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We provide a fully covariant expression for the diffeomorphic charge in four-dimensional anti-de Sitter
gravity, when the Gauss-Bonnet and Pontryagin terms are added to the action. The couplings of these
topological invariants are such that the Weyl tensor and its dual appear in the on-shell variation of the action
and such that the action is stationary for asymptotic (anti-)self-dual solutions in the Weyl tensor. In analogy
with Euclidean electromagnetism, whenever the self-duality condition is global, both the action and the
total charge are identically vanishing. Therefore, for such configurations, the magnetic mass equals the
Ashtekhar-Magnon-Das definition.
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I. INTRODUCTION

The Maxwell Lagrangian for electromagnetism is the
simplest gauge-invariant scalar that leads to second-order
field equations. As is well known, gauge invariance is a
consequence of using the Faraday tensor Fμν ¼ ∂μAν −∂νAμ and not explicitly the gauge connection Aμ.
However, in four dimensions, the Maxwell term is not

the only Lagrangian quadratic in F that can be considered
in an electromagnetism action. We can always look at the
physical implications which come from taking an action of
the form

I ¼ −
1

4

Z
M
ðFμνFμν þ γ �FμνFμνÞdtd3x; ð1:1Þ

where the second contribution is given in terms of the field
strength and its dual �Fμν ¼ 1

2
ϵμναβFαβ, and it is called

Pontryagin density,

P4 ¼
1

4
�FμνFμν: ð1:2Þ

For a given real coupling constant γ, the second part of the
action (1.1) contributes just a surface term, such that it does
not alter the bulk dynamics. Nevertheless, it may still
modify the boundary conditions in the variational problem
and, eventually, the Noether current of the theory.
In non-Abelian theories, Pontryagin is a topological

term, which is added on top of Yang-Mills Lagrangian
with a pseudoscalar coupling θðxÞ (axion field) [1]. This θ
term is responsible for violation of CP symmetry in QCD.
In a more recent context, P4 has been considered to

account for properties of a new topological state in

condensed matter physics known as topological
insulators [2].
In the Euclidean sector of the theory (1.1), the electric

field is defined as Ei ¼ F0i, in terms of derivatives with
respect to the Euclidean time x0 ¼ it and the spatial
coordinates fxig. In turn, the magnetic field is the
same as in the case of Lorentzian signature, that is,
Bi ¼ 1

2
ϵ0ijkFjk. With this in mind, the Pontryagin invariant

adopts the form

P4 ¼ E ·B; ð1:3Þ

such that the Euclidean action IE ¼ −iI reads

IE ¼ 1

2

Z
M
ðE2 þ B2 þ 2γE ·BÞd4x: ð1:4Þ

An arbitrary variation of this action produces

δIE ¼
Z
M
ð∂μFμν þ γ∂μ

�FμνÞδAνd4x

−
Z
∂M

ðFμν þ γ �FμνÞδAνdΣμ; ð1:5Þ

where the bulk integral yields Maxwell equation and
second term which vanishes due to the Bianchi iden-
tity, ∂μ

�Fμν ¼ 0.
To have a well-defined action principle (δIE ¼ 0), it is

necessary that field equations hold and that the surface term
vanishes for a given boundary condition. Usually, one fixes
the vector potential on the boundary, i.e., δAμ ¼ 0. In
particular, when the boundary is a surface separating two
regions of the space, this Dirichlet condition defines the
junction conditions for the electric and magnetic fields
across the surface in terms of sources present on the
boundary, i.e., the surface charge and current densities.
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Another way to achieve a well-posed variational prin-
ciple is to demand that an asymptotic (anti-)self-duality
condition holds at the boundary, that is,

Fμν ¼ ��Fμν at ∂M; ð1:6Þ

such that this argument fixes the Pontryagin coupling
as γ ¼ ∓1.
Self-duality is a global symmetry of the sourceless

Maxwell equation, where the electric and magnetic degrees
of freedom are interchanged. An extension to electromag-
netism with sources should necessarily include a magnetic
charge. In the Hamiltonian formulation of Maxwell theory,
self-duality is an off-shell symmetry, as shown by Deser
and Teitelboim in Ref. [3].
Using the identity

FμνFμν ¼ 1

2
ðFμνFμν þ �Fμν

�FμνÞ; ð1:7Þ

the Euclidean action can be rewritten as

IE ¼ 1

8

Z
M
ðFμν∓�FμνÞ2d4x: ð1:8Þ

It is worth noticing that for a global (anti-)self-duality
condition, the action is identically zero. The solutions in
this case are known as Euclidean instantons. The condition
IE ¼ 0 defines a number of ground states of the theory,
where Fμν ¼ 0 is the simplest case of a globally self-dual
solution.
Invariance under aUð1Þ gauge transformation, where the

gauge field changes as δλAν ¼ ∂νλ, leads to a conservation
law associated to this symmetry. Indeed, using the general
on-shell variation of the action (1.5) in the Noether theorem
(see Appendix A), a conserved charge can be constructed,

