̄; zg ¼
� ffiffiffiffiffiffiffi

jzj2
h

r
w̄;

ffiffiffiffiffiffiffi
jzj2
h

r
w

	
¼ 4i

ω3jzj2H:

Since the Hamiltonian is strictly positive on the phase space
also h2

ω2 − 2λ must be greater than zero. Because of that and
since z and z̄ are well defined and independent, w and w̄ are
everywhere defined and independent. Besides that, the
level sets are compact.
The complex parametrization w can as well be brought

into the complexifier form defining

Q ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h=4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h2=ω2 − 2λ
p

s
ReðzÞ and

P ≔ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h=4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h2=ω2 − 2λ
p

s
ImðzÞ

and C ¼ P2=2. Then w ¼ 1ffiffiffiffi
2ω

p e−iLχCQ ¼ 1ffiffiffiffi
2ω

p ðQ − iPÞ.
Instead of starting with the z-parametrization it is equally

well allowed to construct directly the action-angle coor-
dinates of the model. With the generating function

~Sðq; hÞ ¼
Z

q

q0

dx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðh − VðxÞÞ

p

the Hamilton-Jacobi approach leads to Hðq; ∂S∂qÞ ¼ h,
∂S
∂q ¼ p, and

~Φ ≔
∂ ~S
∂h ¼

Z
q

q0

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðh − VðxÞÞp ¼ 1

2ω
arcsin

y
Ω
; ð62Þ

where Ω2 ¼ h2=ω2 − 2λ, y ¼ ωq2 − h=ω, and q0 is fixed
such that y0 ¼ 1 for simplicity. Since arcsin x ¼
−i lnðixþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
Þ, the w-parametrization, which one

obtains from this ansatz, is equal to the above up to a
complex phase depending on the value of q0. Here,
~w ¼ eiπ=4w. Yet, the integration of (62) is more involved
than that of (61).

2. Free particle

The free particle with Hamiltonian H ¼ p2

2
is a good

example for what can go wrong if the global properties are
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ignored. Locally the Hamilton-Jacobi equation,
Hðq; ∂S∂qÞ ¼ h, is solved by the generating function

Sðq; hÞ ¼
ffiffiffiffiffiffi
2h

p
q

with conjugated “angle”

Θ ≔
∂S
∂h ¼ qffiffiffiffiffiffi

2h
p ¼ q

p
;

which is well defined only for p ≠ 0. This yields

w ≔
ffiffiffi
h

p
eiωΘ ¼ pðcos q=pþ i sinωp=qÞ

¼ 1ffiffiffiffiffiffi
2ω

p e−iLχCQ;

where Q ¼ 1ffiffiffiffi
2ω

p p cos q
p, P ¼ − 1ffiffiffiffi

2ω
p p sin q

p, and C ¼ P2=2.

Locally, the differentials dw and dw̄ are well defined and

dp ∧ dq ¼ dh ∧ dΘ ¼ dP ∧ dQ ¼ 1

iω
dw ∧ dw̄

is nondegenerate. But it is not possible to extend that to all
of M since, first, the whole parametrization is ill-defined
for p ¼ 0 and, second, the coordinates ðw; w̄; P;QÞ are
multivalued; that is, wðq; pÞ ¼ wðq0; pÞ for ω q

p ¼ 2πnþ
ω q0

p and n ∈ N. Even more severe, the motion of w seems to
be periodic,

wðtÞ ¼ wðp0; qðtÞÞ
¼ p0½cosðωtþ q0=p0Þ þ i sinðωtþ q0=p0Þ�:

All these problems arise from Θ not being a proper angle
since the level sets h ¼ const are not compact. On the other
hand, for ω ≪ q=p the parametrization is not too bad since
up to second order

P ≈ −pþOðω2Þ and Q ¼ −ωqþOðω3Þ:
Another interesting property of w is that on the level sets, i.e.
for constant momenta, w are the generators of the �-algebra
of quasiperiodic functions.8 The spectrum of this algebra
constitutes the so-called Bohr compactification that lies at
the heart of loop quantum cosmology (LQC, see e.g.
[29–32]).

