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We study the motion of charged particles in the field of a rotating black hole immersed into an external
asymptotically uniform magnetic field, focusing on the epicyclic quasicircular orbits near the equatorial
plane. Separating the circular orbits into four qualitatively different classes according to the sign of the
canonical angular momentum of the motion and the orientation of the Lorentz force, we analyze the circular
orbits using the so-called force formalism. We find the analytical solutions for the radial profiles of velocity,
specific angular momentum, and specific energy of the circular orbits in dependence on the black-hole
dimensionless spin and themagnetic field strength. The innermost stable circular orbits are determined for all
four classes of the circular orbits. The stable circular orbitswith an outward-oriented Lorentz force can extend
to radii lower than the radius of the corresponding photon circular geodesic. We calculate the frequencies of
the harmonic oscillatory motion of the charged particles in the radial and vertical directions related to the
equatorial circular orbits and study the radial profiles of the radial, ωr; vertical, ωθ; and orbital, ωϕ,
frequencies, finding significant differences in comparison to the epicyclic geodesic circular motion. The
most important new phenomenon is the existence of toroidal charged particle epicyclic motion with ωr ∼
ωθ ≫ ωϕ that could occur around retrograde circular orbits with an outward-oriented Lorentz force. We
demonstrate that for the rapidly rotating black holes the role of the “Wald induced charge” can be relevant.
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I. INTRODUCTION

It is well known that magnetic fields have crucial role in
accretion processes. In the Keplerian accretion disks [1],
local magnetic fields play a fundamental role in the
viscosity mechanism of accretion due to the magnetorota-
tional instability (MRI) [2]. In collisionless plasmas of
accretion disks, an internal global toroidal magnetic field
could be created by the so-called kinetic dynamo effect [3].
The kinetic phenomena could also govern the transition
from neutral to ionized equilibria of plasmas in accretion
disks influenced by combined gravitational and electro-
magnetic fields [4,5]. For example, in the kinetic approach,
we could model the equilibrium plasma configurations
representing levitating tori [6].
The black holes can be immersed in an external magnetic

field that can have complex structure near the horizon but at
large distances can be approximated in a finite part of the
space as close to a homogeneous magnetic field—we use
the approximation of an asymptotically uniform magnetic
field [7]. For example, near the Galaxy center containing
the Sgr A* supermassive black hole, a strong magnetic field
has been detected [8]. Such a large-scale magnetic field
could be generated during the early phases of the expansion
of the Universe [9–11]. Further, a black hole near the

equatorial plane of a magnetar can be immersed in a nearly
uniform magnetic field, if the magnetar is at a distance large
enough [12,13].
The study of the charged test particle motion is considered

to be the basis for understanding the influence of the
magnetic fields on the accretion phenomena. For black holes
carrying an electric charge and described by the Reissner-
Nordstrom orKerr-Newman geometry, themotion equations
are separable and integrable [14], giving a regular character
of themotion that has been investigated in a number of papers
[15–21]. Forweaklymagnetized black holes, immersed in an
external magnetic field represented by the Wald solution
[22], the equations of the motion are not separable, and they
have in general chaotic character. Various aspect of the
motion of charged particles in the field of magnetized black
holes were studied [7,23–31]. The extendedWald solution to
the case of a black hole moving with a constant velocity was
studied in [32]. Of special interest is the existence of off-
equatorial orbits [33–35], or the acceleration of particles of
ionized Keplerian disks [13]. The “magnetized" collisional
processes describing the acceleration of charged particles in
the combined gravitational and electromagnetic fields [36–
40] were shown to be able to reach large efficiency that could
be obtained by uncharged particles in the superspinning
geometry only [41,42].
The purpose of the present paper is to study the motion

of a charged test particle in the vicinity of a weakly
magnetized rotating (Kerr) black hole. For simplicity, we
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assume the black hole is immersed in an asymptotically
uniform magnetic field with field lines parallel to the black-
hole rotation axis. The uniform configuration of the
magnetic field implies a simplified task; however, even
in the axisymmetric background of such a simply mag-
netized Kerr black hole, the charged particle dynamics
becomes nonintegrable because of the absence of the
Carter constant in the presence of the magnetic field, thus
representing a complex problem.
We demonstrate that the presence of the external

magnetic field generates four qualitatively different types
of the circular orbits. We discuss properties of the circular
orbits, giving especially the innermost stable circular orbits
(ISCOs) of the four types of circular motion. In the previous
works related to the motion of charged particles in the
combined gravitational and magnetic fields, the problem
was solved by using the fully numerical methods or
semianalytical approaches [23–26]. In the present paper,
we will apply a combination of the classical effective
potential approach with the so-called formalism of forces,
thus giving an analytical form of the relevant equations.
In the present paper, we concentrate our attention mostly

on the circular motion of charged particles and the related
epicyclic motion. Assuming a slight deviation from purely
circular character of the motion, we obtain frequencies of
the radial and vertical harmonic or quasiharmonic oscil-
latory motion of charged particles. Finally, we integrate the
equations of the epicyclic motion and give the occurrence
of the new type of trajectories that could occur around
magnetized Kerr black holes.
This paper is organized as follows. In Sec. II, we

introduce the notion of the weakly magnetized Kerr black
hole and discuss the limits of the applicability of the
framework of the weak magnetization. The black-hole
rotation in the external magnetic field generates an induced
charge which affects the motion of test particles. We show
that the induced charge is weak in the sense that it does not
modify the backgroundKerr spacetime. In Sec. III, we study
the dynamics of a charged test particle and separate the
orbits into four qualitatively different classes. In Sec. IV, we
focus on the analysis of the charged particle circular orbits
using the force formalism introduced in Refs. [43,44], and
particularly we study the ISCO. In Sec. V, we study the
epicyclic motion. We summarize the results in Sec. VI.
Throughout the paper, we use the spacelike signature

(−, þ, þ, þ) and the geometric system of units in which
G ¼ 1 ¼ c. (However, for the expressions with an astro-
physical application, we use the units with the gravitational
constant and the speed of light.) Greek indices are taken to
run from 0 to 3; Latin indices are related to the space
components of the corresponding equations.

II. WEAKLY MAGNETIZED KERR BLACK HOLE

We assume the external magnetic field to be weak in the
sense that the violation of the spacetime geometry due to

the presence of the magnetic field is negligible. Thus, we
assume the geometry of the rotating black hole given by the
Kerr metric

ds2 ¼ gμνdxμdxν; ð1Þ

with the nonzero components of the metric tensor
taking in the standard Boyer-Lindquist coordinates the
form

gtt ¼ −
�
1 − 2Mr

Σ

�
; gtϕ ¼ − 2Mrasin2θ

Σ
;

gϕϕ ¼
�
r2 þ a2 þ 2Mra2

Σ
sin2θ

�
sin2θ;

grr ¼
Σ
Δ
; gθθ ¼ Σ; ð2Þ

where

Σ ¼ r2 þ a2cos2θ; Δ ¼ r2 − 2Mrþ a2: ð3Þ

Here,M is the gravitational mass of the black hole, and a is
its spin parameter. The physical singularity is located at the
ring with r ¼ 0, θ ¼ π=2 that can be well characterized in
the so-called Kerr-Schild “Cartesian” coordinates that
are related to the Boyer-Lindquist coordinated by the
relations

x ¼ ðr2 þ a2Þ1=2 sin θ cos
�
ϕ − tan−1

�
a
r

��
; ð4Þ

y ¼ ðr2 þ a2Þ1=2 sin θ sin
�
ϕ − tan−1

�
a
r

��
; ð5Þ

z ¼ r cos θ: ð6Þ

At the x-z plane, the physical singularity is located at x ¼
�a and z ¼ 0.
In the following, we consider only the external regions of

the Kerr black-hole spacetimes located above the outer
horizon (r > rþ, a2 < M2) where the ring singularity and
the causality violations region of the Kerr spacetime are
irrelevant. The outer horizon is located at

rþ ¼ M þ ðM2 − a2Þ1=2: ð7Þ

The static limit surface rstatðθÞ, governing the boundary of
the ergosphere, is given by

rstatðθÞ ¼ M þ ðM2 − a2 cos2 θÞ1=2: ð8Þ

The most convenient systems for treating the physical
processes around rotating black holes are the so-called
locally nonrotating frames (LNRFs) that correspond to
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the zero-angular-momentum observers (ZAMOs) [45].
The 4-velocity of ZAMOs is given by the formula

nα ¼ ðnt; 0; 0; nϕÞ; ð9Þ

where

ðntÞ2 ¼ gϕϕ
g2tϕ − gttgϕϕ

; nϕ ¼ − gtϕ
gϕϕ

nt: ð10Þ

The assumption of weakness of the external magnetic
field can be applied, if the strength of the magnetic field
satisfies the condition [25]