Q½λ� ¼ −
Z
S2
ðFμν∓�FμνÞλdΣμν; ð1:9Þ

where dΣμν is the dual of the infinitesimal surface element
in S2. Since the gauge parameter λ is covariantly constant in
the asymptotic region, it can be normalized as λ ¼ 1. The
first term is the contribution due to the Noether current for
Maxwell electromagnetism, Jμ½λ� ∼ Fμν∂νλ, the conserva-
tion of which produces the electric charge. The second term
is derived from a topological current, ~Jμ½λ� ∼ �Fμν∂νλ, and
it corresponds to the magnetic flux across the sphere S2,
i.e., magnetic charge [4]. Simply put, Eq. (1.9) identifies
the Noether charge obtained from a topological term with a
topological charge derived from the Bianchi identity.
It is evident from the formula (1.9) that any globally

(anti-)self-dual solution will have a vanishing charge. This
argument reinforces the idea that such a configuration can
be regarded as a ground state of the theory and provides

firmer ground for the extension of self-duality condition to
anti-de Sitter (AdS) gravity discussed below.

II. FOUR-DIMENSIONAL ADS GRAVITY AND
PONTRYAGIN INVARIANT

The addition of topological invariants, which modify
the boundary dynamics of AdS gravity, was considered
more than 15 years ago in Refs. [5,6]. Indeed, the
regulation of the Noether current by the addition of the
Euler density provides a generic expression for the mass
and other charges for even-dimensional asymptotically
AdS (AAdS) spaces. As this procedure was performed
in first-order formalism, its relation to other approaches
was not clear at that moment, even though the equivalence
to Hamiltonian charges was given in Ref. [7]. In particular,
its relevance within the framework of AdS/CFT correspon-
dence [8] was certainly unknown. However, this approach
was later translated into a metric formalism in Ref. [9] and
understood as the addition of counterterms which depend
on the extrinsic curvature. It was then extended to odd
dimensions [10], giving rise to an alternative regularization
scheme known as Kounterterms. Furthermore, the con-
nection to holographic renormalization [11] in the context
of AdS/CFT correspondence was shown in Refs. [12,13],
as the asymptotic expansion of the extrinsic curvature
reproduces the standard counterterm series [14,15].
The simplest example of regularization using topological

invariants is the addition of Gauss-Bonnet term to the four-
dimensional (4D) AdS action studied in Ref. [5],

I4 ¼
1

16πG

Z
M
d4x

ffiffiffi
g

p

×

�
Rþ 6

l2
þ l2

4
ðRμναβRμναβ − 4RμνRμν þ R2Þ

�
;

ð2:1Þ
where l is the AdS radius and g ¼ j detðgμνÞj. This is the
same as the quadratic action given by MacDowell and
Mansouri in four dimensions in Ref. [16] (see also
Ref. [17]), which was later extended to higher dimensions
by Vasiliev [18].
The Gauss-Bonnet coupling is such that the action

is stationary for asymptotically locally AdS spaces, where
the spacetime curvature tends to a constant, i.e.,

Rμν
αβ → − 1

l2 δ
½μν�
½αβ�. This is evident from the on-shell variation

of I4,

δI4 ¼
l2

64πG

Z
∂M

d3x
ffiffiffi
h

p
nμ1δ

½μ1μ2μ3μ4�
½ν1ν2ν3ν4� g

ν2γδΓν1
γμ2

×

�
Rν3ν4
μ3μ4 þ

1

l2
δ½ν3ν4�½μ3μ4�

�
; ð2:2Þ

where nμ1 is an outward pointing unit normal to the
boundary with the induced metric hij and h ¼ j detðhijÞj.
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Also, δ½μ1μ2μ3μ4�½ν1ν2ν3ν4� is the totally antisymmetric Kronecker delta

defined as det ½δμ1ν1 � � � δμ4ν4 �. The key argument that supports
the finiteness of the action principle is given by the fact that,
for any solution of the Einstein equation Rμν ¼ − 3

l2 gμν, the
Weyl tensor is

Wαβ
μν ¼ Rαβ

μν þ 1

l2
δ½αβ�½μν� ; ð2:3Þ

which is exactly the quantity that appears at the right-hand
side of Eq. (2.2). The Weyl tensor is the only combination
between the Riemann and Ricci tensors that has a suitable
asymptotic behavior. A formal proof of the finiteness of the
action, however, requires precise falloff conditions in the
metric, valid for any AAdS spacetime [12].
The appearance of the Weyl tensor in the surface term

coming from the variation of the total action (2.1) reflects
the link to conformal mass definition in AAdS gravity [19].
Indeed, upon suitable expansion of the tensors involved,
one can prove that the physical information on the
conformal boundary is encoded in the electric part of the
Weyl tensor [12,20].
Gauss-Bonnet is not the only possible topological

invariant for the Lorentz group one can construct in four
dimensions. Indeed, Pontryagin density in gravity [21],
where the Riemann tensor plays the role of the field
strength in Eq. (1.2), is given by

P4 ¼ −
1

4
ϵμναβRσλ

μνRσλαβ: ð2:4Þ

As the Pontryagin is a closed form, it can be written locally
as the divergence of a Chern-Simons density current:

P4 ¼ ∂μ

�
ϵμναβ

�
Γσ
νλ∂αΓλ

βσ þ
2

3
Γσ
νλΓλ

αϵΓϵ
βσ

��
: ð2:5Þ

We consider the addition of the Pontryagin density on
top of a finite AdS action given by Euclideanized version of
Eq. (2.1), that is,