3. Anharmonic oscillators

For a generic one-dimensional Hamiltonian of the form

H ≔ p2

2
þ VðqÞ one can always solve the Hamilton-Jacobi

equation locally by choosing

S ¼
Z

q

q0

dx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðh − VðxÞÞ

p
: ð63Þ

To conclude, we will discuss two examples of an anhar-
monic oscillator that are widely studied in the literature: the
Pöschl-Teller potential [33]

VP:T:ðqÞ ¼ −
λðλþ 1Þ

2
ðcoshðqÞÞ−2;

which is an effective potential to describe vibrations in
diatomic molecules and for which the Schrödinger equation
is solvable, and the quartic potential

V4ðqÞ ¼
ω2

2
q2 þ λ2

2
q4;

which is a standard example in perturbation theory.
For large q the Pöschel-Teller potential is exponentially

suppressed since for large q coshðqÞ ≈ ejqj=2, and hence the
level sets are compact. Moreover, a local w-parametrization
is conceivable. Ansatz (63) yields

Θ ≔
∂S
∂h ¼

Z
q

0

dx cosh xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2hcosh2xþ λðλþ 1Þ

p
¼ ð2hÞ−1=2

Z
q

0

dðsinh xÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh2xþ Ω2

p

¼ ð2hÞ−1=2sinh−1
�
sinhq
Ω

�
;

where Ω2 ¼ λðλþ1Þ
2h þ 1, and

w ¼
ffiffiffi
h

p
eiωΘ ¼

ffiffiffi
h

p

Ω

�
sinh qþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2 þ ðsinh qÞ2

q � iffiffiffi
2h

p
:

In the last equation the identity sinh−1q ¼ ln½qþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q2

p
�

was used. The corresponding P, Q variables are even more
complicated so that the quantization via the complexifier
method can cause severe problems.
While the motion for the quartic potential is

also bounded, the angle Θ is even harder to determine.
In fact,

Θ ≔
Z

q

q0

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2h − ω2x2 − λ2x4

p

is an incomplete elliptic integral of the first kind9 that is not
solvable in terms of elementary functions. By replacing
x ¼ −b cosϕ and

8These are functions f of the form fðxÞ ¼ P
j∈Ifje

ikjx for
some finite label set I and kj ∈ R. Here, kj ¼ ωj=p0.

9For more information see e.g. [34,35].
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2h − ω2x2 − λ2x4 ¼ λ2ðx2 þ a2Þðb2 − x2Þ;

where a2 − b2 ¼ ðω=λÞ2 and b2ω2 þ b4λ2 ¼ 2h, this inte-
gral can be brought into the so-called Legendre canonical
form

Θ ¼ 1

λ

Z
q

q0

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2 þ a2Þðb2 − x2Þ

p ¼ k
λb

Fðϕ; kÞ þ c: ð64Þ

Here, k2 ¼ b2

b2þa2, c is a constant, and

Fðϕ; kÞ ¼
Z

sinϕ

0

dξffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − ξ2Þð1 − k2ξ2Þ

p
¼

Z
ϕ

0

dψffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2sin2ψ

p :

A literal quantization of the corresponding complexifier
seems hopeless. On the other hand, the quartic anharmonic
oscillator can be treated, classically as well as quantum
mechanically, by a perturbation theory. Especially the
classical perturbation theory makes heavy use of action-
angle coordinates of the unperturbed harmonic oscillator. It
therefore seems much more promising to study the w-
parametrizations in this context; however, this would go
beyond the scope of this paper.

V. DISCUSSION

It was found that a necessary criterion for the existence
of stable coherent states is that the classical evolution of the
variable z ¼ e−iLχCq depends only on z itself and not on its
complex conjugate. However, it is not possible to determine
other models than the harmonic and radial oscillators from
ansatz (29) that allow for such parametrizations. This issue
was circumvented by invoking the Hamilton-Jacobi for-
malism. In doing so, one can, indeed, construct local
complex coordinates for almost any system that display
the desired properties and are related to the complexifier
formalism. In general, these cannot, however, be extended
globally to what was explained exemplarily for the free
particle. Another issue arises from the fact that the resulting
complexifiers and parametrizations are in general not
analytic functions of the “old” variables ðp; qÞ (see
Sec. IV B) that potentially cause severe problems when
quantizing.
Let us speculate a bit more about the last point: One

