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Spontaneous excitation of a uniformly accelerated atom
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We study, in the cosmic string spacetime, the average rate of change of energy for an atom coupled to
massless scalar fields and uniformly accelerated in a direction parallel to the string in vacuum. We find that
both the noninertial motion and the nontrivial global spacetime topology affect the atomic transition rates,
so an accelerated atom (an Unruh detector) does feel the string contrary to claims in the literature. We
demonstrate that the equivalence between the effect of uniform acceleration and that of thermal radiation on
the transition rates of the atom, which is valid in the Minkowski spacetime, holds only on the string.
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I. INTRODUCTION

In recent years, a lot of work [1-11] has been done to
understand the Unruh effect in terms of spontaneous
excitation of atoms in an approach first proposed by
Dalibard, Dupont-Roc, and Cohen-Tannoudji (DDC)
[12,13] and later generalized by others [1,6]. These studies
reveal that ground-state atoms uniformly accelerated in
vacuum would spontaneously make transitions to excited
states as a result of the combined effect of vacuum
fluctuations and radiation reaction, and a physically appeal-
ing interpretation of the Unruh effect has thus emerged in
the sense that the spontaneous excitation of accelerated
atoms gives a physically transparent illustration for why an
accelerated detector clicks.

Such studies are first carried out for uniformly accel-
erated atoms coupled with various quantum fields ranging
from scalar to Rarita-Schwinger fields in unbounded flat
space [1,2,4-6] and later they are extended to bounded flat
space [3,7] and even to curved space [8—11]. In unbounded
spacetime, it has been demonstrated that the balance
between vacuum fluctuations and radiation reaction which
ensures the stability of inertial atoms in their ground state is
no longer perfect for uniformly accelerated atoms so that
the spontaneous excitation occurs in vacuum as if they were
inertial atoms immersed in a thermal bath at the temper-
ature T = 5- with a being the proper acceleration. However,
if boundaries exist, one finds that the excitation rate of
accelerated atoms differs from that of inertial ones in a
thermal bath, and in this sense that the exact equivalence
between acceleration and a thermal bath is lost.

Now, one may wonder what happens if atoms are
accelerated in a spacetime which is locally flat but with
nontrivial global topology, and one such spacetime is that
of a cosmic string that may have been created in the early
Universe as a consequence of phase transitions [14]. This is
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what we plan to do in the present paper. Though recent data
of cosmic microwave observations have ruled out cosmic
strings as a possible mechanism for the formation of
galaxies [15], so far, they are still candidate sources for
a number of important physical phenomena such as gamma
ray bursts [16—-19], the gravitational waves [20-23] and
high-energy cosmic rays [24-26]. The simplest cosmic
string spacetime is characterized by a flat metric with a
deficit angle around a straight string. Previous studies on
such a spacetime have shown that the nontrivial topology
may induce some quantum gravitational effects near the
cosmic string [27], such as a distortion in the zero-point
vacuum fluctuations of the quantum fields which results in
an energy density in its surrounding vacuum [28-31]. In
recent years, investigations have been carried out on
whether the distortion of fluctuations of quantum fields
due to the deficit angle imprint on the response rate of a
particle detector [27,32,33] and the radiative properties of
atoms [11,34]. In particular, it was claimed in
Refs. [27,33] that an Unruh detector uniformly acceler-
ated parallel to the cosmic string does not feel the string,
i.e., the response rate would be exactly the same as that in
a trivial flat Minkowski spacetime. In the present paper,
we will demonstrate, contrary to these claims, that the
response rate of a uniformly accelerated particle detector
is affected by the presence of a cosmic string which
generates a nontrivial spacetime topology. In other words,
an Unruh detector does feel the cosmic string. We do this
by calculating the rate of change of energy of a uniformly
accelerated atom coupled to massless scalar fields in the
cosmic string spacetime based upon the DDC formalism
[12,13] which separates the contributions of vacuum
fluctuations and radiation reaction to the transition rates
of the atom. We are also interested in how transition rates
behave as compared to the counterparts in a thermal bath
in a trivial Minkowski spacetime.

© 2016 American Physical Society
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The paper is organized as follows. We introduce the
quantum scalar field in the cosmic string spacetime in
Sec. I and we generalize, in Sec. III, the DDC formalism in
the cosmic string spacetime. In Sec. IV, we compute the
two-point function of the massless scalar field. In Sec. V,
we calculate the average rate of change of energy for an
atom uniformly accelerated with the acceleration parallel to
the string. We give the summary in Sec. VI.

