
Entropy of extremal black holes: Horizon limits through charged
thin shells in a unified approach

José P. S. Lemos*

Centro Multidisciplinar de Astrofísica, CENTRA, Departamento de Física, Instituto Superior Técnico—IST,
Universidade de Lisboa—UL, Avenida Rovisco Pais 1, 1049-001 Lisboa, Portugal

Gonçalo M. Quinta†

Centro Multidisciplinar de Astrofísica, CENTRA, Departamento de Física, Instituto Superior Técnico—IST,
Universidade de Lisboa—UL, Avenida Rovisco Pais 1, 1049-001 Lisboa, Portugal

Oleg B. Zaslavskii‡

Department of Physics and Technology, Kharkov V. N. Karazin National University,
4 Svoboda Square, Kharkov 61022, Ukraine

and Institute of Mathematics and Mechanics, Kazan Federal University,
18 Kremlyovskaya St., Kazan 420008, Russia

(Received 14 January 2016; published 6 April 2016)

Using a unified approach, we study the entropy of extremal black holes through the entropy of an
electrically charged thin shell. We encounter three cases in which a shell can be taken to its own
gravitational or horizon radius and become an extremal spacetime. In case 1, we use a nonextremal shell,
calculate all the thermodynamic quantities including the entropy, take it to the horizon radius, and then take
the extremal limit. In case 2, we take the extremal limit and the horizon radius limit simultaneously; i.e., as
the shell approaches its horizon radius, it also approaches extremality. In case 3, we take first an extremal
shell, and then take its horizon radius. We find that the thermodynamic quantities, in general, have different
expressions in the three different cases. The entropy is the Bekenstein-Hawking entropy S ¼ Aþ=4
(where Aþ is the horizon area) in cases 1 and 2, and in case 3 it can be any well-behaved function of Aþ.
The contributions from the various thermodynamic quantities for the entropy in all three cases are
distinct. Indeed, in cases 1 and 2, the limits agree in what concerns the entropy but they disagree in the
behavior of all other thermodynamic quantities. Cases 2 and 3 disagree in what concerns the entropy but
agree in the behavior of the local temperature and electric potential. Case 2 is, in a sense, intermediate
between cases 1 and 3. Our approach sheds light on the extremal black hole entropy issue.
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I. INTRODUCTION

The fact that black holes possess thermodynamic proper-
ties [1–3] is arguably their brightest feature. Especially
fascinating is that black holes have entropy. For the non-
extremal black holes, it is known that its entropy S is the
Bekenstein-Hawking entropy, equal to Aþ=4, where Aþ is
the horizon area. This has been put in firm ground in the
works of York and collaborators [4–7] (see also a generali-
zation in [8]), in a Hamiltonian formalism [9,10], and using
quite generic matter fields [11], among other approaches. A
special kind ofmatter field, thin shells have also been used in
[12–15] to further probe the thermodynamic properties of
black holes. In particular, in [13] (see also [14,15]), the
results are based on the fact that a general thin shell can be
taken to its gravitational radius where one must force its
temperature to be equal to the Hawking temperature of a

black hole; otherwise backreaction effects will destroy the
shell. By doing so, the shell is seen to possess an entropy
equal to the Bekenstein-Hawking entropy S ¼ Aþ=4 of the
correspondent spacetime black hole, thus making it possible
to calculate the entropy of an extremal black hole by using an
extremal shell taken to its gravitational radius. Although
several efforts have been made, it is still unclear what the
microscopic explanation of this value is in the framework of
a full quantum gravity theory.
Extremal black holes seem to be a different object from

nonextremal ones. Indeed, for extremal black holes, not
only the microscopic explanation of the entropy S is absent,
but even the value S itself of the entropy is uncertain.
Although some suggestions have been worked out that
yield S ¼ 0 [16–18], the entropy of an extremal black hole
is still an open problem, as string theory claims that it is, in
fact, given by the Bekenstein-Hawking entropy S ¼ Aþ=4
[19,20]; see also [21–35] on this discussion.
In Pretorius, Vollock and Israel [36], in [37] using matter