essential ingredient for quantization is the choice of a
polarization. Very roughly, the polarization says how to
split the classical phase spaceM of dimension 2f into an f-
dimensional submanifold P whose elements are then
represented as multiplication operators on an appropriate
Hilbert space. Of course, for M ¼ T�C the natural choice
of P is the configuration space C, which corresponds to the
usual Schrödinger quantization. In the case of the harmonic
oscillator we already mentioned implicitly another possible

polarization, namely, that defined by the complex param-
eter a ¼ q − ip. This leads to the Hilbert space H2ðC; dνÞ
of a holomorphic square integrable function on which the
annihilator â acts by multiplication. The resulting quantum
theory is unitary equivalent to the Schrödinger quantiza-
tion, and the transformation between the two representa-
tions is given by the Segal-Bargann transform (10). This
close relation between coherent states and complex polar-
izations is much more generic and often used in geometric
quantization.
As was mentioned in Sec. II C, the complexifier

approach follows exactly the above line of thoughts: It
intends to provide a link between an arbitrarily chosen
complex Kähler structure and a quantization on the
corresponding polarizations. This relation was examined
in great detail in [36–39], focusing especially on unitary
equivalence of the resulting quantum theories. An interest-
ing result of [37] is that for compact Lie groups G with
phase space T�G only complexifiers of the form Ĉ ¼ Δ

2
give

rise to a quantization that is unitary equivalent to the
Schrödinger one with Hilbert space L2ðG; dxÞ. Here, Δ is
the Laplacian of the group and dx is the Haar measure. But
formally Δ can be identified with the square p̂2 of the
original momentum operators while the complexifiers
obtained for the various examples in Sec. IV B show a
much more complicated functional dependence on p. Thus,
one should not expect that a quantum model obtained by
directly quantizing the systems in the new w-parametriza-
tion is equivalent to the Schrödinger representation.
Apart from the complicated structure of the complexifier

it is also questionable whether the above strategy can be
applied if the w-parametrization is ill-defined. All of these
are interesting questions which deserve a further inves-
tigation but go beyond the scope of this paper.
Remember, the original motivation for investigating the

stability of coherent states originated from the heuristic
implementation of the Hamiltonian constraint in LQG by
the formal expression (1). Yet, the formalism developed in
Sec. IV can blow up already for “simple” one-dimensional
models. The technical obstacles encountered in the finite
dimensional examples of this paper are of course even more
challenging in quantum field theories (QFT) such as LQG.
On the other hand, the formalism developed in this paper in
principle directly applies to symmetry reduced models of
LQG such as LQC. In fact, there are two observations
which support the assumption that the above formalism is
conceivable in LQC: The first hint is the appearance of the
Bohr compactification, which plays a crucial role in the
quantization of LQC, in the stable state system of the free
particle. The second hint is more vague; namely, the stable
parametrizations z, z̄ of the radial oscillator form an
slð2;RÞ algebra together with the Hamiltonian H. But
this algebra also shows up in the modified dynamics of
deparametrized, homogeneous, and isotropic models.
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APPENDIX A: STABLE COMPLEXIFIER STATES
FOR THE RADIAL OSCILLATOR

1. Classical and quantum properties
of the radial oscillator

Note that the potential of the radial oscillator,

VðqÞ ¼ mω2

2
q2 þ λq−2;

with massm, frequencyω, and coupling constant λ diverges
in the limit q → 0. Therefore, the classical motion is
confined to the positive (or negative) axes. The equation
of motion can be solved, for example, by integrating the
law of conversation of energy via a separation of variables.
This yields

qðtÞ ¼ �
�

E
mω2

þ
ffiffiffi
γ

pffiffiffiffi
m

p
ω
sin ð2 ffiffiffiffi

m
p

ωtþ ϕÞ
�1

2

;

where γ ¼ E2ffiffiffi
m

p
ω
2 − 2λ and the phase ϕ is determined by the

initial condition.
From the form of the potential, one expects the quantized

system to be discrete. In the limit λ → 0, the solutions
should approach the solutions of the harmonic oscillator.
Because of the barrier at q ¼ 0, only the odd solutions, i.e.
those solutions which have a knot at zero, are allowed. For
“big” λ the solutions on the positive and negative axes
should decouple. This can be checked explicitly by
replacing the peak at q ¼ 0 through a box potential of