B ≪ BG ¼ c4

G3=2M⊙

�
M⊙
M

�
∼ 1019

M⊙
M

Gauss: ð11Þ

The value of BG in the estimation (11) comes from the
comparison of the gravitational effect of a black-hole mass
M with the effect of the magnetic field B on the spacetime
curvature. For most of the astrophysical black holes, the
condition (11) is perfectly satisfied. For instance, in the
magnetic coupling processes studied in Ref. [46], based on
the use of the fundamental variability plane, the estimations
of the magnitude of the magnetic field in the black-hole
vicinity give the values

B ≈ 108Gauss; for M ≈ 10M⊙; ð12Þ

B ≈ 104 Gauss; for M ≈ 109M⊙; ð13Þ

that are many orders of magnitude less than the value of BG.
However, the effect of the magnetic field, which is weak in
comparison to the gravitational mass effect (11) in the case
of the spacetime curvature, can be quite large for the motion
of charged test particles. The relative influence of the
magnetic field induced by the Lorentz force qB=ðmcÞ is
governed by the specific charge of the particle (ratio of
the electric charge and mass of the particle) and is of the
order of

b ∼ 4.7 × 107
�
q
e

��
m
mp

�−1� B
108 G

��
M

10M⊙

�
; ð14Þ

where mp is the proton mass. Thus, for the astrophysically
relevant black holes, the expression (14) is large and cannot
be neglected.
Due to the stationarity and axial symmetry of the Kerr

black-hole spacetime, the vector potential of the weak
magnetic field considered in Ref. [22], which is the solution
of the vacuum Maxwell equations with Lorentz calibrated
potential, Aμ

;μ ¼ 0, can be chosen as linear combination of
the spacetime Killing vectors

Aα ¼ C1ξ
α
ðtÞ þ C2ξ

α
ðϕÞ; ð15Þ

where ξðtÞ ¼ ∂=∂t and ξðϕÞ ¼ ∂=∂ϕ are the timelike and
spacelike axial Killing vectors which reflect the stationarity
and axial symmetry of the background metric (1). Since the
magnetic field is weak and can be described as a test field,
we can freely choose the configuration of the magnetic
field. According to Ref. [22], we can specify the constants
C1 and C2 of Eq. (15) as

C1 ¼ aB; C2 ¼
B
2

ð16Þ

for the asymptotically uniform magnetic field with the
strength B directed along the axis of symmetry of the
spacetime. The parameters C1 and C2 can be easily
obtained from the asymptotic properties and the conditions
of the electrical neutrality of the source and the uniformity
of the external magnetic field. Thus, the nonzero compo-
nents of the 4-vector potential of the asymptotically uni-
form magnetic field take the form

At ¼
B
2
ðgtϕ þ 2agttÞ; Aϕ ¼ B

2
ðgϕϕ þ 2agtϕÞ: ð17Þ

The terms proportional to the rotation parameter a give the
contribution to the Faraday induction which generates the
electric potential and thus produces an induced electric
field [22]. The potential difference between the horizon of a
black hole and infinity takes the form

Δφ ¼ φH − φ∞ ¼ Q − 2aMB
2M

: ð18Þ

This causes selective accretion of charged particles into the
rotating black hole. The process is similar to those of the
field generated by the rotating conductor immersed in a
magnetic field. At the stage of the selective accretion which
neutralizes the black hole, the 4-vector potential of the
resulting electromagnetic field takes the form

Aα ¼ B
2
ðξαðϕÞ þ 2aξαðtÞÞ −

Q
2M

ξαðtÞ: ð19Þ

Thus, the expressions (17) for the nonzero covariant
components of the 4-vector potential should be rewritten
as [25,34]

At ¼
B
2
ðgtϕ þ 2agttÞ − Q

2M
gtt ð20Þ

Aϕ ¼ B
2
ðgϕϕ þ 2agtϕÞ − Q

2M
gtϕ: ð21Þ

The process of selective accretion occurs very fast for the
astrophysical black holes until the potential difference
vanishes, which means that the black hole obtains an
inductive charge QW ¼ 2aMB. The charge QW for the
parallel orientation of the spin of a black hole a and the
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magnetic field B were introduced by Wald [22].
Substituting the Wald charge into Eq. (19), one obtains
the expression for the 4-vector potential after the process of
selective accretion is completed,

Aα ¼ B
2
ξαðϕÞ: ð22Þ

Hereafter in the paper, we will use the most general form
of the 4-vector potential (19). However, in particular cases,
we will specify the charge Q, considering two limit
scenarios:

(i) black hole with Q ¼ Q0 ¼ 0
(ii) black hole with Wald charge Q ¼ QW ¼ 2aMB.
One can compare the characteristic length scale given by

the charge of the Reissner-Nordstrom black hole QG with
its gravitational radius

ffiffiffiffiffiffiffiffiffiffi
Q2

GG
c4

s
¼ 2GM

c2
: ð23Þ

This gives the charge, the gravitational effect of which is
comparable with the spacetime curvature of a black hole.
For the black hole of massM, this condition implies that the
gravitational effect of the charge Q on the background
geometry can be neglected if

Q ≪ QG ¼ 2G1=2M ≈ 1030
M
M⊙

statC: ð24Þ

The value of the Wald charge QW ¼ 2MaB ≤ 2M2B is

QW ≤ 1018
�

M
M⊙

�
2
�

B
108G

�
statC; ð25Þ

which obviously satisfies the condition (24). This implies
that the induced charge of the rotating black hole is weak in
the same sense as the external magnetic field; namely, it
cannot modify the background geometry of the black hole.
Hereafter in this paper, we will use for simplicity the

system of units in which the mass of the black hole is equal
to unity, M ¼ 1; i.e., we express the related quantities in
units of the black-hole mass.

III. DYNAMICS OF CHARGED PARTICLES

A. Equations of motion

In this section, we consider the motion of a charged
particle of mass m and electric charge q in the field of an
axially symmetric rotating (Kerr) black hole immersed in
an external asymptotically uniform magnetic field with
field lines oriented in the direction of the black-hole
rotation axis. The motion of charged particles is governed
by the Lorentz equation. Because of the assumption of
the symmetries of the combined gravitational and

electromagnetic background of the magnetized black hole,
we can efficiently use the Hamiltonian formalism. Such an
assumption allows for substantial simplification of the
equations of motion, enabling one to find simple solutions
of the charged particle motion that give insight into the
physical phenomena occurring in the combined gravita-
tional and electromagnetic fields. The dynamical equations
for the neutral particle motion can be obtained by taking the
vanishing charge of the particle, q ¼ 0.
The Hamiltonian for dynamics of a charged particle can

be written in the form

H ¼ 1

2
gαβðPα − qAαÞðPβ − qAβÞ þ

1

2
m2; ð26Þ

where the kinematical 4-momentum pμ ¼ muμ is related to
the generalized (canonical) 4-momentum Pμ by the relation

Pμ ¼ pμ þ qAμ: ð27Þ

The dynamics of charged particles governed by the
Hamiltonian (26) is given by the Hamilton equations

dXμ

dζ
¼ ∂H

∂Pμ
;

dPμ

dζ
¼ − ∂H

∂Xμ ; ð28Þ

where we introduced affine parameter ζ related to particle
proper time τ by the relation ζ ¼ τ=m.
Using the symmetries of the background spacetime (1)

and the uniformity of the asymptotic configuration of the
magnetic field, one can easily find the existing conserved
quantities related to the charged particle, which are the
specific energy E and specific angular momentum L that
are given in terms of the metric coefficients (2) and the
vector potential (19):

−E ≡− E
m

¼ ξμðtÞ
Pμ

m
¼ gtt

dt
dτ

þ gtϕ
dϕ
dτ

þ q
m
At; ð29Þ

L≡ L
m

¼ ξμðϕÞ
Pμ

m
¼ gϕϕ

dϕ
dτ

þ gtϕ
dt
dτ

þ q
m
Aϕ: ð30Þ

Using constant of the motion L and E and the specific
charge ~q ¼ q=m, we can rewrite the Hamiltonian (26) as