II. QUANTUM SCALAR FIELD IN THE COSMIC
STRING SPACETIME

The metric of the simplest cosmic string spacetime in
which a static, straight cosmic string lies along the
z-direction can be described, in the cylindrical coordinate
system, by

ds* = dt* — dr* — r*d&* — dz? (1)

where 0 <6 <22 v = (1 —4Gu)~" with G and u being
Newton’s constant and the mass per unit length of the string
respectively. The spacetime described by this metric is
locally flat with a nontrivial global topology characterized
by a deficit angle.

The Klein-Gordon equation for a scalar field ¢ in this
spacetime takes the form

(#-10.00) - 50522 )0 0.

Solving the above field equation, we get a complete set of
field modes for the scalar field,

up(t,X) = e”"u;(X) (3)

with

b 1 v iKZ ,ivm
u/(x) = Z \/ %e ‘e HJU\m\(kJ_r)' (4)

Here j = {k,m,k, }, k € (—o0, ), m € Z, k; € (0, ),
and @® = k> + k% . Defining the inner product of two mode
functions as

(uj(t,?c),uj/(t,?c)) :—i/d3xuj(t,?c)8,u;,(t,5’c), (5)
one can show that

Sk —K\)

N

(u;(1,%),up(1,X)) = 8(k = K')8,

The field operator can now be expanded in terms of the
complete set of field modes as
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b(1.%) = /dﬂj[aj(t>”j(;c) +aj(ui(®)]  (7)

with

/dﬂ,: > /O dkLkL/_de (8)

and a;(t) = a;(0)e™™". It is easy to verify that the creation
and annihilation operators satisfy the following commuta-
tion relation:

[a;(1.3). @} (£.5)] = 8, . (9)
Other commutators are equal to zero.

III. THE GENERALIZED DDC FORMALISM

Assume that a two-level atom interacts with a quantum
scalar field in the cosmic string spacetime. The two
stationary states of the atom with energies + % are denoted
by |+) and |-) respectively. The Hamiltonian that describes
the evolution of the atom with respect to proper time 7 1is,
according to Dicke [35], given by

H,(7) = wyR5(7), (10)

where R3(z) = 1|+)(-+| — |-) (|, and the Hamiltonian of

the quantum scalar field reads

dt
Hp(7) :/d,uja)ja;aja. (11)

We assume that the atom is linearly coupled to the scalar
field with the interaction Hamiltonian as follows:

Hy(7) = uRy (1) (x(7)). (12)

Here Ry(r) = 1(R_(r) ~R,(r)). R_(r)=|-)(+| and
R, (7) = |+)(—|. The Hamiltonian that governs the evo-
lution of the system (atom + field) can now be obtained by
adding up the above three parts as

H(z) = Hy(7) + Hp(z) + H,(2). (13)

Starting from the above Hamiltonian, we can derive the
Heisenberg equations of motion for the dynamical variables
of the atom and the field. We can separate the solution of
each equation into a “free” part which exists even in the
absence of the interaction between the atom and the field,
and a “source" part which is induced by the interaction,

R.(r) = RL(r) + Ry(v). (14)

Rs(7) = R{(7) + R}(v), (15)

084028-2



SPONTANEOUS EXCITATION OF A UNIFORMLY ...

a;(1(x)) = al(1(z)) + a(1(z)) (16)
with
a (1)) = a;(t(zy))ei@i(@~1(x)
{mm>,ma> : )
a(t(c)) = iu [7 dZR(2)[¢/ (x(7')). & (1(2))),
and
f 7) = S e iwg(7—70)
{&u muﬁ; - )
R (2) = ip [7 a7 [R5(7). RL(2)]d/ (x(7')).
Rf(7) = R} (7).
‘ . o (19)
Ri(1) = ip [T d7[R5(7), RE(0)]#/ (x(7')).

Inserting Eq. (17) into Eq. (7), we can divide the field
operator into the “free” part and the ‘“source” part,

d(t,X) = ¢ (1, X) + ¢*(t,X), with
{cﬁf = [ du;la}(t)u;(%) + a ()’ (3)).
(20)
¢ (1.%) = in [ d/RY(D)[§ (x(2)). ¢/ (x())].

In the source parts of the above solutions, all operators on
the right-hand side have been replaced by their free parts,
which is correct to the first order in pu.