width d ¼ 2
ffiffiffiffiffi
λm
ω2

q
and height V0. The transmission coef-

ficient T for such a system with energy E is then given by

T ¼
�
1þ V2

0sinh
2ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðV0 − EÞp
dÞ

4EðV0 − EÞ
�−1

;

which vanishes for V0 → ∞. Therefore, also the quantum
system can be restricted to the positive axis. The natural
choice for a Hilbert space is the space L2ðRþ; dqÞ of square
integrable functions with respect to the Lebesgue measure
dq where q̂ and p̂ are represented as multiplication and
derivative operators, respectively.

The corresponding eigenvalue equation,

ĤψðxÞ ¼ EψðxÞ ⇒ ψ 00ðxÞ −
�
y2 þ α2 − 1

4
þ 2ϵ

�
ψðxÞ

¼ 0

with x ≔
ffiffiffiffiffi
mω
ℏ

p
, ϵ ≔ E

ωℏ, and α2 ≔ 8mλþ 1, is a modified
Whittaker equation (see [34], p. 505) whose solutions
are given by a hypergeometric function of the first kindM;
that is,

ψðxÞ ¼ Ne−
x2
2 x

1þα
2 M

�
1

4
ð2þ α − 2ϵÞ; 2þ α

2
; x2

�
;

where N is a normalization constant. To ensure that ψ is an
element of the Hilbert space, the following conditions must
be satisfied:

(i) limx→0ψðxÞ < ∞ requires α ≥ −1. Otherwise ψ
cannot be square integrable.

(ii) In order that the Hamiltonian is well defined, i.e.
∥Ĥψ∥ < ∞, ψ needs to be at least once continu-
ously differentiable for x → 0 (and twice every-
where else). This requires α2 ≥ 1 ⇔ λ ≥ 0.

(iii) ψ is square integrable iff 1
4
ð2þα−2ϵÞ¼−n;n∈N.

Thus the energy spectrum is discrete and equidistant

En ¼ ωℏ

�
2nþ 1þ α

2

�
: ðA1Þ

In the limit λ → 0 the eigenvalues approach the odd
energy levels of the harmonic oscillator as expected,
and M reduces to a Hermite polynomial
([34], p. 505).

For these specific values the hypergeometric function M
becomes proportional to a generalized Laguerre polyno-

mial L
α
2
nðxÞ, n ∈ N, which builds a complete orthogonal

system in L2ðRþ; yα
2e−ydyÞ. Thus, the normalized eigen-

states are given by

ψnðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2n!
Γðα

2
þ 1þ nÞ

s
e−

x2
2 x

αþ1
2 Lα=2

n ðx2Þ: ðA2Þ

Remark: Since the eigenvalue equation for the radial
oscillator is a second order partial differential equation
there exist of course two independent solutions. Here the
second linear independent solution is

~ψðxÞ ¼ Ne−
x2
2 x

1−α
2 M

�
1

4
ð2 − α − 2ϵÞ; 2 − α

2
; x2

�
: ðA3Þ

These functions have to obey analogous normalization
conditions
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α ≤ 1; En ¼ ωℏ

�
2nþ 1 −

α

2

�
:

In order that the Hamiltonian is well defined on these states
also requires α2 ≥ 1. Therefore λ has to be greater than
zero. On the other hand, α is equal to � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 8mλ
p

. Thus
either α ≥ 1 or else α ≤ −1. For α > 0 we get the solutions
above, and for α < 0 we obtain (A3).