fields, and in [38] using an extremal charged thin matter
shell, an interesting solution to the debate was naturally
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deduced. It was found that the extremal black hole entropy
could be any well-behaved function of Aþ, S ¼ 0 and S ¼
Aþ=4 included. Of course, one might also obtain the
entropy of an extremal black hole by first calculating the
entropy of a nonextremal charged thin shell [13] and then
taking the extremal limit as a particular case, producing, as
expected, S ¼ Aþ=4. There is even another case, an
intermediate one, when one takes the extremal limit and
the horizon radius limit simultaneously; i.e., as the shell
approaches its horizon radius, it also approaches extrem-
ality. Therefore, it is particularly important to study the
consistency of the thin shell approach in the various limits,
to further strengthen the conclusions drawn in [38]. We use
the results stated in [39,40] that the thermal stress energy
tensor corresponding to a given temperature diverges in
the horizon limit unless the temperature is the Hawking
temperature.
Thin shells are systems of great interest that have been

used in a number of ways in classical general relativity, as a
way to quantize gravitational systems, and concomitantly
in a black hole context. Classically, we mention a varia-
tional principle found for dust shells [41], and the collapse
of electrically charged thin shells to probe spacetime
features and test cosmic censorship [42]. It has also been
further used to understand in different ways the entropy of
gravitational systems including black holes [43,44].
Quantically, thin shells have, for instance, been used in
the understanding of quantum black hole states and
Hawking radiation; see, e.g., [45–47].
The work is organized as follows. In Sec. II, we give the

preliminaries necessary to discuss the various horizon limits.
We display the first law of thermodynamics and give the
expressions for the thermodynamic quantities that enter into
it. In Sec. III, we define the two variables that are important to
take the horizon limits, ε and δ. In Sec. IV,we define, through
geometry, the three cases that appear in the horizon limit. In
Sec. V, we see the expressions for the mass and electric
charge in the three cases. In Sec. VI, we find the expressions
for the surface pressure, the electric potential, and the
temperature in the three cases. In Sec. VII, we put everything
together into the first law and find the entropy in the three
horizon limits. In Sec. VIII, we discuss the contribution of
each thermodynamic quantity to the entropy and summarize
these results in a table. In Sec. IX, a discussion on the
backreaction issue is raised. In Sec. X, we conclude.

II. PRELIMINARIES

The study of the nonextremal charged thin shell devel-
oped in [13] involves three dynamical variables: the radius
R of the shell, its rest mass M, and its charge Q. For
thermodynamics, we also need the local temperature T, the
surface pressure p, and the electric potential Φ, and then
find the entropy S. Assuming that the shell is static,
spherically symmetric, and has a well-defined temperature,
the first law of thermodynamics is

TdS ¼ dM þ pdA − ΦdQ; ð1Þ

where in all calculations we use natural units, i.e., the speed
of light, the gravitational constant, the Planck constant, and
the Boltzmann constant are set to one, c ¼ G ¼ h ¼
kB ¼ 1, respectively.
There are two other particularly useful variables which

can characterize the problem, namely the shell’s radius R,
the gravitational or horizon radius rþ, and its Cauchy radius
r−, which are functions of ðR;M;QÞ through

rþðR;M;QÞ ¼ mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 −Q2

p
; ð2Þ

r−ðR;M;QÞ ¼ m −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 −Q2

p
; ð3Þ

wherem is the ADMmass, which can shown to be given by

mðR;M;QÞ ¼ M −
M2

2R
þQ2

2R
: ð4Þ

It is quite interesting that the formula given in Eq. (4) can be
obtained from quite different perspectives. In [6], it was
obtained from the action formalism approach to black hole
thermodynamics, but it has another meaning there since it
applies to black holes, not to shells. In [7], it was rederived
for bounded self-gravitating systems using the quasilocal
energy formalism. In [13], probably for the first time, it was
obtained (i) in a pure thermodynamic context, (ii) for thin
shells, and (iii) using such general assumptions as the first
law of thermodynamics and integrability conditions only.
In [45], it had been derived from dynamics of shells.
Thus, inversely, the quantitiesM and Q can be written in

