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We present a systematic framework to obtain the most general solutions of the equations of motion
in first order gravity theory with degenerate tetrads. There are many possible solutions. Generically, these
exhibit nonvanishing torsion even in the absence of any matter coupling. These solutions are shown
to contain a special set of eight configurations which are associated with the homogeneous model
three-geometries of Thurston.
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I. INTRODUCTION

The usual theory of gravity based on the Einstein-Hilbert
action functional involves an invertible metric. Solutions
of the vacuum equation of motion are, by construction,
torsion-free. On the other hand, first order gravity based on
the Hilbert-Palatini action accommodates invertible as well
as noninvertible tetrad configurations. The phase contain-
ing degenerate tetrads can support solutions of the vacuum
equations of motion with torsion. In the quantum theory in
first order formalism, configurations with both invertible
and noninvertible tetrads are to be integrated over in the
functional integral.
Gravity theory with degenerate metrics has evoked

interest for a long time [1–12]. These metrics are expected
to be relevant to the discussion of topology change
[2,5,6,12–14]. Such a topology change may have a quan-
tum and even a classical origin [12].
In this article, we present, in the first order formalism,

a detailed analysis of degenerate tetrads with one zero
eigenvalue. An elaborate procedure to solve the equations
of motion will be developed. In particular, a set of eight
explicit solutions of the equations of motion of pure gravity
will be presented. These are associated with eight inde-
pendent homogeneous model three-geometries of Thurston
[15–17]. These include, besides the three isotropic constant
curvature three-geometries E3, S3 and H3, others which
are homogeneous but not isotropic. It is remarkable that
all such degenerate solutions of four-dimensional gravity
theory are not generically torsion-free.
Examples of degenerate tetrad configurations as solu-

tions of equations of motion have appeared earlier in the
interesting work of Tseytlin [5]. In particular, two explicit
solutions reported in this reference correspond to two
special cases, S3 and S2 × R, as discussed in Sec. V.
The article is organized as follows. In Sec. II, we recall the

Hilbert-Palatini action functional without any cosmological

constant or matter fields and write down the consequent
equations of motion. Section III outlines the standard
analysis for invertible tetrads to demonstrate the well-known
fact that such a theory is equivalent to the usual theory based
on the Einstein-Hilbert action. The equations of motion are
exactly the same as the vacuum Einstein field equations.
Section IV contains an elaborate discussion of degenerate
tetrads with one zero eigenvalues. Equations of motion are
shown to exhibit many possible solutions. Eight explicit
solutions corresponding to Thurston’s homogeneous three-
geometries are displayed in detail in Sec. V. Next, the nature
of the underlying geometry of these degenerate solutions is
argued to be represented by Sen Gupta geometry [18] in
Sec. VI. Finally, some concluding remarks are presented in
Sec. VII. The Appendix contains details of the calculations
used earlier in Sec. IV.

II. HILBERT-PALATINI ACTION

Euclidean gravity in the first order formulation is
described in terms of tetrad fields eIμ and connection fields
ωμ

IJ corresponding to the local Lorentz group SO(4).
Both these sets of fields are treated as independent in
the Hilbert-Palatini action functional:

S ¼ 1

8κ2

Z
d4x ϵμναβϵIJKLeIμeJνRαβ

KLðωÞ; ð1Þ

where the curvature Rμν
IJðωÞ ¼ ∂ ½μων�IJ þ ω½μIKων�KJ

is the field strength of the gauge connection ωμ
IJ of the

local SO(4) symmetry of Euclidean gravity. Here the Greek
indices μ≡ ða; τÞ are associated with the spatial coordi-
nates a≡ ðx; y; zÞ and Euclidean time coordinate τ. Internal
indices are I ≡ ði; 4Þ; i ¼ 1, 2, 3. Completely antisymmet-
ric epsilon symbols take constant values 0 and �1 with
ϵxyzτ ¼ þ1 and ϵ1234 ¼ þ1. Internal indices are raised and
lowered by the flat metric ηIJ ¼ δIJ ¼ ηIJ.
Euler-Lagrange equations of motion are obtained by

varying the action (1) with respect to ωμ
IJ and eIμ

independently:
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δS
δωβ

IJ∶ ϵμναβϵIJKLeKμDνðωÞeLα ¼ 0; ð2Þ

δS
δeIμ

∶ ϵμναβϵIJKLeJνRαβ
KLðωÞ ¼ 0: ð3Þ

An equivalent way to display these equations of motion is

e½I½μDνðωÞeJ�α� ¼ 0; ð4Þ

e½I½μRνα�JK�ðωÞ ¼ 0: ð5Þ

We need to solve these equations for the tetrads and
connections. Since the Hilbert-Palatini action functional
(1) accommodates both invertible and noninvertible tetrads,
we may consider these two cases separately.