2. Coherent states

Recall that the complex parametrization z ¼ e−{LχC q
associated with the complexifier

C ¼ 1

mω

�
1

2
p2 þmλq−2

�
ðA4Þ

is given by

z ¼
ffiffiffiffiffiffiffi
2

mω

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 −mλq−2

q
; ðA5Þ

where a ¼ mω
2
q − i p

2
. The Poisson relations for these

variables are

fz; z̄g ¼ −{
4

ω3m2

H
zz̄

;

fH; zg ¼ {ωz; and fH; z̄g ¼ −{ωz̄:

For the operators of the rescaled maps

L3 ≔
ω

2
H; L− ≔

mω2

4
ffiffiffi
2

p z2; and Lþ ≔
mω2

4
ffiffiffi
2

p z̄2;

one recovers the commutation relations of suð1; 1Þ,

½L̂3; L̂�� ¼ �L̂� and ½L̂−; L̂þ� ¼ L̂3: ðA6Þ

Therefore, it is expected that the complexifier coherent
states coincide with the coherent states defined by Barut
and Giradello (see [40]).
The easiest way to find the associated coherent states

ψ zðqÞ ¼ e−
Ĉ
ℏδzðqÞ ðA7Þ

is to express the convolution δ in terms of the eigenfunc-
tions of Ĉ that are given in terms of Bessel functions of the
first kind JβðxÞ (see e.g. [34], pp. 358–364). That is, the
eigenfunction to the eigenvalue ℏωc2; c > 0 is

ΦcðxÞ ¼
ffiffiffiffiffi
cx

p
Jα=2ðcxÞ;

where x ¼ ffiffiffiffiffi
mω
ℏ

p
. These functions are not square integrable

on Rþ as expected but define a convolution,

δyðxÞ ¼
Z

∞

0

dcΦcðxÞΦcðyÞ: ðA8Þ

Thus, one finds

ψ zðxÞ ¼
�Z

∞

0

dcce−
c2
2ℏ

ffiffiffiffiffi
xy

p
Jα=2ðcxÞJα=2ðcyÞ

�
y→z

¼ exp

�
−
x2 þ z2

2

�
Iα=2ðxzÞ: ðA9Þ

Here, IβðxÞ ¼ {−βJβð{xÞ is the modified Bessel function of
the first kind. These states can also be expressed in terms of
the eigenfunctions of the Hamiltonian by utilizing the
relation of Bessel functions and Laguerre polynomials
(see [34], p. 734). This yields

ψ zðxÞ ¼ e−
z2
4

X∞
n¼0

ð−1Þn ðz= ffiffiffi
2

p Þ2nþαþ1
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n!Γðnþ α=2þ 1Þp ΨnðxÞ: ðA10Þ

For z → z2=
ffiffiffi
2

p
and x ↦ x2=2 one recovers the coherent

states defined by Barut and Giradello [40] up to a constant
factor as expected. However, the states (A10) are not
normalized with respect to the real measure dx. Instead,
one finds

‖ψ z‖L2ðRþÞ ¼
jzj
2
e−

z2þz̄2
4 Iα=2

�jzj2
2

�
: ðA11Þ

Properties: The states (A10) are overcomplete with
respect to the measure

dμðzÞ ¼
�
I0

�
r2

2

��
−1 r2

4π
Kα=2

�
r2

2

�
drdθ ðA12Þ

expressed in polar coordinates z ¼ re{θr ≥ 0;ϕ ∈ ½− π
2
; π
2
�.

Here, KβðxÞ is a modified Bessel function of the second
kind. The unusual integration domain of ϕ originates
from the fact that the analytic continuation q → z for the
radial oscillator is defined only on the upper complex
plane. Moreover, the states are truly stable under the
dynamics, i.e.,

e{
ω
ℏtĤψ zðxÞ ¼ e{ω=2ψ zðtÞðxÞ:

Since (A10) are the eigenvectors of the annihilation
operator ẑ, they minimize the uncertainty of

â ≔
ẑ2 þ ðẑ2Þ†

2
¼ −

2

ω
Ĉþ x̂2 ðA13Þ

and of

b̂ ≔
ẑ2 − ðẑ2Þ†

2
¼ −

1

ω
ðx̂ p̂þp̂ x̂Þ: ðA14Þ
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APPENDIX B: PARTIAL DIFFERENTIAL
EQUATIONS OF FIRST ORDER

Partial differential equations emerge in all kinds of
physical problems and are widely studied in mathematics.
A detailed treatise would go beyond this work. It is rather
intended to give a rough overview of properties and
solution techniques for quasilinear, first order PDE men-
tioned in the main text. For the interested reader we
recommend the very detailed book by Hilbert and
Courant [28] or the more elementary book by Cohen [41].
A first order PDE is called quasilinear if it is of the form

