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Three conceptually different masses appear in equations of motion for objects under gravity, namely, the
inertial mass, mI , the passive gravitational mass, mP , and the active gravitational mass, mA. It is assumed
that, for any objects, mI ¼ mP ¼ mA in the Newtonian gravity, and mI ¼ mP in the Einsteinian gravity,
oblivious to objects’ sophisticated internal structure. Empirical examination of the equivalence probes deep
into gravity theories. We study the possibility of carrying out new tests based on pulsar timing of the stellar
triple system, PSR J0337þ 1715. Various machine-precision three-body simulations are performed, from
which, the equivalence-violating parameters are extracted with Markov chain Monte Carlo sampling that
takes full correlations into account. We show that the difference in masses could be probed to 3 × 10−8,
improving the current constraints from lunar laser ranging on the post-Newtonian parameters that govern
violations ofmP ¼ mI andmA ¼ mP by thousands and millions, respectively. The test ofmP ¼ mA would
represent the first test of Newton’s third law with compact objects.
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I. INTRODUCTION

Mass is an important concept whose notion has evolved
dramatically during several important paradigm shifts in
theoretical physics, from its original meaning of amount, to
inertia in Newtonian mechanics, to energy in special
relativity with the famous E ¼ mc2 [1]. Mass was further
developed by Einstein and Schwarzschild into an intimate
relation with the geometry of spacetime in general relativity
(GR) [2,3]. In thequantumworld,mass pertains to anobject’s
de Broglie relation and Compton wavelength in the non-
relativistic theory [4]. In relativistic field theories, the origin
of mass results from spontaneous symmetry breaking with
the Higgs field seeking a minimum point of potential [5,6],
which was verified at the LHC [7,8]. From a group-theoretic
viewpoint, mass is a Casimir invariant of the Poincaré group,
hence labels the irreducible representations [9].
We here study the concept of mass with the classical

gravitational interaction. In a theoretically independent way,
there are three masses defined by measurement [10]: (i) the
inertial mass, mI , enters Newton’s second law, F ¼ mIa;
(ii) the passive gravitational mass,mP , is the mass on which
gravity acts, defined by F ¼ −mP∇U; (iii) the active
gravitational mass, mA, is the mass that sources gravity,
through the (integrated) Poisson’s equation,

H
∂V g · dA ¼

−4πGmA. In the Newtonian gravity, these conceptually
different masses are assumed to be equal, namely
mI ¼ mP ¼ mA. In GR, the geometric foundation is built
upon the equality of mI and mP (dubbed the equivalence

principle [11]). The equality of mA with the other two is of
debate in GR [12,13]. While Bonnor found that, assuming
mI ¼ mP , mA deviates by a few times from mP for a static
sphere of uniform density under strong gravity [12], Rosen
and Cooperstock showed that there is only one mass for an
isolated body when the gravitational energy is taken into
account [13].
The importance of experimental examination of equiv-

alence of masses was realized early in Newton’s era [14].
High precision tests of the weak equivalence principle (i.e.,
mI ¼ mP for non-self-gravitating bodies) include pendu-
lum experiments of Newton, Bessel, Potter, and torsion-
balancing experiments of Eötvös, Dicke, Braginsky,
Adelberger, et al. [15]. Recent developments are putting
the test into space with missions like MICROSCOPE [16],
Galileo-Galilei [17], and STEP [18]. In addition, lunar laser
ranging (LLR) [19,20] and pulsar timing [21–25] probed the
equivalence principlewith self-gravitating bodies and limited
theNordtvedt parameter [26], ηN, to be less than3 × 10−4 and
3 × 10−2 respectively. In a vivid contrast, tests of the equality
mP ¼ mA are fewer. We only noticed two experiments,1 one
performed byKreuzer using a Cavendish balance that limited
the difference in mP=mA between fluorine and bromine to
≲5 × 10−5 [28], and the other performed by Bartlett and van
Buren with LLR that limited the difference between iron and
aluminum to ≲4 × 10−12 [29].
Here we propose new tests of equivalence of masses with

the remarkable stellar triple system, PSR J0337þ 1715
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1In addition, Nordtvedt had a proposal to test mA ¼ mP by
utilizing the Earth’s south-north asymmetric distribution of ocean
water [27]; but no subsequent analysis is published.
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[30]. Various machine-precision three-body simulations are
performed closely following observational characteristics.
Possible violations in the equivalence of masses are
injected directly via equations of motion [31], and recov-
ered with a dedicated Markov chain Monte Carlo (MCMC)
sampler taking full correlations into account. Our results
suggest that the triple system has sensitivity ∼3 × 10−8 to
probe the difference in masses. It could improve the current
post-Newtonian limits by thousands for mI ¼ mP and
millions for mA ¼ mP, and would represent the first test
of Newton’s third law with compact objects.