terms of ðR; rþ; r−Þ. Define, k as

kðR; rþ; r−Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1 −

rþ
R

��
1 −

r−
R

�s
; ð5Þ

usually called the redshift function. Then M is given by

MðR; rþ; r−Þ ¼ Rð1 − kÞ; ð6Þ

where we have chosen the solution that givesM ¼ m for R
large. Also,

QðR; rþ; r−Þ ¼ ffiffiffiffiffiffiffiffiffiffi
rþr−

p
: ð7Þ

The area of the shell is

AðR; rþ; r−Þ ¼ 4πR2; ð8Þ
and the gravitational area or horizon area is

AþðR; rþ; r−Þ ¼ 4πr2þ: ð9Þ

We have written explicitly the complete functional
dependence ðR; rþ; r−Þ, even though some quantities
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do not depend on one or two of these variables, in order to
show that this is a thermodynamic system. Thus,
QðR; rþ; r−Þ only depends on ðrþ; r−Þ, AðR; rþ; r−Þ only
depends on (R), and AþðR; rþ; r−Þ only depends on ðrþÞ. It
will prove useful to keep the generic functional
dependence.
In order for the nonextremal electric charged shell to

remain static, its surface pressure must have a specific
functional form, given by [13]

pðR; rþ; r−Þ ¼
R2ð1 − kÞ2 − rþr−

16πR3k
: ð10Þ

The electric potential Φ of the shell must also assume a
specific form if the shell is to remain static. The integra-
bility conditions out of the first law of thermodynamics
assert that [13]

ΦðR; rþ; r−Þ ¼
cðrþ; r−Þ − 1

R

k
ffiffiffiffiffiffiffiffiffiffi
rþr−

p
; ð11Þ

where cðrþ; r−Þ is an arbitrary function, which physically
represents the electric potential of the shell multiplied by its
charge, if it were located at infinity. Additionally, we need
the nonextremal shell to have a well-defined electric
potential in the horizon limit. This leads to

cðrþ; r−Þ ¼
1

rþ
; ð12Þ

and, consequently,

ΦðR; rþ; r−Þ ¼
ffiffiffiffiffi
r−
rþ

r ffiffiffiffiffiffiffiffiffiffiffiffi
1 − rþ

R

1 − r−
R

s
: ð13Þ

Equation (13) formally coincides with the expression (4.15)
of [6] derived for a black hole in a cavity (their ϕ coincides
with our Φ). However, in our case, there is no black
hole at all. Should the condition (12) on the function c be
relaxed to an arbitrary function, we would obtain
limR→rþΦðR; rþ; r−Þ ¼ ∞, since the infinities inside the
square root in the defining Eq. (11) would not be canceled.
Assuming that the shell has a well-defined temperature,

the integrability conditions imposed from the first law of
thermodynamics, Eq. (1), gives [13]

TðR; rþ; r−Þ ¼
T0

k
; ð14Þ

where T is the temperature at the shell and T0 is the
temperature seen from infinity.
Now, we impose

T0 ¼ THðrþ; r−Þ ¼
rþ − r−
4πr2þ

; ð15Þ

where TH is the Hawking temperature of an electrically

charged black hole. So TðR; rþ; r−Þ ¼ THðrþ;r−Þ
k , i.e.,

TðR; rþ; r−Þ ¼
rþ − r−
4πr2þk

: ð16Þ

III. APPROACH TO THE EXTREMAL HORIZON:
THE VARIABLES THAT DEFINE THE THREE

EXTREMAL HORIZON LIMITS

To study independently the limit of an extremal shell and
the limit of a shell being taken to its gravitational radius, it
will prove fruitful to define the variables ε and δ through the
equations

1 −
rþ
R

¼ ε2; ð17Þ

1 −
r−
R

¼ δ2: ð18Þ

It is clearly seen from Eqs. (17) and (18) that the variables ε
and δ are the good ones to take the extremal limit. There
are, however, different extremal limits depending on how ε
and δ are taken to zero.