H ¼ 1

2
grrp2

r þ
1

2
gθθp2

θ þHPðr; θÞ; ð31Þ

where the potential part of the Hamiltonian HPðr; θÞ is
introduced in the form

HP ¼ 1

2
½gttðE þ ~qAtÞ2 − 2gtϕðE þ ~qAtÞðL − ~qAϕÞ

þ gϕϕðL − ~qAϕÞ2 þ 1�: ð32Þ

From Eqs. (29) and (30), we obtain the first two
equations of motion of the charged particle in the form
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dt
dτ

¼ − gϕϕðE þ ~qAtÞ þ gtϕðL − ~qAϕÞ
gttgϕϕ − g2tϕ

; ð33Þ

dϕ
dτ

¼ gttðL − ~qAϕÞ þ gtϕðE þ ~qAtÞ
gttgϕϕ − g2tϕ

: ð34Þ

To find the remaining equations of the motion analytically,
we will concentrate our study on the motion in the
equatorial plane θ ¼ π=2, _θ ¼ 0 and use the normalization
condition uαuα ¼ −1 (equivalent to H ¼ 0). Then, the
equation of the radial motion of the charged particle in
the combined gravitational and magnetic fields will take the
form �

dr
dτ

�
2

¼ RðrÞ
r3

; ð35Þ

where for a simple representative form we define the radial
function RðrÞ governing the radial motion of charged test
particles in terms of the components of the metric tensor (2)
as follows:

Rðr; a; B; E;LÞ ¼ −2r3grrðr; aÞHPðr; a; B; E;LÞ: ð36Þ

Let us analyze the symmetry features of the
radial function governing the radial motion (36).
Equations (33)–(36) are invariant under the transformations
a → −a, ~qB → − ~qB, and L → −L and the redefinition of
the axial coordinate ϕ → −ϕ. Instead of using ~qB, it is
useful to use the following magnetic field parameter [36]
and charge parameter:

B ¼ qB
2m

; Q ¼ qQ
m

: ð37Þ

Hereafter, we consider the black hole in two special cases,
namely, with zero induced charge Q ¼ Q0 ¼ 0 and with
“Wald induced charge" Q ¼ QW ¼ 4aB.
Without loss of generality, we can take the specific

charge of the particle ~q and the parameter of the rotation of
a black hole a as always positive. For a particle with
negative charge, it is sufficient to use the transformations
given above.

B. Four types of equatorial circular orbits

The circular motion of charged particles occurs in
prograde (or corotating) orbits with the canonical angular
momentum L > 0 and retrograde (or counterrotating)
orbits with L < 0. On the other hand, for each case, the
presence of an external magnetic field produces the Larmor
and anti-Larmor orbits corresponding to the Lorentz force
acting on the charged particles toward the black hole and in
the outward direction, respectively [47]. We accept the
rotation parameter of a black hole as always positive a ≥ 0
as well as the charge of the test particle q > 0. This implies

that we can distinguish four different types of circular
motion for the charged particle in the magnetized Kerr
black-hole spacetime, in contrast to the magnetized
Schwarzschild black-hole case where we can have only
two different configurations. The four types of the charged
particle motion in the equatorial plane of the magnetized
Kerr black holes, represented in Fig. 1, are given in the
following way:

(I) Prograde anti-Larmor orbits (PALO) correspond-
ing to L > 0, B > 0.—Magnetic field lines are
oriented in the same direction as the rotation axis of
the black hole. The Lorentz force acting on a charged
particle corotatingwith the black hole is repulsive, i.e.,
force is oriented outwards the black hole.

(II) Retrograde Larmor orbits (RLO) corresponding to
L < 0, B > 0.—Magnetic field lines are oriented in
the same direction as the rotation axis of the black
hole. The Lorentz force acting on a counterrotating
charged particle is attractive, i.e., force is oriented
towards the black hole.

(III) Prograde Larmor orbits (PLO) corresponding to
L > 0, B < 0.—Magnetic field lines are oriented in
the opposite direction with respect to the rotation
axis of the black hole. The Lorentz force acting on a
corotating charged particle is attractive.

(IV) Retrograde anti-Larmor orbits (RALO) correspond-
ing to L < 0, B < 0.—Magnetic field lines are
oriented in the opposite direction with respect to
the rotation axis of the black hole. The Lorentz force
acting on a counterrotating charged particle is
repulsive.

Note that the signs in the definition of the types of orbits are
valid for the positive values of the rotational parameter,
a ≥ 0. For negative values of a, it is sufficient to make the
transformations discussed below Eq. (36).

F
L

F
L

F
L

F
L

F
L

( I ) ( II )

( III ) ( IV )

FIG. 1. Representation of the four classes of the circular motion
of charged particles. FL indicates the orientation of the Lorentz
force.
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The circular orbits play an important role in under-
standing the essential features of the dynamics of test
particles around a rotating black hole immersed in a
uniform magnetic field. Physically, from the symmetry
of the problem, it is clear that circular orbits are possible in
the equatorial plane where θ ¼ π=2, and they further
require dr=dτ ¼ 0. The existence of the circular orbits
requires the vanishing of the radial function R given by
Eq. (36), along with its first derivative with respect to the
radial coordinate r,

R ¼ 0; ∂rR ¼ 0: ð38Þ

The direct solution of these equations would determine
the energy and the axial angular momentum of a charged
particle at the circular orbit in terms of the orbital radius r,
the black-hole dimensionless spin a, and the magnetic field
parameter B. However, the expressions (38) are high-order
polynomial equations, and the analytical solution of
Eq. (38) is very complex and cannot be presented in a
reasonable representative form. Therefore, in some papers,
e.g., Ref. [23], a numerical analysis of the above-presented
equations is performed. The study of the charged particle
motion around a Kerr black hole immersed in a uniform
magnetic field realized through the analysis of the radial
function of the radial motion is not effective. For this
reason, in the next section related to the study of the circular
orbits, we will combine the above-presented standard
approach with the so-called force formalism suggested in
Ref. [43] and well applied in Refs. [33,34,44] for the study
of the particle motion in the field of magnetized Kerr
black holes.

IV. CIRCULAR MOTION
OF CHARGED PARTICLES

A. Formalism of forces

We can describe the charged particle motion directly by
the Lorentz equation

uμ∇μuν ¼ ~qFν
μuμ; ð39Þ

where ~q is the specific charge, uμ is the 4-velocity of the
particle normalized by the condition uμuμ ¼ −1 and Fμν ¼
Aν;μ − Aμ;ν is the antisymmetric tensor of the considered
electromagnetic field. To achieve the purposes of the
present paper, we use the formalism of forces [43], which
is based on the projection of the Lorentz equation (39) onto
the three-dimensional hypersurface hik ¼ gik þ nink,
orthogonal to the 4-velocity field of the LNRFs [43,48]

nμ ¼ e−ΦðξμðtÞ þ ΩLNRFξ
μ
ðϕÞÞ; ð40Þ

e2Φ ¼ −ðξμðtÞ þΩLNRFξ
μ
ðϕÞÞðξμðtÞ þ ΩLNRFξ

μ
ðϕÞÞ; ð41Þ

where the angular velocity of the LNRF is

ΩLNRF ¼ −gtϕ=gϕϕ: ð42Þ

Vectors ξμðtÞ and ξμðϕÞ correspond to the timelike and

spacelike Killing vecors defined after Eq. (15). In the
spherically symmetric spacetimes, ΩLNRF ¼ 0.
The 4-velocity field of the charged test particles uni-

formly revolving along the circular orbits can be written as

uμ ¼ γðnμ þ vτμÞ; ð43Þ

where γ ¼ ð1 − v2Þ−1=2 is the Lorentz gamma factor, τμ ¼
ξμðϕÞg

−1=2
ϕϕ is a unit spacelike vector orthogonal to nμ

[considered here to be the 4-velocity of the ZAMO, i.e.,
the LNRF given by Eq. (9)], along which the spatial
velocity vμ ¼ vτμ is aligned. In general, the vectors in
the expression (43) correspond to the standard orthonormal
tetrad applied to the LNRF as nμ ¼ eμðtÞ and τμ ¼ eμðϕÞ.
Thus, v is the orbital or azimuthal velocity measured with
respect to the LNRF. The LNRF components of the
electromagnetic field tensor related to the asymptotically
uniform magnetic field are given in the Appendix.
Projection of the Lorentz equation, hkju

i∇iuk ¼
~qhijFikuk, can be written in the form [34]