III. INVERTIBLE TETRADS

For tetradswith det eIμ ≠ 0, the inverse tetrad eμI is givenby
eμI e

I
ν ¼ δμν , e

μ
I e

J
μ ¼ δJI .Multiplying Eq. (4) by inverse tetrads,

it is straightforward to check the following identities:

eμI e
½I
½μDνðωÞeJ�α� ≡D½νðωÞeJα� − eJνðeμID½αðωÞeIμ�Þ

þ eJαðeμID½νeIμ�Þ ¼ 0

and eμI e
ν
Je

½I
½μDνðωÞeJ�α� ≡ −4eμID½αðωÞeIμ� ¼ 0:

From these, it readily follows that, for invertible tetrads,
24 equations of motion in (4) are equivalent to the fact that
the torsion is zero:

Tμν
I ≡D½μðωÞeIν� ¼ 0: ð6Þ

As iswell known, these 24 equations can in turn be solved for
24 connection fields showing that these are not independent
but can be written in terms of the tetrad fields as

ωIJ
μ ¼ ωIJ

μ ðeÞ≡ 1

2
½eνI∂ ½μeJν� − eνJ∂ ½μeIν� − eKμ eλIe

ρ
J∂ ½λeKρ��: ð7Þ

Another set of 16 equations of motion in (5), by
multiplying with eμI e

ν
J, yield the standard 16 equations

of motion:

Rα
K −

1

2
eKαR ¼ 0; ð8Þ

where Rα
K ≡ eμI Rμα

IKðωÞ and R≡ eαKRα
K. These equa-

tions are the same as Einstein field equations. This follows
readily by realizing that the local Lorentz field strength, for
invertible tetrads, is related to the Riemann curvature as

Rμν
IJðωÞeIλeρJ ¼ Rμνλ

ρðΓÞ: ð9Þ
Thus, the first order formalism for invertible tetrads is

exactly equivalent to the second order formalism based on
the Einstein-Hilbert action functional.

It is important to notice that for invertible tetrads, solutions
of the equations of motion would all be torsion-free.
As stated earlier, the Hilbert-Palatini action functional (1),

and also the equations ofmotion (2) and (3) or (4) and (5), are
well defined both for invertible tetrads (det eIμ ≠ 0) and non-
invertible tetrads (det eIμ ¼ 0). Unlike the case above where
det eIμ ≠ 0, any solution of the equations of motion with deg-
enerate tetrads can, in general, possess torsion. Degenerate
tetrads can have one or more zero eigenvalues. We consider
the case of tetrads with only one zero eigenvalue here.

IV. DEGENERATE TETRADS WITH
ONE ZERO EIGENVALUE

Through appropriate local SOð4Þ rotations and general
coordinate transformations, any degenerate tetrad eIμ with
one zero eigenvalue can be cast as an invertible 3 × 3 block
of triads eia (a ¼ x, y, z and i ¼ 1, 2, 3) with eIτ ¼ e4a ¼ 0
as follows:

eIμ ¼
�
eia 0

0 0

�
: ð10Þ

The four-dimensional metric is

gμν ¼ eIμeIν ¼
�
gab 0

0 0

�
; gab ¼ eiaeib:

We denote the determinant of the triad as e, det eia ≡ eð≠ 0Þ
and its inverse as êai ; ê

a
i e

i
b ¼ δab, ê

a
i e

j
a ¼ δji . Note that the

triad fields eia and the inverse êai depend on all four
spacetime coordinates ðx; y; z; τÞ. The four-dimensional
infinitesimal length element is ds2ð4Þ ¼ 0þ gabdxadxb.
Let us analyze the set of 24 equations in (4) for such

degenerate tetrads.Unlike the case of invertible tetradswhere
these equations can be solved for all 24 components of the
connection fields ωμ

IJ as in Eq. (7), here for the degenerate
tetrads (10), Eq. (4) cannot be solved for all the components.
As shown in the Appendix, Eq. (4) can be solved to

yield the following constraints for triads eia and connection
fields ωμ

IJ:

DτðωÞeka ¼ 0 where ωτ
ij ¼ ω̄τ

ijðeÞ≡ êai ∂τe
j
a ¼ eia∂τêaj ;