IV. GEOMETRY: THE THREE
EXTREMAL HORIZON LIMITS

There are three physically relevant limits. Let us see
them first through the geometry.
Case 1. In this case, we do rþ ≠ r− and R → rþ, i.e.,

δ ¼ Oð1Þ; ε → 0: ð19Þ

After all the calculations are finished and we have an
expression for the entropy, we can then take the δ → 0 limit
to get at the gravitational radius of an extremal shell.
According to Eq. (17), this means bringing the shell to its
gravitational radius. It follows from (18) that rþ ≠ r−.
Thus, there is the horizon limit, but there is no extremal
limit; the shell remains nonextremal during the whole
process.
Case 2. In this case, we do R → rþ and rþ → r−, i.e.,

δ ¼ ε

λ
; ε → 0; ð20Þ

where it is assumed that the new parameter λ remains
constant in the limiting process and that it must satisfy
λ ≤ 1 due to rþ ≥ r−. The limit in which ε → 0 means that
simultaneously R → rþ and rþ → r− in such a way that
δ ∼ ε. In other words, the horizon limit is accompanied with
the extremal one.
Case 3. In this case, we do rþ ¼ r− and R → rþ, i.e.,

δ ¼ ε; ε → 0: ð21Þ
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Then, rþ ¼ r− from the very beginning. This corresponds
to the extremal shell. This case was analyzed in [38], so we
will simply state the results and use them for comparison.

V. MASS AND ELECTRIC CHARGE: THE
THREE EXTREMAL HORIZON LIMITS

Using Eqs. (17) and (18) in Eq. (5), we immediately get
that the redshift function is

kðR; ε; δÞ ¼ εδ: ð22Þ

In these variables, it depends on ε and δ and not on R.
Moreover, we immediately see that

MðR; ε; δÞ ¼ Rð1 − εδÞ; ð23Þ

QðR; ε; δÞ ¼ R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − ε2Þð1 − δ2Þ

q
: ð24Þ

Then we can study the three cases already mentioned.
Case 1. For rþ ≠ r− and as R → rþ, i.e., for δ ¼ Oð1Þ

and as ε → 0, we get from Eqs. (23)–(24)

Mðrþ; ε; δÞ ¼ rþ; Qðrþ; ε; δÞ ¼ rþ; ð25Þ

where we have also sent δ to zero, δ → 0, in the end of the
calculation.
Case 2. For R → rþ and rþ → r−, i.e., for δ ¼ ε

λ, with λ
kept fixed according to Eq. (20), and ε → 0, we get from
Eqs. (23)–(24),

Mðrþ; ε; δÞ ¼ rþ; Qðrþ; ε; δÞ ¼ rþ: ð26Þ
Case 3. For rþ ¼ r− and as R → rþ, i.e., for δ ¼ ε and

ε → 0, it is seen from Eqs. (23)–(24) that

Mðrþ; ε; δÞ ¼ rþ; Qðrþ; ε; δÞ ¼ rþ: ð27Þ
The three limits here, not surprisingly, yield the same

result, the mass-charge-radius extremal condition.

VI. PRESSURE, ELECTRIC POTENTIAL,
AND TEMPERATURE: THE THREE

EXTREMAL HORIZON LIMITS

A. Pressure limits

In order for the nonextremal electric charged shell to
remain static, its surface pressure must have a specific
functional form, given by Eq. (10) in terms of the variables
ε and δ defined in Eqs. (17) and (18) can be readily written as

pðR; ε; δÞ ¼ 1

16πR
ðδ − εÞ2

δε
: ð28Þ

Now, we will consider the behavior of pressure in all
three cases.