By resorting to the “free” part and “source” part of the
dynamical variables of the atom and the field, we can now,
following the DDC formalism [12,13], separate the con-
tributions of vacuum fluctuations and radiation reaction to
the evolution of the atomic observable. Writing out the
Heisenberg equation of the atomic Hamiltonian,

dH,(7)

e = iuwy[R,(7), R3(7)]p(x(7)), (21)

separating the field operator into the free part and the
source part, ¢(x(7)) = ¢/ (x(z)) + ¢*(x(z)), and choosing
a symmetric operator ordering between the variables of the
atom and the field, we obtain for the rate of change of the
atomic energy

dfi?f(r) _ (dh;;(r))vf N (W) @

with

@%fvw=}wmwumxwm»&wu 3)
@ﬂ@

dr > :%iﬂwo{df"(X(T)),[Rz(f),Rz(T)]}- (24)
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We assume that the field is in the vacuum state, |0), and the
atom is initially in state |a). Take the average of the above
two equations over the state of the system, |0, a), do some
simplifications, and then we obtain the contributions of
vacuum fluctuations and radiation reaction to the average
rate of change of the atomic energy,

<dhi;;(r)>ﬁf — 2i? Af dT/CF(x(T)’x(T/))%XA(T’ ).

(25)

<dHA(r)>W = 202 /T: dr/XF(x(T),x(T/))dicA (0.7,

dr T

(26)

where

(0’ (x(2)). ¢/ (x(='))}[0).  (27)

NI*—‘

C (x(z), (7)) =

£ (). x()) = 3 O (x(2)). ¢/ (<)) (28)

are respectively the symmetric correlation function and the
linear susceptibility function of the scalar field, and

(29)
1 / . ’
z ; a]Rf elwab(f—f) — o i®ap (77 ))
(30)

are two statistical functions of the atom in state |a). In the
above equations, @,, = w, — @, and the sum extends over
a complete set of atomic states.

IV. GENERAL EXPRESSION FOR THE
TWO-POINT FUNCTION OF THE FIELD

To calculate the average rate of change of energy of the
atom, we should first find the correlation function and
linear susceptibility function of the field defined in
Egs. (27) and (28). For this purpose, let us consider

(0lgp(z, ;C)¢(t’,;')|0>, which can be expressed as
(Olp(1. %) (7. x)|0)
87z Z/ dkl/ dK ky o0 HiKAZ HimAD

m=—0oo

X Jb|m|(klr)‘]v|m|(klr/)7 (31)
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where o = /K2 +k2, At=t—+1, AO=0-60, and

Az =z — 7. Setting

2

K K
sinha = —, cosha=4/1+ —,
ky K

At = scoshf, Az = ssinh 8 (32)

for (Af)? > (Az)? (the case to be discussed in the follow-
ing), the above equation is accordingly transformed to

<0|¢<r R)(t',x)|0)

- Z lmAe/ dk Lk ) (kL7) ) (kLT

m=—0o

% /oo dae—ikrvcosh(aJr/})' (33)

[Se]

Doing the two integrations on the right-hand side of
the above equation by use of formulas (3.547) and
|
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(6.522) in Ref. [36], and taking the infinite summation
over m, we get

v 1 — A%
4n%riry 1+ A% —2AY cos AG’
(34)

(Olg(1. %) (7, x')|0) =

ry = \/(r— PP+ (z=2)?=(—-1—ie)?, (35)

ry = \/(r+ PP+ (z=7) = (t=1 —ie)? (36)

Iy —r

37

ry+r; ( )
with e being a positive infinite small real number. Thus the
symmetric correlation function and the linear susceptibility
function of the field are

v (1 1 — A% 1 1 — A%
CF(x(2) x(2)) = - s _ . , 38
(x(z), (=) 872 (rlrzl—i—Az”—ZA”cosAQ r1r21+A2”_2A”cosA9> (38)
v A2v
. v (] 1 — A2 1 1-A %
¥ (2, x() = o <r1r21+A2”—2A”cosA9 Fr 1+ A% oA cosAG) (39)

where 7, 7, and A are obtained by exchanging ¢ and ¢ in r|, r, and A.