ð11Þ
ωτ

4k ¼ 0; ωa
4k ≡Mk

a ¼ Mklela with Mkl ¼ Mlk

ð12Þ

and ωa
ij ¼ ω̄a

ijðeÞ þ κa
ij; κa

ij ≡ ϵijkNk
a ¼ ϵijkNklela

with Nkl ¼ Nlk

ω̄a
ijðeÞ≡ 1

2
½êbi ∂ ½ae

j
b� − êbj∂ ½aeib� − elaêbi ê

c
j∂ ½belc��: ð13Þ

Here ω̄a
ijðeÞ and κa

ij are the torsion-free Levi-Civita
connection and contortion fields, respectively.
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These equations state that the triads eia are covariantly
conserved with respect to τ, and the connection compo-
nents ωτ

4k are fixed to zero. Of the nine independent fields
ωa

4k, the three represented by the antisymmetric part of
the matrix Mij are zero, the other six represented by the
symmetric matrix Mijð¼ MjiÞ are not determined at all.
Similarly, of the nine components of the contortion fields
κa

ij, the six represented by the symmetric matrix Nij are
left undetermined. Thus, for degenerate tetrads (10), Eq. (4)
fixes only 12 independent fields in ωμ

IJ and leaves the
other 12, as encoded by two symmetric matrices Mij and
Nij, undetermined. Some of these will be further fixed by
other equations of motion (5) as discussed below.
Notice that Eq. (11) implies that the three-metric is τ

independent: ∂τgab≡DτðωÞðeiaeibÞ¼ 0. Therefore, τ dep-
endence of triads eia is only a pure gauge artifact and can be
rotated away by an SOð3Þ transformation. That is, for an
appropriate orthogonal matrix Oij, it is always possible
to write

eia ¼ Oije0ja ; ω̄μ
ij ¼ OilOjkω̄0

μ
lk þOil∂μOjl

such that ∂τe0ia ¼ 0; ∂τω̄
0
a
ijðe0Þ ¼ 0 and ω̄0

τ
ij ¼ 0:

ð14Þ
As shown in the Appendix, the 16 tetrad equations of

motion in (5), for degenerate tetrads (10), are equivalent
to the following four sets of 3, 9, 3 and 1 equations,
respectively:

êai Rτa
ijðωÞ ¼ 0; ð15Þ

Rτa
4kðωÞ ¼ DτðωÞMk

a ¼ 0; ð16Þ

êakRab
4kðωÞ ¼ ðelbêai − δabδ

l
iÞDaðω̄ÞMil ¼ 0; ð17Þ

êai ê
b
j R̄ab

ijðω̄ÞþðMijMji−MiiMjjÞþðNijNji−NiiNjjÞ¼0;

ð18Þ
where Daðω̄ÞMil ≡ ∂aMil þ ω̄a

ijðeÞMjl þ ω̄a
ljðeÞMij and

R̄ab
ijðω̄Þ is the curvature for the torsion-free Levi-Civita

spin connection ω̄a
ijðeÞ of (13):

R̄ab
ijðω̄Þ≡ ∂ ½aω̄b�ij þ ω̄½ailω̄b�lj:

Equation (15) is identically valid for all configurations
which satisfy Eqs. (11)–(13). To show this, note that
Rτa

ijðωÞ¼R̄τa
ijðω̄ÞþDτðω̄Þκaijwhere R̄τa

ijðω̄Þ≡∂ ½τω̄a�ijþ
ω̄½τilω̄a�lj. We can write R̄τa

ijðω̄Þ ¼ OilOjkR̄0
τa

lkðω̄0Þwhere
the gauge rotated primed quantities are as defined in Eq. (14).
Now, since ω̄0

τ
ijðe0Þ ¼ 0 and ∂τω̄

0
a
ijðe0Þ ¼ 0 for the primed

connections of (14), the curvature R̄0
τa

ijðω̄0Þ≡ ∂ ½τω̄0
a�
ij þ

ω̄0½τ
ilω̄0

a�
lj ≡ 0 and hence R̄τa

ijðω̄Þ ¼ 0. This thus implies
Rτa

ijðωÞ ¼ Dτðω̄Þκaij. Contracting with êai , we note that

êai Rτa
ijðωÞ ¼ êai Dτðω̄Þκaij ¼ Dτðω̄Þðêai κaijÞ ¼ 0 because

êai κa
ij ¼ 0 for κaij ¼ ϵijkNklela where Nkl ¼ Nlk.