Ga þ ðγvÞ2Za þ γ2vCa ¼ −γðEa þ vMaÞ; ð44Þ

where from the left-hand side the so-called mass-
and velocity-independent parts of the gravitational G,
centrifugal Z, and Coriolis C inertial forces and from the
right-hand side the electric E and magneticM forces can be
expressed as

Ga ¼ −∂aΦ; ð45Þ

Za ¼
1

2
g−1ϕϕe−2Φðe2Φ∂agϕϕ − gϕϕ∂ae2ΦÞ; ð46Þ

Ca ¼ g−3=2ϕϕ e−Φðgϕϕ∂agtϕ − gtϕ∂agϕϕÞ; ð47Þ

Ea ¼ ~qe−ΦðΩLNRF∂aAϕ þ ∂aAtÞ; ð48Þ

Ma ¼ ~qg−1=2ϕϕ ∂aAϕ; ð49Þ

where only the radial r and latitudinal θ components are
nonzero, thus the index a ¼ r, θ. In the case of a Kerr black
hole immersed in an asymptotically uniform magnetic
field, the radial components of the gravitational Gr,
centrifugal Zr, Coriolis Cr, electric Er, and magnetic
Mr forces take the form

Gr ¼ − a4 þ 2a2ðr − 2Þrþ r4

μ2ν2
; ð50Þ
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Zr ¼
rða2 þ 3r2Þ

μ2
þ 1 − r

ν2
− 1

r
; ð51Þ

Cr ¼
2aða2 þ 3r2Þ

μ2ν
; ð52Þ

Er ¼
2aBðr2 − a2Þ þQðr2 þ a2Þ

μνr
; ð53Þ

Mr ¼
2Bðr3 þ a2Þ þQðr2 þ a2Þ

μr
; ð54Þ

where

μ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rða2ðrþ 2Þ þ r3Þ

q
; ν¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ ðr− 2Þr

q
: ð55Þ

Remember that in the equations given above and hereafter
we fix and assume the mass of the black hole to be equal to
unity, M ¼ 1. Fixing the plane of the motion to the
equatorial plane, we can determine, according to the force
formalism, the axial angular momentum of a charged
particle at the circular orbit, L, from the radial component
of the equation (44),

Gr þ ðγvÞ2Zr þ γ2vCr ¼ −γðEr þ vMrÞ: ð56Þ

Thus, we get the fourth-order equation in the LNRF orbital
velocity v,

Av4 þ Cv3 þDv2 þ FvþH ¼ 0; ð57Þ

where

A ¼ ðGr − ZrÞ2 þM2
r ; ð58Þ

C ¼ 2CrðZr − GrÞ þ 2ErMr; ð59Þ

D ¼ C2r þ 2GrðZr − GrÞ þ ðE2
r −M2

rÞ; ð60Þ

F ¼ 2ðCrGr − ErMrÞ; ð61Þ

H ¼ G2
r − E2

r : ð62Þ

The fourth-order polynomial equation (57) has in general
four complex solutions. We give the four real solutions in
the permitted range of the circular orbit radii. The repre-
sentative behavior of the velocity profiles with respect to
the radius of the circular orbit for different values of the
magnetic field parameter B and the rotational parameter a
is shown in Fig. 2. The real solutions for the magnetized
rotating black holes can be related to the solutions
corresponding to the nonmagnetized black holes, i.e., the
circular geodesics. These can correspond to the prograde

and retrograde motions that become identical in the special
case of the nonrotating black holes.
For weak magnetic interaction, B < 0.1, the prograde

orbits (PALO and PLO) are orbiting in the sense of the
black-hole rotation, having v > 0, while the retrograde
orbits (RLO and RALO) are orbiting in the inverse sense,
having v < 0; their orientation is opposite relative to the
LNRFs. In the case of the Schwarzschild black holes
(a ¼ 0), the prograde and retrograde orbits have the same
LNRF-velocity magnitude in both directions at a given
radius (the LNRFs correspond to the static frames). In the
Kerr spacetimes, it is not so, and the range of allowed radii
given by the photon circular geodesics can be extended to a
smaller distance from the horizon—see Fig. 2.
For Larmor-type orbits (with attractive Lorentz force),

the velocity sign always corresponds to the L sign, while
for the anti-Larmor-type orbits (with repulsive Lorentz
force), the orbits with L > 0 (PALO) can have in some
regions v < 0, if the magnetic interaction parameter is large
enough (B > 0.1). The change of the LNRF velocity sign
will also change the orientation of the Lorentz force—if the
B parameter is large enough and the velocity becomes
negative v < 0, then the Lorentz force becomes attractive
even for the PALO type of orbits. Note that such a change
of the orientation of the circular orbits can occur even for
the geodesic motion. The family of corotating circular
geodesics becomes counterrotating relative to the LNRFs in
the ergosphere of Kerr naked singularities with sufficiently
small dimensionless spin [49].
For a Kerr black hole with given spin a, the radial

profiles of the charged particle prograde (retrograde) orbits
of the Larmor and anti-Larmor types are separated by the
radial profile of the prograde (retrograde) circular geo-
desics, corresponding to the case of B ¼ 0. For the Larmor-
type orbits, the range of the radii of the prograde
(retrograde) charged particle orbits and geodesics is limited
from below by the corresponding prograde (retrograde)
photon circular geodesic. On the other hand, for the anti-
Larmor orbits, the radii can enter the region under the
related photon circular orbits; if the repulsive Lorentz force
is large enough, even stable circular orbits can be located
under the radius of the photon circular geodesic, as will be
demonstrated below. Therefore, we can introduce the
notion of innermost unstable circular orbits (IUCO) located
at rIUCO < rph that give the inner limit on the existence of
circular charged particle orbits of the anti-Larmor type with
high values of the magnetic parameter B—see Fig. 2. For
all four types of the circular orbits (PALO, RLO, PLO, and
RALO), the value of the LNRF velocity radial profile
approaches v ¼ 1 for PALO, PLO and v ¼ −1 for RALO,
RLO as the orbits approach the corresponding photon
circular geodesic radius representing the inner limit on their
existence, or outer limit for orbits with B > 0.1.
For both the prograde and retrograde motions, the

Larmor and anti-Larmor circular orbits demonstrate
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qualitatively different radial profiles at large distances from
the black-hole horizon—the LNRF velocity of the charged
particle orbits becomes ultrarelativistic in the cases of the
Larmor circular orbits (PLO and RLO), while it continu-
ously decreases with increasing radius in the case of the
anti-Larmor circular orbits (PALO and RALO). Of course,
this spectacular effect is caused by the opposite orientation
of the Lorentz force in the case of the Larmor and anti-
Larmor orbits. The attractive Lorentz force in the Larmor
motion supports the gravity of the black hole, while the
repulsive Lorentz force supports the centrigugal effects in
the anti-Larmor motion.
In the Schwarzschild black-hole spacetime, the induced

charge Q vanishes, and the regimes PLO with RLO and
PALOwith RALO become equivalent to each other (see the
left plot of Fig. 2). Moreover, we have to point out that in
the case when the black-hole spin a and the magnetic
interaction parameter B are not large, the differences

between the two special black-hole charge cases, Q ¼ 0
and Q ¼ QW, are very small, as one can see from Fig. 2.
However, the situation changes dramatically when the
black-hole spin a is getting close to the extremal value
of a ¼ 1, and the differences of these two cases are
profound—see Fig. 3.

