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Small-field inflation (SFI) is widely considered to be unnatural because an extreme fine-tuning of the
initial condition is necessary for sufficiently large e-folding. In this paper, we show that the unnaturally
looking initial condition can be dynamically realized without any fine-tuning if the SFI occurs after rapid
oscillations of the inflaton field and particle creations by preheating. In fact, if the inflaton field ϕ is coupled
to another scalar field χ through the interaction g2χ2ϕ2 and the vacuum energy during the small field

inflation is given by λM4, the initial value can be dynamically set at ð ffiffiffi
λ

p
=gÞM2=Mpl, which is much smaller

than the typical scale of the potentialM. This solves the initial condition problem in the new inflation model
or some classes of the hilltop inflation models.

DOI: 10.1103/PhysRevD.93.084009

I. INTRODUCTION

The recent observation of the precise CMB data by the
Planck satellite [1] gives an upper bound of the tensor to
scalar ratio r ¼ 16ϵ ¼ Δ2

T=Δ2
S < 0.12with 95% confidence

level. Here the amplitudes of the tensor and the scalar
fluctuations (in dimensionless form) are given by

Δ2
TðkÞ≡ k3

2π2
PTðkÞ ¼

2ρ

3π2M4
pl

; ð1Þ

Δ2
SðkÞ≡ k3

2π2
PζðkÞ ¼

ρ

24π2M4
plϵ

: ð2Þ

ρ is the energy density of the universe and related to the
Hubble parameter by the Einstein equation H2 ¼ ρ=3M2

pl.
Mpl ¼ 2.4 × 1018 GeV is the reduced Planck scale.
The scalar fluctuations (curvature perturbations) [1] are
given by Δ2

S ¼ 2.215 × 10−9 at the pivot scale kCMB ¼
0.05 Mpc−1. This constrains the energy scale of the
primordial inflation ρ1=4 < 1.9 × 1016 GeV.
Large field inflation models often predict larger values of

r than the observed value, and it gives a chance of revival to
small field inflations (SFI). However, SFI has been known
to have some drawbacks. First, SFI often predicts a smaller
spectral index of the scalar perturbations compared to the
observed value ns ∼ 0.96. The problem can be solved by
introducing a tilt (a linear type potential) in the inflaton
potential (see, for example, [2–5]). Another long-standing
problem of SFI is that it requires very fine-tuning of the
initial condition. In order to explain the sufficiently large
e-folding, it is necessary to put the initial value of the SFI

very close to the top of the potential in the case of the
Coleman-Weinberg type inflation.
The purpose of the paper is to show that such an

unnaturally looking initial condition can be dynamically
fixed by using the preheating mechanism [6,7] without
introducing any fine-tunings of the initial condition. We
only require that the SFI follows rapid oscillation of the
inflaton field which had produced a large number of
particles and modified the inflaton potential so that the
inflaton field is trapped near the origin. The mechanism is
similar to the moduli trapping mechanism discussed in [8],
and also is discussed previously in the context of the SFI
[9,10]. See also [11] for another mechanism of fine-tuning.
In this paper, we revisit the problem and show that the
initial value of the SFI is dynamically set at a sufficiently
close point near the origin; ϕini ∼ ð ffiffiffi

λ
p

=gÞM2=Mpl ≪ M
where the vacuum energy there is given by ∼λM4 and g is
the strength of interaction g2ϕ2χ2 between the inflaton ϕ
and another scalar field χ.
The organization of the paper is as follows. In Sec. II, the

fine-tuning problem of the initial condition for the SFI is
explained. In Sec. III, we briefly comment on the large field
inflation in the Coleman-Weinberg potential. In Sec. IV,
the preheating mechanism is discussed, and we obtain the
conditions for the broad parametric resonance to occur. In
Sec. V, we study the effect of the created particles by
preheating on the coherent motion of the inflaton and show
when the broad parametric resonance ends. In Sec. VI, we
show that the created particles can trap the inflaton field
near the top of the hill of the potential. Finally in Sec. VII,
we show that the unnaturally looking initial condition of the
SFI can be dynamically set without any fine-tuning, and we
summarize in Sec. VIII.
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II. SMALL FIELD INFLATION AND
THE FINE-TUNING PROBLEM

We particularly consider the Colman-Weinberg (CW)
type potential [12] shown in Fig. 1,

VðϕÞ ¼ λϕ4

4

�
ln

ϕ2

M2
− 1

2

�
þ V0; ð3Þ

where V0 ¼ λM4=8. The minimum of the potential is given
at ϕ ¼ M. In this paper, we assume M ≪ Mpl.
Such potentials are studied in various situations, in

particular, in the analysis of the radiative symmetry break-
ing of gauge theories, such as the grand unified theories
(GUT) or extensions of the standard model (SM).
Especially, it has attracted renewed interest recently as a
simple model of physics beyond the SM satisfying the
experimental constraints imposed on physics beyond the
standard model (BSM) by the LHC and flavor experiments.
In [13,14], based on the idea of [15], we proposed a
minimal extension of the SM by introducing B-L (baryon
number minus lepton number) Uð1Þ gauge field Z0, an
additional scalar ϕ whose vacuum expectation value (VEV)
breaks the B-L gauge symmetry, and the right handed
neutrinos which cancel the gauge anomaly of the B-L
symmetry. We show that the electroweak (EW) gauge
symmetry breaking is triggered by the B-L breaking, which
is radiatively broken by the CWmechanism. The model is a
minimal extension of the SM in which radiative symmetry
breaking can generate the EW scale. One of our motivations
of the present analysis is to investigate the cosmological
possibility of themodel, but in order tomake our discussions
as general as possible, we do not use the specific numerical
values of the coupling constants in the following.
We make use of the scalar field ϕ as an inflaton field.

