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We evaluate the Hadamard function and the vacuum expectation value of the current density for a charged
scalar field in the region between two codimension-one branes on the background of locally anti–de Sitter
(AdS) spacetime with an arbitrary number of toroidally compactified spatial dimensions. Along compact
dimensions periodicity conditions are considered with general values of the phases and on the branes Robin
boundary conditions are imposed for the field operator. In addition, we assume the presence of a constant
gauge field. The latter gives rise to an Aharonov-Bohm-type effect on the vacuum currents. There exists a
range in the space of the Robin coefficients for separate branes where the vacuum state becomes unstable.
Compared to the case of the standard AdS bulk, in models with compact dimensions the stability condition
imposed on the parameters is less restrictive. The current density has nonzero components along compact
dimensions only. These components are decomposed into the brane-free and brane-induced contributions.
Different representations are provided for the latter that are well suited for the investigation of the near-brane,
near-AdS boundary and near-AdS horizon asymptotics. An important feature, that distinguishes the current
density from the expectation values of the field squared and energy-momentum tensor, is its finiteness on the
branes. In particular, for Dirichlet boundary conditions the current density vanishes on the branes. We show
that, depending on the constants in the boundary conditions, the presence of the branes may either increase or
decrease the current density compared with that for the brane-free geometry. Applications are given to the
Randall-Sundrum 2-brane model with extra compact dimensions. In particular, we estimate the effects of the
hidden brane on the current density on the visible brane.
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I. INTRODUCTION

In quantum field theory on static backgrounds the
vacuum is defined as the state of a quantum field with
zero number of quanta. The field operator does not
commute with the operator of the number of quanta and,
hence, in the vacuum state the field has no definite value.
The corresponding quantum fluctuations are known as
zero-point or vacuum fluctuations. The properties of these
fluctuations and, hence, of the vacuum state, crucially
depend on the geometry of the background spacetime (for
general reviews see Ref. [1]). Not surprisingly, exact results
for the physical characteristics of the vacuum can be found
for highly symmetric backgrounds only. Continuing our
previous research [2,3], in this paper we investigate the
changes in the properties of the vacuum state for a charged
scalar field induced by three types of sources: by the curved
geometry, by nontrivial topology and by boundaries.
As a background geometry we will consider locally anti–

de Sitter (AdS) spacetime. AdS spacetime is the maximally
symmetric solution of the vacuum Einstein equations with a
negative cosmological constant and because of its high

symmetry numerous physical problems are exactly solv-
able in this geometry. In particular, quantum field theory in
AdS background has long been an active field of research.
There are a number of reasons for that. Much of the early
interest in the 1970s was motivated by principal questions
of the quantization procedure on curved backgrounds.
Among the new features, having no analogues in quantum
field theory on the Minkowski bulk, are the lack of global
hyperbolicity and the presence of both regular and irregular
modes. In addition, the natural length scale of the AdS
geometry provides a convenient infrared regulator in
interacting quantum field theories without reducing the
number of symmetries [4]. The natural appearance of AdS
spacetime as a ground state in supergravity and Kaluza-
Klein theories and also as the near-horizon geometry of the
extremal black holes and domain walls has triggered a
further increase of interest in quantum field theories on AdS
bulk. This motivated the development of a parallel line of
research, i.e. that of supersymmetric field theory models in
AdS background spacetime; see e.g. Ref. [5].
The AdS geometry plays the crucial role in two recent

developments in high-energy physics: the AdS=CFT cor-
respondence and the braneworld scenario. The AdS=CFT
correspondence (see, for instance, Ref. [6]) relates string
theories or supergravity in the AdS bulk with a conformal
field theory localized on its boundary. This duality has

*bellucci@lnf.infn.it
†saharian@ysu.am
‡vardanyanv@gmail.com

PHYSICAL REVIEW D 93, 084011 (2016)

2470-0010=2016=93(8)=084011(20) 084011-1 © 2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.93.084011
http://dx.doi.org/10.1103/PhysRevD.93.084011
http://dx.doi.org/10.1103/PhysRevD.93.084011
http://dx.doi.org/10.1103/PhysRevD.93.084011


many interesting consequences and provides a powerful
tool for the investigation of gauge field theories in the
strong coupling regime. Among the recent developments of
the AdS=CFT correspondence is the application to strong-
coupling problems in condensed matter physics. The
braneworld scenario (for reviews see Ref. [7]) offers a
new perspective for the solution of the hierarchy problem
between the Planck and electroweak mass scales. The main
idea to resolve the large hierarchy is that the small coupling
of four-dimensional gravity is generated by the large
physical volume of extra dimensions. Braneworlds natu-
rally appear in the string/M-theory context and present
intriguing possibilities to solve or to address from a
different point of view various problems in particle physics
and cosmology.
The global geometry considered in the present paper will

be different from the standard AdS one. Namely, we will
assume that a part of spatial dimensions, described in
Poincaré coordinates, are compactified to a torus. Note that
the extra compact dimensions are an inherent feature of
braneworld models arising from string and M-theories. The
nontrivial topology of the background space can have
important physical implications in quantum field theory.
The periodicity conditions imposed on fields along com-
pact dimensions modify the spectrum for zero-point fluc-
tuations and, related to this, the vacuum expectation values
(VEVs) of physical observables are changed. Awell-known
effect of this kind, demonstrating the relation between
quantum phenomena and global properties of spacetime, is
the topological Casimir effect [8]. The Casimir energy of
bulk fields induces a nontrivial potential for the compacti-
fication radius, providing a stabilization mechanism for
moduli fields and effective gauge couplings. The Casimir
effect has also been considered as an origin for the dark
energy in Kaluza-Klein-type and braneworld models [9].
For charged fields an important characteristic of the

vacuum state is the expectation value of the current density.
In addition to describing the local physical structure of the
quantum field, the current acts as the source in the Maxwell
equations and plays an important role in modeling a self-
consistent dynamics involving the electromagnetic field.
The VEVof the current density for a charged scalar field in
the background of locally AdS spacetime with an arbitrary
number of toroidally compactified spatial dimensions has
been considered in Ref. [2] (for a recent review of quantum
field-theoretical effects in toroidal topology see Ref. [10]).
Both the zero- and finite-temperature expectation values of
the current density for charged scalar and fermionic fields
in the background of the flat spacetime with toroidal
dimensions were investigated in Refs. [11,12]. The vacuum
current densities for charged scalar and Dirac spinor fields
in de Sitter spacetime with compact spatial dimensions
were considered in Ref. [13]. The effects of nontrivial
topology induced by the compactification of a cosmic
string along its axis have been discussed in Ref. [14].

As the third source for the vacuum polarization, we will
consider two codimension-one branes parallel to the AdS
boundary. The effects induced by a single brane were studied
in Ref. [3]. The influence of boundaries on the vacuum
currents in topologically nontrivial flat spaces were studied
in Refs. [15,16] for scalar and fermionic fields. Note that,
motivated by the problems of radion stabilization and the
cosmological constant generation, the investigations of the
vacuum energy and related forces for branes on AdS bulk
have attracted a great deal of attention (see, for instance, the
references in Ref. [17]). The Casimir effect in higher-
dimensional generalizations of the AdS spacetime with
compact internal spaces has been discussed in Refs. [18–20].
The organization of the paper is as follows. The next

section is devoted to the description of the background
geometry, the configuration of the branes, the boundary
conditions, and the field content. In Sec. III, we evaluate
the Hadamard function in the region between the branes.
The single brane contributions are explicitly separated
and an integral representation for the interference part is
obtained that is well adapted for the investigation of the
VEVs for physical quantities bilinear in the field operator.
In Sec. IV, the expression for the Hadamard function is
used for the investigation of the vacuum current in the
region between the branes. The behavior of the current
density in various asymptotic regions of the parameters is
discussed. Numerical examples are presented in the case
when the Robin coefficients on separate branes are the
same. The applications of the results to the Randall-
Sundrum 2-brane model with extra compact dimensions
are given in Sec. V. The main results of the paper are
summarized in Sec. VI. Alternative representations for the
Hadamard functions, adapted for the investigation of the
near-brane asymptotic of the vacuum current, are provided
in the Appendix.

II. FIELD CONTENT, BULK AND BOUNDARY
GEOMETRIES

First we will describe the bulk geometry. The corre-
sponding metric tensor is given by the (Dþ 1)-dimensional
line element

ds2 ¼ gμνdxμdxν ¼ e−2y=aηikdxidxk − dy2; ð2:1Þ

where i, k ¼ 0;…; D − 1, a is a constant, and ηik ¼
diagð1;−1;…;−1Þ is the metric tensor for D-dimensional
Minkowski spacetime. In addition to the y coordinate,
−∞ < yþ∞, we will use the coordinate z, defined as
z ¼ aey=a, 0 ≤ z < ∞. In terms of the latter, the line
element is written in a manifestly conformally flat form:

ds2 ¼ ða=zÞ2ðηikdxidxk − dz2Þ: ð2:2Þ
The local geometry given by Eq. (2.2) coincides with
that for AdS spacetime described in Poincaré coordinates.
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The hypersurfaces z ¼ 0 and z ¼ ∞ represent the AdS
boundary and horizon, respectively. The constant a is
related to the Ricci scalar by the formula R ¼ −DðDþ 1Þ=
a2 and the metric tensor corresponding to Eq. (2.2) is a
solution of the vacuum Einstein equations with a negative
cosmological constant Λ ¼ −DðD − 1Þa−2=2.
The global properties of the geometry we are going to

consider here will be different from that for AdS spacetime.
We assume that the subspace normal to the y coordinate has
the topology Rp × Tq, with p and q being integers such that
pþ q ¼ D − 1, and Tq stands for a q-dimensional torus.
So, for the ranges of the coordinates xi in Eq. (2.1) one has

−∞ < xi < þ∞; i ¼ 0; 1; 2;…; p;

0 ≤ xi ≤ Li; i ¼ pþ 1;…; D − 1; ð2:3Þ

with Li being the coordinate length of the ith compact
dimension. Note that the proper length measured by an
observer with a fixed z is given by LðpÞi ¼ ða=zÞLi ¼
e−y=aLi. The latter decreases with increasing y. This feature
is seen in Fig. 1 where we have displayed the spatial
geometry in the case D ¼ 2, embedded into the three-
dimensional Euclidean space. The circles correspond to the
compact dimension and the thick circles are the locations of
the branes (see below).
Here we are interested in the VEVof the current density

for a charged scalar field φðxÞ in the background geometry
specified above. In addition, wewill assume the presence of
an external classical gauge field Aμ. The dynamics of the
field is governed by the equation

ðgμνDμDν þm2 þ ξRÞφðxÞ ¼ 0; ð2:4Þ

where ξ is the curvature coupling parameter, Dμ ¼∇μ þ ieAμ, with∇μ being the covariant derivative operator,
andm and e are the mass and the charge of the field quanta.
The most important special cases correspond to minimally
and conformally coupled fields with ξ ¼ 0 and ξ ¼
ðD − 1Þ=ð4DÞ, respectively. The background topology is
nontrivial and for the complete formulation of the problem,

in addition to the field equation, the periodicity conditions
should be specified along compact dimensions. Here we
consider quasiperiodicity conditions

φðt; x1;…; xl þ Ll;…; yÞ ¼ eiαlφðt; x1;…; xl;…; yÞ;
ð2:5Þ

with constant phases αl, l ¼ pþ 1;…; D − 1. As special
cases, these conditions include untwisted (αl ¼ 0) and
twisted (αl ¼ π) scalars.
Now we turn to the description of the boundary

geometry. It consists of two codimension-one branes,
located at y ¼ y1 and y ¼ y2, y1 < y2, on which the
field operator obeys the gauge-invariant Robin boundary
conditions

ð1þ βjn
μ
jDμÞφðxÞ ¼ 0; y ¼ yj; ð2:6Þ

with j ¼ 1, 2. Here, β1 and β2 are constants, and nμj is the
inward-pointing (with respect to the region under consid-
eration) normal to the brane at y ¼ yj. In the region
between the branes, y1 ≤ y ≤ y2, in the coordinates
ðxi; yÞ one has nμj ¼ δjδ

μ
D, where δ1 ¼ 1 and δ2 ¼ −1.