B. Aschenbach effect around magnetized
Kerr black holes

In the field of nonmagnetized (B ¼ 0) Kerr black holes,
the velocity vðr; aÞ of corotating circular geodesics related
to the LNRF (called LNRF velocity) has a monotonous
radial profile, if the black-hole spin is not too close to the
extremal value of a ¼ 1—it increases with decreasing
radius, i.e., ∂v=∂r < 0 for all the circular geodesics.
However, when the dimensionless spin parameter of the
black hole approaches the extremal value, namely, when
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FIG. 2. Radial profiles of the LNRF velocity of the charged particle at the circular orbits around magnetized black holes given for
representative values of the spin a and the magnetic field parameter B. The left column of plots corresponds to the nonrotating black
holes with a ¼ 0, the middle column of plots represents prograde and retrograde orbits of rotating black holes with a ¼ 0.7, and the right
column represents prograde and retrograde orbits of rotating black hoes with a ¼ 0.998. The thick solid curves correspond to the
nonmagnetized black holes with B ¼ 0, separating the regions with the Larmor and anti-Larmor motions. The solid curves correspond to
the case with Wald charge Q ¼ QW, while the dashed curves represent the case with zero charge Q ¼ 0. The dotted line gives the
position of the photon orbit and the positions for the innermost unstable circular orbit (rIUCO) and innermost stable circular orbit (rISCO)
in the case of a nonrotating black hole.
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a > 0.9953, a nonmonotonic behavior has been found in
the LNRF velocity profiles of the particles on corotating
circular geodesics in the region close to the horizon (see
Fig. 3 for a ¼ 0.998) [50,51]. The changing of sign of the
radial gradient of the LNRF velocity profile resembling a
hump in close vicinity of the black-hole horizon has been
called “Aschenbach effect” [52].
We have to test the existence of the Aschenbach effect in

the field of magnetized Kerr black holes, i.e., the occur-
rence of the humpy radial profiles of the orbital LNRF
velocity of charged particles. However, in the field of
magnetized Kerr black holes (or even magnetized
Schwarzschild black holes), the orbital LNRF velocity
profiles of the Larmor-type circular orbits, corresponding
to the attractive character of the Lorentz force, have
∂v=∂r > 0 at large distances. There are two types of the
Larmor orbits: RLO (with L < 0, B > 0) and PLO (with
L > 0, B < 0).
For both types of the Larmor circular orbits around the

magnetized black holes, the radial gradient of the LNRF
velocity changes its sign when the contribution of the
Lorentz force acting on the charged particle changes from
domination to subordination with respect to the effect of the
inertial forces due to the angular momentum. Of course, the
corresponding local minimum of the LNRF velocity radial
profile of the Larmor orbits is not related to the Aschenbach
effect, as it occurs even in the field of magnetized
Schwarzschild black holes. Moreover, the minimum is
located at an intermediate distance from the black-hole
horizon. On the other hand, it could be relevant to look for
possible astrophysical effects related to the general inver-
sion of the LNRF velocity gradient in the family of the
Larmor circular orbits.
For example, we have to study the gradient of the radial

profile of the angular frequency of the circular motion, as a

negative gradient of the radial profile is a crucial condition
for the magnetorotational instability [2] governing the
viscosity effects in Keplerian disks. Such a condition
can be broken in Keplerian disks orbiting in the naked
singularity or no-horizon spacetimes [53,54]. Surely, this
condition is also violated at large radii in the Larmor-type
charged thin disks, as the Larmor orbits demonstrate at
large distances the positive gradient of the angular fre-
quency contradicting the MRI condition.
For the circular orbits around magnetized black holes,

the Aschenbach effect has to correspond to the existence of
a maximum of the LNRF velocity profile, located in
vicinity of the black-hole horizon. A short analysis has
been done for the dependence of the gradient of the orbital
velocity ∂v=∂r on the radius of the circular orbit r, in the
field of the magnetized black hole with spin a ¼ 0.998 and
the magnetic field parameter B—see Fig. 3. We demon-
strate that the Aschenbach effect really occurs in the field of
near-extreme magnetized Kerr blak holes, but only for the
prograde Larmor orbits. For the Larmor-type orbits, the
Aschenbach is strenghtened, while for the anti-Larmor-type
orbits, it is suppressed—see Fig. 3. No Aschenbach effect
has been found for the RLO-type orbits.

C. Energy and angular momentum

The four solutions for the charged particle circular orbit
LNRF velocity v discussed above correspond to the four
different types of the circular orbits (PALO, RLO, PLO,
and RALO). We thus have prograde (retrograde) orbits of
the Larmor or anti-Larmor type. Knowing the LNRF
velocity v of these orbits, we are able to determine the
specific angular momenta and the specific energies of these
orbits.
The specific angular momentum of a charged particle

following the circular orbit of a given type at a radius r in
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FIG. 3. Radial profiles of the gradient of the LNRF velocity. Since the Aschenbach effect is observed in the prograde Larmor motion
only, we plotted PALO and PLO cases only. The left figure represents the pure Kerr spacetimes where thin solid curves represent black-
hole spins a ¼ 0.99 and a ¼ 0.998, while the thick solid curve represents the Aschenbach effect limit for a ¼ 0.9953. The middle figure
represents the prograde Larmor orbits, while the right figure represents the prograde anti-Larmor orbits. Even a small value of the
magnetic field parameter, B ¼ �0.03, can remarkably change the limiting black-hole spin of the Aschenbach effect in the field of
magnetized Kerr black holes.
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the field of a magnetized black hole with dimensionless
spin a, with the electromagnetic interaction characterized
by the magnetic parameter B, can be found from the
equation

LCOðr; a;BÞ ¼ ffiffiffiffiffiffiffi
gϕϕ

p
γvþ ~qAϕ; ð63Þ

where the Lorentz factor γ ¼ ð1 − v2Þ−1=2 and the LNRF
velocity v is taken as the corresponding solution of
Eq. (57). The four solutions of Eq. (63) correspond to
the Larmor and anti-Larmor motions for the prograde orbits
with L > 0, v > 0 and retrograde orbits with L < 0, v < 0
only for small values of the magnetic parameter, B < 0.1,
but it is not necessarily so for the anti-Larmor orbits with
large values of the magnetic parameter. We give the radial
profiles of the specific axial angular momentum of the four
types of the charged particle circular orbits (PALO, RLO,
PLO, and RALO) for typical values of the black-hole
dimensionless spin a and the magnetic field parameter B in
Fig. 4. We can convince ourselves that the radial profiles
Lðr; a;BÞ never cross the L ¼ 0 line; therefore, the

criterion of the sign of the angular momentum L is really
convenient for the definition of different families of the
charged particle circular orbits.
The specific energy of the charged particle following the

circular orbit of the given type can be found analytically
from the relation R ¼ 0 of Eq. (36) for the given value of
the specific angular momenta (63). On the other hand, the
specific energy of the charged particle can be obtained
directly from the formalism of forces using the formula [43]

ECOðr; a;BÞ ¼
ffiffiffiffiffiffiffiffiffi−gttp

γ − ~qAt; ð64Þ

with the properly chosen value of the LNRF velocity v. We
give the radial profiles of the specific energy of the four
types of the charged particle circular orbits (PALO, RLO,
PLO, and RALO) for typical values of the black-hole
dimensionless spin a and the magnetic field parameter B in
Fig. 5. Each point on the radial profiles, giving the circular
orbit at a given radius r, corresponds to the extremal point
of the radial function of the charged particle motion (36)
given for the related specific angular momentum LCO.
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FIG. 4. Radial profiles of the angular momentum of charged particles at the circular orbits, LCO, given for representative values of the
black-hole spin a ∈ f0; 0.7; 0.998g and the magnetic field parameter B ∈ f0;�0.1;�1g. The dashed curves correspond to the black
hole with zero induced charge Q ¼ 0, while the solid curves represent the case with Q ¼ QW. For a nonrotating black hole (left lower
figure), we give the position of the photon orbit and the positions of the innermost unstable circular orbit (rIUCO) and innermost stable
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Depending on the sign of B and LCO, we can identify the
type of the trajectory, namely, PALO, RLO, PLO, and
RALO. In the special case of nonmagnetized black hole,
B ¼ 0, the motion can be either prograde or retrograde,
while in the field of magnetized Schwarzschild black holes,
we obtain the Larmor or anti-Larmor motion. We directly
see that for the Larmor orbits the specific energy quickly
grows with increasing radius, while for the anti-Larmor
orbits, the specific energy remains at large radii close to the
value of E ¼ 1. For the positive magnetic field parameters,
B > 0, the radial profiles of the retrograde (Larmor) orbits
are located above the radial profiles of the prograde (anti-
Larmor) orbits, while for B < 0, the crossing of the radial
profiles occurs for black-hole spin a large enough, as for
the prograde (Larmor) orbits, the specific energy strongly
increases at large radii—see Fig. 5. We can see that the
canonical energy of the circular orbits can be negative,
E < 0, if the magnetic parameter B is high enough.
We notice that the influence of the induced charge on the

specific energy of the charged particle at the circular orbit is
clearly recognizable—generally, the induced charge
increases the specific energy of the orbit at a fixed radius.
Therefore, we can conclude that, depending on the stage of

the accretion of charge into the black hole, the specific
energy of the orbiting charged particles ECO will be varied.