V. RATE OF CHANGE OF ENERGY FOR A UNIFORMLY ACCELERATED ATOM

Assume that a two-level atom coupled to a quantum massless scalar field is uniformly accelerating parallel to the string,
i.e., it is accelerating along the z-direction. The trajectory of the atom can be described by

. T T
t = asinh—, z = acosh—,
a a

Atoms along such a trajectory are accelerating in the proper frame with acceleration o~

r = constant, 0 = constant. (40)

1

Inserting the above trajectory into the general expressions of the symmetric correlation function and the linear
susceptibility function of the field, Eqgs. (38) and (39), we obtain

1 1+ (/14 f2(Ar, r) = fi(Ar, r)®
CF (x(2).3(7)) = 555 ﬁ A SN

S faba, 1+ F(B ) 1= (1 + (A7) = fa(be, )

1+ (/14 f2(Ar,r) = fi(Ar, r)®
ZF(X(T) ( /) 3271_2,_2 Z ’ ' s (42)

A=+ f(A7, )4 /1 +f/1(Ar r) 1= (/14 fi(Ar,r) = fi(AT, 1))

where At =7 —17, s, = F1, and we have defined

fi(Ar,r) = FiZsinh (% + ie). (43)
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Plugging the symmetric correlation function of the field, Eq. (41), and the antisymmetric statistical function of the atom,
Eq. (30), into Eq. (25), we get, after some simplifications, the contribution of vacuum fluctuations to the average rate of

change of the atomic energy,
dH 4 (T) _
v /[, 32;:

X

1

Z Zwab\ (aRL(0)[B) 2 / dAzei it

+ ( 1+ f2(Ar, r) — fi(Ar, r>>z,,

Fi(Az, )\ /14 f3 (A, ) 1 = ( 1+ f7(Az,r) = f1(Ar, r))zy .

(44)

In obtaining the above expression, we have assumed the time interval At = 7 — 7, to be infinitely large. Similarly, the
insertion of the linear susceptibility function of the field, Eq. (42), and the symmetric statistical function of the atom,
Eq. (29), into Eq. (26) yields the contribution of radiation reaction to the average rate of change of the atomic energy,

<dH+p>,, B 327r

S2

Z Za)ab| (a| R} (0)|b) |2 / dATe AT

2v

L (14 £3(8nr) - fi(ae. 1)

X

fi(Ar,r)y/1 +f%(AT, r)l— ( 1 —}—fﬁ(AT, r) — f,(Ar, r)>2b‘

(45)

For an arbitrary value of the parameter v, the integrations in the above two equations are hard to deal with. Even though
these equations show that generally the contributions of vacuum fluctuations and radiation reaction are dependent on the
parameter v and the distance » between the atom and the string, so is the total rate of change of the atomic energy

X

1 67r2 r2

1

= S ollROF [ e

f-(Az,r)

which is obtained by adding up Egs. (44) and (45). It is
worth noting that in Ref. [33] the response rate of an Unruh
detector uniformly accelerating along such a trajectory is
claimed to be completely unaffected by the presence of the
cosmic string, i.e., it is exactly the same as that in a trivial
Minkowski spacetime. However, we would like to point out
here that the correction due to the presence of the string
does not seem to be correctly estimated in Ref. [33]1 as we
will explain. For the case of v being a noninteger, the
integration involved in the response rate is usually difficult
to deal with as the poles are of noninteger type, while for
cases with an integer v, as the poles are of integer type, the
response rate can be calculated out by the technique of
contour integrations and the residuum theory. This is just
what has been done in Ref. [27]. However, there the
revision part was also not correctly estimated. In fact,

'Let us note that the case of the trajectory perpendicular to the
string is not correctly estimated, since the original expression of
the response function of the Unruh detector should be a double
integration of 7 + 7’ and Az, which cannot be cast into a single
integration as in Eq. (16) in Ref. [33].

L+ (V142 (Anr) = f (An )P (46)

1+ f2(Ar,r) 1 = (/1 + f2(Az, r) = f_(Ar, 1)

[

when evaluating the integration in this case [see Eq. (2.11)
in Ref. [27]], there is an infinite number of poles in and
outside the contour as the function smh(— — ie) becomes
periodic when extended to the complex plane, and thus a
nonzero correction term is expected. So an Unruh detector
uniformly accelerating in a cosmic string spacetime will not
be oblivious of the string, but does feel the string. For some
special cases including the one with v being an integer,
accurate or approximate analytical results are obtainable.
We will discuss these cases carefully in the following.