Next, using Eq. (11), we note that the constraints (16)
and (17) are solved by the choice

Mi
a ¼ λeia ⇒ Mij ≡Mi

aêaj ¼ λδij ð19Þ

where λ is a spacetime constant. This further implies that

MijMji −MiiMjj ¼ −6λ2: ð20Þ

Using this, the last constraint (18) can then be recast as

ζ ¼ 6λ2 − êai ê
b
j R̄ab

ijðω̄Þ ð21Þ

where

ζ≡ NijNji − NiiNjj ¼ 2ðη21 þ η22 þ η23 − αβ − βγ − γαÞ
ð22Þ

for the symmetric matrix

Nij ¼

0
B@

α η3 η2

η3 β η1

η2 η1 γ

1
CA: ð23Þ

We conclude this section by noting that the action (1) for
any configuration with degenerate tetrads (10) satisfying
the equations of motion is zero:

S ¼ 1

8κ2

Z
d4xϵμναβϵIJKLeIμeJνRαβ

KLðωÞ

¼ 1

2κ2

Z
d4xϵabcϵijkeiae

j
bRcτ

k4ðωÞ ¼ 0; ð24Þ

where we have used the constraint (16) in the last step.

V. EXPLICIT SOLUTIONS WITH
DEGENERATE TETRADS

To obtain explicit solutions of the equations of motion
(11)–(13) and (15)–(17), all we need to do is prescribe a
set of triads eia and associated torsion-free Levi-Civita
spin connections ω̄a

ijðeÞ and evaluate the spatial (three-)
curvature scalar êai ê

b
j R̄ab

ijðω̄Þ to fix the combination ζ of
Eq. (21). There are many possible solutions. A set of
solutions for homogeneous three-geometries described by
the triads can be put in eight classes as given by Thurston’s
model three-geometries [15]. We now display all eight
solutions.

A. E3 geometry

This flat solution is the simplest where, for affine
coordinates xa ≡ ðx; y; zÞ, the infinitesimal (squared)
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length element is ds2ð4Þ ¼ dx2 þ dy2 þ dz2. The triads

here are simply e1x ¼ e2y ¼ e3z ¼ 1, and all others are
zero. The corresponding spin connection ω̄a

ijðeÞ ¼ 0,
and so the three-curvature is R̄ab

ijðω̄Þ ¼ 0. The contortion
components as given by the symmetric matrix Nij are
constrained as

ζ ≡ 2ðη21 þ η22 þ η23 − αβ − βγ − γαÞ ¼ 6λ2: ð25Þ

B. S3 geometry

The metric in terms of the angular coordinates xa ¼
ðθ;ϕ; χÞ for this spherical three-geometry is

ds2ð4Þ ¼ l2½dθ2 þ sin2θðdϕ2 þ sin2ϕdχ2Þ�:

The only nonzero components of the triad are

e1θ ¼ l; e2ϕ ¼ l sin θ; e3χ ¼ l sin θ sinϕ:

Associated torsion-free spin connections for this set of
triads are

ω̄ϕ
12 ¼ − cos θ; ω̄χ

23 ¼ − cosϕ; ω̄χ
31 ¼ cos θ sinϕ;

and all others are zero. This is a constant curvature three-
geometry with the curvature components given by
R̄ab

ijðω̄Þ ¼ 1
l2 e

i
½ae

j
b� so that the spatial curvature scalar

is êai ê
b
j R̄ab

ijðω̄Þ ¼ 6
l2. The contortion components are

given by

N1
a ¼ lðα; η3 sin θ; η2 sin θ sinϕÞ;

N2
a ¼ lðη3; β sin θ; η1 sin θ sinϕÞ;

N3
a ¼ lðη2; η1 sin θ; γ sin θ sinϕÞ;

where the six fields ðα; β; γ; η1; η2; η3Þ are as in (23). The
final constraint (21) takes the form

ζ ¼ 6λ2 −
6

l2
: ð26Þ

For the special choice, Ni
a ¼ lμeia, this S3 configuration

is exactly a gauge rotated version of the first of the two
solutions obtained by Tseytlin [5].

C. H3 geometry

The metric for this hyperbolic three-geometry is

ds2ð4Þ ¼
l2

z2
ðdx2 þ dy2 þ dz2Þ; z > 0:

Only nonzero components of the triad are e1x ¼ e2y ¼
e3z ¼ l

z, and those of the torsion-free connection are
ω̄x

31 ¼ 1
z ¼ −ω̄y

23. This is again a constant curvature
three-geometry with the curvature components as

R̄ab
ijðω̄Þ ¼ − 1

l2 e
i
½ae

j
b� so that the spatial curvature scalar

becomes êai ê
b
j R̄ab

ijðω̄Þ ¼ − 6
l2. The contortion is given by

N1
a ¼

l
z
ðα;η3;η2Þ; N2

a ¼
l
z
ðη3;β;η1Þ; N3

a ¼
l
z
ðη2;η1; γÞ;

and the constraint (21) becomes

ζ ¼ 6

l2
þ 6λ2: ð27Þ

D. R × S2 geometry

The metric here is

ds2ð4Þ ¼ dx2 þ l2ðdθ2 þ sin2θdϕ2Þ:

Nontrivial triad components are e1x ¼ 1, e2θ ¼ l, e3ϕ ¼ l sin θ,
and the only nonzero component of the associated spin
connection is ω̄ϕ

23 ¼ − cos θ. There is only one nonvanish-
ing curvature component R̄θϕ

23ðω̄Þ ¼ sin θ, so the spatial
three-curvature scalar is êai ê

b
j R̄ab

ijðω̄Þ ¼ 2
l2. The contortion

components are given by

N1
a ¼ ðα; lη3; lη2 sin θÞ; N2

a ¼ ðη3; lβ; lη1 sin θÞ;
N3

a ¼ ðη2; lη1; lγ sin θÞ;

and the master constraint (21) is

ζ ¼ 6λ2 −
2

l2
: ð28Þ

This solution is a gauge rotated version of the second solution
obtained earlier by Tseytlin [5].

E. R ×H2 geometry

The infinitesimal arc length square is

ds2ð4Þ ¼ dx2 þ l2

z2
ðdy2 þ dz2Þ; z > 0:

Nonzero components of the triad and the corresponding
torsion-free connection are e1x ¼ 1, e2y ¼ e3z ¼ l

z and
ω̄y

23 ¼ − 1
z. The curvature has only one nonzero compo-

nent, R̄yz
23ðω̄Þ ¼ − 1

z2, leading to the spatial curvature

scalar êai ê
b
j R̄ab

ijðω̄Þ ¼ − 2
l2. The contortion is given by

N1
a ¼

�
α;

l
z
η3;

l
z
η2

�
; N2

a ¼
�
η3;

l
z
β;

l
z
η1

�
;

N3
a ¼

�
η2;

l
z
η1;

l
z
γ

�
:

Finally we have the constraint
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ζ ¼ 2

l2
þ 6λ2: ð29Þ

F. Sol-geometry

Here the metric is

ds2ð4Þ ¼ e
2z
l dx2 þ e−

2z
l dy2 þ dz2;

with nonzero components of the triads and spin-connection
fields as

e1x ¼ e
z
l; e2y ¼ e−

z
l ; e3z ¼ 1;

ω̄y
23 ¼ −

e−
z
l

l
; ω̄x

31 ¼ −
e
z
l

l
:

Nonvanishing curvature components are

R̄xy
12ðω̄Þ ¼ 1

l2
; R̄yz

23ðω̄Þ ¼ −
e−

z
l

l2
; R̄zx

31ðω̄Þ ¼ −
e
z
l

l2
;

so êai ê
b
j R̄ab

ijðω̄Þ ¼ − 2
l2. The contortion fields are

N1
a ¼ ðαez

l; η3e−
z
l ; η2Þ; N2

a ¼ ðη3ez
l; βe−

z
l ; η1Þ;

N3
a ¼ ðη2ez

l; η1e−
z
l ; γÞ:

With these, the constraint (21) becomes

ζ ¼ 2

l2
þ 6λ2: ð30Þ

G. Nil-geometry

This geometry is characterized by the metric

ds2ð4Þ ¼ dx2 þ dy2 þ
�
dz −

x
l
dy

�
2

with nonzero triad components as e1x ¼ 1; e2y ¼ 1,
e3y ¼ − x

l; e3z ¼ 1 and the nontrivial components of the
inverse as êx1 ¼ 1; êy2 ¼ 1; êz2 ¼ x

l, ê
z
3 ¼ 1. Nonvanishing

components of the torsion-free spin connection are
ω̄y

12 ¼ − x
2l2, ω̄z

12 ¼ −ω̄x
23 ¼ −ω̄y

31 ¼ 1
2l. These lead to

R̄xy
12ðω̄Þ ¼ − 3

4l2, R̄yz
23ðω̄Þ ¼ 1

4l2 ¼ R̄zx
31ðω̄Þ, R̄xy

31ðω̄Þ ¼
x
4l3 as the only nonzero curvature components. Thus, the
curvature scalar is êai ê

b
j R̄ab

ijðω̄Þ ¼ − 1
2l2. The contortion

fields are

N1
a ¼

�
α; η3 −

x
l
η2; η2

�
; N2

a ¼
�
η3; β −

x
l
η1; η1

�
;