We will denote the locations of the branes in terms of
the conformal coordinate z by z1 and z2, zj ¼ aeyj=a.
For the proper distance between the branes one has
y2 − y1 ¼ a lnðz2=z1Þ. Boundary conditions of the type
(2.6) appear in a number of physical problems, including
the considerations of vacuum effects for a confined charged
scalar field in external fields [21], gauge field theories,
quantum gravity and supergravity [22,23], and in models
where the boundaries separate different gravitational back-
grounds [24]. The Robin boundary conditions naturally
arise in braneworld models (see below). A more general
class of boundary conditions in the context of AdS=CFT
correspondence, that include tangential derivatives of the
field on the boundary, has been discussed in Refs. [25,26].
In the corresponding approach the boundary conditions are
implemented by adding the surface term in the action for a
scalar field that contains a boundary kinetic term. The latter
leads to the modification of the standard Klein-Gordon
inner product by a boundary term. It has been shown that
the appropriate choice of the surface action makes the
modes with non-Dirichlet boundary conditions on the AdS
boundary normalizable. However, because of the lack of a
manifestly positive inner product, ghosts may appear in the
bulk theory. The presence of the brane sufficiently far from
the AdS boundary can serve as a mechanism to banish these
ghosts [26].
In what follows we will consider the gauge field

configuration with constant Aμ. Though the corresponding
field strength is zero, because of the nontrivial topology of
the background space, the nonzero components of the
vector potential along compact dimensions give rise an
Aharonov-Bohm like effect on the expectation value of the

FIG. 1. The spatial section of the geometry at hand for D ¼ 2
embedded into a three-dimensional Euclidean space. The thick
circles represent the locations of the branes.
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current density. The model under consideration is specified
by the set ðαl; AμÞ combining the phases in the periodicity
conditions and the components of the vector potential. Not
all these sets are independent. By the gauge transformation
φðxÞ ¼ e−ieχðxÞφ0ðxÞ, Aμ ¼ A0

μ þ ∂μχðxÞ, with the function
χðxÞ ¼ bμxμ and bμ constants, we can pass to a new gauge
with the set ðα0l; A0

μÞ ¼ ðαl þ eblLl; Aμ − bμÞ. Note that the
combination

~αl ¼ αl þ eAlLl; l ¼ pþ 1;…; D − 1; ð2:7Þ
remains invariant under these gauge transformations.
Two extreme cases can be considered. In the first one with
bμ ¼ Aμ, the gauge transformation eliminates the vector
potential from the field equation and from the expressions
for physical observables. In this gauge, A0

μ ¼ 0 and the
phases in the periodicity conditions for the field operator
coincide with ~αl:

φ0ðt; x1;…; xl þ Ll;…; yÞ ¼ ei ~αlφ0ðt; x1;…; xl;…; yÞ:
ð2:8Þ

In the second case one takes bl ¼ −αl=ðeLlÞ with α0l ¼ 0
and the field operator obeys the periodic boundary con-
ditions. (For a discussion of physical effects of phases in
boundary conditions and their intimate relation to gauge
fields see, for example, Ref. [27].) The phase shift in
Eq. (2.7) can be presented as eAlLl ¼ e

R
Aμdxμ, where the

integration goes along the lth compact dimension. In the
Aharonov-Bohm effect it is related to the magnetic flux Φl
enclosed by the integration contour: eAlLl ¼ −2πΦl=Φ0,
with Φ0 ¼ 2π=e being the flux quantum. In our case, such
an interpretation can be given only in the case when the
background spacetime under consideration is embedded in
a higher-dimensional manifold, for example, as a brane
with locally AdS geometry on which the field φðxÞ is
localized (for physical effects of gauge field fluxes in
higher-dimensional models with compact dimensions
see Ref. [28]).

III. HADAMARD FUNCTION

We are considering a free field theory (the only inter-
actions are with the background gravitational and electro-
magnetic fields) and all the information on the properties of
the quantum vacuum is encoded in two-point functions. As
such we will choose the Hadamard function, defined as the
VEV Gðx; x0Þ ¼ h0jφðxÞφþðx0Þ þ φþðx0ÞφðxÞj0i, where
j0i corresponds to the vacuum state. In what follows it
will be assumed that the field is prepared in the Poincaré
vacuum state. The latter is realized by the mode functions
of the field which are obtained by solving the field equation
in Poincaré coordinates corresponding to Eq. (2.1) or
Eq. (2.2). The VEVs of physical observables, bilinear in
the field operator, such as the energy-momentum tensor and
current density, are obtained from the Hadamard function

after some differentiations and limiting transition to the
coincidence limit of the arguments (with an appropriate
renormalization). In what follows we will present the
evaluation procedure in the gauge with the fields
ðφ0ðxÞ; A0

μ ¼ 0Þ, omitting the prime. The corresponding
periodicity conditions are given by Eq. (2.8).
By expanding the field operator in terms of a complete

set of positive- and negative-energy mode functions
fφð�Þ

σ ðxÞg (upper and lower signs respectively), specified
by the set of quantum numbers σ and obeying the
quasiperiodicity and boundary conditions of the problem
at hand, the Hadamard function can be presented as the
mode sum

Gðx; x0Þ ¼
X
σ

X
s¼�

φðsÞ
σ ðxÞφðsÞ�

σ ðx0Þ; ð3:1Þ

where
P

σ includes the summation over the discrete
quantum numbers and the integration over the continuous
ones. The problem under consideration is plane symmetric
and the mode function can be expressed in the factorized
form

φð�Þ
σ ðxÞ ¼ zD=2ZνðλzÞeikrxr∓iωt; ð3:2Þ

where krxr ¼
P

D−1
r¼1 krxr,

ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þ k2

p
; k2 ¼

XD−1

l¼1

k2l : ð3:3Þ

In Eq. (3.2), ZνðxÞ is a cylinder function and

ν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2=4 −DðDþ 1Þξþm2a2

q
: ð3:4Þ

For a conformally coupled massless scalar field ν ¼ 1=2
and the problem under consideration is conformally related
to the problem in Minkowski spacetime with two Robin
boundaries (with the appropriate transformations of the
Robin coefficients; see below and also Ref. [29] for a
general plane-symmetric conformally flat bulk). In the case
of imaginary values of ν the vacuum state becomes
unstable [30]. In the discussion below we assume the
values of the parameters for which ν ≥ 0 (Breitenlohner-
Freedman bound). In particular, this is the case for
minimally and conformally coupled fields.
For the components of the momentum along noncom-

pact dimensions we have −∞ < kl < þ∞, l ¼ 1;…; p,
and the eigenvalues for the components along compact
dimensions are obtained from the conditions (2.8):

kl ¼ ð2πnl þ ~αlÞ=Ll; l ¼ pþ 1;…; D − 1; ð3:5Þ

where nl ¼ 0;�1;�2;…. In what follows, we will denote
by k2ðqÞ the squared momentum in the compact subspace:
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k2ðqÞ ¼
XD−1

l¼pþ1

k2l ¼
XD−1

l¼pþ1

ð2πnl þ ~αlÞ2=L2
l : ð3:6Þ

Assuming that j ~αij ≤ π, for the lowest value of this
momentum, denoted here by kð0ÞðqÞ, one has

kð0Þ2ðqÞ ¼
XD−1

i¼pþ1

~α2i =L
2
i : ð3:7Þ

In particular, for an untwisted scalar field and for the zero
gauge field one has kð0ÞðqÞ ¼ 0.
The branes divide the space into three regions: −∞ <

y < y1, y1 < y < y2, and y > y2. In general, the curvature
radius a can be different in these three sections, as the
branes may separate different phases of theory. In the
braneworld scenario with two branes based on the orbi-
folded version of the model the region between the branes
is employed only (see below). The Hadamard functions in
the regions y < y1 and y > y2 coincide with the corre-
sponding functions in the geometry of a single brane
located at y ¼ y1 and y ¼ y2, respectively, with the same
boundary conditions. The latter geometry is considered in
Ref. [3] and here we will be mainly focused on the region
between the branes, y1 ≤ y ≤ y2. In this region, the
function ZνðλzÞ in Eq. (3.2) is a linear combination of
the Bessel and Neumann functions JνðλzÞ and YνðλzÞ.
Imposing the boundary condition (2.6) (with Dμ ¼ ∂μ) on
the brane y ¼ y1 we find

ZνðλzÞ ¼ Cσgνðλz1; λzÞ; ð3:8Þ

with the function

gνðu; vÞ ¼ JνðvÞȲð1Þ
ν ðuÞ − J̄ð1Þν ðuÞYνðvÞ: ð3:9Þ

Here and below, for a given function FðxÞ, the notations
with the bars are defined as

F̄ðjÞðxÞ ¼ BjxF0ðxÞ þ AjFðxÞ; j ¼ 1; 2; ð3:10Þ

where the coefficients are given by

Bj ¼ δjβj=a; Aj ¼ 1þDBj=2: ð3:11Þ

Note that in the special cases Aj ¼ �νBj one has

F̄ðjÞ
ν ðxÞ ¼ �BjxFν∓1ðxÞ;

for Fν ¼ Jν and Fν ¼ Yν. These special cases correspond
to the values

βj=a ¼ −
δj

D=2∓ν
; ð3:12Þ

for the Robin coefficients and, hence, Bj ¼ −1=ðD=2∓νÞ.
From the boundary condition on the brane y ¼ y2 it

follows that the eigenvalues of λ are solutions of the
equation

J̄ð1Þν ðλz1ÞȲð2Þ
ν ðλz2Þ − Ȳð1Þ

ν ðλz1ÞJ̄ð2Þν ðλz2Þ ¼ 0: ð3:13Þ

First we will assume that all the roots of this equation are
real. The changes in the evaluation procedure in the
case when purely imaginary eigenvalues are present for λ
will be discussed below. We denote by λ ¼ λn, λn < λnþ1,
n ¼ 1; 2;…, the positive roots of Eq. (3.13). Note that, for a
fixed interbrane distance y2 − y1 and Robin coefficients βj,
the product z1λn does not depend on the location of the
branes and on the lengths of compact dimensions. The set
of quantum numbers σ specifying the mode functions are
given by σ ¼ ðn;kp;nqÞ, where kp ¼ ðk1;…; kpÞ is the
momentum in the noncompact subspace and nq ¼
ðnpþ1;…; nD−1Þ determines the momentum in the compact
subspace. The normalization coefficient Cσ in Eq. (3.8) is
found from the condition