Case 1. For rþ ≠ r− and as R → rþ, i.e., for δ ¼ Oð1Þ
and as ε → 0, we get from Eq. (28)

pðrþ; ε; δÞ ¼
δ

16πrþε
∼
1

ε
: ð29Þ

So, the pressure is divergent in this case as 1=ε.
Case 2. For R → rþ and rþ → r−, i.e., for δ ¼ ε

λ, with λ
kept fixed according to Eq. (20), and ε → 0, we get from
Eq. (28), we put back the intermediate step,

pðrþ; ε; δÞ ¼
1

16πrþ

ð1 − λÞ2
λ

. ð30Þ

Equation (30) means that the pressure will remain finite but
nonzero in this horizon limit for the extremal shell.
Case 3. For rþ ¼ r− and as R → rþ, i.e., for δ ¼ ε and

ε → 0, it is seen from Eq. (28) that

pðrþ; ε; δÞ ¼ 0: ð31Þ

The result p ¼ 0 holds, in fact, at any radius, including the
horizon limit.

B. Electric potential limits

The electric potential Φ of the shell must also assume a
specific form if the shell is to remain static. In terms of ε
and δ defined in Eqs. (17) and (18), Eq. (13) gives

ΦðR; ε; δÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − δ2

1 − ε2

s
ε

δ
: ð32Þ

It is now straightforward to analyze the three limiting cases
under discussion.
Case 1. For rþ ≠ r− and as R → rþ, i.e., for δ ¼ Oð1Þ

and as ε → 0, we get from Eq. (32),

Φðrþ; ε; δÞ ¼ 0: ð33Þ

Case 2. For R → rþ and rþ → r−, i.e., for δ ¼ ε
λ, with λ

kept fixed according to Eq. (20), and ε → 0, we get from
Eq. (32),

Φðrþ; ε; δÞ ¼ λ; ð34Þ

with 0 ≤ λ ≤ 1.
Case 3. For rþ ¼ r− and as R → rþ, i.e., for δ ¼ ε and

ε → 0, it would seem from Eq. (32) that Φðrþ; ε; δÞ ¼ 1.
However, this case is special since, from the very begin-
ning, we should proceed in a different way, so the form of
the integrability condition (11) and Eq. (32) are no longer
valid here. As is shown in [38], the calculations for this case
lead to the inequality
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Φðrþ; ε; δÞ ≤ 1: ð35Þ

Thus, if we take an extremal shell from the very beginning,
the electric potential in general differs from what is
obtained by the extremal limit from the nonextremal state.

C. Temperature limits

Assuming that the shell has a well-defined temperature,
the integrability conditions imposed from the first law of
thermodynamics and in terms of ε and δ defined in
Eqs. (17) and (18), Eq. (14) gives

THðR; ε; δÞ ¼
δ2 − ε2

4πRð1 − ε2Þ2 ; ð36Þ

and so the local temperature on the shell is thus

TðR; ε; δÞ ¼ TH

k
¼ δ2 − ε2

4πRδεð1 − ε2Þ2 : ð37Þ

Case 1. For rþ ≠ r− and as R → rþ, i.e., for δ ¼ Oð1Þ
and as ε → 0, we get from Eq. (37),

Tðrþ; ε; δÞ ¼
δ

4πrþε
∼
1

ε
: ð38Þ

Thus, it diverges.
Case 2. For R → rþ and rþ → r−, i.e., for δ ¼ ε

λ, with λ
kept fixed according to Eq. (20), and ε → 0, we get from
Eq. (37),

Tðrþ; ε; δÞ ¼
1 − λ2

4πrþλ
: ð39Þ

It remains finite and nonzero. It is worth noting a simple
formula that follows from Eqs. (30) and (39) and relates
the pressure and temperature in this horizon limit,
namely, p

T ¼ 1
4
1−λ
1þλ.

Case 3. For rþ ¼ r− and as R → rþ, i.e., for δ ¼ ε and
ε → 0, one can relax condition (15) in such a way that
T0 → 0 but T remains finite (see [38] for details).