Xn
j¼1

ajðx; uÞ
∂u
∂xj ¼ bðx; uÞ; ðB1Þ

where aj and b are continuous differentiable functions
of x ≔ ðx1;…; xnÞ and u. The equation is linear if aj and b
do not depend on u. A solution uðxÞ to (B1) defines
n-dimensional surfaces, called integral surfaces, whose
tangential vectors vi ¼ ∂u

∂xi satisfy (B1) at every point with
coordinates ðx; uÞ.
To solve (B1) it is sufficient to determine a family of

(n − 1)-parametric characteristic curves xðs; t1;…; tn−1Þ;
uðs; t1;…; tn−1Þ that obey

dxj
ds

¼ ajðx; uÞ and
du
ds

¼ bðxÞ

with initial values ϕjðt1;…; tn−1Þ ¼ xjð0; t1;…; tn−1Þ and
uð0; t1;…; tn−1Þ ¼ χkðt1;…; tn−1Þ. For a given set of
initial data on the (n − 1)-dimensional initial manifold C
there exists a unique solution of (B1) iff the functional
determinant

Δ ≔ det

���������

a1 � � � an∂x1∂t1 � � � ∂xn∂t1
..
. . .

. ..
.

∂x1∂tn−1 � � � ∂xn∂tn−1

���������
does not vanish. If Δ is zero, then solutions of the initial
value problem can exist only if C is a characteristic
manifold; that means that C is generated by a family of
(n − 2)-parametric characteristic curves itself (see [28] for
details). In this case, there exist infinitely many solutions.
A generic first order PDE can always be written in the

form Hðx;p; uÞ ¼ 0 where pj ¼ ∂u
∂xj. Suppose H is twice

continuously differentiable; then solutions can be found by
a method similar to the above. Namely, one replaces the
PDE by the system of ordinary differential equations
(ODE)

dH
ds

¼
Xn
j¼1

∂H
∂xj

dxj
ds

þ
Xn
j¼1

∂H
∂pj

dpj

ds
þ ∂H

∂u
du
ds

together with characteristic equations

dxj
ds

¼ ∂H
∂pj

;
du
ds

¼
Xn
j¼1

pj
∂H
∂pj

;

dpj

ds
¼ −

�∂H
∂xj þ

∂H
∂u pj

�
:

Note that all these methods are local implying that the
existence of solutions holds only in an appropriate neigh-
borhood of a point where the initial functions and the
coefficients in (B1) are well behaved.
The general strategy behind the above is to replace the

PDE by a system of ODEs which are considered easier to
integrate. Yet, often, it is exactly the other way around that
the PDE is easier to solve, for example by the method of
separation of variables, than the system of ODEs. The idea
of turning a system of ODEs into a PDE goes back to
Hamilton and Jacobi and will be explained in a bit more
detail in Appendix C in the context of classical mechanics.

APPENDIX C: HAMILTON-JACOBI METHOD
AND CANONICAL TRANSFORMATIONS

This short summary of the Hamilton-Jacobi approach is
mainly based on [26], and more information can be found
in any good mechanics book, e.g. in [27]. To keep this
small discourse as simple as possible, the discussion is
restricted to time-independent, one-dimensional systems.
Most of the formulas can be immediately generalized to
models with more degrees of freedom. To also include
time-dependent systems a bit more work would be
required.
Definition 5 (Canonical transformation). A map

g∶M → M is a canonical transformation iff

g�Ω ¼ Ω;

where g� denotes the pullback and Ω the symplectic form
on M.
By applying the Stokes theorem one can easily show that

this condition is equivalent toI
γ
pdq − PdQ ¼ 0 ðC1Þ

for any closed curve γ in M. It is also well known that a
canonical transformation leaves the equations of motion
form invariant, which can be proven by examining the
transformation of the one-form Ω1 ≔ pdq −Hdt on the
extended phase spaceM × Rþ. To see why, remember that
any alternating two-form in odd dimensions has at least one
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null direction; i.e. it has at least one eigenvector to the
eigenvalue zero. Here, this null direction is given by the
integral curve ðpðtÞ; qðtÞÞ for which