A. The case for v =1

When v =1, which corresponds to the case of
Minkowski spacetime, the symmetric correlation function
and the linear susceptibility function of the field, Egs. (41)
and (42), reduce to

Cr(x(z).x())
1 1 1
- + 47
327%a? <sinh2(§—; —ie)  sinh?(3Z+ ie)) (47)
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7 (x(2).x(7) = -

1 1 1
327%a? (sinh2 (52— ie) - sinh? (5% + ie))'

(48)

Accordingly, the contributions of vacuum fluctuations and radiation reaction to the rate of change of the atomic energy

become

dH(7) _ W
dr /. 327

55D _wal(alRY(0)[b)?
b

o 1 1 .
X dA lwabAr’ 49
/_oo T(sinhz (52— ie) * sinh? (9% + ie)) ¢ (49)
dH(7) s 7
= R} (0)|b)|?
(T7) =g Sl D)
x / YA ! ! iy e (50)
T e« .
o sinh?(3% — ie) smhz(AT + ie)
By choosing appropriate contours and using the residue theory, the above two equations can be simplified to be
dH,(7) W 2 f 2
AN RL(0)B)* 1+ 55—
(a2) =i 2 whlalrtonmP (1 gy
2
- Y MR OB (14 )| 1)
W, <wy, -
dH, (1) W
(D) (X R OInP + 3 o lalREO)B)F ). (52)
rr 0,>w) Wy <Wp
The addition of the above two equations leads to the total rate of change of the atomic energy,
— ) = @3 [(al Ry (0)[ D) 1+ —
< dr tot wab b eZroae _ |
- Y MR O | (53

W, <wp

These results are exactly what have been obtained in
Ref. [1] for the rate of change of energy for an atom
uniformly accelerated in a free Minkowski vacuum. So,
here by taking v = 1, we recover the results in Minkowski
spacetime. Equations (51)—(53) are of the same form as the
rates of a static atom immersed in a thermal bath at the
temperature 7 = (2za)~!, revealing that in a free Min-
kowski spacetime, the effects of uniform acceleration and
thermal radiation are equivalent.

B. The case for v > 1
1. The atom is uniformly accelerating
on the string (r = 0)

We first consider a simple case in which r = 0, i.e., the
atom is uniformly accelerated on the string. In this case, the

symmetric correlation function and the linear susceptibility
function of the field are simple:

CT (x(z). x())

v 1 1
- - (54
327%a? <s1nh2 (52 — ie) - sinh? (5% + i6)> (54)

xF(x(7), x(7'))
v 1 1
- - . 55
327%a? (sinhz(% —i€e) sinh?(55+ ie)) (55)

They are exactly v times those in Minkowski spacetime
[see Eqs. (47) and (48)]. As a result, the contributions
of vacuum fluctuations and radiation reaction are found
to be
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dH,(z)\  pv ) y ) 2
(T =] S wnalrb o1 (14 s

W,>w)p
2 S 2 2
- Zwab|<a|R2(0)|b>| 1+m . (56)
W, <wy
dH ,(7) W
I DA OIS SrA OIS 57)
rr w,>wy, Wy <O

And consequently the total rate of change of the atomic energy follows:

dH () W 5 7 1
Ay =L E RLO)B)* 1 +———
< dr >tot 27 wab|<a‘ 2( )| >| e27zwa,,a -1

W, >w)

- Y MR OB | (58)

W, <wy

Comparing Eqgs. (56) and (57) with the results in a free
Minkowski spacetime, Eqgs. (51) and (52), we find that the
contributions of vacuum fluctuations and radiation reaction
to the average rate of change of the energy for an atom
accelerating on the string are in the same form as those in
the case of an atom uniformly accelerated in a free
Minkowski vacuum, and so is the total rate of change of
the atomic energy [see Eqgs. (58) and (53)]. Thus sponta-
neous excitation (emission) occurs for a ground (excited)
atom uniformly accelerated on the string as if it is immersed
in a thermal bath at the temperature 7 = (2za)~'. How-
ever, there are also some distinctions between these two
cases. Notice that the results in the cosmic string spacetime,
Egs. (56)—(58), are exactly v times those in a free
Minkowski vacuum [refer to Eqgs. (51)-(53)]. As v > 1,
the contributions of vacuum fluctuations and radiation
reaction, and thus the total rate of change of the atomic
energy, are amplified due to the deficit in angle in the
cosmic string spacetime. Comparing the above total rate of
change of the atomic energy with that of a static atom
|

Cr (x(z). x(7)) »

[
immersed in a thermal bath in a cosmic string spacetime
[34] [see Egs. (46) and (58)], we find that the uniformly
accelerated atom behaves just as if it is immersed in a
thermal bath at the temperature T = (2za)~!, revealing that
the effects of uniform acceleration and thermal radiation are
equivalent for atoms uniformly accelerated on the string.