Since ϕ has the CW type potential as in Fig. 1, two types of
inflations are possible: the large field inflation (LFI) and the
SFI. The large field type can be regarded as the chaotic

inflation with a quartic potential. On the other hand, the
small field CW inflation was studied in the early 1980s in
the nonsupersymmetric GUT models [16–18] and was
called the new inflation. In order to realize the SFI, it is
often assumed that the inflaton field is trapped at the origin
due to thermal corrections to the effective potential gen-
erated in the reheating of the LFI. When the fluctuations of
the field are dominated by the vacuum energy at ϕ ¼ 0, the
SFI occurs. Then the radiation generated so far rapidly
dilutes, and the inflaton field ϕ rolls down to the true
minimum at ϕ ¼ M. The mechanism works when the
reheating occurs by perturbative decay of inflaton. Since
the decay process produces relativistic particles, the modi-
fication of the inflaton potential is not always sufficient to
lift the true minimum to trap the field around the origin.
Also, in order to explain the CMB fluctuations, the inflaton
field must start from a very small value ϕ ≪ M near the top
of the potential. In the following we explain how much
fine-tuning is necessary.
First we calculate the slow roll parameters to estimate the

necessary initial condition in the SFI. Taking derivatives
with respect to ϕ, we have

V 0 ¼ λϕ3 ln
ϕ2

M2
; V00 ¼ λϕ2

�
2þ 3 ln

ϕ2

M2

�
: ð4Þ

Mass of the scalar at the minimum is given by
m2

ϕ¼V 00ðMÞ¼2λM2. For small values of fields ðϕ<MÞ,
the slow roll parameters are calculated to be

ϵ ¼ M2
Pl

2

�
V 0

V

�
2

≈ 32

�
MPl

M

�
2
�
ϕ

M

�
6
�
ln

ϕ2

M2

�
2

; ð5Þ

η ¼ M2
Pl

�
V 00

V

�
≈ 24

�
MPl

M

�
2
�
ϕ

M

�
2

ln
ϕ2

M2
: ð6Þ

Here we used V ≈ V0 in the region ϕ ≪ M. The slow roll
conditions ϵ, jηj < 1 require that the field value ϕ during
the SFI must be extremely smaller thanM; thus the relation
ϵ ≪ jηj follows. Inflation stops at jηj ¼ 1 where the slow
roll condition is violated.
Equation (6) can be approximately solved as

ϕ ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jηj
24

ln−1
�
24M2

Pl

jηjM2

�s
M2

Mpl
: ð7Þ

It requires that, in order to satisfy the slow roll condition
with sufficiently large e-folding, the inflation must start
from the very small initial condition,

ϕini ∼ ð10−3jηjÞ1=2 M
2

Mpl
≪ M: ð8Þ

This is the infamous fine-tuning problem of the initial
condition of the SFI. In deriving the coefficient

FIG. 1. Coleman-Weinberg potential has the true minimum at
ϕ ¼ M. It is flat at the origin ϕ ¼ 0. Two possibilities of
inflationary scenario exist, the large field inflation (chaotic
inflation) and the small field inflation (new inflation). The LFI
has the beyond-Planck scale problem while the SFI has the fine-
tuning problem of the initial condition.
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numerically, we insertedM ¼ 1010 GeV and jηj ¼ 0.02 but
the coefficient 10−3 does not depend so much on the details
of these values. For these values, the initial value needs to
be ϕini ∼ 10−11M. Since M is the typical scale of the
potential (the energy scale at the minimum of the CW
potential), such a small coefficient 10−11 seems very
unnatural as the initial condition. This is one of the reasons
that large field inflations, such as the chaotic ones, are more
favored than the SFI.
The slow roll parameter ϵ is much smaller than jηj and is

given by

ϵ ¼ jηj3
432 lnð24M2

pl=jηjM2Þ
�

M
MPl

�
4

ð9Þ

∼ 4 × 10−5jηj3
�

M
MPl

�
4

≪ 1: ð10Þ

In order to make the amplitude of the scalar perturbationΔ2
S

consistent with the Planck data [1],Δ2
S ¼ 2.215 × 10−9, the

quartic coupling of the CW potential λ must be extremely
small λ ∼ 10−15. In the following sections, we see that the
smallness of the coupling becomes important to generate
rapid particle creations during coherent oscillations of the
inflaton field.
Here we comment on the issue of the smallness of the

spectral index ns. Those who are more interested in
the initial condition problem can skip this paragraph.
The e-folding number N of the SFI is related to the slow
roll parameter η as

N ¼ 1

M2
Pl

Z
ϕ

ϕend

V
V 0 dϕ ≈

3

2

�
1

jηj −
1

jηendj
�
: ð11Þ

By putting jηendj ¼ 1, we have η ¼ −1=ð2N=3þ 1Þ. Since
ϵ ≪ jηj, the spectral index of the scalar perturbation is
given by ns ¼ 1 − 6ϵþ 2η ∼ 1þ 2η. Hence ns ∼ 0.96 [1]
requires an e-folding number N ¼ 3=ð1 − nsÞ − 3=2 ¼
73.5. On the other hand, the e-folding number at the pivot
scale of CMB is given by

NCMB ¼ 61þ2

3
ln

�
V1=4
0

1016 GeV

�
þ1

3
ln

�
TR

1016 GeV

�
; ð12Þ

where we assumed that there was an epoch of the inflaton
field’s oscillation induced by its mass term after the
inflation and then the radiation dominated epoch continues
until the matter-radiation equality epoch. The smallness of
the vacuum energy V1=4

0 ∼ 10−4M ≪ MPl suggests a
smaller e-folding number than 61, which is inconsistent
with the above large e-folding number N ¼ 73.5. Various
resolutions of the inconsistency have been proposed [2–4].
In our previous article [5], we proposed another possibility

that a linear potential is generated by the chiral condensates
of quarks.
In the rest of the paper, we solve the fine-tuning problem

of the initial condition given in (8) by using the dynamics of
preheating during the rapid oscillation of inflaton field
before the SFI starts.