II. THE TRIPLE SYSTEM

PSR J0337þ 1715 is a triple system consisting of a
neutron star (NS) with mass 1.44M⊙ and two white dwarfs
(WDs) with masses 0.20M⊙ and 0.41M⊙ [30,32]. The NS
and the lighter WD are gravitationally bound as an inner
binary with Pb;I ¼ 1.63 d that are, as a whole, hierarchi-
cally bound to the outer WD with Pb;O ¼ 327 d. Two orbits
are very circular with eI ¼ 6.9 × 10−4 for the inner binary,
and eO ¼ 3.5 × 10−2 for the outer orbit. Two orbital planes
are remarkably coplanar with an inclination ≲0.01° [30].
An illustration of orbits is given in Fig. 1. It was

simulated with the parameters reported in Ref. [30].
Initial conditions are worked out for MJD 55920.0 which
is the reference epoch for all parameters. The three-body
evolution under Newtonian gravity is performed with the
IAS15 integrator in REBOUND

2 [33]. The IAS15 integrator is
a 15th-order integrator based on the Gauß-Radau quad-
rature. It uses adaptive time stepping, and keeps systematic
errors well below machine precision over 109 orbits [34].
The precision is very important for three-body dynamics,
because the pulsar timing experiments spanning
∼1.4 yrð∼4 × 107 sÞ have achieved a weighted RMS
residual, σTOA ¼ 1.34μs [30]. Our numerical integration
has to be more accurate than that in order to study tiny
effects in the orbital dynamics.

III. PULSAR TIMING AND PARAMETER
ESTIMATION

We evolve the triple system in 3D for a longer time
than the observation in Ref. [30], and then cut data keeping
the part which corresponds to the real data span (MJD
55930.9—56436.5). A spin-down model for the pulsar,
fðtÞ ¼ f0 þ _ft, is constructed with a spin frequency,
f0 ¼ 365.953363096 Hz, and its first time derivative,
_f ¼ −2.3658 × 10−15 Hz s−1. By projecting the pulsar’s
trajectory along its line of sight to the Earth, we obtain the
geometric delay of pulse signals (i.e., the Römer delay).
Together with the spin-down model, simulated times of
arrival (TOAs), NðtÞ, with N the counting number of pulses
and t the coordinate time, are recorded. Relativistic effects

(e.g., the periastron advance, the gravitational damping, the
Shapiro time delay) are not observable in practice yet [30],
therefore are not included. The only exception is the
transverse Doppler effect due to the cross term of velocities
for inner and outer orbits [30]. It is approximated as RðtÞ≃R

1
c2 vO · vIdt¼ 1

c2 xIðtÞ · vOðtÞ−
R

1
c2 xI · dvO ≃ 1

c2 xIðtÞ · vOðtÞ,
where constants and the integral term, which is smaller by a
factor ∼Pb;I=Pb;O on the time scale of the inner orbit, are
dropped [35]. RðtÞ has an amplitude ∼50 μs, consistent
with the real data [30]. 26280 TOAs are sampled from our
simulation either uniformly in time (uniform sampling

FIG. 1. Illustration of the triple system, projected on the orbital
plane of the inner binary. In (a) dotted lines mark directions of the
periastron of the pulsar for the inner orbit, the periastron of inner
binary for the outer orbit, and the ascending node of the pulsar;
in Fig. 2 of Ref. [30], these directions are indicated for WDs.
(b) and (c) are magnified views of the regions enclosed by the
green dashed boxes. These trajectories start on MJD 55920.0
(December 25, 2011), and end on MJD 56233.9 (November 2,
2012). The starting locations are indicated by dots.

2https://github.com/hannorein/rebound

LIJING SHAO PHYSICAL REVIEW D 93, 084023 (2016)

084023-2

http://dx.doi.org/https://github.com/hannorein/rebound
http://dx.doi.org/https://github.com/hannorein/rebound


hereafter) or with fake observing blocks once a week with
TOAs being separated by 10 seconds within block (step
sampling). A Gaussian noise with a variance σTOA ¼
1.34 μs is added homogeneously to TOAs to mimic the
observation uncertainty [30]. Several noise realizations are
simulated for each sampling method.
Following the method in Ref. [30], we set up MCMC

runs to estimate parameters. To follow the fitting of real
data as closely as possible, the same set of parameters are
used, which include 2 parameters for the pulsar’s spin-
down, and 14 parameters for the size, the shape, the
orientation, and the initial condition of two orbits (details
can be found in Ref. [30]). The PYTHON implementation of
an affine-invariant MCMC ensemble sampler [36,37],
EMCEE,3 is used to explore the 16D parameter space. In
each step, we generate noiseless template TOAs according
to 16 parameters that are being sampled by the kernel. They
are compared with the TOAs generated before. The runs
proceed the exploration of parameter space according to the
difference between two sets of TOAs, characterized by χ2