Z
dDx

ffiffiffiffiffi
jgj

p
g00φðsÞ

σ ðxÞφðs0Þ�
σ0 ðxÞ

¼ δss0

2ω
δnn0δðkp − k0

pÞδnq;n0
q
; ð3:14Þ

where dDx ¼ dx1 � � � dxD, s, s0 ¼ þ, − and the y integra-
tion goes over the region between the branes, y1 ≤ y ≤ y2.
By taking into account that the function gνðλz1; λzÞ is a
cylinder function of the order ν with respect to the second
argument (containing the integration variable) and using the
standard integral for the square of the cylinder functions
(see, for instance, Ref. [31]) we get the following result:

jCσj2 ¼
π2λnTνðχ; z1λnÞ

4ωaD−1ð2πÞpVqz1
; χ ¼ z2

z1
; ð3:15Þ

where we have introduced the notation

Tνðχ; uÞ ¼ u

�
J̄ð1Þ2ν ðuÞ
J̄ð2Þ2ν ðχuÞ

½ðχ2u2 − ν2ÞB2
2 þ A2

2�

− ðu2 − ν2ÞB2
1 − A2

1

�
−1
: ð3:16Þ

In Eq. (3.15), Vq ¼ Lpþ1 � � �LD−1 is the volume of the
compact subspace.
Substituting the mode functions into Eq. (3.1), the

Hadamard function is presented in the form
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Gðx; x0Þ ¼ a1−Dðzz0ÞD=2

2pþ1πp−2Vqz1

×
X
nq

Z
dkpeikrΔx

r
X∞
n¼1

λn
ωn

× Tνðχ; z1λnÞgνðλnz1; λnzÞ
× gνðλnz1; λnz0Þ cosðωnΔtÞ; ð3:17Þ

where Δxr ¼ xr − x0r, Δt ¼ t − t0, and ωn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2n þ k2

p
.

The eigenvalues λn are given implicitly, as roots of
Eq. (3.13), and for that reason this representation is not
well adapted for the evaluation of the VEVs. Another
drawback is that the terms in the series with large n are
highly oscillatory. A more convenient representation, free
of these disadvantages, is obtained by making use of the
generalized Abel-Plana formula [32,33]

X∞
n¼1

hðz1λnÞTνðχ; z1λnÞ

¼ 2

π2

Z
∞

0

hðxÞdx
J̄ð1Þ2ν ðxÞ þ Ȳð1Þ2

ν ðxÞ
−

1

2π

Z
∞

0

dxΩ1νðx; χxÞ½hðixÞ þ hð−ixÞ�; ð3:18Þ

with the notations

Ω1νðu; vÞ ¼
K̄ð2Þ

ν ðvÞ
K̄ð1Þ

ν ðuÞFðu; vÞ
; ð3:19Þ

and

Fðu; vÞ ¼ K̄ð1Þ
ν ðuÞĪð2Þν ðvÞ − K̄ð2Þ

ν ðvÞĪð1Þν ðuÞ: ð3:20Þ

Here, IνðuÞ and KνðuÞ are the modified Bessel functions
and for the functions with the bars we use the notation
defined by Eq. (3.10). In the case of the function hðxÞ
corresponding to Eq. (3.17), the conditions of the validity
for Eq. (3.18) are satisfied if zþ z0 þ jΔtj < 2z2. Note that
in the coincidence limit and in the region between the
branes this condition is satisfied for points away from the
brane at z ¼ z2.
Let us denote by Gð1Þ

1 ðx; x0Þ the contribution to the
Hadamard function coming from the first term on the right
hand-side of Eq. (3.18):

Gð1Þ
1 ðx; x0Þ ¼ ðzz0ÞD=2

ð2πÞpaD−1Vq

X
nq

Z
dkpeikrΔx

r

Z
∞

0

dλλ

×
cosðΔt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þ k2

p
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ2 þ k2
p gνðλz1; λzÞgνðλz1; λz0Þ

J̄ð1Þ2ν ðλz1Þ þ Ȳð1Þ2
ν ðλz1Þ

:

ð3:21Þ

It coincides with the Hadamard function in the region
z > z1 in the geometry of a single brane at z ¼ z1 and has
been investigated in Ref. [3]. As a result, the application of
Eq. (3.18) leads to the representation

Gðx; x0Þ ¼ Gð1Þ
1 ðx; x0Þ − 4ðzz0ÞD=2

ð2πÞpþ1aD−1Vq

×
X
nq

Z
dkpeikrΔx

r

Z
∞

k
duu

×
Ω1νðuz1; uz2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 − k2
p Xð1Þ

ν ðuz1; uzÞXð1Þ
ν ðuz1; uz0Þ

× cosh
�
Δt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 − k2

p �
; ð3:22Þ

where

XðjÞ
ν ðu; vÞ ¼ IνðvÞK̄ðjÞ

ν ðuÞ − ĪðjÞν ðuÞKνðvÞ; j ¼ 1; 2:

ð3:23Þ

For special values (3.12) of the Robin coefficients
one has

ĪðjÞν ðxÞ ¼ BjxIν∓1ðxÞ; K̄ðjÞ
ν ðxÞ ¼ −BjxKν∓1ðxÞ;

ð3:24Þ

with Bj ¼ −1=ðD=2∓νÞ. The second term on the right-
hand side of Eq. (3.22) is induced by the presence of the
brane at z ¼ z2. Note that, extracting the Hadamard
function for the bulk in the absence of the branes,
G0ðx; x0Þ, the function (3.21) is expressed as [3]

Gð1Þ
1 ðx; x0Þ ¼ G0ðx; x0Þ −

4ðzz0ÞD=2

ð2πÞpþ1aD−1Vq

×
X
nq

Z
dkpeikrΔx

r

Z
∞

k
du

× u
coshðΔt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 − k2

p
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 − k2
p Īð1Þν ðuz1Þ

K̄ð1Þ
ν ðuz1Þ

× KνðuzÞKνðuz0Þ; ð3:25Þ

with the last term being the brane-induced contribution.
Another representation for the Hadamard function is

obtained by using the identity

K̄ð2Þ
ν ðuz2Þ

Īð2Þν ðuz2Þ
IνðuzÞIνðuz0Þ −

Īð1Þν ðuz1Þ
K̄ð1Þ

ν ðuz1Þ
KνðuzÞKνðuz0Þ

¼
X
j¼1;2

δjΩjνðuz1; uz2ÞXðjÞ
ν ðuzj; uzÞXðjÞ

ν ðuzj; uz0Þ;

ð3:26Þ
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where

Ω2νðu; vÞ ¼
Īð1Þν ðuÞ

Īð2Þν ðvÞFðu; vÞ
: ð3:27Þ

Combining this with the expressions (3.22) and (3.25),
one gets

Gðx; x0Þ ¼ Gð2Þ
1 ðx; x0Þ − a1−Dðzz0ÞD=2

2p−1πpþ1Vq

×
X
nq

Z
dkpeikrΔx

r

Z
∞

k
duu

×
Ω2νðuz1; uz2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 − k2
p Xð2Þ

ν ðuz2; uzÞ

× Xð2Þ
ν ðuz2; uz0Þ cosh

�
Δt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 − k2

p �
: ð3:28Þ

In this formula, the function

Gð2Þ
1 ðx; x0Þ ¼ G0ðx; x0Þ −

a1−Dðzz0ÞD=2

2p−1πpþ1Vq

×
X
nq

Z
dkpeikrΔx

r

Z
∞

k
du

× u
K̄ð2Þ

ν ðuz2Þ
Īð2Þν ðuz2Þ

IνðuzÞIνðuz0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 − k2

p

× cosh
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 − k2
p

Δt
�

ð3:29Þ

is the Hadamard function in the geometry of a single brane at
y ¼ y2 when the brane y ¼ y1 is absent (see also Ref. [3]).
In the discussion above we have assumed that all the

roots λ of the equation (3.13) are real. However, depending
on the values of the coefficients in the Robin boundary
conditions on the branes, this equation can have purely
imaginary roots, λ ¼ iη, η > 0 (for some special cases see
below). For the corresponding modes the mode functions
are given by the expression

φð�Þ
ðimÞσðxÞ ¼ CðimÞ

σ zD=2Xð1Þ
ν ðηz1; ηzÞeikrxr∓iωðηÞt; ð3:30Þ

where ωðηÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − η2

p
and the function Xð1Þ

ν ðηz1; ηzÞ is

defined by Eq. (3.23). If η > kð0ÞðqÞ, then for the modes with

kð0ÞðqÞ ≤ k < η the energy is purely imaginary and the

vacuum state becomes unstable. In order to escape this
instability, we will assume that

η < kð0ÞðqÞ: ð3:31Þ

Note that in the absence of compact dimensions any
imaginary root for the eigenvalue equation would lead to
the vacuum instability. Hence, in models with compact

dimensions the constraints given by the stability condition
are less restrictive. The functions (3.30) obey the boundary
condition on the brane at y ¼ y1. From the boundary
condition on the second brane it follows that η is the root
of the equation

Fðηz1; ηz2Þ ¼ 0; ð3:32Þ
with the function Fðu; vÞ defined by the expression (3.20).
Of course, this equation could directly be obtained from
Eq. (3.13).
By using the integration formulaZ
ηz2

ηz1

duuXð1Þ2
ν ðηz1; uÞ

¼ 1

2
½ðu2 þ ν2ÞXð1Þ2

ν ðηz1; uÞ − u2ð∂uX
ð1Þ
ν ðηz1; uÞÞ2�ηz2ηz1

;

ð3:33Þ
from the normalization condition (3.14) (with the replace-
ment δnn0 → δηη0 ) for the coefficient in Eq. (3.30) we find
the expression

jCðimÞ
σ j2 ¼ ð2πÞ−pa1−Dη2

VqωðηÞĪð1Þ2ν ðηz1Þ

×

�X
j¼1;2

A2
j − ðη2z2j þ ν2ÞB2

j

δjĪ
ðjÞ2
ν ðηzjÞ

�−1
: ð3:34Þ

Here we have used the relations

Xð1Þ
ν ðηz1; ηz1Þ ¼ −B1;

½∂xX
ð1Þ
ν ðηz1; xÞ�x¼ηz1 ¼ A1=ðηz1Þ ð3:35Þ

and

Xð1Þ
ν ðηz1; ηz2Þ ¼ −B2

Īð1Þν ðηz1Þ
Īð2Þν ðηz2Þ

;

½∂xX
ð1Þ
ν ðηz1; xÞ�x¼ηz2 ¼

A2

ηz2

Īð1Þν ðηz1Þ
Īð2Þν ðηz2Þ

: ð3:36Þ

From Eq. (3.32) it follows that Īð1Þν ðηz1Þ=Īð2Þν ðηz2Þ ¼
K̄ð1Þ

ν ðηz1Þ=K̄ð2Þ
ν ðηz2Þ and, hence, in Eq. (3.34) we can

replace the I functions by the K functions.
By taking into account the equation (3.32), it can be

seen that

X
j¼1;2

B2
jðη2z2j þ ν2Þ − A2

j

δjĪ
ðjÞ2
ν ðηzjÞ

¼ η∂u½Fðuz1; uz2Þ�u¼η

Īð1Þν ðηz1ÞĪð2Þν ðηz2Þ
: ð3:37Þ

Now, for the contribution of the modes (3.30) to the
Hadamard function, by using the relation (3.37), we find
the following expression:
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GðimÞðx; x0Þ ¼ −
2ðzz0ÞD=2