D. Innermost stable circular orbits

The local extrema of the radial profiles of the specific
angular momentum LCOðr; a;BÞ, Eq. (63), and the specific
energy ECOðr; a;BÞ, Eq. (64), define the ISCOs. A deriva-
tive of LCOðrÞ or ECOðrÞ functions with respect to the radial
coordinate r leads to complicated relations. It is therefore
useful to determine the ISCO position from the radial
function equation for radial motion given in the Eq. (35). At
the ISCO, the radial function RðrÞ has to simultaneously
satisfyy the relations

RðrÞ ¼ 0 ∂rR ¼ 0; ∂2
rR ¼ 0; ð65Þ

where the function RðrÞ is given by Eq. (36). We can
express Eq. (65) for any value of black-hole chargeQ in the
form

0¼e2ða2rþ2a2þr3Þþ4ael− l2
ðr2−2rÞ

r
−Δr; ð66Þ
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FIG. 5. Radial profiles of the energy of charged particles at the circular orbits, ECO, given for representative values of the black-hole
spin a ∈ f0; 0.7g and the magnetic field parameter B ∈ f0;�0.1;�1g. The dashed curves correspond to the black hole with zero
induced charge Q ¼ 0, while the solid curves represent the case with Q ¼ QW.
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0 ¼ 4a3Beþ a2½4Blþ eðer − 2QÞ�
þ 4Blðr − 2Þr2 þ r2ð3e2r − 2eQ − 2rþ 2Þ
− rl2 − rΔ − 2að2Ber2 þ lQÞ; ð67Þ

0 ¼ 8 − 12rþ 8B2ð6 − 5rÞr2 þ 8a2B2ð3r − 4Þ
þ 8BLð3r − 2Þ þ ð2E þQÞð6Er − 4Qþ 3rQÞ
− 8aBð3Qðr − 1Þ þ Eð6r − 4ÞÞ; ð68Þ

where

e ¼ −E þ 2aB
r − 1

r
þQ

2 − r
2r

; ð69Þ

l ¼ L − B
r
ða2r − 2a2 þ r3Þ − aQ

r
: ð70Þ

The analytic solution to Eqs. (66)–(68) can be found for
both casesQ ¼ 0 andQ ¼ QW. For theQ ¼ QW case, one
can follow Ref. [47] and find the angular momentum and
the energy LISCOðrÞ or EISCOðrÞ as an explicit function of r
and obtain also one implicit equation for coordinate r—
such a system must be solved numerically. For the Q ¼ 0
case, a similar solution can be found, having a very
complicated form. In this article, we will obtain the
radial position of the ISCO by solving the system of
equations (66)–(68) numerically.
The dependence of the ISCO radii on the black-hole spin

a and the magnetic field parameter B is demonstrated in
Figs. 6 and 7 for all four types of the charged particle
circular orbits.
We can see that in the case of a Kerr black hole with fixed

spin a, for B > 0, the ISCO radius of the PALO orbits is
always lower than the ISCO radius of the RLO orbits, while
for B < 0, the ISCO radius of the PLO orbits is lower than

FIG. 6. The ISCO radii given in dependence on the black-hole spin a for typical values of the magnetic field parameter B ¼ 0,
B ¼ �0.1, and B ¼ �1. The solid curves correspond to the Q ¼ QW case, while the dashed curves are related to the Q ¼ 0 case. The
dot dashed curve represents the radii of photon circular geodesics.
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a ¼ 0.7, and a ¼ 0.998. The curves represent all four classes of the circular orbits. The solid curves correspond to the Q ¼ QW case,
while the dashed curves are related to the Q ¼ 0 case.
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the ISCO radius of the RALO orbits for magnitude of B low
enough, but the PLO ISCO radius becomes larger than the
RALO ISCO radius for a magnitude of jBj > jBðaÞj. From
the astrophysical point of view, it is extremely important
that for the anti-Larmor circular orbits, related to the
repulsive Lorentz force, the ISCO radius can be lower
than the corresponding radius of the photon circular
geodesic, rISCO < rph, if the magnetic parameter B is high
enough.
The limiting values of the ISCO radius of all four classes

of the circular orbits, given for limiting values of the black-
hole spin, a ¼ 0 and a ¼ 1, can be found in the Table I.
Similarly to the case of the innermost stable circular
geodesics in the field of extreme Kerr black holes, some
of the orbits have the ISCO radius at r ¼ 1.
The condition for the particle to be located at the ISCO

plays a very important role for the purposes of the present
paper. We shall see below that the radial epicyclic fre-
quency vanishes at the ISCO, and thus discussion of the

oscillatory motion should be restricted to the region limited
from below by the ISCO radius.

V. HARMONIC OSCILLATIONS
OF CHARGED PARTICLES

Stable circular motion of a charged particle revolving at a
radius r0 corresponds to a minimum of the radial function R
at the radius r0, in the equatorial plane θ ¼ π=2, given by
Eq. (36). If one slightly shifts the position of a charged
particle from its equilibrium on the circular orbit, the
particle starts to oscillate around the position of the radial
function minimum, i.e., around the radius of the circular
orbit. If the deviation is be small enough, the conditions of
the linear harmonic oscillations can be satisfied. The
schematic illustration of the frequencies of the charged
particle epicyclic oscillations is presented in Fig. 8. We
shall study now the small oscillations that can be described
as linear harmonic oscillations.
Changes of the position of a charged particle following

an originally stable circular orbit can be given in the
radial and latitudinal (vertical) directions by variations r ¼
r0 þ δr and θ ¼ θ0 þ δθ described by the linear harmonic
oscillations governed by the equations

δ̈rþ ω2
r δr ¼ 0; δ̈θ þ ω2

θδθ ¼ 0; ð71Þ

where dots denote the derivatives with respect to the proper
time τ of the particle. The locally measured angular
frequencies of the radial and latitudinal harmonic oscil-
latory motion are given by [7,55]

ω2
r ¼

1

grr

∂2HP

∂r2 ; ω2
θ ¼

1

gθθ

∂2HP

∂θ2 ; ð72Þ

where the derivatives are taken from the potential part of the
Hamiltonian determined by Eq. (32). The energy and
angular momentum of the linear harmonic motion are
fixed and later equalized to E ¼ ECO and L ¼ LCO given
by Eqs. (63) and (64). We thus arrive at the relations

∂2HP

∂r2
����
A
¼ 6a2ðL2 − 4E2Þ − 8aELðr − 4Þ þ 4L2ðr − 4Þ

2a2Δ2
þ 4ða2 − 1Þ½a2ð4E2 − L2Þ þ 4aELðr − 2Þ − 2L2ðr − 2Þ�

a2Δ3

−
2ðL − aEÞ2

a2r3
þ B2

�
2a2

r3
þ 1

�
− 2aBQ

r3
þ a2Q2

2a2r3
; ð73Þ

∂2HP

∂θ2
����
A
¼ 1

2r3Δ
f4a5BðQ − aBÞ þ a4½4E2 −Q2 − 2B2rðr2 − 2r − 4Þ� − 8a3ðBQrþ ELÞ − a2Q2ðr2 − 2rÞ

þ 4a2r2½E2 − B2rðr2 − 3rþ 4Þ� þ 4a2L2 − 4aBQðr − 2Þr3 þ 2ðr − 2Þr2ðL2 − B2r4Þg; ð74Þ

where A is a point in equatorial plane A ¼ ðr; θ ¼ π=2Þ.

TABLE I. Values of the ISCO radius rISCO in the limiting cases
of the nonmagnetized, B ¼ 0, and highly magnetized, B → ∞,
Schwarzschild (a ¼ 0), Kerr (a ¼ 0.7), and extreme Kerr (a ¼ 1)
black holes.