I ¼ I4 þ
l2

32πG
γ

Z
M
d4xP4; ð2:6Þ

where γ is a coupling constant yet to be determined. We
emphasize the fact that, in this case, γ is a given constant,
not a function. As a consequence, the action in Eq. (2.6)
does not describe the Chern-Simons modified gravity
theory developed by Jackiw and Pi in Ref. [22], where,
by analogy to dynamic couplings of electromagnetic
Pontryagin, one is able to modify the gravitational field
equation in the bulk.
It is direct to check that the addition of the Pontryagin

density does not introduce divergences when evaluated on
AAdS solutions. Indeed, P4 is zero for AdS black holes

and, at most, finite for gravitational instantons, as it will be
discussed below.
The addition of P4 produces a new surface term with

respect to the one in Eq. (2.2), which is proportional to the
dual of the Riemann tensor, i.e.,

δI ¼ l2

64πG

Z
∂M

d3x
ffiffiffi
h

p
nμ1δ

½μ1μ2μ3μ4�
½ν1ν2ν3ν4� g

ν2γδΓν1
γμ2

×

�
Wν3ν4

μ3μ4 −
γ

2
ffiffiffi
g

p ϵν3ν4αβRαβμ3μ4

�
: ð2:7Þ

It is adequate to perform a shift in the curvature of the type
Rαβμ3μ4 → Rαβμ3μ4 þ 1

l2 ðgαμ3gβμ4 − gβμ3gαμ4Þ, as the second
term is identically zero due to the symmetry in the indices.
In doing so, the variation of the total action can be
rewritten as

δI ¼ l2

64πG

Z
∂M

d3x
ffiffiffi
h

p
nμ1δ

½μ1μ2μ3μ4�
½ν1ν2ν3ν4� g

ν2γδΓν1
γμ2

× ðWν3ν4
μ3μ4 − γ �Wν3ν4

μ3μ4Þ; ð2:8Þ

in terms of the dual of the Weyl tensor

�Wαβμν ¼
1

2

ffiffiffi
g

p
ϵαβσλWσλ

μν: ð2:9Þ

By analogy to the electromagnetism case, one can
determine γ by demanding an asymptotic (anti-)self duality
condition on the Weyl tensor,

Wαβμν ¼ ��Wαβμν: ð2:10Þ

The action is truly stationary if the field equations hold in
the bulk and the surface term vanishes at the boundary.
Therefore, a well-defined action principle for the boundary
condition (2.10) implies that the Pontryagin coupling is
γ ¼ �1 [12].
As the Weyl tensor carries information on the normal-

izable modes in AdS gravity, the above condition implies a
nontrivial relation between different components of the
Weyl tensor at a holographic order. Indeed, asymptotic self-
duality for the Weyl tensor, which appears naturally at the
boundary when one adds Gauss-Bonnet (parity-preserving)
and Pontryagin (parity-violating) topological invariants,
seems to be the ultimate reason behind holographic stress
tensor/Cotton tensor duality, which arises when dealing
with AdS instantons [23], hydrodynamic perturbations
around AdS4 black holes [24], and electric/magnetic
duality in Riemann-Cartan-AdS gravity [25].
Only for the particular value of the Pontryagin coupling

discussed above, the on-shell action adopts the compact
form [12]
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I ¼ l2

512πG

Z
M
d4x

ffiffiffi
g

p
δ½μ1μ2μ3μ4�½ν1ν2ν3ν4� ðW

ν1ν2
μ1μ2 � �Wν1ν2

μ1μ2Þ

× ðWν3ν4
μ3μ4 � �Wν3ν4

μ3μ4Þ; ð2:11Þ

in terms of the Weyl tensor and its dual, where we have
used the identities

�Wμ1μ2
ν1ν2 ¼ 1

4
δ½μ1μ2μ3μ4�½ν1ν2ν3ν4�

�Wν3ν4
μ3μ4 ð2:12Þ

and

δ½μ1μ2μ3μ4�½ν1ν2ν3ν4�
�Wν1ν2

μ1μ2
�Wν3ν4

μ3μ4 ¼ δ½μ1μ2μ3μ4�½ν1ν2ν3ν4�W
ν1ν2
μ1μ2W

ν3ν4
μ3μ4 : ð2:13Þ

This action has been recently studied in the context of a
search for a pure-spin connection formulation for general
relativity [26].
In what follows, we compute the Noether charges for the

gravity action I using Wald’s method [27,28]. This is the
fully covariant version of the boundary derivation which
associates the addition of the Gauss-Bonnet term to the
electric part of the Weyl tensor and the addition of
Pontryagin to the magnetic part of the Weyl tensor (see
Appendix B).

III. COVARIANT NOETHER CHARGES AND
TOPOLOGICAL INVARIANTS

The Noether theorem provides a conserved current Jμ

(∂μð ffiffiffi
g

p
JμÞ ¼ 0), for a given symmetry of an action.