N3
a ¼

�
η2; η1 −

x
l
γ; γ

�
;

and the constraint (21) reads

ζ ¼ 1

2l2
þ 6λ2: ð31Þ

H. gSL2R-geometry

The metric is given by [17]

ds2ð4Þ ¼ dr2 þ l2½c2s2dθ2 þ ðdϕþ s2dθÞ2�

where c≡ coshðrlÞ and s≡ sinhðrlÞ. The nonvanishing
components of the triad, inverse triad and torsion-free spin
connection are

e1r ¼ 1; e2θ ¼ lsc; e3θ ¼ ls2; e3ϕ ¼ l;

êr1 ¼ 1; êθ2 ¼
1

lsc
; êϕ2 ¼ −

s
lc
; êϕ3 ¼

1

l
;

ω̄θ
12 ¼ −ðc2 þ 2s2Þ; ω̄ϕ

12 ¼ −1; ω̄r
23 ¼ 1

l
; ω̄θ

31 ¼ cs:

These imply that only the following curvature components
are nonvanishing:

R̄rθ
12ðω̄Þ ¼ −

7cs
l

; R̄θϕ
23ðω̄Þ ¼ cs; R̄rθ

31ðω̄Þ ¼ −
s2

l
;

R̄ϕr
31ðω̄Þ ¼ 1

l
;

so the curvature scalar is êai ê
b
j R̄ab

ijðω̄Þ ¼ − 10
l2 . The

contortion components are

N1
a ¼ ðα; lscη3 þ ls2η2; lη2Þ; N2

a ¼ ðη3; lscβþ ls2η1; lη1Þ;
N3

a ¼ ðη2; lscη1 þ ls2γ; lγÞ:

The final constraint (21) now is

ζ ¼ 10

l2
þ 6λ2: ð32Þ

With this we have completed the discussion of various
explicit solutions associated with Thurston’s eight model
three-geometries. All these solutions generically contain
torsion as reflected by the symmetric matrix Nij where the
contortion is parametrized as κaij ¼ ϵijkNklela. Six compo-
nent fields of symmetric Nij depend on all four spacetime
coordinates (x, y, z, τ). These are independent except for
one constraint, so the combination ζ ¼ ðNijNji − NiiNjjÞ
has fixed values as dictated by the condition (21) for
various solutions. For all eight solutions above, ζ as given
by Eqs. (25)–(32) is a spacetime constant in each case.
To emphasize, unlike the case of invertible tetrads where

torsion enters into the theory through matter couplings
such as fermions, here in the phase with degenerate tetrads
torsion is exhibited by the solutions even in the case of pure
gravity without any torsion-inducing matter fields.
Our discussion of degenerate tetrads above has been set

up in Euclidean gravity. As is obvious, it holds equally well
for Lorentzian signature where the zero eigenvalue of the
tetrad is in the time direction. Also, the analysis has a
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straightforward generalization even when the zero eigen-
value is in a spatial direction where the nontrivial three-
geometry would now be Lorentzian and corresponding
changes for three of the six torsional componentswill appear.

VI. SEN GUPTA GEOMETRY

The degenerate tetrad solutions we have discussed here
do not represent the usual geometry as seen in the
Einsteinian gravity. To understand the nature of these
solutions, let us go to the flat spacetime limit.
We use Lorentzian signature in the discussion that

follows. In the flat limit, the square of the infinitesimal
length element is given by

ds2ð4Þ ¼ −c2dt2 þ dx2 þ dy2 þ dz2:

The degenerate tetrad with one zero eigenvalue as consid-
ered here corresponds to the limit where the metric
component gtt ≡−c2 → 0 in this flat spacetime case.
Under a change of frame, the length element stays

unaltered:

ds2ð4Þ ¼ −c2dt2 þ dx2 þ dy2 þ dz2

¼ −c2dt02 þ dx02 þ dy02 þ dz02:

There are two ways of writing transformations which leave
ds2ð4Þ invariant. First is the standard Lorentz transformation:

dt0 ¼ dt− v
c2dxffiffiffiffiffiffiffiffiffiffiffi

1− v2

c2

q ; dx0 ¼ dx−vdtffiffiffiffiffiffiffiffiffiffiffi
1− v2

c2

q ; dy0 ¼ dy; dz0 ¼ dz

ð33Þ
where we have introduced the boost transformation in the
t − x plane. Here the parameter v, bounded from above as
v2 < c2, is the relative velocity between the frames. In
other words, v ¼ dx

dt (for Δx
0 ¼ 0) is the velocity of a fixed

point in the primed frame in the spacetime of the unprimed
frame. As pointed out by Sen Gupta [18], there is another
transformation which leaves the length element ds2ð4Þ
invariant:

dt0 ¼ dt− dx
wffiffiffiffiffiffiffiffiffiffiffi

1− c2

w2

q ; dx0 ¼ dx− c2
w dtffiffiffiffiffiffiffiffiffiffiffi

1− c2

w2

q ; dy0 ¼ dy; dz0 ¼ dz:

ð34Þ
Here the parameter w is bounded from below as w2 > c2.
Despite its dimensions, w is not a relative frame velocity.
Since w ¼ dx

dt for Δt
0 ¼ 0, it rather represents the rate of

change of an event that occurs at a fixed time in the primed
system as measured in the unprimed system. The two
transformations (33) and (34) are dual to each other. They
go to each other under the changes v → c2

w and w → c2
v .

The nonrelativistic limit of the Lorentz transformation is
obtained by taking the c → ∞ limit in (33) to yield the
standard Galilean transformation:

dt0 ¼ dt; dx0 ¼ dx − vdt; dy0 ¼ dy; dz0 ¼ dz:

ð35Þ
On the other hand, it is the transformation (34) that is
appropriate for studying the limit c → 0. In this limit, as
was pointed out by Sen Gupta, transformation (34) leads to
the following dual transformation:

dt0 ¼ dt −
dx
w

; dx0 ¼ dx; dy0 ¼ dy; dz0 ¼ dz:

ð36Þ
This transformation [18,19], though analogous to the
Galilean transformation (35), yet is different, with the roles
of space and time interchanged. We may refer to the
spacetime with transformation properties (36) as Sen
Gupta spacetime.
The phase of degenerate tetrads in the first order

formalism discussed in this article describes the curved
spacetime generalizations of the Sen Gupta spacetime. This
is in contrast to the phase with invertible tetrads which
corresponds to the usual Einstein curved spacetime.

VII. CONCLUDING REMARKS

The phase containing invertible tetrads in the first order
gravity based on the Hilbert-Palatini action is exactly the
same as the usual Einstein geometry described by the
second order formalism based on the Einstein-Hilbert
action. However, in the first order formulation there is
another phase containing noninvertible tetrads. Thus, even
classically the two formalisms are not equivalent.
Here we have studied in detail possible degenerate tetrad

solutions with one zero eigenvalue in first order gravity.
Many such solutions are possible. A special class of
solutions obtained are associated with Thurston’s eight
homogeneous three-geometries. All these solutions generi-
cally possess torsion without the presence of any matter
fields such as fermions.
While the solutions with invertible tetrads correspond to

the usual Einstein geometry, the degenerate ones with one
zero eigenvalue are curved spacetime generalizations of
Sen Gupta (flat) spacetime geometry.
In the quantum theory of gravity we need to integrate over

all possible configurations, including those with degenerate
tetrads, in the functional integral as prescribed by the
Feynman path integral formulation. Such noninvertible con-
figurations can play an important role in the quantum theory.
Although our analysis has been presented in the frame-

work of Euclidean gravity, it is also valid for Lorentzian
gravity where the zero eigenvalue of the tetrad is in the
time direction. In particular, the eight explicit solutions
displayed inSec.Varevalid for this case aswell. The analysis
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with the null eigenvalue in a spatial direction is also a mere
simple generalization of the analysis elucidated here.
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APPENDIX

Here we present the details of the derivations of
Eqs. (11)–(13) and (15)–(18).
For the degenerate tetrads (10), we may break the 24

equations in (4) into two sets of 18 and 6 equations,
respectively, as

e½I½τDaðωÞeJ�b� ¼ 0; ðA1Þ
e½I½aDbðωÞeJ�c� ¼ 0: ðA2Þ

It is straightforward to see that Eq. (A1) can be recast as
18 equivalent equations:

DτðωÞðe½Ia eJ�b Þ ¼ 0: ðA3Þ
Taking I ¼ i and J ¼ 4, these result in nine equations:
ei½ae

k
b�ω

4k
τ ¼ 0. These in turn imply vanishing of ωτ

4i as

claimed in (12). Again, for I ¼ i, J ¼ j, Eq. (A3) leads to

the nine equations DτðωÞðe½iaej�b Þ ¼ 0. These are equivalent
to nine equations DτðωÞeia ¼ 0 as claimed in (11). These
further imply DτðωÞêai ¼ 0 and ∂τe ¼ 0 where e ¼ det eia.
These equations can be solved for the connection compo-
nents ωτ

ij as

ωτ
ij ¼ ω̄τ

ijðeÞ≡ êai ∂τe
j
a ¼ eia∂τêaj ¼ −êaj∂τeia ¼ −eja∂τêai :