PALO RALO

B ¼ 0 B → ∞ B ¼ 0 B → ∞

Q0 QW Q0 QW

a ¼ 0 6 2 2 6 2 2
a ¼ 0.7 3.39 1.72 1.78 8.14 1.72 2.24
a → 1 1 1 1 9 1 2.41

PLO RLO

B ¼ 0 B → ∞ B ¼ 0 B → ∞

Q0 QW Q0 QW

a ¼ 0 6 4.30 4.30 6 4.30 4.30
a ¼ 0.7 3.39 2.61 2.77 8.14 5.60 5.45
a → 1 1 1 1 9 6.11 5.88
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We have to stress that the radial (horizontal) frequency
vanishes at the innermost stable circular orbit,
ωrðr¼rISCOÞ¼0. Further, there exists also the third funda-
mental angular frequency of the epicyclic particle motion,
namely, the orbital (axial) angular frequency,ωϕ, sometimes
called the Keplerian frequency, given by the relation

ωϕ ¼ dϕ
dτ

¼ að2E − aBrÞ þ ðr − 2ÞðL − Br2Þ
rΔ

; ð75Þ

where dϕ=dτ≡ uϕ is defined by Eq. (34) and the specific
energy E ¼ ECO and the specific angular momentum L ¼
LCO are given by Eqs. (63) and (64), respectively. We can
notice that the orbital angular frequency does not directly
depend on the induced chargeQ; however, the contribution
due to the induced charge comes from the dependence of the
specific energy ECO and the specific angular momentum
LCO at the circular orbit on the induced charge Q.
The pure contribution to the oscillations due to the

magnetic field is associated by the Larmor angular fre-
quency ωL, which is given by the relation

ωL ¼ qB
m

¼ 2jBj: ð76Þ

Obviously, the Larmor angular frequency ωL does not
dependent on the radial coordinate r, and it is fully relevant
in large distances from the black hole where the uniform
magnetic field starts to play the crucial role for the charged
particle motion.
An alternative definition of the frequencies of the

charged particle epicyclic harmonic oscillations is based
on variations of the Lorenz equation and can be found in
Ref. [56]. Both the definitions lead to the same results for
the radial and latitudinal perturbations; however, the
frequencies obtained in Ref. [56] are related to the static
distant observer. To obtain frequencies measured by the
distant observer, one needs to divide Eqs. (72) and (75) by
the redshift factor ut, given by Eq. (33). We leave the
discussion of the frequencies of the charged particle

oscillations measured at infinity for the next paper, while
in the present paper, we concentrate our attention on the
properties of the locally measured frequencies, analyzing
their radial profiles represented in Fig. 9.
The behavior of the fundamental frequencies ωr, ωθ, ωϕ,

and ωL and their ratios can help us distinguish different
shapes of charged particle epicyclic orbits in the vicinity of
a stable circular orbit. The representative profiles of the
frequencies are given in Fig. 9. We compare the frequencies
in the cases of magnetized Schwarzschild, Kerr, and
magnetized Kerr black holes. We can see that there are
strong differences between the properties of the oscillatory
frequencies around charged particle circular orbits and the
geodesic circular orbits. The most relevant difference is
related to the fact that the latitudinal frequency, ωθ, is not
well defined (becomes complex) in some regions where the
radial motion is stable, if the magnetic parameter B is high
enough. Notice that the charged particle circular orbits are
metastable in the flat spacetime with a uniform magnetic
field. Therefore, we demonstrate an instability relative to
the vertical perturbations that could enter the problem of the
stability of the charged particle circular orbits. Note that
this is a new and important phenomenon as the radially
stable circular geodesics of the Kerr metric are always
stable relative to the vertical perturbations [49,57,58].
In the case of the charged particle oscillatory motion, the

radial, latitudinal, and orbital frequencies have to be related
to the Larmor frequency. We can summarize their proper-
ties in the following way. For oscillations around all four
classes of the circular orbits, the radial frequency is always
smaller than the Larmor frequency. The orbital frequency is
always larger than the Larmor frequency for the Larmor
orbits RLO and PLO, while it is smaller than the Larmor
frequency at large enough radii for the anti-Larmor orbits
PALO and RALO, but it can exceed the Larmor frequency
at radii close the horizon radius, if the black-hole spin is not
close to the extreme value of a ¼ 1. The latitudinal
frequency is much smaller than the Larmor frequency at
large radii for all four types of the circular orbits, and it
exceeds the Larmor frequency at radii close to the horizon
radius, if the black-hole spin is not close to a ¼ 1.
Therefore, the latitudinal frequency radial profile crosses
the radial frequency radial profile for all four classes of the
circular orbits, while the orbital frequency radial profile
crosses the radial frequency radial profile in the case of the
anti-Larmor frequencies PALO and RALO. The crossing
points are close for the PALO orbits, while they are
relatively distant for the RALO orbits. The regions where
the latitudinal frequency ωθ is not well defined are located
where the velocity of the prograde orbits becomes negative
(B > 0, v < 0). Note that then the instability of the vertical
perturbations can imply an escape to infinity, or a bounded
chaotic motion.
The analysis of the oscillatory orbits in the field of

magnetized Schwarzschild black holes has been done in

FIG. 8. Locally measured radial (horizontal) ωr, latitudinal
(vertical) ωθ, Keplerian ωϕ, and Larmor ωL angular frequencies
for a charged particle moving in the vicinity of a stable circular
orbit in the gravitational field of a Kerr black hole combined with
an asymptotically uniform magnetic field with strength lines
aligned to the rotation axis of the Kerr spacetime.
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FIG. 9. Radial profiles of the locally measured fundamental frequencies of the charged particle oscillations given for all four classes of
the charged particle circular orbits and for typical values of the black-hole spin a and themagnetic field parameterB. The curves are drawn
in the followingway:ωr, thin solid;ωθ, thick solid;ωϕ, dashed; and Larmour frequencyωL ¼ 2B, dotted dashed. The black curves denote
the case with the induced Wald charge Q ¼ QW, while gray curves correspond to zero induced charge, Q ¼ 0. The orbital frequency
ωϕ ¼ _ϕ and can take both positive and negative values according to the sign of angular momentum L (we plotted the absolute value of
ωϕ). The first row represents the influence of the magnetic field (first two figures) and rotation alone (last two figures). The second row of
figures is plotted for a middle rotating a ¼ 0.7 black hole with a small value of magnetic field B ¼ �0.1. The transition from the a ¼ 0 to
B ¼ 0 case is smooth, and the differences between theQ ¼ 0 andQ ¼ QW cases are negligible. The last two rows represent the effect of a
highly rotating a ¼ 0.998 Kerr black hole in a relatively strong magnetic field B ¼ �1. The cases with LB < 0 (RLO and PLO) are
relatively simple, and they are just some smooth modification of the figures presented in second row. The difference between theQ ¼ 0
and Q ¼ QW cases is negligible for RLO while quite large for PLO. The dramatic behavior of radial profiles can be observed for the
PALO and RALO cases (LB > 0), and we plotted extra figures distinguishing between the Q ¼ 0 and Q ¼ QW cases for PALO and
RALO (last row). In the PALO case, the vertical frequency ωr is real only for some values of r forQ ¼ 0, while it is always complex for
Q ¼ QW. In the PALOQ ¼ QW case and in the RALOQ ¼ 0 case, the orbital frequency ωϕ can change its sign, and hence there exist
radii for which ωϕ is zero—at such a circular orbit, the observer located at infinity will be seeing the charged particle not moving.
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Ref. [25]. Here, we extended the study to the case of the
magnetized Kerr black holes. For oscillatory motion around
circular orbits of all four classes, the asymptotic values of
the frequency of the radial oscillations ωr coincide with the
Larmor frequencyωL. The same effect occurs for the orbital
frequency ωϕ in the case of the Larmor orbits, while in the
case of the anti-Larmor orbits, ωϕ vanishes at infinity.
Simultaneously, in the case of the anti-Larmor orbits of

both prograde and retrograde types, the influence of the
magnetic field can decrease the values of the orbital
frequency ωϕ in such a way that they are much less than
the corresponding values of the radial and latitudinal
frequencies ωr and ωθ. This implies the existence of a
new type of trajectories, namely, those resembling toroidal
(solenoid) orbits with ωr ∼ ωθ ≫ ωϕ. Such a kind of
oscillatory motion is most profoundly demonstrated in

FIG. 10. Charged particles orbits with the toroidal (solenoid) shape, obtained by perturbing the stable circular orbit. Toroidal orbits,
having almost identical frequencies of the radial and vertical oscillations, ωr ∼ ωθ, and greater than the orbital Keplerian frequency ωϕ,
can exist for both nonrotating Schwarzschild (first row) and rotating Kerr (second and third row) black holes. However, the frequencies
ωr ∼ ωθ ≫ ωϕ can occur around a magnetized nonrotating Schwarzschild black hole only for large values of the B parameter; for a
rotating Kerr black hole, the toroidal orbits are observed in the RALO configuration only—see Fig. 9. Because of vanishing of Keplerian
frequency ωϕ ∼ 0 close to the ωr ∼ ωθ radius for theQ ¼ 0 RALO configuration, the toroidal shape is more apparent inQ ¼ 0 (second
row) than for Q ¼ QW (third row). In the first column, the polar cap view (z ¼ 0) on the trajectories is presented. The second column
corresponds to the trajectories observed orthogonally to the equatorial plane (y ¼ 0). The third column shows the boundaries of the
particle motion, implied by the conditionHPðr; θÞ ¼ 0, and the cross sections of the orbits observed orthogonally to the equatorial plane
(y ¼ 0). In the fourth column, we present the 3D trajectories of the charged particle oscillatory motion. The frequencies in third column
are obtained numerically by the Fourier transform of the trajectory (left) and compared with the analytically given frequencies of
quasiharmonic epicyclic motion (right).
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the case of the RALOmotion. In the Larmor motion of both
the PLO and RLO types, no orbits of the toroidal type can
be found due to the fact that the frequencies of radial and
vertical oscillations become always less than the orbital
frequency ωϕ.
Finally, we give trajectories of the charged particle

oscillatory motion near the circular orbits around the
magnetized black holes for the qualitatively new type of
the toroidal (solenoid) motion allowed by rotating
black holes in Fig. 10. The frequencies corresponding to
the trajectories represented in Fig. 10 are related to the
frequencies plotted in Fig. 9. The other types of the
oscillatory motion can be found in our previous paper [7].
We further give in Fig. 11 trajectories corresponding to

the other fundamentally new phenomenon discovered here,
namely, the vertically unstable motion occurring in the
regions of stability against radial perturbations. Such
trajectories correspond to perturbed circular orbits of the
anti-Larmor type with L > 0 and v < 0 and can be both
escaping and bounded.