Indeed, global isometries in gravitational solutions imply
the existence of a Noether charge defined as

Q ¼
Z
∂M

d3x
ffiffiffi
h

p
nμJμ: ð3:1Þ

When Jμ can be globally written as Jμ ¼ ∂νð
ffiffiffi
h

p
QμνÞ in

∂M, the Noether charge can be expressed as an integral on
the two-dimensional surface ∂Σ with the metric σmn and
σ ¼ j detðσmnÞj,

Q ¼
Z
∂Σ

ffiffiffi
σ

p
d2xnμuνQμν; ð3:2Þ

where uν is a unit timelike vector, normal at every point to Σ
(see Appendix A).
For the case under study here, we follow Wald’s

procedure defined in Refs. [27,28], which allows us to
construct the Noether charges in an arbitrary gravity theory.
We consider a Lagrangian density L, which depends on
the metric, curvature, and covariant derivatives of the
curvature,

L ¼ Lðgμν; Rμναβ;∇γ1Rμναβ; � � �
� � � ;∇ðγ1���∇γmÞRμναβ;ψ ;∇γ1ψ ;∇ðγ1���γlÞψÞ: ð3:3Þ

One can also include matter fields, collectively denoted by
ψ , and derivatives of them.
For this general class of theories, the conserved current

corresponding to a set of Killing vectors fξμg is given by
the expression (see Appendix A)

ffiffiffi
g

p
Jμ ¼ ΘμðδξΓÞ þ ΘμðδξgÞ þ ξμL; ð3:4Þ

assuming that the surface term Θμ can be split in a part that
contains variations of the Christoffel symbol and another
that contains variations of the metric tensor. Because of the
fact that ΘμðδξgÞ is proportional to the Lie derivative of the
metric, using the Killing equation, this term can be set to
zero. Then, the conserved current adopts the form

ffiffiffi
g

p
Jμ ¼ 2EμναβgαλδξΓ

λ
νβ þ ξμL; ð3:5Þ

where Eμναβ is the variation of L with respect to the
Riemann tensor Rμναβ. The diffeomorphism transformation
of the Christoffel symbol is given by

δξΓλ
νβ ¼ −

1

2
gλρð∇β£ξgρν þ∇ν£ξgρβ −∇ρ£ξgβνÞ

¼ −
1

2
ð∇ν∇βξ

λ þ∇β∇νξ
λÞ þ 1

2
ðRλ

βνσ þ Rλ
νβσÞξσ;

ð3:6Þ

which produces a current,

ffiffiffi
g

p
Jμ ¼ −Eμναβ½2∇ν∇βξα − ðRαβνσ þ 2RανβσÞξσ� þ ξμL;

ð3:7Þ

where we have used the identity that involves the commu-
tator of two covariant derivatives,

½∇β;∇ν�ξα ¼ Rβνασξ
σ: ð3:8Þ

A minor arrangement can be performed in the above
expression for the current, as the tensor Eμναβ inherits a
given symmetry in the indices which is derived from the
first Bianchi identity, that is,

0 ¼ Rαβνσ þ Rβνασ þ Rναβσ; ð3:9Þ

which implies

EμναβðRαβνσ − 2RανβσÞ ¼ 0: ð3:10Þ

Finally, the formula for the Noether current in a generic
gravity theory is given by
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ffiffiffi
g

p
Jμ ¼ 2Eμναβð∇ν∇αξβ þ Rαβνσξ

σÞ þ ξμL: ð3:11Þ

For the case under study, we can see that the Noether
current associated to the Einstein-Hilbert (EH) Lagrangian
plus Gauss-Bonnet (GB) term in Eq. (2.1) yields

Jμ4½ξ� ¼
l2

64πG
δ½μνλσ�½αβγδ�W

γδ
λσ∇ν∇αξβ; ð3:12Þ

which, using the second Bianchi identity in the indices νλσ,
can be written down as a total derivative,

Jμ4½ξ� ¼
l2

64πG
∇νðδ½μνλσ�½αβγδ�W

γδ
λσ∇αξβÞ: ð3:13Þ

Here, we have used the field equations and permutational
identities in order to eliminate additional terms in the
curvature, which are coming from the Lie derivative acting
on the Christoffel symbol (3.6). Integrated on ∂Σ, the above
expression produces the charge

Q4½ξ� ¼
l2

64πG

Z
∂Σ

d2x
ffiffiffi
σ

p
nμuνδ

½μνλσ�
½αβγδ�∇αξβWγδ

λσ: ð3:14Þ

Taking now the Lagrangian density corresponding to the
Pontryagin term, we have

Eμναβ
P4

¼ ∓ l2

64πG
ϵμνλσRαβ

λσ ; ð3:15Þ

which determines the current associated to this term as

JμP4
¼ ∓ l2

64πG
δ½μνλσ�½αβγδ�∇νð∇αξβ�Wγδ

λσÞ: ð3:16Þ

As a consequence, the total Noether charge computed for
the AdS gravity action with the addition of topological
invariants is

Q½ξ� ¼ l2

64πG

Z
∂Σ

d2x
ffiffiffi
σ

p
nμuνδ

½μνλσ�
½αβγδ�∇αξβðWγδ

λσ∓�Wγδ
λσÞ:

ð3:17Þ

It is then that the analogy with self-dual electromagnetism
becomes evident: self-dual or anti-self-dual solutions in
AdS gravity have mass (and other conserved quantities)
identically zero. Such a configuration is a vacuum state,
which reaches a minimum of the Euclidean action.