III. LARGE FIELD INFLATION AND
BEYOND-PLANCK PROBLEM

Before trying to solve the initial condition problem of the
SFI, we remind the readers of the beyond-Planck scale
problem in the LFI. If the inflaton has the potential of the
CW type in Fig. 1, it is natural to think that in the early
universe a coherent motion of the inflaton starts from a field
value with ϕ ≫ M. Such a field value can easily be
achieved due to higher scale inflationary periods before
the LFI [19,20]. See also recent works [21,22] addressing
the initial condition problem in LFI models. Then the
potential can be approximated by the quartic one
V ¼ λϕ4=4. The slow roll parameters in the region ϕ ≫
M are given by

ϵ ¼ M2
Pl

2

�
V 0

V

�
2

≈ 8

�
MPl

ϕ

�
2

; ð13Þ

η ¼ MPl

�
V 00

V

�
≈ 12

�
MPl

ϕ

�
2

¼ 3ϵ=2: ð14Þ

If the field value is much larger than the Planck scale Mpl,
the slow roll conditions are satisfied and the LFI occurs.
The spectral index for the scalar perturbation is given by
ns ¼ 1 − 6ϵþ 2η ¼ 1 − 3ϵ. Hence, in order to explain the
CMB data ns ¼ 0.9603� 0.0073, we need ϵ ∼ 0.013, and
accordingly the field value at the pivot scale ϕ ∼ 25Mpl is
necessary. The tensor-scalar ratio is predicted as

r ¼ 16ϵ ∼ 0.208; ð15Þ

and the e-folding is given by

N ¼
Z

ϕ

ϕend

V
M2

PlV
0 dϕ ¼ 1ffiffiffi

2
p

MPl

Z
ϕ

ϕend

dϕffiffiffi
ϵ

p

¼ 1

8M2
Pl

ðϕ2 − ϕ2
endÞ ∼

1

ϵ
− 1 ð16Þ

where we put ϵend ¼ 1.
Two drawbacks are known in LFI. First it predicts a large

tensor to scalar ratio (15) which seems to be inconsistent
with the Planck and BICEP2/Keck Array observations
[1,23]. Second the large field value ϕ ≫ Mpl may invali-
date the analysis of the inflaton potential within renorma-
lizable field theories, and higher mass-dimensional terms
cannot be excluded. They are common problems of the LFI.
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We call the second one the beyond-Planck-scale problem in
this paper.
In the following, we show that, in the CW type potential,

the SFI naturally follows the LFI. Hence, the CMB
fluctuations are generated during the SFI, and the first
problem is absent. Furthermore, as we show later, in order
to solve the initial condition problem of the SFI (8), it is
sufficient to require that, before the SFI occurs, the field
starts from somewhere in the region satisfying M < ϕ.
Hence the beyond-Planck-scale problem can be avoided.

IV. PREHEATING: BROAD
PARAMETRIC RESONANCE

We consider a coupled system of two scalar fields, an
inflaton field ϕ and another scalar field χ. The potential of
the model is

Vðϕ; χÞ ¼ VðϕÞ þ g2

2
ϕ2χ2; ð17Þ

where VðϕÞ is given in (3). Because the initial amplitude of
the oscillation of the ϕ field is much larger than M, or is
close to the reduced Planck scale at the beginning of the
oscillation, the ϕ field oscillates at around its origin
(ϕ ¼ 0). The model can be considered as a toy model of
the classically conformal B-L extended standard model
[13]. The SM singlet scalar whose VEV breaks the B-L
gauge symmetry plays the role of the inflaton ϕ, and the
scalar field χ corresponds to the B-L Uð1Þ gauge field Z0.
Hence the coupling g represents the B-L gauge coupling
gB−L. In the model [13], the Z0 gauge boson is coupled to
the SM particles and decays into them. In the present paper,
we briefly comment on the effects of the χ decay and leave
detailed (numerical) analysis for future investigations.
The strengths of the two coupling constants, λ and g, are

assumed to satisfy the following inequality:

g2 ≫ λ: ð18Þ

It is a natural assumption since the quartic coupling of the
inflaton must be very small λ ∼ 10−15 while the (gauge)
coupling g is not necessarily so.
The equations of motion of the scalars are given by

□ϕþ V 0ðϕÞ þ g2χ2ϕ ¼ 0;

□χ þ g2ϕ2χ ¼ 0: ð19Þ

The d’Alembertian operator acting on modes with comov-
ing momenta k is given by □ ¼ ∂2

t þ 3H∂t þ ðk2=a2Þ,
where a is the scale factor and the Hubble constant is given
by H ¼ _a=a,

H2 ¼ 1

3M2
pl

�
_ϕ2

2
þ Vðϕ; χÞ þ _χ2

2

�
: ð20Þ

We divide the inflaton field into the coherent motion (zero
mode) ϕ0 and fluctuation (nonzero modes) φ as

ϕðt; xÞ ¼ ϕ0ðtÞ þ φðt; xÞ: ð21Þ

For a sufficiently large initial value ϕ0 > Mpl, the coherent
motion of the inflaton field realizes the LFI. The LFI ends
around ϕ0 ∼

ffiffiffiffiffi
12

p
Mpl where η ∼ 1, and starts falling down

toward the minimum. The energy density of the universe is
dominated by the coherent oscillation, and the field starts
oscillation with the effective frequency ωeff ∼

ffiffiffi
λ

p
Φ0.