VII. ENTROPY: THE THREE EXTREMAL
HORIZON LIMITS

To obtain the distinct limits for the entropy, one can
express the first law of thermodynamics, Eq. (1), in terms of
the variables ðR; rþ; r−Þ, using the Eqs. (6), (7), (8), (10),
(11), and (16). In turn, using Eqs. (17), (18), (22), (23),
(24), (28), and (32), the first law of thermodynamics,
Eq. (1), can be expressed in terms of the variables ðR; ε; δÞ,
in the quite general exact form TdS ¼ a1dRþ a2dεþ
a3dδ, where a1 ¼ 1 − δεþ ðδ−εÞ2

2δε þ ð1−δ2Þð1−ε2Þ
δϵ ð1 − RcÞ,

a2¼−δR½1þ 1−δ2
δ2

ð1−RcÞ�, a3 ¼ −εR½1þ 1−ε2
ε2

ð1 − RcÞ�.
Imposing further that the electric potential must
also assume the value of Eq. (12) enables us to simplify
the coefficients a1, a2, and a3, into a1 ¼ δ2−ε2

2δε ,

a2 ¼ −δR½1 − ε2

δ2
ð1−δ2
1−ε2Þ�, a3 ¼ 0. Then, using Eq. (37),

the differential for the entropy in the variables ðR; ϵ; δÞ
becomes

dSðR; ϵ; δÞ ¼ 2πRð1 − ε2Þ2dR − 4πR2εð1 − ε2Þdε: ð40Þ

This equation can be integrated to give

Sðrþ; ϵ; δÞ ¼ πR2ð1 − ε2Þ2; ð41Þ

where we have put the integration constant to zero. Using
Eq. (17), it gives

SðrþÞ ¼
Aþ
4

; ð42Þ

where Aþ is the gravitational radius area, or the horizon
area when the shell is pushed into the gravitational radius;
see Eq. (9). This is the Bekenstein-Hawking entropy. It is
striking that all the other quantities, p, Φ, T, depend
generically on ε and δ. The entropy does not; it only
depends on rþ.
Case 1. For rþ ≠ r− and as R → rþ, i.e., for δ ¼ Oð1Þ

and as ε → 0, we get from Eq. (42), SðrþÞ ¼ Aþ
4
. This is

general for any nonextremal black hole. We can now take
the extremal limit δ → 0 and obtain that the entropy of an
extremal charged black hole is by continuity SðrþÞ ¼ Aþ

4
,

the Bekenstein-Hawking entropy.
Case 2. For R → rþ and rþ → r−, i.e., for δ ¼ ε

λ, with λ
kept fixed according to Eq. (20), and ε → 0, we obtain from
Eq. (42), SðrþÞ ¼ Aþ

4
. So, in the case that the shell achieves

the gravitational radius simultaneously with the extremal
limit, one also gets the Bekenstein-Hawking entropy.
Case 3. For rþ ¼ r− and as R → rþ, i.e., for δ ¼ ε and

ε → 0, the entropy cannot be handled in this manner and
should be considered separately. This has been done in [38]
with the result that the entropy is not fixed unambiguously
for a given rþ, it is any physical well behaved function of
rþ, or if one prefers, of Aþ, i.e.,

SðrþÞ ¼ a physical well behaved function of Aþ: ð43Þ

Equations (40)–(42) work for cases 1 and 2. In case 3,
the ab initio extremal shell with δ ¼ ε, one is led to the
discussion given in [38].