ð2πÞpVqaD−1

X
nq

Z
dkpeikrΔx

r

×
X
η

η

ωðηÞ
Īð2Þν ðηz2Þ
Īð1Þν ðηz1Þ

×
cos½ωðηÞΔt�

½∂uFðuz1; uz2Þ�u¼η

× Xð1Þ
ν ðηz1; ηzÞXð1Þ

ν ðηz1; ηz0Þ: ð3:38Þ

The contribution to the Hadamard function from the modes
with real λ is still given by the expression (3.17). However,
in the evaluation procedure using the Abel-Plana formula
differences arise compared to the case in the absence of
purely imaginary roots. In the presence of the imaginary
roots λ ¼ �iη the function used in the derivation of the
Abel-Plana summation formula (see Refs. [32,33]) has
poles on the imaginary axis. These poles should be avoided
by semicircles of small radius in the right half-plane.
The integrals over these semicircles lead to the term

−
i
2

X
x¼ηz1

K̄ð2Þ
ν ðχxÞ

K̄ð1Þ
ν ðxÞ

hðixÞ − hð−ixÞ
∂xFðx; χxÞ

; ð3:39Þ

which should be added to the right-hand side of Eq. (3.18).
In addition, in the presence of the imaginary roots, the
second integral in Eq. (3.18) is understood in the sense of
the principal value. Now, we can see that, after the
application of the generalized Abel-Plana summation for-
mula [with the additional term (3.39)] to the series over n in
Eq. (3.17), the part of the Hadamard function coming from
the term (3.39) is equal to −GðimÞðx; x0Þ. Hence, this part
cancels the contribution of the purely imaginary modes in
the Hadamard function. As a result, the expressions (3.22)
and (3.28) remain valid in the presence of the imaginary
modes with η < kð0ÞðqÞ.
In addition to the modes discussed above, a mode may be

present for which λ ¼ 0 and, hence, ω ¼ k. For this mode
the function Zν in Eq. (3.2) is a linear combination of zν and
z−ν. The relative coefficient in this combination is deter-
mined from the boundary condition at z ¼ z1 and the mode
functions are presented as

φð�Þ
ðsÞσðxÞ ¼ CðsÞ

σ zD=2½ðz=z1Þν − b1ðz=z1Þ−ν�eikrxr∓ikt;

ð3:40Þ

with the notation

bj ¼
1þ ðD=2þ νÞδjβj=a
1þ ðD=2 − νÞδjβj=a

; j ¼ 1; 2: ð3:41Þ

Here we have assumed that βj=a ≠ −δj=ðD=2∓νÞ. From
the boundary condition at z ¼ z2 it follows that

b2ðz2=z1Þ2ν ¼ b1: ð3:42Þ

For a given interbrane distance, the equation (3.42) gives
the relation between the Robin coefficients. For Dirichlet
boundary conditions on the branes this equation has no
solutions. For Neumann boundary conditions it has a
solution in the case ν ¼ D=2 only and the corresponding
mode function does not depend on z. In the Robin case, if
the coefficients βj are the same for both the branes,
β1 ¼ β2 ¼ β, the equation (3.42) has no solutions for
a=β ≤ ν −D=2 and for these β there are no modes with
λ ¼ 0. Note that for a minimally coupled field ν ≥ D=2.
The coefficient CðsÞ

σ in Eq. (3.40) is determined from the
normalization condition. As a result, the normalized mode
functions for the special mode with λ ¼ 0 are presented in
the form

φð�Þ
ðsÞσðxÞ ¼ ΩðzÞφð�Þ

ðMÞσðxÞ; ð3:43Þ

where

φð�Þ
ðMÞσðxÞ ¼

eikrx
r∓iktffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð2πÞpkVq

p ; ð3:44Þ

are the mode functions for a massless scalar field in D-
dimensional Minkowski spacetime with the spatial top-
ology Rp × Tq and

ΩðzÞ ¼ zD=2 ðz=z1Þν − b1ðz=z1Þ−ν
aðD−1Þ=2z1

×

�
b21

2ν − 2
þ b1−

1

2νþ 2

−
b1
b2

χ2
	

b22
2ν − 2

þ b2 −
1

2νþ 2


�−1=2
: ð3:45Þ

In the cases βj=a ¼ −δj=ðD=2∓νÞ the mode functions
for the special mode with λ ¼ 0 have the form (3.43) with
the conformal function

Ω2ðzÞ ¼ 2ð1∓νÞzD∓2ν

aD−1ðz2∓2ν
2 − z2∓2ν

1 Þ : ð3:46Þ

In the case ν ¼ D=2 and for Neumann boundary condi-

tions, for the mode with λ ¼ 0 one has φð�Þ
ð0ÞσðxÞ ¼

CðsÞ
σ eikrx

r∓ikt and for the corresponding function ΩðzÞ
one gets

Ω2ðzÞ ¼ ðD − 2ÞzD−2
1

aD−1½1 − ðz1=z2ÞD−2� : ð3:47Þ

This case will be considered in the numerical exam-
ples below.
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As a consequence of the relation (3.43), the contribution
of the mode with λ ¼ 0 to the Hadamard function,
GðsÞðx; x0Þ, is expressed in terms of the corresponding
function for a massless scalar field in D-dimensional
Minkowski spacetime with the spatial topology Rp × Tq.

Denoting the latter by GðMÞ
Rp×Tqðx; x0Þ, one has GðsÞðx; x0Þ ¼

ΩðzÞΩðz0ÞGðMÞ
Rp×Tqðx; x0Þ, or by making use of the expres-

sion for the Minkowskian function

GðsÞðx; x0Þ ¼
2ΩðzÞΩðz0Þ
ð2πÞpþ1=2Vq

X
nq

eiklΔx
l
kp−1ðqÞ

× fðp−1Þ=2

 
kðqÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXp
l¼1

ðΔxlÞ2 − ðΔtÞ2
s !

ð3:48Þ

where klΔxl ¼
P

D−1
l¼pþ1 klΔxl, and

fμðxÞ ¼ x−μKμðxÞ: ð3:49Þ

Note that the dependence on the mass of the field in
this expression appears through the parameter ν in
Eq. (3.45).
Under the condition (3.42), the contribution (3.48)

coming from the special mode with λ ¼ 0 should be added
to the part (3.17) for the modes with λ ¼ λn. However, we
can show that the representations (3.22) and (3.28) are not
changed. Indeed, in the presence of the mode with λ ¼ 0
the function hðxÞ in the generalized Abel-Plana for-
mula (3.18) corresponding to the series over n in
Eq. (3.17) has a simple pole at x ¼ 0. Now, by rotating
the integration contour in the derivation of the Abel-Plana
formula we should avoid this pole by arcs of a circle of
small radius. The terms coming from the integrals over
these arcs exactly cancel the contribution (3.48) of the
special mode. As a result, the formulas (3.22) and (3.28)
remain valid in the presence of the mode λ ¼ 0 as well.

IV. VEV OF THE CURRENT DENSITY

Having the Hadamard function, one can evaluate the
VEVs of various local physical observables bilinear in the
field. The VEV of the energy-momentum tensor for
a scalar field in the geometry with two branes was inves-
tigated in Refs. [34–36] for the background with trivial
topology and in Ref. [19] for models with extra compact
subspaces. Our main interest here is the VEVof the current
density, h0jjμðxÞj0i≡ hjμðxÞi. For a charged scalar field the
corresponding operator is given by the expression

jμðxÞ ¼ ie½φþðxÞDμφðxÞ − ðDμφ
þðxÞÞφðxÞ�: ð4:1Þ

The VEV is obtained from the Hadamard function by
making use of the formula

hjμðxÞi ¼
i
2
e lim
x0→x

ð∂μ − ∂ 0
μ þ 2ieAμÞGðx; x0Þ: ð4:2Þ

First of all, we can see that hjμi ¼ 0 for μ ¼ 0; 1;…; p;D.
Hence, the VEVs of the charge density and of the
current density components along noncompact dimensions
(including the one perpendicular to the branes) vanish.

A. General expressions

By using the expressions (3.22) and (3.28) for the
Hadamard function and integrating over the momentum
in the noncompact subspace, for the component of the
vacuum current along the lth compact dimension one finds
two equivalent representations

hjli ¼ hjli0 þ hjliðjÞ1 −
eCpzDþ2

2p−1aDþ1Vq

×
X
nq

kl

Z
∞

kðqÞ
dxx × ðx2 − k2ðqÞÞðp−1Þ=2

×Ωjνðxz1; xz2ÞXðjÞ2
ν ðxzj; xzÞ; ð4:3Þ

with j ¼ 1, 2 and l ¼ pþ 1;…; D − 1. Here we have
introduced the notation

Cp ¼ π−ðpþ1Þ=2

Γððpþ 1Þ=2Þ : ð4:4Þ

In the formula (4.3), hjli0 is the current density in the

absence of the branes and hjliðjÞ1 is the current density
induced by the presence of the brane at y ¼ yj when
the second brane is absent. Hence, the last term on the
right-hand side can be interpreted as the contribution
induced by the second brane at y ¼ yj0 , j0 ¼ 1,
2, j0 ≠ j.
The contribution hjli0 was investigated in Ref. [2] and is

given by the expression

hjli0 ¼
2ea−1−DLl

ð2πÞðDþ1Þ=2
X
nq

nl sinð ~αlnlÞ cos
	X

i≠l
~αini




× qðDþ1Þ=2
ν−1=2

	
1þ

X
i

n2i L
2
i =ð2z2Þ



; ð4:5Þ

where qμαðxÞ ¼ ðx2 − 1Þ−μ=2e−iπμQμ
αðxÞ, with Qμ

αðxÞ being
the associated Legendre function of the second kind. In the
region z1 ≤ z ≤ z2, for the single brane-induced parts in
Eq. (4.3) one has
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hjlið1Þ1 ¼ −
eCpzDþ2

2p−1aDþ1Vq

X
nq

kl

Z
∞

kðqÞ
dxxðx2 − k2ðqÞÞ

p−1
2

×
Īð1Þν ðxz1Þ
K̄ð1Þ

ν ðxz1Þ
K2

νðxzÞ;

hjlið2Þ1 ¼ −
eCpzDþ2

2p−1aDþ1Vq

X
nq

kl

Z
∞

kðqÞ
dxxðx2 − k2ðqÞÞ

p−1
2

×
K̄ð2Þ

ν ðxz2Þ
Īð2Þν ðxz2Þ

I2νðxzÞ: ð4:6Þ

The properties of these single brane contributions were
discussed in Ref. [3].
All the contributions to the VEV of the current density

and, hence, the total current as well, are periodic functions
of the phases ~αi with the period equal to 2π. The VEVof the
component for the current density along the lth compact
dimension is an odd function of the phase ~αl corresponding
to the same direction and an even function of the remaining
phases ~αi, i ≠ l. The appearance of nonzero vacuum
currents discussed here is a consequence of the nontrivial
spatial topology (though influenced by the local geometry
and boundaries). This is an Aharonov-Bohm-type effect
related to the sensitivity of the wave-function phase to the
global geometry. For ~αi ¼ πmi, with mi being an integer,
the current density vanishes. The relation (2.7) shows two
interrelated reasons for the appearance of the currents:
nontrivial phases in the periodicity conditions and the
constant gauge field.
By taking into account the expressions for the single

brane-induced parts (4.6), the total current density in the
region between the branes can also be presented in the
form

hjli ¼ hjli0 −
eCpzDþ2

2p−1aDþ1Vq

X
nq

kl

Z
∞

kðqÞ
dxx

× ðx2 − k2ðqÞÞ
p−1
2

�
K̄ð1Þ

ν ðxz1ÞĪð2Þν ðxz2Þ
K̄ð2Þ

ν ðxz2ÞĪð1Þν ðxz1Þ
− 1

�−1

×

�
IνðxzÞ

Xð1Þ
ν ðxz1; xzÞ
Īð1Þν ðxz1Þ

− KνðxzÞ
Xð2Þ
ν ðxz2; xzÞ
K̄ð2Þ

ν ðxz2Þ

�
:

ð4:7Þ

The second term on the right-hand side is the brane-induced
contribution. Alternatively, by extracting the single-brane
contributions we can write the following decomposition:

hjli ¼ hjli0 þ
X
j¼1;2

hjliðjÞ1 þ hjliint; ð4:8Þ

with the interference part

hjliint ¼ −
eCpzDþ2

2p−1aDþ1Vq

X
nq

kl

Z
∞

kðqÞ
dxx

× ðx2 − k2ðqÞÞ
p−1
2

�
K̄ð1Þ

ν ðxz1ÞĪð2Þν ðxz2Þ
Īð1Þν ðxz1ÞK̄ð2Þ

ν ðxz2Þ
− 1

�−1

×

�
IνðxzÞ

Xð2Þ
ν ðxz2; xzÞ
Īð2Þν ðxz2Þ

− KνðxzÞ
Xð1Þ
ν ðxz1; xzÞ
K̄ð1Þ

ν ðxz1Þ

�
:

ð4:9Þ
The integrand in this expression decays exponentially in the
upper limit for all points including those on the branes.
An alternative expression for the VEV of the current

density is obtained from the decomposition (A2) for the
Hadamard function, where the part Glðx; x0Þ, given by
Eq. (A3), is induced by the compactification of the lth
dimension. The first term on the right-hand side does not
contribute to the current density and, after the integrations,
in the absence of the modes with λ2 < 0, for the VEV we
find the following expression:

hjli ¼ ea−1−DzDþ2

2ð2πÞp=2−1VqL
p
l z1

X∞
s¼1

sin ðs ~αlÞ
spþ1

X∞
n¼1

λnTνðχ; λnz1Þ

× g2νðλnz1; λnzÞ
X
nq−1

gp=2þ1

�
sLl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2n þ k2ðq−1Þ

q �
;

ð4:10Þ
with the function

gμðxÞ ¼ xμKμðxÞ: ð4:11Þ

In the model with a single compact dimension xl, the
corresponding formula is obtained from Eq. (4.10) putting
p ¼ D − 2, kðq−1Þ ¼ 0, Vq ¼ Ll and omitting the summa-
tion

P
nq−1

. The vanishing of the vacuum currents on the
branes in the case of Dirichlet boundary condition is
explicitly seen from Eq. (4.10) by taking into account that
gνðλnz1; λnzjÞ ¼ 0 for j ¼ 1, 2. Due to the presence of the
Macdonald function, the series on the right-hand side are
strongly convergent for all values of z. In particular, the
representation (4.10) explicitly shows the finiteness of the
current density on the branes. For the VEV of the current
density on the brane at z ¼ zj from Eq. (4.10) one gets

hjliz¼zj ¼ −
8ea−1−DB2

jz
Dþ2
j

ð2πÞp=2þ1VqL
p
l

X∞
s¼1

sin ðs ~αlÞ
spþ1

X∞
n¼1

λ2n

J̄ðjÞ2ν ðzjλnÞ

×

�X
i¼1;2

ðz2i λ2n − ν2ÞB2
i þ A2

i

δiJ̄
ðiÞ2
ν ðziλnÞ

�−1

×
X
nq−1

gp=2þ1ðsLl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2n þ k2ðq−1Þ

q
Þ; ð4:12Þ

for j ¼ 1, 2.
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In the presence of the modes with λ2 ≤ 0 their contri-
bution to the current density should be separately added to
the right-hand side of Eq. (4.10). For the modes λ ¼ iη,

η > 0, assuming that η < kð0Þðq−1Þ, with kð0Þðq−1Þ being the

minimal value for kðq−1Þ, the corresponding contribution
to the current density is formally obtained from Eq. (4.10)
by making the replacements λn → iη,

P
n →

P
η. If

j ~αij ≤ π, then one has kð0Þ2ðq−1Þ ¼
P

D−1
i¼pþ1;≠l ~α

2
i =L

2
i . For the

possible special mode with λ ¼ 0 its contribution to the
current density is given by the expression

hjliðsÞ ¼
4eΩ2ðzÞðz=aÞ2
ð2πÞp=2þ1VqL

p
l

X∞
n¼1

sin ðn ~αlÞ
npþ1

×
X
nq−1

gp=2þ1ðnLlkðq−1ÞÞ: ð4:13Þ

The factor ðz=aÞ2 in this expression arises when one passes
from the covariant component of the current density to the
contravariant one. In models with a single compact dimen-
sion from here we get

hjliðsÞ ¼
2eΓðD=2ÞΩ2ðzÞðz=aÞ2

πD=2LD−1

X∞
n¼1

sin ðn ~αlÞ
nD−1 : ð4:14Þ

In particular, for Neumann boundary conditions on both the
branes and for ν ¼ D=2, the factor Ω2ðzÞ does not depend
on z and is given by Eq. (3.47).
Yet another representation for the current density in

the region between the branes is obtained by using the
result (A4):

hjli ¼ hjli0 þ hjlið1Þ1 þ 4ea1−DzD

ð2πÞp=2þ1VqL
p
l

×
X∞
n¼1

sin ðn ~αlÞ
npþ1

X
nq−1

Z
∞

kðq−1Þ
dx

× xwp=2þ1

�
nLl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − k2ðq−1Þ

q �
×Ω1νðxz1; xz2ÞXð1Þ2

ν ðxz1; xzÞ ð4:15Þ

with the notation

wνðxÞ ¼ xνJνðxÞ: ð4:16Þ

By taking into account the corresponding formula from

Ref. [3] for the contribution hjlið1Þ1 , this expression is
presented as

hjli ¼ hjli0 þ
4ea1−DzD

ð2πÞp=2þ1VqL
p
l

X∞
n¼1

sin ðn ~αlÞ
npþ1

X
nq−1

Z
∞

kðq−1Þ
dx

× xwp=2þ1

�
nLl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − k2ðq−1Þ

q �

×

�
K̄ð1Þ

ν ðxz1ÞĪð2Þν ðxz2Þ
K̄ð2Þ

ν ðxz2ÞĪð1Þν ðxz1Þ
−1

�−1

×

�
Xð1Þ
ν ðxz1; xzÞ
Īð1Þν ðxz1Þ

IνðxzÞ −
Xð2Þ
ν ðxz2; xzÞ
K̄ð2Þ

ν ðxz2Þ
KνðxzÞ

�
:

ð4:17Þ
In the presence of the modewith λ2 < 0, the representations

(4.15) and (4.17) are valid under the condition η < kð0Þðq−1Þ.

B. Asymptotic analysis

Let us consider limiting cases of the general formulas.
In the limit of the large curvature radius, a ≫ yj, m−1, one
has z ≈ aþ y, zj ≈ aþ yj, and both the order and argu-
ments of the modified Bessel functions in the integrand of
Eq. (4.3) are large. By using the corresponding uniform
asymptotic expansions (given, for example, in Ref. [37]), to
the leading order, the result for the geometry of two parallel
Robin plates on the Minkowski bulk with the topology
Rpþ1 × Tq (see Ref. [16]) is obtained:

hjliðMÞ ¼ hjliðMÞ
0 þ eCp

2pVq

X
nq

kl

×
Z

∞ffiffiffiffiffiffiffiffiffiffiffiffi
m2þk2ðqÞ

p dxðx2 −m2 − k2ðqÞÞ
p−1
2

×
2þPj¼1;2cjðxÞe2xjy−yjj
c1ðxÞc2ðxÞe2xðy2−y1Þ − 1

ð4:18Þ

where

cjðxÞ ¼
βjx − 1

βjxþ 1
; j ¼ 1; 2: ð4:19Þ

In Eq. (4.18), the current density in the boundary-free
Minkowskian geometry with compact dimensions is given
by the formula [14]

hjliðMÞ
0 ¼ 2eLlmDþ1

ð2πÞðDþ1Þ=2
X
nq

nl sinðnl ~αlÞ cos
	X

i≠l
~αini




× fDþ1
2

	
m

	X
i

n2i L
2
i



1=2


; ð4:20Þ

with fμðxÞ defined by Eq. (3.49).
For a conformally coupled massless field one has

ν ¼ 1=2 and the modified Bessel functions are expressed
in terms of the elementary functions. For the current density
in the region between the branes one finds the expression
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hjli ¼ ðz=aÞDþ1

�
hjliðMÞ

0 þ eCp

2pVq

X
nq

kl

Z
∞

kðqÞ
dx

× ðx2 − k2ðqÞÞ
p−1
2

2þPj¼1;2 ~cjðxzjÞe2xjz−zjj
~c1ðxz1Þ~c2ðxz2Þe2xðz2−z1Þ − 1

�
;

ð4:21Þ
where we have introduced the notation

~cjðuÞ ¼
u − a=βj − δjðD − 1Þ=2
uþ a=βj þ δjðD − 1Þ=2 : ð4:22Þ

Note that the expression in the square brackets of
Eq. (4.21), with the functions ~cjðuÞ replaced by cjðuÞ
from Eq. (4.19), coincides with the corresponding result
in the region between two Robin boundaries in the
Minkowski bulk with spatial topology Rpþ1 × Tq. The
difference in the functions ~cjðuÞ and cjðuÞ is related to
the fact that, though the bulk geometry is conformally flat
and the field equation is conformally invariant, the coef-
ficient in the Robin boundary conditions is not conformally
invariant.
As it has been shown in Ref. [16] for the Minkowski bulk

and in Ref. [3] for the geometry of a single brane on the
AdS bulk, unlike the VEVs of the field squared and of
the energy-momentum tensor, the current density is finite
on the branes. For the geometry under consideration,
the VEV of the current density on the brane is obtained
from Eq. (4.3) with z ¼ zj. By taking into account that

XðjÞ
ν ðxzj; xzjÞ ¼ −Bj, we get

hjliz¼zj ¼ hjli0 þ hjliðjÞ1;z¼zj
−

eCpz
Dþ2
j B2

j

2p−1aDþ1Vq
×
X
nq

kl

×
Z

∞

kðqÞ
dxxðx2 − k2ðqÞÞ

p−1
2 Ωjνðxz1; xz2Þ; ð4:23Þ

where the last term is the current density induced by the
second brane on the brane at z ¼ zj. For Dirichlet boundary
conditions the single brane- and the second brane-induced
parts and, hence, also the total current, vanish on the branes.
In the limit when the left brane tends to the AdS

boundary, z1 → 0, one gets

hjli ≈ hjli0 þ hjlið2Þ1 −
22−p−2νeCp

aDþ1Vq

A1 þ B1ν

A1 − B1ν

z2ν1 zDþ2

νΓ2ðνÞ

×
X
nq

kl

Z
∞

kðqÞ
dxx2νþ1ðx2 − k2ðqÞÞ

p−1
2
Xð2Þ2
ν ðxz2; xzÞ
Īð2Þ2ν ðxz2Þ

:

ð4:24Þ

To the leading order we obtain the VEV in the geometry of
a single brane at z ¼ z2. The contribution coming from the

brane at z ¼ z1, corresponding to the last term in Eq. (4.24),
decays as z2ν1 . When the right brane is close to the AdS
horizon, z2 → ∞, our starting point will be the expression
(4.3) with j ¼ 1. In the limit under consideration one has

Ω1νðxz1; xz2Þ ≈ ð2δB20
− 1Þ πe−2xz2

K̄ð1Þ2
ν ðxz1Þ

: ð4:25Þ

The dominant contribution to the integral on the right-hand
side of Eq. (4.3) comes from the region near the lower limit
of the integration and from the term with nq ¼ 0 with the
minimal value of kðqÞ ¼ kð0ÞðqÞ. In the leading order one gets

hjli ≈ hjli0 þ hjlið1Þ1 þ ð1 − 2δB20
Þe ~αlzDþ2

2pπðp−1Þ=2aDþ1LlVq

×
Xð1Þ2
ν ðkð0ÞðqÞz1; k

ð0Þ
ðqÞzÞ

K̄ð1Þ2
ν ðkð0ÞðqÞz1Þe2k

ð0Þ
ðqÞz2

ðkð0ÞðqÞ=z2Þðpþ1Þ=2; ð4:26Þ

with kð0ÞðqÞz2 ≫ 1. Hence, when the right brane tends to the

AdS horizon, its contribution to the current density, for a

fixed value of z, is suppressed by the factor expð−2kð0ÞðqÞz2Þ.
The limit of small distances between the branes, com-

pared with the AdS curvature radius, corresponds to the
ratio z2=z1 close to 1. With decreasing z2=z1 the eigen-
values λn increase and tend to infinity in the limit
z2=z1 → 1. With this feature, from Eq. (4.10) it follows
that the contribution of the modes with positive λ2 to the
VEVof the current density tends to zero in the limit when
the distance between the branes tends to 0. This does not
have to be the case for the contribution of the special mode
with λ ¼ 0. For example, in the case of Neumann boundary
conditions and for ν ¼ D=2, the current density from the
special mode is given by Eq. (4.13) with Ω2ðzÞ defined by
Eq. (3.47). It diverges in the limit z2=z1 → 1.
Now we turn to the asymptotics in the limiting cases for

the lengths of compact dimensions. We consider the
component of the current density along the lth compact
dimension. In this sense, the lth direction is preferred and
the asymptotic analyzes with respect to Lr, r ≠ l, and Ll
have to be done separately. First, consider the limit when
the length of the rth compact dimension, r ≠ l, is much
larger than other length scales, Lr ≫ Li, z2. In this case the
dominant contribution to the series over nr in Eq. (4.7)
comes from large values of jnrj and the corresponding
summation can be replaced by the integration in accordance
with

Pþ∞
nr¼−∞ → ðLr=πÞ

R∞
0 dkr. Then, passing to a new

integration variable u ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − k2ðqÞ

q
and introducing polar

coordinates in the plane ðkr; uÞ, after the integration over
the angular part, we can see that, to the leading order, the
result is obtained for the current density in the model where
the rth dimension is noncompactified.
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In the opposite limit of small lengths of the rth
dimension, Lr ≪ Li, z1, under the condition j ~αrj < π,
in the expression (4.7) the contribution of the term with
nr ¼ 0 dominates. The behavior of the component of
the current density along the lth compact dimension
crucially depends on whether the phase ~αr is zero or
not. In the case ~αr ¼ 0, the leading term obtained from
the right-hand side coincides with the current density in
the D-dimensional model, with the excluded rth com-
pact dimension divided by LðpÞr ¼ aLr=z. Recall that
the latter is the proper length of the rth dimension
measured by an observer with the fixed coordinate z.
For the case ~αr ≠ 0, the arguments of the modified
Bessel functions in the integrand of Eq. (4.7) are
large. By making use of the corresponding asymptotic
formulas, we can see that the contribution of the
single brane at z ¼ zj is suppressed by the factor
expð−2j ~αrjjz − zjj=LrÞ, whereas the interference part
decays as exp½−2j ~αrjðz2 − z1Þ=Lr�.
If the length of the lth compact dimension is much

smaller than the remaining lengths, Ll ≪ Li, the main
contribution to the series over nq−1 ¼ ðnpþ1;…; nl−1;
nlþ1;…; nD−1Þ in Eq. (4.3) comes from large values of
jnij, i ¼ pþ 1;…; D − 1, i ≠ l. In this case the corre-
sponding summation can be replaced by the integration in
accordance with

X
nq−1

fðkðq−1ÞÞ →
22−qπ−ðq−1Þ=2Vq

LlΓððq − 1Þ=2Þ
Z

∞

0

duuq−2fðuÞ; ð4:27Þ

where k2ðq−1Þ ¼ k2ðqÞ − k2l . As the next step, instead of x

we introduce a new integration variable w ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − u2 − k2l

q
. Passing to the polar coordinates in the

plane ðu; wÞ, after the evaluation of the integral over the
angular variable, we find

hjli ≈ hjli0 þ hjliðjÞ1 −
23−Dπð1−DÞ=2ezDþ2

aDþ1LlΓððD − 1Þ=2Þ
Xþ∞

nl¼−∞
kl

×
Z

∞

jklj
dxx × ðx2 − k2l Þ

D−3
2

×Ωjνðxz1; xz2ÞXðjÞ2
ν ðxzj; xzÞ: ð4:28Þ

A similar transformation is done with the single brane part

hjliðjÞ1 and the right-hand side of Eq. (4.28) coincides with
the corresponding result in the model with a single compact
dimension of the length Ll.
When, in addition to the condition Ll ≪ Li, one has

Ll ≪ zj, in the integration range of Eq. (4.28) the argu-
ments of the modified Bessel functions are large and we use
the corresponding asymptotic expressions [37]. For the
single brane and interference parts one gets

hjliðjÞ1 ≈ −γj
eLlðz=LlÞDþ1sgnð ~αlÞ
ð4πÞðD−1Þ=2aDþ1

j ~αljðD−1Þ=2e−2j ~αljjz−zjj=Ll

ðjz − zjj=LlÞðD−1Þ=2 ;

hjliint ≈ γ1γ2
2eLlðz=LlÞDþ1sgnð ~αlÞ

ð4πÞðD−1Þ=2aDþ1

×
j ~αljðD−1Þ=2e−2j ~αljðz2−z1Þ=Ll

½ðz2 − z1Þ=Ll�ðD−1Þ=2 ; ð4:29Þ

with Ll ≪ jz − zjj. Here, γj ¼ 2δ0Bj
− 1 with j ¼ 1, 2. As

it is seen, both the single brane and interference contribu-
tions decay exponentially and the decay of the interference
part is stronger. In the same limit, for the boundary-free part
one has

hjli0≈
2eΓððDþ1Þ=2Þ
πðDþ1Þ=2aDþ1

Llðz=LlÞDþ1
X∞
n¼1

sinð ~αlnÞ
nD

; ð4:30Þ

and it dominates in the total VEV. Hence, in the limit under
consideration the brane-induced parts are mainly concen-
trated near the branes within the range jz − zjj≲ Ll.
The representation (4.10) is well adapted for the inves-

tigation of the asymptotic behavior for large values of Ll
compared with the other length scales. In this limit one has
Llλn ≫ 1 and the argument of the function gp=2þ1ðxÞ is
large. The dominant contribution to the VEV comes from
the mode with the lowest λn and from the term with s ¼ 1.
By using the asymptotic for the function gp=2þ1ðxÞ, it is
seen that the current density is suppressed by the factor

expð−Ll

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ21 þ kð0Þ2ðq−1Þ

q
Þ. If the mode with λ ¼ 0 is present,

the corresponding asymptotic directly follows from

Eq. (4.13). For kð0Þðq−1Þ > 0, the contribution of the term

with n ¼ 1 and nq−1 ¼ 0 dominates and the corresponding

current density decays as expð−Llk
ð0Þ
ðq−1ÞÞ. This decay is

weaker than for the modes with positive λ2. In the case

kð0Þðq−1Þ ¼ 0, the decay of the contribution of the zero mode

goes down like a power law, i.e. 1=Lpþ1
l .

C. Numerical results

In the figures below all the graphs are plotted for a
minimally coupled massless scalar field in D ¼ 4 (except
the figure in Sec. V, where we consider the model with
D ¼ 5) in the model with a single compact dimension
(q ¼ 1, p ¼ D − 2) of the length L and with the phase
~αl ¼ ~α. For this model one has ν ¼ 2 and, hence, ν ¼ D=2.
As it has been discussed above, in this case for Neumann
boundary condition there is a special mode with λ ¼ 0. The
corresponding contribution to the current density is given
by Eq. (4.14) with Ω2ðzÞ from Eq. (3.47). In the numerical
examples with Robin boundary conditions we assume that
the Robin coefficients for the branes are the same:
β1 ¼ β2 ≡ β. In this case there are no modes with
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imaginary λ for β ≤ 0. In order to see the behavior of the
imaginary modes as a function of the Robin coefficient in
the range β > 0, in Fig. 2 we have plotted the roots of the
equation (3.32), multiplied by L, as a function of β=a for
fixed values z1=L ¼ 0.5 and z2=L ¼ 1. In the range
0 < β=a < 0.2206, for a given β=a there are two roots.
For β=a > 0.2206 there is a single root which decreases
with increasing β=a. For a given ~α, the vacuum is stable if
β ≤ 0 or β > βc where βc is the root of the equation
Lηðβ=aÞ ¼ ~α. This root is the abscissa of the intersection
point of the right curve in Fig. 2 with the horizontal line
Lη ¼ ~α. For example, in the case ~α ¼ π=2 (in the numerical
evaluations below we take this value of the phase) one
has βc=a ≈ 4.845.
In the figures we plot the graphs for the charge flux

density through the (D − 1)-dimensional spatial hypersur-
face xl ¼ const. The latter is given by the quantity nlhjli,
where nl ¼ a=z is the normal to the hypersurface. This
quantity is the current density measured by an observer
with a fixed value for the coordinate z. Indeed, in order to
discuss the physics from the point of view of that observer,
it is convenient to introduce rescaled coordinates x0i ¼
ða=zÞxi. With these coordinates the warp factor in the
metric for the subspace parallel to the branes is equal to one
and they are physical coordinates of the observer. For the
current density in these coordinates one has hj0li ¼
ða=zÞhjli which is exactly the quantity presented in the
graphs below. In Fig. 3 we have displayed the dependence
of the current density on the phase ~α for fixed values
z1=L ¼ 0.5, z2=L ¼ 1, z=L ¼ 0.75. The graphs are plotted
for Dirichlet, Neumann and Robin (for β=a ¼ −1, −3,
numbers near the curves) boundary conditions. The dashed
curve presents the current density in the geometry without
branes. Recall that the current density is an odd periodic
function of ~α with the period 2π.
As it is seen from Fig. 3, for β ≤ 0 the current density is an

increasing function of jβj. In order to show the dependence
of the current density on the coefficient in Robin boundary
condition, in Fig. 4 the current density is plotted versus β=a

for z1=L ¼ 0.5, z2=L ¼ 1, z=L ¼ 0.75, and ~α ¼ π=2.
As we have noted above, for these values of the parameters
and in the region 0 < β=a < 4.845 there are modes with
imaginary λ ¼ iη for which Lη > ~α. This means that in this
region the vacuum state is unstable. In Fig. 4, the instability
region is between the ordinate axis and the dotted vertical
line, corresponding to β=a ¼ 4.845. The dashed horizontal
lines correspond to the current density in the cases of
Dirichlet and Neumann boundary conditions. As we could
expect, for large values of jβj the results for Robin boundary
conditions tend to the one for Neumann condition, whereas
for β → −0 we obtain the result for Dirichlet boundary
conditions. For β < 0 (β > 0) the modulus of the current
density for Robin boundary conditions is smaller (larger)
than that for the Neumann case.