0 ¼ dΩ1ðpðtÞ; qðtÞÞ ¼ dp ∧ dq −
∂H
∂p dp ∧ dt −

∂H
∂q dq

∧ dt ¼
�
dq
dt

−
∂H
∂p dp ∧ dt

�
þ
�
dq
dt

þ ∂H
∂q

�
dq ∧ dt:

This obviously implies the canonical equations of motion,
and consequently Ω1 captures the full dynamics.
Theorem 3 [Ref. [26]] Suppose g∶M → M is a

canonical transformation that maps ðp; qÞ to ðP;QÞ; then
there exist functions KðP;QÞ and Sðp; qÞ so that

pdq −Hdt ¼ PdQ − Kdtþ dS;

dP
dt

¼ −
∂K
∂Q ; and

dQ
dt

¼ ∂K
∂P :

Proof.—Since condition (C1) has to hold for all closed
curves γ, the one-form pdq − PdQ is exact, which means
that there exists a potential S with dS ¼ pdq − PdQ. Now
set KðPðp; qÞ; Qðp; qÞÞ ¼ Hðp; qÞ. This proves the first
part of the theorem. The second part follows directly from
d2S ¼ 0. □

The function S is called a generating function of the
canonical transformation g. For one-dimensional models
there exist two types of such functions10:
(A) Suppose det ∂ðQ;qÞ

∂ðp;qÞ ≠ 0; then the momentum can be
written as a function of Q and q by the inverse
function theorem. Inserting p ¼ pðQ; qÞ in S leads
to Sðp; qÞ ¼ S1ðQ; qÞ. By comparison of dS and dS1
one finds

∂S1ðQ; qÞ
∂q ¼ p and

∂S1ðQ; qÞ
∂Q ¼ −P:

(B) If det ∂ðP;qÞ∂ðp;qÞ ≠ 0, then p ¼ pðP; qÞ. The correspond-
ing generating function S2ðP; qÞ is obtained via a
Legendre transformation, that is, S2ðP; qÞ ¼ PQþ
Sðp; qÞ. A comparison of the differentials yields

∂S2ðP; qÞ
∂q ¼ p and

∂S2ðP; qÞ
∂P ¼ Q:

A given function S1=S2 generates a canonical transforma-

tion iff ∂2S1∂q∂Q ≠ 0= ∂2S2∂q∂P ≠ 0. This nondegeneracy condition
is needed to ensure that Q=P can be extracted as functions
of p and q. In more dimensions it must be replaced by

det ∂2S1∂ðq;QÞ ≠ 0 or det ∂2S2∂ðq;PÞ ≠ 0, respectively.

The simplest example of a generating function is
S2ðP; qÞ ¼ Pq that gives rise to the identity transformation.
Another application is the Hamilton-Jacobi method. The
main idea, hereby, is to transform the system such that
the dynamics is especially simple. This is, of course, always
the case if some coordinates are cyclic. Thus, one tries to
find functions S1 or S2 so that

H
�∂S
∂q ; q

�
¼ KðP; tÞ:

Then P is obviously constant andQðtÞ ¼ R
t
0
∂K
∂P (for specific

examples see Sec. IV B).
This is closely related to the action-angle coordinates

that can be introduced for models with compact level sets
Mh ¼ fðp; qÞjHðp; qÞ ¼ hg. Here, a function S2ðI; qÞ
generating the transformation ðp; qÞ ↦ ðI;ϕÞ is con-
structed that obeys

∂S2ðI; qÞ
∂q ¼ p;

∂S2ðI; qÞ
∂I ¼ ϕ; and H

�∂S
q
; q

�
¼ hðIÞ:

For models with 1 degree of freedom,Mh being compact is
equivalent with Mh being a closed curve in M that should
be parametrized by ϕ. This leads to the additional require-
ments

I ¼ IðhÞ and
I
Mh

dϕ ¼ 2π:

As shown in [26], the function

S2ðI; qÞ ¼
Z
γIðq0;qÞ

pdq;

where γIðq0; qÞ is a curve in MhðIÞ joining q0 and q, meets
all these requirements.

10For more than 1 degree of freedom there exists a third type
depending on a mixture of Q and P variables.
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