VI. SUMMARY

In the present paper, we have studied the behavior of the
charged test particles in the vicinity of the equatorial plane
of a weakly magnetized Kerr black hole. The motion of
charged particles, as compared to the geodesic motion,

dramatically changes in the presence of even a weak
magnetic field.
We have demonstrated that the circular motion of

charged particles can be separated into four different
classes of circular orbits depending on the orientation of
the particle motion relative to the black-hole rotation and
the orientation of the Lorenz force acting on the charged
particles. We have presented the qualitative and quantitative
analysis of the four classes of the charged particle circular
orbits.
We have also considered the influence of the induced

chargeQ due to the rotation of the black hole in an external
magnetic field. We have demonstrated that this effect is
quite small in the case when the spin of the black hole and
magnetic field strength are small. However, in the case of
quickly rotating black holes and large values of magnetic
field, the effect of the induced charge cannot be neglected.
Using the formalism of forces [43], we have found the

analytical expression for the velocity, specific angular
momentum, and specific energy of charged particles at
the circular orbits. We have shown that far away from the
horizon of the black holes the velocity of charged particles
can still be ultrarelativistic, but only in the cases related to
the Larmor motion, i.e., for PLO and RLO, while in the
anti-Larmor regime (PALO and RALO), the motion can be
ultrarelativistic only in the regions close to the black-hole
horizon. We have also shown that for the prograde motion

FIG. 11. Vertically stable (first row) and unstable (second row) charged particle circular orbits, which are stable to radial perturbation
(they are located above the ISCO). The ISCO for presented PALO configurations with L > 0 and B ¼ 1 is located at rISCO≐2.6 for
Q ¼ 0 (first row) and at rISCO≐1.9 for Q ¼ QW (second row). The circular orbits with negative LRNF velocity v < 0—see the second
figure in the first row of Fig. 4—are unstable against vertical perturbations (complex value of ωθ) while stable against radial
perturbations (real value of ωr). An explanation of the presented different views on individual trajectory (different subfigures in one row)
can be found in Fig. 10.
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the so-called Aschenbach effect can be observed in the
black-hole vicinity. However, there is a change of the
velocity gradient also at an intermediate distance from
the black hole in the case of the Larmor motion.
We have determined the ISCO orbits for charged

particles following all four classes of the circular motion.
We have found the numerical values of ISCO radii in the
limiting cases, when B ≫ 1, and the rotation of the black
hole is extremal (a ¼ 1). We have shown that in the case of
prograde motion near rotating black hole the ISCO radii are
always shifted toward the horizon, and in the extremely
rotating case, its radius coincides with the horizon radius.
However, in the retrograde motion, there appear situations
when the orbits can be shifted outward from the horizon up
to 9M.
We have demonstrated that the charged particle circular

orbits of the anti-Larmor type, with repulsive Lorentz force,
can extend below the radius of the related photon circular
geodesic, and such orbits can even be stable against
perturbations, if the magnetic field represented by the
magnetic parameter B is large enough.
Assuming small deviations of a particle from the

equatorial circular orbit and using the method of
the perturbation of the Hamiltonian, we have studied the
harmonic oscillations of charged particles in the uncoupled
orthogonal radial and vertical (latitudinal—θ) oscillatory
modes. We have found the analytical expressions for the
locally measured frequencies of the radial, ωr, vertical, ωθ,
azimuthal (orbital) ωϕ, and Larmor ωL oscillations. We
have studied properties of these frequencies related to the
Larmor and anti-Larmor circular orbits of both the prograde
and retrograde types. We have found a fundamental new
effect related to the instability of the charged particle
circular orbits against vertical perturbations.
We have presented the special trajectories of the per-

turbed circular motion, demonstrating the qualitatively new
shape of the charged particle epicyclic motion in the
vicinity of stable circular orbits and the types of the
vertically perturbed unstable orbits.
We have demonstrated explicitly that in the case of the

RALO oscillatory motion a new type of trajectories of the
toroidal character (having ωr ∼ ωθ ≫ ωϕ) can be obtained
if the black-hole spin a and the magnetic field parameter B
have appropriate values. The spiral orbits resembling a
toroid (solenoid) could generate an internal toroidal mag-
netic field that could be used as a physical model for axially
symmetric current-carrying string loops [3]. Such toroid-
like orbits have to satisfy the condition ðωr ∼ ωθÞ ≫ ωϕ,
but this condition is not valid for charged particles orbiting
a charged source in the weak gravity limit [59], and we
have shown that it is not possible to obtain such orbits even
for charged particles orbiting a nonrotating Schwarzschild
black hole placed in a uniform magnetic field. On the other
hand, in the field of rotating Kerr black holes and naked
singularities, the spiral orbits can exist because of the

existence of relativistic orbits with low (Keplerian) angular
velocity relative to distant static observers [17,49].
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APPENDIX: ELECTROMAGNETIC FIELDS
MEASURED BY ZAMO

One can express the frame components of the external
electromagnetic field in the LNRF, i.e., measured by
ZAMO as

Er̂ ¼ − rBa sin θ
Σ2A

��
Δ −

�
1 −M

r

�
Σ − a2sin2θ

�

× ð1þ cos2θÞðr2 þ a2Þ þ 2ΣMrsin2θ

	
; ðA1Þ

Eθ̂ ¼ aBsin2θ

Σ2
ffiffiffiffi
Δ

p
A
½fΔþ 2ðr2 − a2Þgðr2 þ a2ÞΣ cos θ

− fΣðr2 − a2Þ − 2aK cos θgΔ�; ðA2Þ

Br̂ ¼ B sin 2θ
2ΣA

�
Δa2sin2θ − 2Ka

Σ
ðr2 þ a2Þ

− ðr2 þ a2 cos 2θÞðr2 − a2Þ
�
; ðA3Þ

Bθ̂ ¼ − rB
ffiffiffiffi
Δ

p

Σ2A

��
Δ −

�
1 −M

r

�
Σ − a2sin2θ

�

× a2ð1þ cos2θÞ − Σ2

	
sin2θ; ðA4Þ

where

A ¼ sin θ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2 þ a2Þ2 þ a2sin2θ

q
; ðA5Þ

K ¼ a
2
½Δð1þ cos2θÞ þ ðr2 − a2Þsin2θ�: ðA6Þ

In the linear and quadratic approximation in a, which has a
special interest in the study of the physical phenomena
occurring near slowly rotating black holes, the expressions
(A1)–(A4) take the following form:

Er̂ ¼ B
r
ðacos2θ −Mað1þ 3 cos 2θÞ=2rÞ; ðA7Þ

Eθ̂ ¼ Ba sin θ
r

ð3 cos θ − 1Þ; ðA8Þ
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Br̂ ¼ −B cos θ

�
1 − a2

2r2
ð1þ 3cos2θÞ

�
; ðA9Þ

Bθ̂ ¼ B sin θ

�
1 −M

r
− 1

2r2
ða2cos2θ −M2Þ

�
: ðA10Þ

The asymptotic values of (A1)–(A4), corresponding to the
flat spacetime (M=r → 0, Ma=r2 → 0), are simplified to

lim
flat

Br̂ ¼ −B cos θ; lim
flat

Bθ̂ ¼ B sin θ;

lim
flat

Er̂ ¼ lim
flat

Eθ̂ ¼ 0: ðA11Þ
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