A. Taub-NUT/Bolt AdS solutions

For static black hole and even Kerr-AdS solutions, the
magnetic part of the Weyl tensor is zero, such that there is
no contribution to the current (3.16). Therefore, nontrivial
examples to evaluate the above expressions for the
conserved quantities are Taub-Newman-Unti-Tamburino

(NUT) and Taub-Bolt AdS solutions. These spaces are
Euclidean gravitational solutions to the Einstein equations
characterized by a line element [29–31]

ds2 ¼ fðrÞðdτ þ 2n cos θdϕÞ2 þ dr2

fðrÞ
þ ðr2 − n2Þðdθ2 þ sin2θdϕ2Þ; ð3:18Þ

where the function fðrÞ is given by (G ¼ 1)

fðrÞ ¼ r2 − 2Mrþ n2 − 3
l2 ðn4 þ 2n2r2 − r4

3
Þ

r2 − n2
: ð3:19Þ

Here, n is a parameter, and M is identified as the solution
mass [5,32]. The Taub-NUT-AdS solution is defined by the
condition fðjnjÞ ¼ 0, but one still has to eliminate the
conical singularities that appear at r ¼ jnj. By imposing a
regularity condition, which is given by f0ðjnjÞ ¼ 1=2n, the
electric mass takes the particular value

QNUT
4 ½∂τ� ¼ MNUT ¼ �nð1 − 4l−2n2Þ: ð3:20Þ

This value of M is the exact point where the Weyl tensor
becomes globally (anti-)self-dual [33,34]. As a conse-
quence, the total Noether charge (3.17) vanishes for any
isometry, that is,

QNUT½ξ� ¼ 0; ð3:21Þ

as the electric mass is equal to the magnetic mass. This
solution can be regarded as a family of ground states
labeled by N.
On the other hand, the Taub-Bolt AdS solution is found

for r ¼ rb > jnj and fðr ¼ rbÞ ¼ 0. In this case, the
electric mass is

QBolt
4 ½∂τ� ¼ MBolt

¼ r2b þ n2

2rb
−

3

2l2

�
n4

rb
þ 2n2rb −

r3b
3

�
: ð3:22Þ

In turn, the magnetic mass for the Bolt solution remains the
same as in the NUT case, such that the total mass and
angular momentum are

QBolt½∂τ� ¼ MBolt �MNUT; ð3:23Þ

QBolt½∂ϕ� ¼ 0: ð3:24Þ

The anti-self-dual case in Eq. (3.23) corresponds to the
mass calculated in Ref. [32] following a background-
dependent procedure.
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IV. CONCLUSIONS

A fully covariant expression for the conserved quantities
for 4D AdS gravity supplemented by Gauss-Bonnet and
Pontryagin terms has been obtained à la Wald.
By analogy with electromagnetism, all the charges are

identically zero for globally self-dual solutions.
A similar expression for the Noether charges has been

worked out in Refs. [35,36] in first-order formalism. In this
Riemann-Cartan approach, the parity-violating sector
appears enlarged by the Holst and Nieh-Yang terms, which
are identically vanishing in Riemannian gravity [37]. As a
consequence, a contribution associated to this new topo-
logical invariant enters in the expression of the Noether
charges with an arbitrary coupling. For a such a case, the
surface term is not proportional to the dual of the Weyl
tensor, which implies that no considerations about the self-
duality condition can be made.
We understand that, in Riemann-Cartan theory, a sen-

sible choice of the Holst coupling is the one that produces
the dual of the Weyl tensor at the boundary for asymp-
totically AdS spaces, in a similar fashion that only for the
Gauss-Bonnet coupling in Eq. (2.1) the surface term is
proportional to the Weyl tensor [38].
Implications of the addition of Pontryagin term and self-

duality condition for the Weyl tensor at the level of the
Euclidean action and thermodynamics of AAdS gravita-
tional objects will be discussed elsewhere.
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APPENDIX A: NOETHER THEOREM

The Noether theorem states that, for any action invariant
under a continuous transformation, there is a conserved
current which leads to a conserved charge.
Let I½ϕ� ¼ R

d4xLðϕ; ∂ϕÞ be an action for a set of the
fields ϕðxÞ, where the Lagrangian L may contain boundary
terms added to the action. By varying the form of fields,
δϕðxÞ ¼ ϕ0ðxÞ − ϕðxÞ, an extremum on the action is
reached for the Euler-Lagrange equations,

δI½ϕ�
δϕ

¼ ∂L
∂ϕ − ∂μ

∂L
∂∂μϕ

¼ 0: ðA1Þ

The surface term in a general variation of the action,

δI½ϕ� ¼ e:o:m:þ
Z

d4x∂μ

� ∂L
∂∂μϕ

δϕ

�

≡
Z

d4x∂μΘμðϕ; δϕÞ; ðA2Þ

must vanish upon suitable boundary conditions on the field
ϕ, in order to have a well-posed action principle.
Let us assume that the action I½ϕ� is invariant under the

continuous transformations

xμ → x0μ ¼ xμ þ δxμ;