1 Here
Φ0 is the amplitude of the oscillation. The effective
frequency of the inflaton oscillation ωeff is larger than
the Hubble constant H after the oscillation starts. Hence,
the expansion of the universe can be neglected during each
oscillation of the ϕ field. It is also worth mentioning here
that ωeff largely changes in the finite density state. It is
discussed in the next section.
In the coherent motion of the inflaton field, the χ and the

nonzero modes of ϕ acquire time-dependent mass terms,

mχðtÞ2 ¼ g2ϕ0ðtÞ2; mφðtÞ2 ¼ 3λϕ0ðtÞ2; ð22Þ

and, if the adiabaticity condition (j _ωj=ω2 < 1) is violated,
particle creations by parametric resonance occur. It is called
the preheating mechanism [6]. The equation of motion for
the mode with momentum k is approximated by

χ̈k þ 3H _χk þ ω2
χðkÞχk ∼ 0; ð23Þ

where

ω2
χðkÞ ¼

�
g2Φ2

0 sin
2ðωefftÞ þ δm2 þ k2

a2

�
: ð24Þ

For later convenience we added the term δm2 which
represents slowly changing mass shifts due to backreac-
tions of the created particles. It is a finite density effect and
is absent until particles are created by preheating. This term
plays an important role in Sec. V.
As mentioned, the expansion of the universe is much

slower than the inflaton oscillation. Then, by neglecting the
Hubble term, the equation becomes identical with the
Mathieu equation. The violation of the adiabaticity con-
dition is efficient near ϕ0 ∼ 0 and for smaller k. The
equation is transformed into the standard form of the
Mathieu equation by defining the new coordinate z ¼ ωefft,

1In the quartic potential of λϕ4=4, the solution to the equation
of motion ϕ̈0 þ λϕ3

0 ¼ 0 is given by ϕ0ðtÞ ¼ Φ0cnð
ffiffiffi
λ

p
Φ0t; 1=2Þ.

The Jacobi elliptic function is well approximated by the
trigonometric function ϕ0ðtÞ ∼ Φ0 cosðωeff tÞ where ωeff ¼
0.8472

ffiffiffi
λ

p
Φ0.
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∂2χk
∂z2 þ ðA − 2q cos 2zÞχk ¼ 0; ð25Þ

A ¼ 1

ω2
eff

�
k2

a2
þ δm2 þ ðgΦ0Þ2

2

�
; ð26Þ

q ¼ jmχ j2
4ω2

eff

¼ ðgΦ0Þ2
4ω2

eff

; ð27Þ

where we defined jmχ j ¼ gΦ0. In the standard form,
ffiffiffiffi
A

p
represents the ratio of the (averaged) frequency of the χk
field to the frequency of the external force. On the other
hand, q represents the strength of the external force. The
Mathieu equation describes the phenomena of parametric
resonances, and the solution is unstable in some regions of
ðA; qÞ parameter space. For q < 1, the solution is unstable
only when A satisfies special conditions for the narrow
resonance [6]. On the contrary, if the external force is
sufficiently strong q > 1, the solution is unstable for a wide
range of parameter space and the ratio of the frequencies A
is not strongly constrained. This is called the broad para-
metric resonance. In a realistic model, we need to take into
account backreactions from the produced particles and the
redshift of momenta by the expansion of the universe. They
change the narrow resonance condition for A, and hence, in
order to realize the rapid increase of particles due to the
Bose enhancement, the broad resonance condition q ≫ 1 is
necessary.
The particle creation is most efficient around ϕ0 ¼ 0,

and in order to estimate the particle creation rate, we
expand the external force around ϕ0ðtÞ ¼ 0. The equation
of motion (23) is then approximated by

χ̈k þ
�
k2

a2
þ δm2 þ j _ωχ j2t2

�
χk ¼ 0; ð28Þ

where j _ωχ j≡ gΦ0ωeff . It is identified with the Schrödinger
equation in an inverted harmonic potential, and the particle
creation due to the Bogoliubov transformation around
t ¼ 0 is calculated as the tunneling rate in the potential.
The Bogoliubov coefficient βk is given by

jβkj2 ¼ e−πκ2k ; κ2k ¼
1

j _ωχ j
�
k2

a2
þ δm2

�
: ð29Þ

A necessary condition for the preheating is κk ≲ 1.
Otherwise, the adiabaticity condition is not violated, and
the particle creations do not occur efficiently. This gives an
upper bound of momenta of created particles.
To summarize, the particle creation due to the preheating

(broad resonance) occurs only when the two conditions,
q ≫ 1 and κ ≲ 1, are satisfied. For the sufficient particle
creation of χ particles, it is necessary to satisfy

qχ ¼
jmχ j2
4ω2

eff

¼ ðgΦ0Þ2
4ω2

eff

∼
g2

λ
≫ 1; ð30Þ

k2

a2
þ δm2 ≲ j _ωχ j ¼ gΦ0ωeff : ð31Þ

Here we explicitly write the subscript χ in qχ to distinguish
it from the same parameter for other particles. When these
conditions are satisfied together with the Bose enhance-
ment effect, the rapid growth of the χ particles occur. Then
the particle number density increases exponentially as
nχ ∝ e2μz. The coefficient μ is Oð0.1Þ [6]. It varies model
by model, but the detailed value of μ is not essential in the
following discussions.
If the created particles χ decay or annihilate into other

particles, or dilute due to the rapid expansion of the
universe, faster than the creation rate μωeff , the Bose
enhancement effect does not work. Hence the conditions