(for details of the Markov-chain implementation, see
Ref. [37]).
We accumulate 320000 MCMC samples for each set of

simulated TOAs, of which the first half are abandoned as
the BURN-IN phase [38]. The Gelman-Rubin statistic is
used to verify the convergence of different chains [39]. The
16D parameter space is marginalized to obtain the uncer-
tainty for each parameter. It is remarkable that with the
only input of the orbital characteristics and a timing noise,
we recover all observational uncertainties for 14 orbital
parameters [30] within a factor of 2, except the difference
in the longitude of ascending nodes for two orbits, whose
uncertainty is off by a factor of 3. Uncertainties of the
spin-down parameters are however underestimated, by
factors of 4000 for f0 and 10 for _f, which could be
caused by our simplified sampling method. It is interesting
to note that the uncertainties of f0 and _f are relatively
large for PSR J0337þ 1715, by factors of 104–105, when
compared with binary pulsars of similar high-quality
observations with a comparable span, the number of
TOAs, and the timing residual; see e.g., PSRs J0737 −
3039A [40] and J0348þ 0432 [41]. The correlations
between 16 parameters are plotted in Fig. 2 for simulated
TOAs with uniform sampling. The largest correlation
comes from the time of ascending node and the orbital
period for the outer orbit which, we suspect, is related to
the small number (∼1.5) of orbital coverage, that makes
the variables of the outer orbit likely correlated (see the
green 5 × 5 sub-block in Figure 2). The correlation
matrices for different noise realizations are hardly distin-
guishable, and those for step sampling are fully consistent
with Fig. 2.

IV. EQUIVALENCE OF MASSES

The discovery of the triple pulsar has triggered some
studies in tests of the strong equivalence principle (i.e.
mI ¼ mP for self-gravitating bodies) [15,30]. Preliminary
results showed that it probes the difference in mP=mI
between NSs and WDs at 10−5–10−8 [42,43]. The Square
Kilometre Array will improve that further and limit the
scalar-tensor gravity stringently [44]. No detailed analysis
has been published yet. Here we perform such a study. In
addition to mI ¼ mP , a new test is proposed to study the
possibility of mA ≠ mP . Because Newton’s third law is
violated if mA ≠ mP [10], it is the first test of the famous

FIG. 2. The correlations between 16 fitting parameters.
FðρcorÞ≡ log10½ð1þ ρcorÞ=ð1 − ρcorÞ� − ρcorlog102 is a function
defined such that it counts 9’s in the limit of large correlations
[e.g., Fð0.999Þ≃þ3, Fð−0.9Þ≃ −1, and Fð0Þ ¼ 0]; on diago-
nal, FðρcorÞ diverges.

FIG. 3. The difference in simulated TOAs introduced by
hypothetical violations in the equivalence of masses. The lower
panel is a magnified view of a small region that contains 6 inner
orbits. The blue and green series are offset vertically for a
better view.3http://dan.iel.fm/emcee
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actio ¼ reactio formalism with strongly self-gravitating
bodies.
The two WDs in the triple system are assumed to

have a similar strength in violating the equivalence of
masses.4 The equivalence-violating parameters are
defined as, ΔðIÞ≡ðmA=mIÞNS−1, ΔðIIÞ≡ðmP=mIÞNS−1,
ΔðIIIÞ≡ðmA=mIÞWD−1, and ΔðIVÞ ≡ ðmP=mIÞWD − 1.
Corresponding modifications to the gravitational interac-
tion are added to the IAS15 integrator [33,34], via

mi;I
d2ri
dt2

≡mi;Iai ¼
X
j≠i

−
Gmi;Pmj;A

r3ij
rij; ð1Þ

with rij ≡ ri − rj and rij ≡ jrijj. Further analysis shows
that one Δ can be set to vanish, which is related to an
unobservable rescaling. We choose to set ΔðIVÞ ¼ 0.
Consequently, the remaining three Δ’s should be inter-
preted as the difference in the mass ratio relative
to ðmP=mIÞWD.
Figure 3 shows examples of the difference in simulated