ϕðxÞ → ϕ0ðx0Þ ¼ ϕðxÞ þ δTϕðxÞ; ðA3Þ

where the variation of the form of the field, δϕ, is related to
the total variation of the field, δTϕ, as

δTϕðxÞ ¼ δϕðxÞ þ ∂μϕδxμ: ðA4Þ

Transformations (A3) are a symmetry of the theory if the
action is off-shell invariant,

δI½ϕ� ¼
Z

d4x0L0ðx0Þ −
Z

d4xLðxÞ ¼ 0: ðA5Þ

The Noether current is obtained by rewriting the invari-
ance condition (A5) and identifying the equations of
motion. Using the Euler-Lagrange equations (A1), the
Lagrangian changes as

δL ¼ ∂L
∂ϕ δϕþ ∂L

∂∂μϕ
∂μδϕ ¼ ∂μ

� ∂L
∂∂μϕ

δϕ

�

¼ ∂μΘμðϕ; δϕÞ; ðA6Þ

and the volume element changes by the Jacobian,
j ∂x0∂x j ≈ 1þ ∂μδxμ. Therefore, the total change in the
Lagrangian is

L0ðx0Þ ¼ LðxÞ þ ∂μΘμðϕ; δϕÞ þ ∂μLδxμ: ðA7Þ

The relations (A4)–(A7) imply that the symmetry trans-
formations change the action as a total derivative,

δI½ϕ� ¼
Z

d4x∂μðΘμðϕ; δϕÞ þ LδxμÞ ¼
Z

d4x∂μð
ffiffiffi
g

p
JμÞ:

ðA8Þ

Furthermore, the invariance condition (A5) leads to the
conservation law

∂μð
ffiffiffi
g

p
JμÞ ¼ 0: ðA9Þ

The Noether current is then given by
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ffiffiffi
g

p
Jμ ¼ Θμðϕ; δϕÞ þ Lδxμ: ðA10Þ

On the contrary to the situation described in Eq. (A5), if the
action does change by a boundary term

R
d4x∂μð ffiffiffi

g
p ΩμÞ,

the conserved current is modified as ~Jμ ¼ Jμ −Ωμ.
The computation of the conserved charge requires us to

specify the boundary. The spacetime has topology
M ≃ R × Σ, where Σ is the spatial section with a unit
normal vector uμ ¼ ð− ~N; 0; 0; 0Þ. To define the invariant

volume element, we use the relation
ffiffiffi
g

p ¼ N
ffiffiffi
h

p ¼
N ~N

ffiffiffi
σ

p
. The conserved charge reads

Q ¼
Z
Σ
d3x

ffiffiffi
σ

p
NuμJμ: ðA11Þ

If, in turn, the Noether current can be written as a total
derivative,

ffiffiffi
g

p
Jμ ¼ ∂νð

ffiffiffi
h

p
QμνÞ; ðA12Þ

then the charge becomes

Q ¼
Z
∂Σ

d2x
ffiffiffi
σ

p
uμnνQμν: ðA13Þ

Here, nμ ¼ ð0; N; 0; 0Þ is a normal to the boundary
∂M ≃ R × ∂Σ. The quantity d2x ffiffiffi

σ
p

nμuν is the dual surface
element of ∂Σ that is antisymmetric, such thatQμν ¼ −Qνμ.

1. Electromagnetic charge

Maxwell electrodynamics with the Pontryagin term is
invariant under Uð1Þ gauge transformations, δλAν ¼ ∂νλ.
This implies δλFμν ¼ 0, so that the invariance condition
(A5) of the action is fulfilled. This is an internal symmetry
(δxμ ¼ 0), and the Noether current (A10) reads

Jμ ¼ ∂L
∂∂μAν

∂νλ: ðA14Þ

We take σ ¼ 1. Differentiating the Lagrangian L ¼
1
4
ðFαβFαβ þ γ�FαβFαβÞ leads to

Jμ ¼ ðFμν þ γ�FμνÞ∂νλ

¼ ∂ν½ðFμν þ γ�FμνÞλ�; ðA15Þ

where the last line is obtained using the Maxwell equations
and the Bianchi identity in order to obtain the charge tensor
(A12) as

Qμν ¼ ðFμν þ γ�FμνÞλ: ðA16Þ

In spherical coordinates, the boundary manifold ∂M ¼
R × S2 has a radial normal nμ ¼ δrμ and the timelike normal
uν ¼ −δtν, and the parameter λ is constant on ∂Σ, such that

it can be set to 1. This enables us to compute the
electromagnetic charge as in Eq. (A13).

2. Diffeomorphic current

An action for Riemmanian gravity, with the metric as the
only fundamental field, is invariant under an infinitesimal
change of coordinates δxμ ¼ ξμðxÞ, where the metric
transforms as a Lie derivative,

δξgμν ¼ −£ξgμν ¼ −ð∇μξν þ∇νξμÞ: ðA17Þ
Since the action depends on gμν and its derivatives

combined in the Cristoffel symbol Γλ
αβ, it is convenient

to separate the boundary term (A2) which depends on δgμν
from the one that depends on δΓλ

αβ, so that the Noether
current (A10) can be written as

ffiffiffi
g

p
Jμ ¼ Θμðg; δξΓÞ þ Θμðg; δξgÞ þ Lξμ: ðA18Þ

Note that Θμðg; δξgÞ ¼ 0 as a consequence of the asymp-
totic Killing equation, £ξgμν ¼ ∇μξν þ∇νξμ ¼ 0, which
describes isometries of the spacetime.