μωeff > Γχ ; H ð32Þ

need to be taken into account for the exponential growth of
particle numbers to occur. The Hubble parameter H ¼ffiffiffiffiffiffiffiffiffiffi
λ=12

p ðΦ2
0=MplÞ is smaller than μωeff ∼ μ

ffiffiffi
λ

p
Φ0 for

Φ0 ≲
ffiffiffiffiffi
12

p
μMpl, and we can neglect the effect of the

expansion of the universe in the period of rapid oscillation.
In the B-L model [14], χ decays into SM particles with the
coupling g. Hence the decay width is given by Γχ ∼ g2mχ ∼
g3Φ0 while the effective frequency is ωeff ∼

ffiffiffi
λ

p
Φ0. Hence,

if μ
ffiffiffi
λ

p
> g3, the condition μωeff > Γχ is satisfied. Indeed,

as mentioned at the end of Sec. VII, λ ∼ g4 ≪ 1 is required
in the model [14], and thus the decay rate is smaller than the
production rate.
Let us go back to conditions (30) and (31). The first

condition (30) is satisfied in our model since λ is extremely
small. When δm2 ¼ 0, the second condition (31) gives an
upper bound of the physical momenta p ¼ k=a of the
created particles,

p2 < p2⋆; ð33Þ

where

p2⋆ ≡ j _ωχ j ¼ gΦ0ωeff ∼ ðgΦ0Þ2= ffiffiffiffiffi
qχ

p
: ð34Þ

Since particles with lower momenta are more efficiently
produced, the number distribution is far from being in
thermal equilibrium. For qχ ≫ 1, the mass squaredm2

χðtÞ ¼
ðgϕ0ðtÞÞ2 is larger than p2⋆ and the created χ particles
behave nonrelativistically, except for short intervals of the
oscillation satisfying ϕ0ðtÞ < q−1=4χ gΦ0. In the finite den-
sity state discussed in the next section, the left-hand side of
(33) is replaced by p2 þ δm2. Therefore, when
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backreactions of created particles generate larger mass
corrections δm2 > p2⋆, the wave equations for χ with any
low momenta behave adiabatically and the particle cre-
ations stop.
In contrast to χ, φ particles (nonzero modes of ϕ) are not

efficiently produced by the preheating since the first
condition q ≫ 1 is not satisfied. The parameter q for φ
is given by

qφ ¼ jmφj2
4ω2

eff

¼ 3λΦ2
0

4ω2
eff

∼Oð1Þ; ð35Þ

and it does not satisfy the broad resonance condition.
Furthermore, as seen in the next section, production of χ
particles leads to a larger frequency ωeff, and consequently
qφ becomes much smaller thanOð1Þ. Hence the preheating
never occurs for φ. But instead, φ particles can be rapidly
produced from the χ particles by rescatterings χ þ ϕ0 →
χ þ φ and annihilations 2χ → ϕ0 þ φ, or 2χ → φþ φ.
These particles have momenta p≲ p⋆. Since its mass is
generated by finite density effects only, φ behaves relativ-
istically [24]. It does hold even after the finite density effect
gives a nonvanishing mass m2

φ ¼ λhφ2i because λ ≪ g2 is
assumed in the present analysis.

V. BACKREACTIONS AND THE
END OF PREHEATING

Once the oscillation of the inflaton starts, the number
densities of χ particles grow exponentially. As discussed,
μωeff is much larger than the Hubble constant for
Φ0 ≪ Mpl, the production rate of nχ is always larger than
the expansion rate of the universe, and a precise value of μ
is not important.
Soon after nχ increases, the scattering and annihilation

processes through the interaction term g2χ2ϕ2 rapidly
create nonzero modes φ, and the universe is filled with
χ and φ particles.2 The number density nφ grows until it
becomes equal to nχ [24]. The χ field acquires an additional
mass correction in addition to (22),

m2
χ ¼ g2ðϕ2

0ðtÞ þ hφ2iÞ: ð36Þ

At the beginning of preheating, the coherent part is
dominant, but soon the second term becomes comparable
to the first term. The 2-point function at the same space-
time point can be evaluated by using the Hartree approxi-
mation as

hφ2i ¼
Z

d3k
ð2πaÞ3

nφ;k þ 1=2

ωk
∼
nφ
p⋆

; ð37Þ

where ωk is replaced by the typical momentum p⋆ of φ. In
the following we see that the preheating stops when both
terms become comparable and indistinguishable.
The coherent motion of ϕ is also modified by the

additional contribution g2hχ2iϕ2=2 in the finite density
state. The 2-point function for the χ field is similarly
evaluated as

hχ2i ¼
Z

d3k
ð2πaÞ3

nχ;k þ 1=2

ωk
∼

nχ
gjϕj : ð38Þ

Here, by using the fact that the created particles are
nonrelativistic,3 ωk is replaced by mχ ¼ gjϕ0ðtÞj. It is

justified as long as jϕ0j >
ffiffiffiffiffiffiffiffiffi
hφ2i

p
in (36). Then the

interaction between the inflaton and the χ field gives the
induced potential which is linear [6] in ϕ,

g2

2
hχ2iϕ2 ∼

g2

2

nχ
gjϕjϕ

2 ¼ g
2
nχ jϕj: ð39Þ

Comparing this with the original potential λϕ4=2, the above
term becomes more dominant when the number of created
particles nχ is larger than the number density determined by
the amplitude of the inflaton oscillation; nχ > ðλ=gÞΦ3