VIII. DISCUSSION ON THE THREE
EXTREMAL HORIZON LIMITS: WHERE
DOES THE ENTROPY STEM FROM?

It is instructive to trace, in more detail, how the entropy
arises from the first law. More precisely, we are interested
in the question: Which contributions dominate for the three
different cases?
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Case 1. For rþ ≠ r− and as R → rþ, i.e., for δ ¼ Oð1Þ
and as ε → 0, let us, for simplcity, make ε ¼ constant ≪ 1.
Then, in the first law, Eq. (1), and from Eq. (29), we can
retain the term due to the pressure only. Taking also into
account Eq. (38), we obtain the result (42). Thus, the
pressure term gives the whole contribution to the entropy.
See also [11].
Case 2. For R → rþ and rþ → r−, i.e., for δ ¼ ε

λ, with λ
kept fixed according to Eq. (20), and ε → 0, all three terms
in the first law contribute to the entropy. Thus, the mass,
pressure, and electric potential terms give contributions to
the entropy.
Case 3. For rþ ¼ r− and as R → rþ, i.e., for δ ¼ ε and

ε → 0, and according to Eq. (31), the first and third terms in
Eq. (1) contribute to the entropy. Thus cases 1 and 3 are
complementary to each other in what concerns the origin of
the entropy.
It is convenient to present the results in a table, see

Table I. It is implied that, in all three cases, the horizon limit
is taken.
It is worth stressing that the results presented in the table

refer, in general, not to black holes but to shells. Only in the
horizon limit do these results apply to black holes. Usually,
if one considers the extremal limit of a nonextremal black
hole, it remains in the same topological class during the
limiting transition, so it is not surprising that, in the
extremal limit, one obtains the Bekenstein-Hawking value.
However, in our case, we obtained something more: the fact
that the exact value of the shell’s entropy coincides with
that of a black hole for a given rþ independently of R. For
an arbitrary self-gravitating matter system, this is not so; the
entropy of the system is a function of rþ, R, and possibly
other variables. Only in the horizon limit is the Bekenstein-
Hawking value recovered [11].

IX. ROLE OF THE BACKREACTION

As is known, for a nonextremal spacetime, the thermal
stress energy tensor corresponding to a temperature T0 can
be represented in the form [39,40]

Tν
μ ¼

T4
0 − T4

H

ðg00Þ2
fνμ; ð44Þ

where, fνμ is some tensor finite on the horizon, with g00
being the 00 component of the metric in use. In the horizon

limit, the requirement of the finiteness of Tν
μ entails

T0 ¼ TH. For a nonextremal horizon, one has TH ≠ 0.
Now, in the extremal case, TH ¼ 0, where

Tν
μ ¼

T4
0

ðg00Þ2
fνμ: ð45Þ

Thus, the attempt to put T0 ≠ 0 according to the prescrip-

tions given in [16,17] leads to infinite stresses since T4
0

ðg00Þ2
diverges as one approaches the horizon. This destroys the
horizon [39,40].
However, when we deal with a shell instead of a black

hole, an intermediate case can be realized. Namely, T0 → 0
and g00 → 0 simultaneously in such a way that T is kept
bounded. This is realized in case 2 according to Eq. (39). It
is also realized in case 3.

X. CONCLUSIONS

We found what happens in calculating the entropy and
other thermodynamic quantities when different limiting
transitions for a shell are taken. We also found how they are
related to each other when the radius of the shell
approaches the horizon radius, i.e., the shell spacetime
turns into a black hole spacetime.
It happens that the limits in cases 1 and 2 agree in what

concerns the entropy but disagree in the behavior of all
other quantities. Cases 2 and 3 disagree in what concerns
the entropy but agree in the behavior of the local temper-
ature and electric potential. Case 2 is intermediate between
1 and 3.
The results obtained showed how careful one should be

in the calculations when a system approaches the horizon
which, in turn, is close to the extremal state. It will be
interesting to trace whether, and how, these subtleties can
affect calculations in quantum field theory, including string
theory.
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TABLE I. The contributions of the pressure p, electric potential Φ, and temperature T to the extremal black hole entropy S, according
to the first law of thermodynamics.

Case Pressure p Potential Φ Local temperature T Entropy Contribution from (according to 1st law)

1 Divergent like ε−1 1 Infinite Aþ=4 Pressure
2 Finite nonzero any < 1 Finite nonzero Aþ=4 Mass, pressure and potential
3 0 any ≤ 1 Finite nonzero a function of Aþ Mass and potential
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