FIG. 3. The vacuum current density in the region between the
branes as a function of the phase in the quasiperiodicity condition
along the compact dimension. The graphs are plotted for scalar
fields with Dirichlet, Neumann and Robin (for β=a ¼ −1, −3,
numbers near the curves) boundary conditions and for fixed
values z1=L ¼ 0.5, z2=L ¼ 1, z=L ¼ 0.75. The dashed curve
corresponds to the current density in the absence of branes.

FIG. 4. The VEV of the current density as a function of the
Robin coefficient for z1=L ¼ 0.5, z2=L ¼ 1, z=L ¼ 0.75, and
~α ¼ π=2. The dashed lines represent the current densities for
Dirichlet and Neumann boundary conditions.

FIG. 2. The imaginary modes for λ versus the Robin coefficient
for fixed values z1=L ¼ 0.5, z2=L ¼ 1, and ~α ¼ π=2.
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In Fig. 5, the current density is plotted in the region
between the branes as a function of z=L for z2=L ¼ 1 (left
panel) and z2=L ¼ 2 (right panel). For the other parameters
we have taken z1=L ¼ 0.5, ~α ¼ π=2. The graphs are
presented for Dirichlet, Neumann and for Robin boundary
conditions (with the numbers near the curves being the
values of β=a). For z2=L ¼ 2 the dependence of the roots
of the equation (3.32) for imaginary modes on β=a is
qualitatively similar to that depicted in Fig. 2. The dashed
curve in the left panel corresponds to the current density in
the brane-free geometry.
In order to show the dependence of the current density

on the distance between the branes, in Fig. 6 the current
density is displayed at a fixed point z=L ¼ 1 as a function
of the ratio z2=L. The horizontal dashed line corresponds
to the current density in the absence of the branes. We
assume that the observation point has equal proper
distances from the left and right branes. This means that

z ¼ ffiffiffiffiffiffiffiffiffi
z1z2

p
and, hence, for the example in Fig. 6 one has

z1=L ¼ L=z2. Under this condition the proper distance
between the branes is related to the ratio z2=L by
y2 − y1 ¼ 2a lnðz2=LÞ. Hence, Fig. 6 presents the current
density as a function of the proper distance between the
branes at the fixed observation point in the middle
between the branes. For all the boundary conditions,
except the Neumann one, the current density tends to
zero in the limit y2 − y1 → 0. For Neumann boundary
condition the current density tends to infinity. This
behavior of the VEV, as a function of the interbrane
distance, is in accordance with the general analysis given
above. For the values of the parameters we have taken one
has ν ¼ D=2 and in the case of Neumann boundary
conditions there is a special mode with λ ¼ 0. The
contribution diverging in the zero-distance limit comes
from this mode. The contribution of the modes with λ > 0
tends to 0 for the Neumann case as well. As it is seen from
the graphs, in the case of Dirichlet boundary conditions,
the current density (the modulus of the current density for
general ~α) is smaller than the boundary-free part and for
the Neumann case it is bigger. In particular, this means
that the branes with Dirichlet (Neumann) boundary con-
ditions suppress (enhance) the vacuum currents.

V. APPLICATIONS IN RANDALL-SUNDRUM-
TYPE MODELS WITH COMPACT

DIMENSIONS

By using the results given above we can obtain the
vacuum current densities in generalized Randall-Sundrum
braneworld models [38] with extra compact dimensions.
In these models the y direction is compactified on an
orbifold, S1=Z2, with −b ≤ y ≤ b and with the fixed points
y ¼ 0 and y ¼ b. The latter are the locations of the hidden
and visible branes, respectively. The corresponding line
element is given by Eq. (2.1) with the replacement
y → jyj. Because of this, the Ricci scalar contains δ-function

FIG. 5. The current density as a function of z=L for two different values of the location of the right brane: z2=L ¼ 1 (left panel) and
z2=L ¼ 2 (right panel). The graphs are plotted for Dirichlet, Neumann and Robin (the numbers near the curves are the corresponding
values of the ratio β=a) boundary conditions for fixed z1=L ¼ 0.5, ~α ¼ π=2.

FIG. 6. The current density at a fixed observation point
corresponding to z=L ¼ 1 as a function of the ratio z2=L.
The observation point has equal proper distances from the left
and right branes and, hence, z1=L ¼ L=z2.
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terms located on the branes: R ¼ RAdS þ 4D½δðyÞ−
δðy − bÞ�=a. In addition, the action for a scalar field may
involve the contributions of the form

Sb ¼ −
1

2

Z
dDþ1x

ffiffiffiffiffi
jgj

p
½c1δðyÞ þ c2δðy − bÞ�φþðxÞφðxÞ;

ð5:1Þ
where the constants c1 and c2 are the so-called brane mass
terms. Now, the equation for the radial part of the mode
functions contains the δ-function terms coming from the
Ricci scalar and from the brane mass terms. The boundary
conditions for these functions are obtained by integrating the
equation near the branes. For fields even under the reflection
y → −y (untwisted scalar fields) the boundary conditions
obtained in this way are of the Robin type with the
coefficients (see Refs. [35,39,40])

βj
a
¼ −

2

acj þ 4Dξδj
; j ¼ 1; 2: ð5:2Þ

For odd fields (twisted scalars) Dirichlet boundary condi-
tions are obtained on both the branes.
Now the integration over y in the normalization integral

(3.14) goes over the range −b ≤ y ≤ b. As a consequence
of this an additional factor 1=2 appears in the square of
the normalization coefficient of the mode functions. Hence,
the expressions for the VEV of the current density in the
orbifolded braneworld models are obtained from those
given in the previous sections with an additional factor 1=2
and with y1 ¼ 0, y2 ¼ b.
In braneworld models of the Randall-Sundrum type the

standard model fields are located on the brane at y ¼ b
(visible brane) and it is of interest to consider the current
density induced by a bulk scalar field on this brane. In
Fig. 7, in the model with D ¼ 5, q ¼ 1 (i.e. the Randall-
Sundrum model with a single compact extra dimension),
the current density is plotted on the visible brane, z ¼ z2, as
a function of the location of that brane for the length of the
compact dimension L ¼ a. For the phase in the quasiper-
iodicity condition we have taken ~α ¼ π=2 and, as before,
the graphs are plotted for a minimally coupled massless
scalar field. The full/dashed curves correspond to Dirichlet
and Neumann boundary conditions on the hidden brane.
The numbers near the curves correspond to the values of
β2=a (the Robin coefficient for the visible brane). In the
numerical evaluations we have used the representation
(4.12) with j ¼ 2 and with an additional factor 1=2.
Note that in the case of Neumann boundary conditions
on both the branes the contribution of the special mode with
λ ¼ 0 should be added separately. This contribution is
given by Eq. (4.14) with the functionΩ2ðzÞ from Eq. (3.47)
and, again, with an extra factor 1=2.
In the original Randall-Sundrum 2-brane model, the

hierarchy problem between the gravitational and electroweak
scales is solved for the interbrane distance about 37 times

larger than the AdS curvature radius a. In the setup we have
considered this corresponds to large values of z2 compared
with z1. If, in addition, one has z2 ≫ Li, the effect of the
hidden brane on the current density at the location of the
visible brane can be estimated by using the representation
(4.23) with j ¼ 2. The contribution induced by the hidden
brane is given by the last term on the right-hand side. The
corresponding expression is simplified by taking into
account that for z2 ≫ Li the argument xz2 of the modified
Bessel functions is large in the integration range. The
dominant contribution comes from the region near the lower
limit of the integral and, under the assumption j ~αlj ≤ π, from
the term nq ¼ 0, corresponding to the lowest value of the
momentum in the compact subspace. By using the asymp-
totic expressions of the modified Bessel functions for large
arguments, to the leading order we find

hjliRS;z¼z2 ≈
1

2
hjli0 þ

1

2
hjlið2Þ1 −

eπð1−pÞ=2zqþ2
2 ~αl

2paDþ1Vq

×
Īð1Þν ðkð0ÞðqÞaÞ
K̄ð1Þ

ν ðkð0ÞðqÞaÞ
ðz2kð0ÞðqÞÞ

p−1
2 e−2k

ð0Þ
ðqÞz2 ; ð5:3Þ

where for the location of the hidden brane we have
taken z1 ¼ aey1=a ¼ a. The contributions hjli0 and
hjlið2Þ1 are given by the formulas from the previous section
with z ¼ z2. As is seen, the effects of the hidden brane
on the visible brane are suppressed by the exponential
factor expð−2kð0ÞðqÞz2Þ.

VI. SUMMARY

We have investigated the combined effects of the back-
ground geometry, the nontrivial topology and the branes on

FIG. 7. The current density on the visible brane for a minimally
coupled massless scalar field in the Randall-Sundrum model with
a single extra compact dimension as a function of the brane
location. The graphs are plotted for L ¼ a and ~α ¼ π=2 in the
cases of Dirichlet (full curves) and Neumann (dashed curves)
boundary conditions on the hidden brane. On the visible brane,
Neumann and Robin (numbers near the curves correspond to the
values of β2=a) boundary conditions are imposed.

