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We consider the role of quantum effects, mainly, Weyl anomaly in modifying Friedmann-Lemaitre-
Robertson-Walker (FLRW) model singular behavior at early times. Weyl anomaly corrections to FLRW
models have been considered in the past, here we reconsider this model and show the following: The
singularity of this model is weak according to Tipler and Krolak, therefore, the spacetime might admit a
geodesic extension. Weyl anomaly corrections change the nature of the initial singularity from a big bang
singularity to a sudden singularity. The two branches of solutions consistent with the semiclassical
treatment form a disconnected manifold. Joining these two parts at the singularity provides us with a C1

extension to nonspacelike geodesics and leaves the spacetime geodesically complete. Using Gauss-Codazzi
equations one can derive generalized junction conditions for this higher-derivative gravity. The extended
spacetime obeys Friedmann and Raychaudhuri equations and the junction conditions. The junction does
not generate Dirac delta functions in matter sources which keeps the equation of state unchanged.
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I. INTRODUCTION

One of the main results concerning spacetime singular-
ities is the known collection of singularity theorems due
to Penrose and Hawking [1]. These theorems prove the
existence of singularities for a general class of spacetimes
with certain energy conditions and global properties. A
classic example of such spacetimes is that describing
Friedmann-Lemaitre-Robertson-Walker (FLRW) models
with initial or big bang singularity.
An important task of any possible quantum gravity

theory is to resolve spacetime singularities of general
relativity. Until we have such a full resolution, it is
constructive to ask how large is the impact of quantizing
matter sources on spacetime singularities. We consider the
role of quantum effects, mainly, Weyl/trace anomaly on
modifying FLRW model singular behavior at early times.
Weyl anomaly [2] is one of the interesting phenomena in
quantum field theory on curved spaces that arises at
one-loop level for a collection of conformal fields. It is
known that quantum corrections due to Weyl anomaly are
geometric in nature and take the form of higher-derivatives
terms added to Einstein field equations. Here we
only consider Weyl anomaly corrections which are
regularization-scheme-independent. Therefore, corrections
that lead to terms like □R in Tμ

μ are not considered since
their coefficients are regularization-scheme dependent.1

These terms are also gauge dependent and can be removed
by adding a local counterterm. One could choose working
with a specific field theory, e.g., N ¼ 4 Super Yang
Mills (SYM) theory since its Trace anomaly is one-loop

exact2 [4–7]. As a result, no quantum correction is obtained
in this theory that modifies Weyl anomaly higher-derivative
terms. Although, a full resolution of spacetime singularities
needs a theory of quantum gravity, this analysis enables us
to investigate how far quantum effects (in matter sources)
would go in modifying the model singular behavior.
One of the intriguing consequences of adding these

quantum corrections is that the big bang/crunch singularity
of the FLRW model changes its nature to a softer type,
namely, a sudden singularity. This singularitywas introduced
in [8] while studying general features of FLRW cosmologies
(a classification of possible future-time singularities was
given in [9]). A sudden singularity is characterized by a finite
scale factor a and _a, but a divergent ä. Cosmologists became
more interested in sudden singularities after the discovery of
cosmic acceleration [10–14] since they appear naturally in
several cosmological models, see for example [15–19]. One
of the important features of a spacetime with a sudden
singularity is that its geodesics are well behaved and can be
extended across the singular region [20,21], therefore, this
singularity is traversable. A nice example of this geodesic
extension is given by Keresztes et al. [19] where the authors
considered a cosmological model with anti-Chaplygin gas
and dust mixture which suffers from a sudden singularity.
Another example for crossing a sudden singularity was
considered in [22].
Weyl anomaly corrections to FLRW models have been

considered in the past by a number of authors. In [23] Wald

1Regularization-scheme dependence of this coefficient has
been recently discussed in [3].

2Trace anomaly in this theory is one-loop exact since the
divergence of R-current (R-symmetery is a gauged global
symmetry of supersymmetric theories) is in the same super-
multiplet of the trace of the stress tensor Tμ

μ and the divergence
of the R-current is one-loop exact by Adler-Bardeen theorem.
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showed that although density and Hubble rate are bounded,
field equations cease to admit solutions beyond the singular
point. Also, in [24] Fischetti et al. showed that the model
has a curvature singularity and does not admit any non-
singular solution. Therefore, in later literature this model
has been considered singular. Notice that these models are
different from that proposed by Starobinsky in [25] which
has no matter content and was shown to admit nonsingular
solutions in some range of the model’s parameters. More
recently, Weyl anomaly has been discussed in the context of
phantom cosmology [26] and as a quantum escape from
sudden singularities in [27].
Here we revived interest in this model through showing