ðA4Þ
Next, we take I ¼ i, J ¼ 4 in Eq. (A2) and multiply by

êai to show that D½bðωÞe4c� ≡ ω½b4kekc� ¼ 0 which in turn

implies that ωb
4k ≡Mk

b ¼ Mklelb is such that the 3 × 3

matrix Mkl is symmetric. Furthermore, for I ¼ i, J ¼ j in
(A2), multiplying by êai ê

b
j, it can readily be shown to lead to

three conditions:

êai D½cðωÞeia� ¼ 0: ðA5Þ

Now let us split the connection fields as ωa
ij ¼ ω̄a

ijðeÞ þ
κa

ij where κa
ij ≡ ϵijkNk

a ≡ ϵijkNklela are the contortion
fields and ω̄a

ijðeÞ, as given in Eq. (13), are the torsion-
free Levi-Civita spin connections for the triads eia:

D½aðω̄Þeib� ¼ 0: ðA6Þ

With this, Eq. (A5) can be shown to imply that êai κa
ij ¼ 0.

This further leads to the fact that the 3 × 3 contortion matrix
Nij does not have any antisymmetric part, that is,Nij ¼ Nji.
Next, we split the 16 equations in (5) into two sets of 12

and 4 equations, respectively, as

e½I½τRab�JK�ðωÞ ¼ 0; ðA7Þ

e½I½aRbc�JK�ðωÞ ¼ 0: ðA8Þ

In Eq. (A7) we take I ¼ 4, J ¼ j, K ¼ k and multiply

by inverse triads to note that êaj e
½4
½τRab�jk�ðωÞ¼

4½Rbτ
k4ðωÞþekbðêajRτa

4jðωÞÞ�¼ 0 and êbkê
a
j e

½4
½τRab�jk�ðωÞ ¼

16êakRaτ
4kðωÞ ¼ 0. This leads to the 9 conditions

Raτ
4kðωÞ ¼ 0. Further using the fact that ωτ

4k ¼ 0 as
argued above, we note that Raτ

4kðωÞ≡−ð∂τωa
4kþ

ωτ
klωa

4lÞ≡−ð∂τMk
aþωτ

klMl
aÞ≡−DτðωÞMk

a. Thus we
have the nine constraints:

Raτ
4kðωÞ ¼ −DτðωÞMk

a ¼ 0: ðA9Þ
Again in Eq. (A7), we take I ¼ i, J ¼ j, K ¼ k and use

the fact that êai ê
b
j e

½i
½τRab�jk�ðωÞ ¼ 8êai Rτa

kiðωÞ, leading us to
three constraints:

êai Rτa
kiðωÞ ¼ 0: ðA10Þ

Next, let us take I ¼ 4, J ¼ j, K ¼ k in Eq. (A8) and

notice that êaj ê
b
ke

½4
½aRbc�jk�ðωÞ ¼ 8êajRca

4jðωÞ, leading us to

three conditions:

êakRab
4kðωÞ ¼ ðelbêai − δabδ

l
iÞDaðω̄ÞMil ¼ 0; ðA11Þ

where for the first step we have used Rab
4kðωÞ¼

D½aðωÞMk
b� ¼D½aðω̄ÞMk

b� þ κkl½aM
l
b� and êakκ

kl
a ¼ 0 and Mil≡

Mi
aêal ¼ Mli.
Finally taking I ¼ i, J ¼ j, K ¼ k in (A8) and

using ϵabcϵijkeiaRbc
jk ¼ 2eêbj ê

c
kRbc

jk, we obtain the last
condition as

êai ê
b
jRab

ijðωÞ ¼ 0: ðA12Þ
Expanding ωa

ij ¼ ω̄a
ijðeÞ þ ϵijkNklela, we find that

Rab
ijðωÞ ¼ R̄ab

ijðω̄Þ − ϵijkel½aDb�ðω̄ÞNkl

− ðMilMjk þ NilNjkÞel½aekb�; ðA13Þ

where R̄ab
ijðω̄Þ ¼ ∂ ½aω̄b�ij þ ω̄½ailω̄b�lj. Using this, the

constraint (A12) can be recast as

êai ê
b
j R̄ab

ijðω̄Þ þ ðMijMji −MiiMjjÞ
þ ðNijNji − NiiNjjÞ ¼ 0; ðA14Þ

where we have used the fact that matrix Nij is symmetric.
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