0.
Hence, the quartic potential of the inflaton is gradually
modified by the backreaction of created particles, and
when the above condition is satisfied, inflaton oscillation
can be approximated by the linear-type potential V ∝ jϕj
for jϕj >

ffiffiffiffiffiffiffiffiffi
hφ2i

p
. The effective frequency of the inflaton

oscillation in the linear potential is given by
ω2
eff ∼ gnχ=Φ0 ∼ g2hχ2iϕ0¼Φ0

.
When the 2-point function hφ2i in (36) increases up to

hφ2i ¼ Φ2
0, hχ2i is replaced by

hχ2i ¼ nχ
gΦ0

; ð40Þ

and the inflaton potential changes from the linear to the
quadratic one for ϕ < Φ0,

4

g2

2
hχ2iϕ2 ∼

gnχ
2Φ0

ϕ2: ð41Þ

2In [24], the evolution of occupation numbers was numerically
investigated. Figure 13 in [24] shows the rapid growth of φ after χ
particles are created by the preheating. It also shows that the
occupation numbers of φ and χ become equal when the
exponential growth stops.

3At later stages of preheating, the energy is transferred from IR
to UV momenta due to scatterings, and the χ particles become
relativistic. Numerical simulations are necessary for further
precise evaluations of hχ2i. We leave it for future investigations.

4In [10], from the validity of the quadratic potential for ϕ > Φ0

and numerical simulations, the authors concluded that the
effective potential is linear for large ϕ > Φ0 even after the φ
production up to hφ2i ∼ Φ2

0, and consequently the first order
phase transition occurs.
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Hence the effective frequency of the inflaton oscillation
does not change and is given by ω2

eff ¼ gnχ=Φ0.
Through the preheating, the energy of the coherent

motion of inflaton is transferred to the energy of the
created particles. The preheating finally ends either the
condition for the broad parametric resonance qχ > 1 [the
value of qχ in the zero density state is given in (30)] or
the condition for the mass correction δm2 < p2⋆ is violated.
Since qχ , δm, p⋆ are functions of g, λ, hχ2i, and hφ2i, we
need to numerically solve the evolution of 2-point functions
hχ2i, hφ2i and the coherent mode Φ0. In the following we
evaluate the conditions for broad parametric resonance
based on the above ansatz for the 2-point functions.
The parameter qχ gets modifications by the created

particles as follows. The mass of the χ field in the finite
density state is given by Eq. (36). On the other hand, the
effective frequency ωeff of the inflaton field is given as

ω2
eff ∼ λðΦ2

0 þ hφ2iÞ þ g2hχ2i; ð42Þ

and it receives larger corrections than the bare term λΦ2
0

because λ ≪ g2. Accordingly the parameter qχ to determine
the broad parametric resonance for χ particles in the finite
density state is replaced by

qχ ¼
m2

χ

4ω2
eff

∼
g2ðΦ2

0 þ hφ2iÞ
λðΦ2

0 þ hφ2iÞ þ g2hχ2i : ð43Þ

As we saw, when created particles are absent, it is
qχ ¼ g2=λ ≫ 1. As the χ particles are created by preheating
(remember g2 ≫ λ), the last term comes to dominate the
denominator and ω2

eff is approximated by g2hχ2i. The
preheating stops when hχ2i ∼ Φ2

0 and qχ decreases down
to Oð1Þ. At the time, the mass of φ becomes

mφ ¼ ωeff ∼ g
ffiffiffiffiffiffiffiffiffi
hχ2i

q
∼ gΦ0: ð44Þ

Thus, since p⋆ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gΦ0ωeff

p
, we have the relation

mχ ∼mφ ∼ p⋆ ∼ gΦ0 ð45Þ

when the preheating stops. If φ are rapidly produced by
scatterings, we have the chemical equilibrium nφ ∼ nχ .
Then the relation hφ2i ¼ hχ2i ¼ Φ2

0 follows (37) and (40).
This is the case we study in our paper. (See also footnote 5.)
When the condition qχ > 1 is violated, the other con-

dition δm2 < p2⋆ for the preheating becomes simultane-
ously violated in the above situations. Both sides are given
by δm2 ¼ g2hφ2i and p2⋆ ¼ gΦ0ωeff ∼ g2Φ0

ffiffiffiffiffiffiffiffiffi
hχ2i

p
∼ g2Φ2

0.
Hence if φ particles are rapidly produced and hφ2i ¼
hχ2i ¼ Φ2

0 holds, δm2 ¼ p2⋆ is satisfied and even zero-
momentum particles cannot be created.