APPENDIX B: ASYMPTOTICALLY ADS
SPACETIMES

We first consider a radial foliation of the spacetime,
given by the normal coordinates

ds2 ¼ N2ðρÞdρ2 þ hijðρ; xÞdxidxj; ðB1Þ
where hij is the induced metric on a boundary ∂M defined
at ρ ¼ Const and parametrized by the coordinate set fxig.
In this frame, the only nonvanishing components of the
Christoffel symbol are

Γρ
ij ¼

1

N
Kij; Γi

ρj ¼ −NKi
j;

Γρ
ρρ ¼ dðlnNÞ

dr
; Γi

jlðgÞ ¼ Γi
jlðhÞ; ðB2Þ

where Kij ¼ − 1
2N ∂ρhij is the extrinsic curvature.

This spacetime foliation implies the Gauss-Codazzi
relations

Riρ
jl ¼

1

N
ð∇lKi

j −∇jKi
lÞ;

Riρ
jρ ¼

1

N
ðKi

jÞ0 − Ki
nKn

j ;

Rik
jl ¼ Rik

jlðhÞ − Ki
jK

k
l þ Ki

lK
k
j ; ðB3Þ

where ∇j ¼ ∇jðhÞ is the covariant derivative defined with
respect to the boundary metric and Rik

jlðhÞ is the intrinsic
curvature of ∂M.
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1. Asymptotic falloff of boundary tensors

A suitable choice of the the lapse function and induced
metric in Eq. (B1) as N ¼ l

2ρ and hij ¼ 1
ρ gij, that is,

ds2 ¼ l2

4ρ2
dρ2 þ 1

ρ
gijdxidxj; ðB4Þ

makes it easier to work out an asymptotic [Fefferman-
Graham (FG)] form of the boundary fields for AAdS
spaces [39]. The metric defined at the asymptotic boundary
(ρ ¼ 0) can be seen as a power-series expansion. In
particular, in four spacetime dimensions,

gijðx; ρÞ ¼ gð0ÞijðxÞ þ ρgð1ÞijðxÞ þ ρ3=2gð3=2ÞijðxÞ þOðρ2Þ:
ðB5Þ

The coefficient gð3=2Þij cannot be determined from the field
equations, as it corresponds to the response to the boundary
source gð0Þij; i.e., it is proportional to the stress tensor.
Because of the fact that there is no Weyl anomaly at the
boundary of 4D AdS gravity, gð3=2Þij is traceless.
In the FG coordinate frame, the expansion for the

relevant boundary quantities leads to the expression

ffiffiffi
h

p
¼

ffiffiffi
g

p
ρ3=2

¼
ffiffiffiffiffiffiffigð0Þ

p
ρ3=2

þO
�
1

ρ

�
; ðB6Þ

and for the extrinsic curvature,

Ki
jðhÞ ¼

1

l
δij − ρlSijðgÞ þOðρ2Þ; ðB7Þ

where SijðgÞ is the Schouten tensor defined as

SijðgÞ ¼ Ri
jðgÞ −

1

4
δijRðgÞ; ðB8Þ

in terms of the boundary Ricci tensor and the Ricci scalar.
For the intrinsic curvature, the asymptotic expansion

gives

Rik
jlðhÞ ¼ ρRik

jlðgÞ ¼ ρRik
jlðgð0ÞÞ þOðρ2Þ; ðB9Þ

which is also valid for traces of the boundary Riemann
tensor. That means that Eq. (B7) can be rewritten in terms
of curvatures of hij in the next-to-leading order,

Ki
jðhÞ ¼

1

l
δij − lSijðhÞ þOðρ2Þ: ðB10Þ

Equipped with the asymptotic form of the tensorial quan-
tities involved, we can expand the variation of the total
action (2.6) and work out the holographic version of the
electric and magnetic parts of the Weyl tensor.

2. Holographic stress tensor in AdS4 gravity

The projection in the radial foliation (B1) of the variation
of gravity action in Eq. (2.2) can be written as

δI4 ¼
l2

32πG

Z
∂M

d3x
ffiffiffi
h

p
δ½ikl�½jmn�

��
δKj

i þ
1

2
Kj

qhqsδhsi

�
Wmn

kl

þ NhmqδΓj
qiðhÞWρn

kl

�
: ðB11Þ

The expansion of the Weyl tensor in the FG frame up to
quadratic order in ρ is given by

Wiρ
jl ¼ Oðρ2Þ;

Wiρ
jρ ¼ −

3

2

ρ3=2

l2
gikð0Þgð3=2Þkj þOðρ2Þ;