TOAs with the equivalence violation, with respect to TOAs
that are simulated with Newtonian gravity. With Δ’s of
10−8–10−7, the effects on TOAs are already much larger

than the achieved timing residual. However, the correlation
with orbital elements is strong. In order to assess the true
sensitivity of the triple pulsar, a simultaneous fitting of Δ’s
with other parameters is necessary.
We probe the sensitivity of PSR J0337þ 1715 in

constraining Δ’s by adding a nonzero Δ in the param-
eter-estimation process. Fake TOAs are simulated as
before. Template TOAs are generated with the possibility
of allowing a nonvanishingΔ. Because of the strong mutual
correlations (see Fig. 3), we are not able to estimate three
Δ’s at one time.5 Instead, they are analyzed separately.
320000 MCMC samples are accumulated for each set of
simulated TOAs for each Δ. After dropping the first half
BURN-IN runs and marginalizing over 16 parameters, we
obtain the posteriori probability density functions (PDFs)
for Δ’s. Different noise realizations give consistent results.
One example is shown in Fig. 4. The region that is excluded
by both sampling methods is conservatively taken as the
exclusion region. We conclude that, the data quality of PSR
J0337þ 1715 presented in Ref. [30] allows one to con-
strain jΔj’s to≲3 × 10−8. Because, as seen from Eq. (1), all
Δ’s modify the trajectories in a similar way, it is not
surprising that they are to be constrained with a similar
precision.

FIG. 4. The posteriori PDFs for the equivalence-violating parameters from simulated TOAs with ΔðIÞ ¼ ΔðIIÞ ¼ ΔðIIIÞ ¼ 0.

FIG. 5. The recovery of Δ’s from simulated TOAs with ΔðIÞ ¼ 10−7 (left), ΔðIIÞ ¼ 10−7 (middle), and ΔðIIIÞ ¼ 10−7 (right).

4It is easy to relax this assumption, but leading to an
unnecessary redundancy with little theoretical interests.

5Simultaneous fittings with three Δ’s are tried, but the
convergence is very bad after a long MCMC run.
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In addition to constraining the equivalence violation in
masses, the capability of PSR J0337þ 1715 to detect such
violations, if they indeed exist, is also investigated. We
inject nonvanishing Δ’s into our simulated TOAs by
modifying the orbital dynamics according to Eq. (1).
The same parameter-estimation process by allowing one
nonzero Δ is performed with these TOAs. The resulting
posteriori PDFs are shown in Fig. 5. As one can see, the
equivalence violation can be detected if it indeed exists.

V. DISCUSSIONS

The equivalence of masses is vital to gravity theories.
Already with the metric theories of gravity that fulfill the
Einstein’s equivalence principle [11], three conceptually
different masses are distinguishable. For example, in the
parametrized post-Newtonian (PPN) formalism [11,15,45],

mP

mI
¼ 1 −

�
4β − γ − 3 − α1 −

2

3
ζ1 −

1

3
ζ2

�
EG

mIc2
; ð2Þ

mA

mI
¼ 1 −

�
4β − γ − 3 − 2ζ2 −

1

3
ζ1

�
EG

mIc2
; ð3Þ

where we have set PPN parameters α2 ¼ α3 ¼ ξ ¼ 0, due
to their tight limits (10−9 for jα2j, jξj [46,47]; 10−20 for jα3j
[22]). Using EG=mIc2 ≃ 0.1mNS=M⊙ for NSs [48], one
constrains j4β − γ − 3 − α1 − 2

3
ζ1 − 1

3
ζ2j and j4β − γ − 3 −

2ζ2 − 1
3
ζ1j to ≲2 × 10−7, with the limits on ΔðIÞ and ΔðIIÞ

from PSR J0337þ 1715.6 Without a fortuitous cancella-
tion, β, γ, α1, ζ1, and ζ2, can be constrained to ≲10−7,

improving the current best bounds [15] by 102–105. Even
allowing a fortuitous cancellation, one still improves their
bounds, for example, at least by ≳103 for ζ1.
With the limit on ΔðIIÞ, the Nordtvedt parameter [26], ηN

(¼ 4β − γ − 3 − α1 − 2
3
ζ1 − 1

3
ζ2 in the PPN formalism

[11]), improves by ≳103 with respect to LLR [20]. This
would be the first time that compact objects provide a
tighter limit on ηN than the Solar System. The test of mP ¼
mA would be the first test with strongly self-gravitating
bodies, which vastly extends the regime explored by the
previous tests in terms of objects’ compactness [28,29].
The test would surpass the best test [29] by 106 within the
post-Newtonian analysis, and would be the first test of
Newton’s third law with strongly self-gravitating bodies.
We stress that, although our simulated TOAs are able to

reproduce major features of the real observation [30], they
are simplified compared with the complications in the real
data, e.g., the heteroscedasticity in TOAs from different
telescopes, the irregular jumps between observing sessions,
the removal of time-dependent interstellar dispersion, the
correlation with parallax and proper motion [49]. This
study is intended to advocate that the program analyze
foundational principles on the equivalence of masses with
the remarkable triple system. The analysis in this work is
solely based on the observation presented in Ref. [30]. In
reality, more data have accumulated since that publication.
We urge observers to test the equivalence of masses with
real timing data.
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