To summarize, all the fluctuations have the same
amplitude hφ2i ¼ hχ2i ¼ Φ2

0 when the preheating stops.
And the number densities are related to the amplitude of
fluctuations as

nχðtÞ ¼ nφðtÞ ¼ gΦ3
0ðtÞ: ð46Þ

Initially, gΦ3
0 is larger than nχ and nφ, and the preheating

occurs. The amplitude of the coherent oscillation Φ is
reduced, and the number density nχ increases. At the same
time scatterings produce φ particles and increase nφ.
Finally, the preheating stops when the number densities
become equal to gΦ3

0. In addition, the effective masses of
the particles become equal,mχ ¼ mφ ¼ gΦ0. These proper-
ties are consequences of the hierarchy in the coupling
constants g2 ≫ λ.
The initial value Φ0;start of the coherent motion of the

inflaton field determines the amplitude Φ0;end at which the
broad parametric resonance stops. Since the particle pro-
duction occurs faster than the Hubble time scale, the energy
conservation gives a relation between them as follows. The
potential energy of the initial inflaton configuration λΦ4

0;start

is transferred to the energy of the χ and ϕ particles
∼g2hφ2ihχ2i ¼ g2Φ4

0;end. Thus we have

Φ0;end ¼
�
λ

g2

�
1=4

Φ0;start: ð47Þ

Note that the finite density state is not in the thermal
equilibrium since the preheating is mostly efficient for very
low momentum particles. Further studies of the process
toward thermal equilibrium (i.e., turbulence flow from IR to
UV momenta) are left for future investigations [25].5

After the preheating stops, the energy density is domi-
nated by the χ and ϕ particles, and is given by ρ ∼ g2Φ4

0ðtÞ.
In the following, we use Φ to indicate the typical amplitude
of the fluctuations. As the universe expands, the particle
densities gradually dilute and the amplitude ΦðtÞ decays
as well.

VI. TRAPPING THE INFLATON NEAR THE
TOP OF THE POTENTIAL

The inflaton potential is modified due to the created
particles, and the potential is raised, which may prevent the
inflaton field from falling down to the minimum ϕ ¼ M of
the Coleman-Weinberg potential VðϕÞ. Since the magni-
tude of the potential raise depends on the amplitude of the

5In [25], the authors studied a case where the created particles
χ interact with themselves and its number density generates the
mass for χ itself. In such cases, the exponential growth stops
much earlier and the stationary turbulence (which leads to linear
growth of occupation numbers) is shown to occur. In the process,
the energy flows from IR modes to UV modes.
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fluctuations hχ2i ¼ Φ2, it is necessary to check whether the
field is trapped without falling down to the minimum. In
this section, we show that it actually happens for a wide
range of parameters.
As we saw in the previous section, when the number

density of created particles becomes comparable to gΦ3
0, the

preheating stops. After the preheating stops, the amplitudes
of fluctuations keep the relation hχ2i ¼ hφ2i ¼ Φ2 since χ
and ϕ particles are in chemical equilibrium and the zero
mode ϕ0 is indistinguishable from the nonzero modes φ.
Keeping this relation, the amplitudes decrease as the
universe expands.
When the amplitude of the fluctuations is Φ, the inflaton

potential is approximated by

V ¼ λ

4
ϕ4

�
ln

ϕ2

M2
− 1

2

�
þ δV;

δV ¼
(

g2Φ2

2
ϕ2 jϕj < Φ

g2Φ3

2
jϕj jϕj > Φ:

ð48Þ

The second term δV is the finite density contribution of
created particles. The first term also receives an additional
contribution in the finite density state, but since g2 > λ, it is
negligible compared to the last term. The main role of the
first term is to give the minimum at ϕ ¼ M. Because of δV,
the minimum at ϕ ¼ M is lifted as in Fig. 2. The question is
whether the position of the barrier between two minima is
on the right of the field value ϕ ¼ Φ. For g2 > λ, it can be

shown that the modified potential of (48) has a nontrivial
minimum only when Φ≲Φ1≡ð4eλ=3g2Þ1=3M. Otherwise,
the potential has the unique minimum at ϕ ¼ 0 as in
Fig. 2(a). Thus the coherent motion falls toward the origin
until the amplitude becomes smaller than Φ ¼ Φ1. For Φ <
Φ1 in Figs. 2(b), 2(c), and 2(d), the potential has two local
minima. It can easily be shown that the position of the
barrier between two minima is given by ϕ ∼ ðg2=λÞ1=3Φ.
Hence, for g2 > λ, the barrier is always on the right of Φ.
Even after the amplitude decreases further and the finite
density effect is no longer capable to lift the minimum at
ϕ ¼ M above V ¼ 0 [see Fig. 2(d)], the inflaton field is
kept being trapped within the barrier.
The above trapping mechanism occurs only when suffi-

cient particle creation has finished before the field falls down
to the true minimum. Namely, in order to trap the field in the
potential barrier, the quadratic potential must be generated
before the field falls down. A sufficient condition for this is
that the amplitude of the inflaton Φ0;end at the end of the
preheating is larger than M; Φ0;end > M. Therefore, using
(47), if Φ0;start satisfies the condition

Φ0;start > ðg2=λÞ1=4M; ð49Þ

χ particles are sufficiently produced so that it can trap the
inflaton field within the potential barrier.6 The field value
Φ0;start can be much smaller than the Planck scale, and the
beyond-Planck-scale problem is absent.
Finally we comment on the effects of thermalization of χ

particles on the trapping mechanism. In particular, we take
the B-L model as an example. When the preheating stops,
the relation nχ ¼ gΦ3 holds. In the B-Lmodel, as discussed
after Eq. (32), the decay rate of χ is given by Γχ ¼ g3Φ. χ
can also annihilate into the SM particles, whose rate is
estimated as Γχ;annih ∼ g4nχ=m2

χ ∼ g3Φ. Hence, if
Φ < g2Mpl, these rates are larger than the Hubble parameter
H ∼ gΦ2=Mpl and the thermal bath with the temperature
T ∼ ffiffiffi

g
p

Φ is produced. Furthermore, when Φ < g7=2Mpl,
the B-L scattering rate satisfies Γscatt ∼ g4T > H and all the
system including the B-L and the inflaton fields is
thermalized. Then the fluctuation of fields are determined
by the temperature Φ2