BELLUCCI, SAHARIAN, and VARDANYAN PHYSICAL REVIEW D 93, 084011 (2016)

084011-16



the VEV of the current density for a charged scalar field
with a general curvature coupling parameter. In order to
have an exactly solvable problem, a highly symmetric
locally AdS geometry was considered with an arbitrary
number of toroidally compactified spatial dimensions.
Along the compact dimensions the field obeys quasiper-
iodicity conditions with arbitrary constant phases and, in
addition, we have assumed also the presence of a constant
gauge field. By a gauge transformation, the latter is
equivalent to the shift of the phases in the periodicity
conditions. As the geometry of boundaries we have
considered two branes, parallel to the AdS boundary, on
which the field operator obeys Robin boundary conditions,
in general, with different coefficients. In the model at hand,
all the properties of the vacuum state can be extracted from
the two-point functions and, as the first step, we have
evaluated the Hadamard function.
In the region between the branes the eigenvalues of

the quantum number corresponding to the coordinate
perpendicular to the branes are roots of the equa-
tion (3.13). In addition to an infinite number of modes
with positive λ, depending on the coefficients in the
boundary conditions on the branes, this equation may
have modes with purely imaginary λ ¼ iη and also modes
with λ ¼ 0. In order to escape the vacuum instability, we
have assumed the condition (3.31) with kð0ÞðqÞ being the
minimal value of the momentum in the compact sub-
space. Note that in the corresponding models with trivial
topology the presence of any mode with imaginary λ leads
to the vacuum instability. The modes with λ ¼ 0 are
present under the condition (3.42) on the parameters of
the model. For a given interbrane distance, this condition
gives a relation between the Robin coefficients. In the
expression of the Hadamard function, for the summation
of the series over the positive roots of the eigenvalue
equation (3.13) we have employed the generalized
Abel-Plana formula. This allowed us to extract explicitly
the single brane contribution and to present the second
brane-induced part in terms of the integral that is rapidly
convergent for points away from the branes. Then, we
have shown that the representations (3.22) and (3.28),
obtained in this way, remain valid in the presence of
the modes with λ2 ≤ 0 if the condition (3.31) for the
stability of the vacuum is obeyed. Other representa-
tions, obtained by using the summation formula (A1)
for the series over the momentum along the lth compact
dimension, are given in the Appendix. In these repre-
sentations the Hadamard function is decomposed into
the contribution corresponding to the model with an
noncompactified lth dimension and the part induced by
the compactification of the latter to S1. The first term
does not contribute to the component of the current
density along the lth dimension. The representations
obtained in this way are well adapted for the inves-
tigation of the VEVs on the branes.

Given the Hadamard function, the VEV of the current
density is evaluated with the help of the relation (4.2). The
VEVs of the charge density and of the current components
along noncompactified dimensions vanish. The component
of the current density along the lth compact dimension is
presented in two equivalent forms given by Eq. (4.3) with
j ¼ 1, 2. Another representation, in which the brane-
induced contribution is presented in the form of a single
integral, is provided by Eq. (4.7). The current density along
the lth compact dimension is an odd periodic function of
the phase ~αl and an even periodic function of the remaining
phases ~αi, i ≠ l. In both cases the period is equal to 2π. In
order to clarify the behavior of the vacuum current as a
function of the parameters of the model, we have consid-
ered various limiting cases. First of all, we have shown that
in the limit of the large curvature radius of the background
spacetime the corresponding result for the Robin plates in
the Minkowski bulk with partially compactified dimen-
sions is obtained. For a conformally coupled massless field
the current density in the AdS bulk is connected to the one
in the Minkowski spacetime by the conformal relation with
an appropriate transformation of the Robin coefficients [see
Eq. (4.21)]. In the limit when the brane at z ¼ z1 tends to
the AdS boundary, z1 → 0, the corresponding contribution
to the current density vanishes as z2ν1 and, to the leading
order, the result for the geometry of a single brane at z ¼ z2
is obtained. For a fixed location of the left brane, when the
right brane tends to the AdS horizon, z2 → ∞, its con-
tribution to the vacuum current at a given observation point
decays as expð−2kð0ÞðqÞz2Þ. If the length of the rth compact
dimension is much smaller than the remaining length scales
and the observation point is not too close to the branes,
Lr ≪ jz − zjj, for 0 < j ~αrj < π the single brane contribu-
tion to the current density is suppressed by the factor
expð−2j ~αrjjz − zjj=LrÞ for the brane at z ¼ zj, and the
interference part decays as exp½−2j ~αrjðz2 − z1Þ=Lr�. In this
limit, the current density is localized near the branes
within the region jz − zjj≲ Lr. For small values of Lr
and ~αr ¼ 0, the component of the current density along
the rth dimension vanishes whereas the current density
along other directions, to the leading order, coincides with
that in the D-dimensional model, with the excluded rth
compact dimension, divided by the proper length of the rth
dimension.
For the investigation of the asymptotic for large values of

the length Ll, it is more convenient to use the representation
(4.10). In this limit, the contribution to the VEV of the lth
component of the current density coming from the modes
with positive λ is suppressed by the factor

expð−Ll

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ21 þ kð0Þ2ðq−1Þ

q
Þ. If the mode with λ ¼ 0 is present,

for large values of Ll the corresponding current density

decays as expð−Llk
ð0Þ
ðq−1ÞÞ in the case kð0Þðq−1Þ > 0 and as

1=Lpþ1
l for kð0Þðq−1Þ ¼ 0. The representation (4.10) is also well

adapted for the investigation of the near-brane asymptotics of
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the current density. An important result seen from this
representation is the finiteness of the current density on
the branes. This feature is in drastic contrast compared to the
cases of the VEVs for the field squared and energy-
momentum tensor. It is well known that the latter diverge
on the boundaries and in the evaluation of the related global
quantities, like the total vacuum energy, an additional
renormalization procedure is required. The current densities
on the branes are directly obtained from Eq. (4.10) by putting
z ¼ zj and are given by the expression (4.12) with j ¼ 1, 2
for the left and right branes, respectively. In particular, for
Dirichlet boundary conditions the current density and its
normal derivative vanish on the branes. Another feature, seen
from the expression (4.10), is that the contribution to the
current density from the modes with positive λ tends to zero
in the limit of small interbrane distances.
In the numerical examples, discussed in Sec. IV, we have

considered a minimally coupled massless scalar field in the
D ¼ 4model with a single compact dimension and with the
same Robin coefficients for the left and right branes. In this
case, for β ≤ 0 there are no modes with imaginary λ. In this
range, for fixed values of the other parameters, the current
density is an increasing function of jβj. In particular, it takes
the minimum value for Dirichlet boundary conditions and
the maximum value for the Neumann one. In the range
β > βc > 0, where βc is the critical value of the Robin
coefficient for the stability of the vacuum (the vacuum is
unstable in the range 0 < β < βc), the situation is opposite:
the current density decreases with increasing β.
In Sec. V we have applied the general result to the 2-brane

Randall-Sundrum-type model with extra compact dimen-
sions. The corresponding boundary conditions are obtained
by the integration of the field equation near the branes. For
untwisted scalar fields the boundary conditions are of the
Robin type with the coefficients given by Eq. (5.2) with cj
being the brane mass terms. For twisted fields Dirichlet
boundary conditions are obtained. The corresponding
expressions for the vacuum currents are obtained from those
in Sec. IV with an additional coefficient 1=2 and taking
y1 ¼ 0, y2 ¼ b. For the values of the interbrane distance
solving the hierarchy problem between the electroweak and
Planck scales, the current density induced by the hidden
brane on the visible one is suppressed exponentially as a
function of the location of the visible brane.
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APPENDIX: OTHER REPRESENTATIONS FOR
THE HADAMARD FUNCTION

In Sec. III, by using the generalized Abel-Plana for-
mula (3.18), for the Hadamard function we have provided

the representation (3.22). In the expression for the VEVof
the current density obtained from this representation [see
Eq. (4.3)], the convergence of the integral is too slow for
points near the branes and it is not convenient for the
investigation of the near-brane asymptotic of the current
density. Here we apply to the mode sum for the Hadamard
function another type of Abel-Plana formula that allows
one to extract the contribution induced by the compacti-
fication. The representation obtained in this way is well
suited for the evaluation of the vacuum currents on the
branes.
Let us apply to the series over nl in the representation

(3.17) the Abel-Plana-type summation formula [41]

2π

Ll

X∞
nl¼−∞

gðklÞfðjkljÞ ¼
Z

∞

0

du½gðuÞ þ gð−uÞ�fðuÞ

þ i
Z

∞

0

du½fðiuÞ − fð−iuÞ�

×
X
λ¼�1

gðiλuÞ
euLlþiλ ~αl − 1

; ðA1Þ

where kl is given by Eq. (3.5). In the special case gðuÞ ¼ 1
and ~αl ¼ 0, this formula is reduced to the Abel-Plana
formula in its standard form. The contribution of the first
term on the right-hand side of Eq. (A1) gives the Hadamard
function in the geometry of two branes in (Dþ 1)-
dimensional locally AdS spacetime with compact dimen-
sions ðxpþ1;…; xl−1; xlþ1;…; xD−1Þ and with the lth
dimension being noncompactified. The latter corresponds
to the spatial topology Rpþ2 × Tq−1 and the respective
Hadamard function will be denoted by GRpþ2×Tq−1ðx; x0Þ.
As a consequence, the Hadamard function is decomposed as

Gðx; x0Þ ¼ GRpþ2×Tq−1ðx; x0Þ þ Glðx; x0Þ; ðA2Þ

where the last term comes from the second integral on the
right-hand side of Eq. (A1) and is induced by the compac-
tification of the lth dimension. It is presented in the form

Glðx; x0Þ ¼
a1−DLlðzz0ÞD=2

2pπp−1Vqz1

×
X∞
s¼1

X
nq−1

Z
dkpeikrΔx

r

Z
∞

0

dw coshðwΔtÞ

×
X∞
n¼1

λnTνðχ; λnÞgνðλnz1; λnzÞgνðλnz1; λnz0Þ

× cosh ðuΔxl þ is ~αlÞ
e−suLl

u

����
u¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2þλ2nþkðlÞ2

p ;

ðA3Þ

where nq−1¼ðnpþ1;…;nl−1;nlþ1;…;nD−1Þ, kðlÞ2¼ k2−k2l ,
and the summation over r in krΔxr is over r ¼ 1;…; D − 1,
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r ≠ l. Note that the part (A3) is finite in the coincidence
limit of the arguments, including the points on the branes.
The physical reason for this feature is related to the fact
that the toroidal compactification does not change the
local geometry and the structure of the divergences is
the same as that for the AdS bulk without the

compactification. The first term on the right-hand side
of Eq. (A2) does not contribute to the component of the
current density along the lth dimension.
Yet another representation is obtained by applying to the

series over n in Eq. (A3) the summation formula (3.18).
This leads to the following decomposition:

Glðx; x0Þ ¼ Gð1Þ
l ðx; x0Þ − 8Llðzz0ÞD=2

ð2πÞpþ2aD−1Vq

X∞
s¼1

X
nq−1

Z
dkpeikrΔx

r

Z
∞

0

dw coshðwΔtÞ

×
Z

∞

0

dv
X
j¼�1

cos ðvΔxl þ js ~αlÞe−ijsvLlΩ1νðuz1; uz2ÞXð1Þ
ν ðuz1; uzÞXð1Þ

ν ðuz1; uz0Þju¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2þw2þkðlÞ2

p : ðA4Þ

Here the term

Gð1Þ
l ðx; x0Þ ¼ 4ðzz0ÞD=2Ll

ð2πÞpþ1aD−1Vq

X∞
n¼1

X
nq−1

Z
dkpeikrΔx

r

Z
∞

0

dλλ
gνðλz1; λzÞgνðλz1; λz0Þ
J̄ð1Þ2ν ðλz1Þ þ Ȳð1Þ2

ν ðλz1Þ

Z
∞

0

dw coshðwΔtÞ

×
e−nuLl

u
coshðuΔxl þ in ~αlÞju¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

w2þλ2þkðlÞ2
p ; ðA5Þ

comes from the first integral on the right-hand side of Eq. (3.18). It is the part of the Hadamard function induced by the
compactification of the lth dimension in the geometry of a single brane at y ¼ y1.
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