2. The atom is uniformly accelerated outside
the string (r #0) with v > 1

When the atom is uniformly accelerated outside the
string, for a general value of the parameter v, analytical
results are hard to obtain. Here we consider the case
v 2 1. The reason that we are interested in this case is
because the parameter v is slightly larger than unity (about
107) for a typical cosmic string that arises in the grand
unified theory.

When v > 1, the symmetric correlation function and the
linear susceptibility function of the field, Eqs. (41) and
(42), can be expanded to the first order of (v — 1) as

v 1
327%a? \sinh* (5 — ie)

1
+ sinh?(3% + ie))
sinh~!(f_(Az, r))

sinh™!(f, (Az. 1)) >’ (59)

v—1
32222 <\/m 3(Ar,7) " V142 (A )3 (A r)

¥ (x(7),x(7)) »

v 1 1
3212 (sinhz(% —ie) sinh? (4% + ie))
sinh™!(f_(Az, 1))

sinh™! (f, (A, 7)) ). (60)

v—1
- 327 <¢m S(Arr) T (Ben)fi (A )

If we insert the above two functions of the field and the two statistical functions of the atom, Egs. (29) and (30), into
Eqgs. (25) and (26) accordingly and do some simplifications, then we obtain the contributions of vacuum fluctuations and

radiation reaction,
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dH dH (0) dH ey
< A(T)> N< A(T)> +< A(T)> ’ (61)
dr vf,rr dr vf,rr dr vf,rr
with
dH(7) W 2
(T50)" = | X ataltlmb (1 +
U Wy >0)
Ok 2
- Z wab| CZ|R |b>| Z”Iwab‘a _1 ’ (62)
W, <y
dH 4 (7)\ © wv :
(D) (S R R OP + 3 o (alRE O ). (63)
rr w,>w), w,<wy,
which represent the leading parts in the contributions of vacuum fluctuations and radiation reaction, and
dHA@\ D _ 2= 1) S
() S 0P [ anseoss
< sinh=!(f_(Az, 7)) + sinh™'(f, (Az, 7)) > (64)
V14 2(An, ) f2(Ar,r) 1+ fA(Ar r)f3 (A, r)
dH,(0)\ V) _ @2 (v f 2 i@, At
o = 327r2r2 Za)ab| a|R,(0)|b)] oodATe ab
" < sinh=!(f_(Az, 7)) sinh~!(f, (Az,71)) ) (65)
V14 fA(An 02 (A r) 1+ 2 (A ) f(Anr))

which stand for the correction to the leading parts. Here the
correction parts are kept as integrations because they are
generally difficult to deal with as the order of singularities
is usually of noninteger type. Notice that the leading parts,
Egs. (62) and (63), are the same as the contributions of
vacuum fluctuations and radiation reaction in the case of an
atom uniformly accelerated on the string in the cosmic

|
of an atom uniformly accelerated in a free Minkowski
spacetime [see Egs. (51) and (52)].

Adding up the contributions of vacuum fluctuations and
radiation reaction, we obtain the total rate of change of the
atomic energy

0
string spacetime with an arbitrary parameter v > 1 [see <dLM> ~ <dHA(T)>( ) + <dHA(T)>(l) (66)
Egs. (56) and (57)]. As v is a bit larger than unity, dr /[ dr [ dr [
(dH[;‘T(T)%f’r, in the cosmic string spacetime are slightly
amplified due to the deficit angle, as compared to the case ~ with
|
dHa(0)\ @ Wy f 2 1 2 f 2 1
<d1 T w;%wabI (alRy (O)B)*\ 1+ e —w;)ba)ab|(a|R2(0)|b>| S| (67
and
dH e\ 2 =1) ;
=- R} (0)|b)[?
e == DL O]
arcsin(%sinh (5% — iwqy AT
/ dAz (& ( i€))e (68)
\/1  sinh? (4 — ie) (¢ sinh(42 — ie))?
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representing respectively the leading part and the correction part of the average rate of change of the atomic energy. One can
see that the leading part is just v times the total rate of a uniformly accelerated atom in a free Minkowski vacuum and it is the
same as the total rate of a static atom immersed in a thermal bath near the cosmic string spacetime [see Eqs. (34) and the first
term in Eq. (62) in Ref. [34]], so the equivalence between the effect of uniform acceleration and thermal radiation holds up
to the leading order. The correction part, which is generally expressed as an integration, can however be calculated out by
using the technique of contour integration and the residuum theory, when r = a,