T ≡ hφ2i ∼ hχ2i ∼ T2 ∼ gΦ2. They are
smaller than the original value of the fluctuations
hφ2i ∼ hχ2i ¼ Φ2. This is because thermalization transfers
energy from IR to UV regions with typical momentum
p ∼ T and reduces the large fluctuation produced by the
preheating. Consequently the coefficient of the quadratic

(a) (b)

(c) (d)

FIG. 2. Schematic figures of the inflaton potential modified by
the finite density effect. When the amplitude of the fluctuations Φ
is larger than Φ1 ≡ ð4eλ=3g2Þ1=3M, the potential has no non-
trivial minimum (a). As the amplitude becomes smaller, the
nontrivial minimum appears (b), (c). For a smaller amplitude of
Φ, the minimum at ϕ ¼ M becomes the true minimum as in (d).
The position of the potential barrier is located around ðg2=λÞ1=3Φ,
and it is always on the right of Φ, if g2 > λ.

6To get the actual lower bound on Φ0;start, accordingly the field
value where the zero mode ϕ0 starts rolling down, we need a
detailed numerical calculation while being careful of the shape of
the Coleman-Weinberg potential (3). It is beyond the scope of this
paper and left as a future work. Depending on the initial value,
new inflation with a sufficient e-folding could occur without the
inflaton oscillation [26].
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term in (48) is replaced by g2hχ2i ¼ g2Φ2
T for jϕj < ΦT=g.

In this case, the position of the barrier is given by
ðg2=λÞ1=2ΦT . For the amplitude of the fluctuation ΦT ,
the barrier is always on the right of the fluctuation and
the trapping mechanism similarly holds.

VII. DYNAMICAL FINE-TUNING
OF THE INITIAL CONDITION

We now determine the initial value of the SFI. The
amplitudes of the oscillation and fluctuations decrease in
the expanding universe where the energy density is
dominated by the energy of the created particles,
ρ ∼ g2Φ4. But as the amplitude becomes smaller, the
vacuum energy V0 ¼ λM4=8 will dominate the energy of
created particles. By comparing these energies, we see that
the de Sitter expansion starts when the amplitude becomes
smaller than the following value:

Φ ∼
�

λ

8g2

�
1=4

M: ð50Þ

It is already small but still much larger than the necessary
initial condition in Eq. (8).
During the de Sitter expansion, the inflaton continues

to oscillate until the effective frequency of the inflaton
ωeff ¼ gΦ becomes smaller than the Hubble constant

H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λM4=24M2

pl

q
of the de Sitter universe. Hence the

amplitude of fluctuations continues to decay as far as the
conditionωeff > H is satisfied. The oscillation of the inflaton
finally stops when the condition

Φ≲ 1

g

ffiffiffiffiffi
λ

24

r
M2

Mpl
ð51Þ

is satisfied. After this condition is satisfied, the inequality
ωeff < H holds and the fluctuations of the inflaton field with
lower momenta than the Hubble constant are frozen.
Therefore, in the new inflation model with the Coleman-
Weinberg potential, the amplitudes of the coherent motion
and also the fluctuations are reduced to the very small value.7

Equation (51) solves the fine-tuning problem of the small
field inflation (8). Let us estimate the coefficient in (51)
numerically. The quartic coupling is determined by the
amplitude of the curvature fluctuations as λ ∼ 10−15.
Inserting the value in (51), it becomes

Φ ∼ 10−3
�
10−5
g

�
M2

Mpl
: ð52Þ

It is smaller than the upper bound of (8) if the coupling g
satisfies g≳ 10−5. For general models g is a free parameter
and we can take any value, but in the B-L extension of the
SM [14], the β-function of the quartic coupling λ has a
contribution from the gauge coupling; βλ ¼ 96g4=16π2.
Hence unless g4 ∼ λ, we need a fine-tuning to keep the
smallness of λ. The most natural assumption is
g ∼ λ1=4 ∼ 10−4. Thus, within the model [14], the initial
condition problem of the SFI is naturally solved.

VIII. SUMMARY

In this paper, we proposed a mechanism to solve the fine-
tuning problem of the new inflation, the small field inflation
with the Coleman-Weinberg type potential. The key relation
(51) to determine the initial value is obtained by comparing
the effective frequency of the oscillation and the Hubble
constant (H2 ¼ V0=3M2

pl). The flatness at the top of the
potential is responsible for the fine-tuning problem of the
SFI. Corresponding to this fact, the effective frequency
should be dynamically generated by the fluctuations of
created particles. Then, from the dimensional analysis, we
can expect that it is given by ωeff ¼ gΦ, where g is the
coupling to the field which gives the effective potential
of the inflaton. Then, if the vacuum energy is given by
V0 ¼ λM4, the initial value of the inflaton is given by
Φ ∼

ffiffiffi
λ

p
=gðM2=MplÞ. Therefore, once the inflaton field is

trapped by the quadratic potential generated in the preheat-
ing, the fine-tuning problem in similar models can be solved.
For hilltop inflation models with a negative curvature

potential (−μ2ϕ2=2) at the origin, the dynamical fine-
tuning mechanism for the small field inflation does not
work since the system undergoes the first order phase
transition before a sufficiently large e-folding number is
gained [10]. Hence the flatness (μ ¼ 0) at the top of the hill
is essential to solve the fine-tuning problem of the initial
condition in SFI. It is interesting that two completely
different fine-tuning problems, the Higgs mass [15] and the
initial condition in SFI, can be solved dynamically by
simply assuming the absence of the dimensionful param-
eter μ in the bare Lagrangian.
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