Wik
jl ¼ ρWik

jl ½gð0Þ� þ
3

2

ρ3=2

l2
g½imð0Þgð3=2Þm½jδ

k�
l� þOðρ2Þ; ðB12Þ

where the first term in the last relation is the Weyl tensor of
the metric at the conformal boundary gð0Þij.
At the same time, we can see the contribution coming

from the quantities that involve variations in the Eq. (B11),
that is,

δKj
i ¼ OðρÞ;

hqsδhsi ¼ gqsð0Þδgð0Þsi þOðρÞ;
δΓj

qiðhÞ ¼ Oð1Þ: ðB13Þ
A simple power-counting argument applied to the expan-
sion of Eq. (B11) shows that the first and the last terms are
subleading and actually go to zero as one approaches the
boundary ρ → 0. As expected, the finite of the variation of
EH action plus GB term is the holographic stress tensor
[12,40]

δI4 ¼
1

2

Z
∂M

d3x
ffiffiffiffiffiffiffi
gð0Þ

p �
−

3

16πGl
gimð0Þgð3=2Þmng

nj
ð0Þ

�
δgð0Þij;

ðB14Þ

where we have used the fact that any trace of the boundary
Weyl tensor is zero.
We can covariantize back the above expression in terms

of tensorial quantities related to the full boundary metric hij
and prove that, up to the relevant order, the variation of I4
can be cast in the form

δI4 ¼ −
l

16πG

Z
∂M

d3x
ffiffiffi
h

p
Wik

jkðh−1δhÞji : ðB15Þ

Using the fact that a single trace of the Weyl tensor is zero,
we have that

Wik
jk ¼ −Wiρ

jρ; ðB16Þ
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and it is easy to show that the quantity that appears at the
boundary is the electric part of the Weyl tensor

Ei
j ¼ Wiμ

jνnμn
ν; ðB17Þ

as we can rewrite Eq. (B15) in the form

δI4 ¼
l

16πG

Z
∂M

d3x
ffiffiffi
h

p
Ei
jðh−1δhÞji : ðB18Þ

This makes manifest the link between the concept of
conformal mass [19] and the addition of the Gauss-Bonnet
term in 4D AdS gravity [20].

3. Holographic Cotton tensor

The Pontryagin term, written as a boundary term in the
coordinate frame (B1), is expressed as

Z
M
d4xP4 ¼

Z
∂M

d3x
nμ
N

ϵμναβ

×

�
Γσ
νλ∂αΓλ

βσ þ
2

3
Γσ
νλΓλ

αϵΓϵ
βσ

�

¼
Z
∂M

d3xϵijk
�
−Γl

im

�
∂jΓm

kl þ
2

3
Γm
jnΓn

kl

�

þ 2Kl
i∇jKkl

�
: ðB19Þ

Using the asymptotic form of the fields in FG expansion,
the last term reads

2ϵijkKl
i∇jKkl ¼ 2ϵijk

�
1

l
δli − ρlSli þOðρ2Þ

�

× ð−l∇jSkl þOðρÞÞ; ðB20Þ

in terms of a Schouten tensor and the covariant derivative
defined with respect the conformal metric gð0Þij.
Manipulating the last relation, we see that

2ϵijkKl
i∇jKkl ¼ −2ϵijk∇iSjk þOðρÞ ¼ OðρÞ; ðB21Þ

because Sjk is symmetric.
Therefore, using δΓl

im ¼ 1
2
hlnð∇iδhnm þ∇mδhni−∇nδhimÞ, the variation of the Pontryagin invariant takes

the form

δP4 ¼ −
Z
∂M

d3xϵijkδΓl
imR

m
ljkðhÞ

¼
Z
∂M

d3xϵijkðh−1δhÞli∇mRm
ljk: ðB22Þ

As the boundary is three dimensional, its Weyl tensor
vanishes,

0 ¼ Wml
jk ðhÞ ¼ Rml

jk ðhÞ − δmj S
l
kðhÞ þ δljS

m
k ðhÞ

þ δmk S
l
jðhÞ − δlkS

m
j ðhÞ; ðB23Þ

such that

δ

Z
M
d4xP4 ¼

Z
∂M

d3xϵijkðh−1δhÞli∇mð2δmj Skl − 2hljSmk Þ;

ðB24Þ

where the second term in the first line identically vanishes
due to the symmetry of the indices. In doing so, the
variation is written as

δ

Z
M
d4xP4 ¼ 2

Z
∂M

d3x
ffiffiffi
h

p
ðh−1δhÞliCi

l; ðB25Þ

where Ci
l is the Cotton-York tensor,

Ci
l ¼

1ffiffiffi
h

p ϵijk∇jSkl: ðB26Þ

Finally, putting together the holographic stress tensor in
Eq. (B14) and by rescaling the Cotton tensor in Eq. (B25),
we see that the finite part of the variation of the total
action is

δI ¼ 1

2

Z
∂M

d3x
ffiffiffiffiffiffiffi
gð0Þ

p �
Tij∓ l2

8πG
Cijðgð0ÞÞ

�
δgð0Þij; ðB27Þ

where Tij is the holographic stress tensor.
In Ref. [41], the holographic reconstruction of gravity is

performed for perfect-Cotton geometries, where the Cotton
tensor of the boundary geometry is proportional to the
energy-momentum tensor. A corresponding gravity theory
in the bulk is characterized by the self-duality condition for
the Weyl tensor.
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