() =D 2 al b0 (1 ) o

tot W, > W)
1
2 S 2
+ Zwab|<a|R2(0)|b>\ mfl(wab’a)] (69)
Wa<wy
with

. h_l 1 e—ﬂwaba 2 70

fi(@gp, @) = sinh™! (1) " +2. (70)

Obviously, the correction part deviates from the standard thermal form. Thus, strictly speaking, the equivalence relation
between the effect of uniform acceleration and thermal radiation in terms of the transition rates of the atom, which is valid in
a free Minkowski spacetime as well as for an atom uniformly accelerated on the string, does not hold for an atom uniformly
accelerated outside the string.

3. The atom is uniformly accelerating parallel to the string in a spacetime with an integer v

To better understand the influence of the nontrivial topology characterized by a deficit angle, now we consider a special
case in which v is an integer. Let us start with v = 2. In this case, the symmetric correlation function and the linear
susceptibility function of the field, Egs. (41) and (42), can be simplified to be

C (x(z), (7)) =

1 ( 1—2‘:—§sinh2(%—i€)
3277 \ (1 — %2 sinh?(% — ie))sinh? (5% — ie)
1- 2’:—§sinh2(% + i€) >

71
(1 — % sinh?(5% + ie))sinh? (5% + ie) (71)

¥ (x(z).x(7) =

1 < 1 — 2% sinh? (4 — ie)
327%a* \(1 - “r’—jsinh2 (52 — i€))sinh? (3% — ie)
1- Zf—fsinhz(é—;—l— i€) > (72)
(1 — % sinh?(5% + ie))sinh? (52 + ie) )

Following similar steps as in the previous analysis, we can simplify the contributions of vacuum fluctuations as

dH (1) W f
— § R (0)|b)]?
< dr of 3271’26(2 . wab|<a| 2( )l >|
oo 1 1 .
X dA iw,, AT
/_oo ‘ (sinh2 o) s’ (er 1 ie)> ¢

2
H f 2
- E R (0)|b
3277,'2)”2 : wab|<a| 2( >| >|

o 1 1 ,
X dAt + 5 el WaAT 73
/_oo (1 —Zsinh?(31 —ie) 1 —%sinh?(4 + ie)) (73)

and the contribution of the radiation reaction as

084028-9



WENTING ZHOU and HONGWEI YU

<M

2
—— E R5(0)|b dA
32”2},.2 - a)ab|<a‘ 2( )| >| X/—oo T(l

The above equations are then calculated out to be

(), = | X damio

W,>w),

- Z wab| a|Rf

W, <wy

PHYSICAL REVIEW D 93, 084028 (2016)

2
I f 2 *© 1 1 iw, At
= S wulalR5 )b dA - w
dr >r, 327%a* 4 Vas|(alR3 (0)1)] X/_oo T(sinhZ(—%—ie) sinhz(—§;+ie)>e

1 1

- el (74
— % sinh?(42 —ie) 1 —%sinh?(4 + ie)> 4

2
>| ( + 2/[(1)“,7(1_ 1) X (1 +f2(wabva5 7'))

0P (14 ey ) % (1 Fowanar)| (75)

T 2
<dl_lc?r( )>rr - _Z_,; [ Z @2, (alR5(0)]D) 2 (1 + fr(@ap. . 7))

W, >w),
3 AR RO + ) (76)
W, <y,
in which we have defined
folog,a,r) = % <2waba -sinh™! (£> ) . (77)
2a)abr\/m a

Obviously, the contributions of vacuum fluctuations and radiation reaction are dependent on the atom-string distance, and
so is the total rate of change of the atomic energy, which is given by

() -5

W, >y,

AL

w,<wy

Comparing Egs. (75), (76) and (78) with formulas (31),
(34) and (35) in Ref. [3], we find that these rates are very
similar to the rates for an atom uniformly accelerated
parallel to a perfect reflecting plane boundary in a Min-
kowski vacuum. Let us note that the spacetime outside a
straight cosmic string is flat everywhere but shows a
nontrivial global topology characterized by the deficit
angle, thus field modes propagating in this twisted space-
time are restricted as opposed to those in a free Minkowski
spacetime. Our result indicates that the effect of the
|

(Fald) w- ”;{Zwab (RO (14 ) -

W, >

|: Z wab| a|Rf

W,> W),

. 1
= 3 @R OB

,<wp

1
|b>|2< +e2nwah—a_1> (I + fa(@ap. a.7))

O sz (14 Faloma)] (78)

nontrivial global topology on the field modes in the cosmic
string spacetime is very similar to that of a perfect reflecting
boundary on modes traveling in a Minkowski spacetime.

When r ~ 0,
2r2 (1
NI—T(E—F&)%I;), (79)

and as a result, the rate of change of the atomic energy
becomes

fowap,a,7)

Z wabl a|Rf

W, <wy

1
>| 27[\(1),,,,\(1 _ 1:|

1 1
|b>|2<1 + m) <p + wib)
1 2
1 ?+wab . (80)
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The first term on the right-hand side of the above
equation is exactly v times that in a free Minkowski
vacuum [see Eq. (53)], and it is just the rate of an atom
uniformly accelerated on the string [see Eq. (58)]. The
second term which is proportional to > is much smaller
than the first term, and it is induced by the nontrivial
topology of the cosmic string spacetime. Notice that
here the second term is also not of the pure thermal
form. It is worth pointing out that when taking r — O,

|

PHYSICAL REVIEW D 93, 084028 (2016)

we recover the result in the case of an atom uniformly
accelerating on the string [corresponding to the result in
Eq. (58) with v =2].

When r — oo,
zw‘; sin <2a)aba - sinh~! (2) > . (81)

thus the rate of change of the atomic energy becomes

fal@gp. o, 7) =

dH () W 2 f 2 1 2 f 2 1
<7d, >m~—g > @ (alR5(0)]b)] Ry > w2, |(alR(0)]p)] g

W,> W)

W<y

wa RLO)|)2( 1 ! in( 2 inh=1 (~
" 42 Zwah|<a| 2(0)[5)] +€2”m“”40—1 sin| 2w, - sin .

W, > W)

1 . . T
- Z a)ab|<a|R‘§(O)|b>|2Wsm <2a)aba - sinh 1 <(—x> >:| . (82)

W, <wy,

The first term on the right-hand side of the above equation
is the same as the rate of an atom uniformly accelerated in a
free Minkowski vacuum [see Eq. (53)]. The second term is
much smaller than the first term. It oscillates and decreases
with increasing atom-string distance, which means that the
revision part can be positive or negative. As a result, the
spontaneous excitation rate of an atom in the ground state
and the emission rate of an atom in the excited state can be
slightly larger or smaller than those in a free Minkowski
spacetime.

Finally, it is worth pointing out that the above results can
be easily generalized to other cases with an integer v > 2.
The difference only exists in the function f, (@, @, r). For
example, when v = 3,

4a
Wyp, A, 7)) =
LY Pz T

x sin (2a)aba - sinh™! (g) ) . (83)

Thus the properties found for the case v = 2 also hold for
cases with other integer v.

VI. CONCLUSIONS

In summary, we separately calculate the contributions of
vacuum fluctuations and radiation reaction to the rate of
change of energy for an atom coupled to a massless scalar
field and uniformly accelerated parallel to the string in a
vacuum in the cosmic string spacetime. For an atom
uniformly accelerated on the string, the rate of change of

|

the atomic energy is found to be exactly v times that for an
atom uniformly accelerated in a free Minkowski vacuum,
which means that the deficit in angle in the cosmic string
spacetime amplifies this rate. For an atom uniformly
accelerated outside the string in a cosmic string spacetime
with v > 1, the rate is slightly revised as compared to thatin a
free Minkowski vacuum. We also calculate the rate of
change of energy for an atom in a cosmic string spacetime
with the parameter v being an integer. Our results show that
as the field modes are restricted by the special topology of
the cosmic string spacetime, this rate generally depends on
the atom-string distance. At infinity, the rate is composed by
a leading part the same as the rate of an atom uniformly
accelerated in a free Minkowski vacuum and a revision part
induced by the effect of nontrivial topology of the spacetime.
Finally, our results show that in the cosmic string spacetime,
the equivalence between the effect of uniform acceleration
and thermal radiation on the transition rates of the atom
which is valid in the Minkowski spacetime holds only on the
string.
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