the following: First, this singularity is weak according to
Tipler and Krolak [28,29], therefore, it is not a strong
physical singularity capable of crushing a finite size object
indefinitely. Second,Weyl anomaly corrections changes the
nature of the initial singularity from a big bang singularity
to a sudden singularity. Third, the two branches of solutions
consistent with the semiclassical treatment form disjoint
spacetimes. Joining the branches of solutions provides us
with a C1 extension to nonspacelike geodesics ending at the
singularity. This shows geodesic completeness. Fourth, we
use Gauss-Codazzi equations to derive generalized junction
conditions for this higher-derivative gravity. The extension
of spacetime through joining the two branches of solutions
is consistent with these junction conditions and the above
geodesic extension.
The rest of the article is organized as follows; in Sec. II

we introduce Weyl anomaly and consider the FLRWmodel
with these higher-derivative terms and its dynamics. In
Sec. III we show that the singularity of our model is a
weak singularity according to both Tipler and Krolak, in
addition, we show the criterion for extending geodesics
beyond a certain point. In Sec. IV we show that the
singularity is traversable through introducing a C1 exten-
sion to nonspacelike geodesics beyond the singular point.
We formulate generalized junction conditions for this
higher-derivative gravity. We analyze the spacetime formed
through joining two branches of solutions of our model
using these junction conditions.

II. FLRW COSMOLOGY WITH
WEYL ANOMALY

A. Weyl anomaly

The general form of Weyl anomaly in four dimensions
[2] is given by:

hTμ
μi ¼ c1E4 þ c2I4 þ c3□R; ð1Þ

where c’s are spin dependent constants,R is Ricci scalar, E4

is the Euler density and I4 is Weyl tensor squared which
have the following forms

E4 ¼
1

64
ðRμναβRμναβ − 4RμνRμν þ R2Þ

I4 ¼ −
1

64

�
RμναβRμναβ − 2RμνRμν þ 1

3
R2

�
: ð2Þ

The first term in the trace is known as type“A,” the next
term is type“B,” and the last is type“D,” see Ref. [30].
It is well known that the Weyl anomaly cannot be written as
a variation of a local effective action. In addition, the
coefficients of all terms are regularization-scheme-
independent except the type D anomaly. The last term
can be written as a variation of local geometrical terms
and therefore, can be removed by a suitable addition of
local counterterms. The coefficient of type “D” term is
regularization-scheme-dependent, in addition, it is gauge-
dependent as well. In general, one can choose a regulari-
zation scheme in which this term has a vanishing
coefficient which we are going to adopt here.
Here we consider a collection of free conformally

invariant fields coupled to a conformally flat metric,
g ¼ Ω2η. In this case, the renormalized vacuum expectation
value (VeV) of the stress tensor is completely determined
by the anomaly up to a local (but not geometrical) traceless

conserved tensor TðmÞ
μν [31,32], which is going to play the

role of a conserved conformal matter source (TðmÞ
μν is called

ð4ÞHμν in [32]). The renormalized VeV of the stress-tensor
[31,32] has the following form

hTðgÞðrenÞμνi ¼ TðmÞ
μν þ αHμν

ð1Þ þ βHμν
ð3Þ; ð3Þ

where, Hμν
ð1Þ and Hμν

ð3Þ are given by the expressions

Hμν
ð1Þ ¼ 2R;μν − 2gμν□R −

1

2
gμνR2 þ 2RRμν

Hμν
ð3Þ ¼ 1

12
R2gμν − RρσRρμσν: ð4Þ

Notice the absence of Weyl tensor contribution since it
vanishes for a conformally flat background. The coeffi-
cients ofHð1Þ andHð3Þ are spin depend [32], therefore, they
are different for scalar, spinor, and gauge fields. Taking the
trace of both sides one gets

hTðrenÞμ
μi ¼ −6α□R − β

�
RμνRμν −

1

3
R2

�
; ð5Þ

The last term on the right-hand side is proportional to
Euler density (for conformally flat background). In addi-
tion, since α is the coefficient of the total derivative term in
the anomaly one can either choose a regularization scheme
in which α vanishes or can add a local counterterm; namely,
R2 with the appropriate coefficient to cancel this term. In
the following we are going to consider Eq. (3) with a
vanishing α. It is worth mentioning here that this class of
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regularization schemes (with a vanishing □R) has been
used in other approaches in cosmology. For example,
in quantum cosmology one can obtain very similar modi-
fied Friedmann equations as in [33–35] which produce
similar Planck-scale corrections to FLRW cosmology at
early times.

B. FLRW cosmology with Weyl anomaly

Here we assume that the universe contains a number of
free conformally invariant fields at early times. The field
theory considered here is generic, but as we mentioned
before, one might prefer to work with a specific theory like
N ¼ 4 SYM theory since its Weyl anomaly is one-loop
exact [4–7]. As a result, no corrections to these higher
derivative terms that modify the above field equations. The
field theory is coupled to the spatially flat FLRW back-
ground

ds2 ¼ −dt2 þ aðtÞ2½dx2 þ dy2 þ dz2�: ð6Þ
Since α is set to vanish, the only modification to Einstein
field equations is coming from the Euler density, then the
field equation reads

Rμν −
1

2
gμνR − κβ

�
R2

12
gμν − RρσRρμσν

�
¼ κTðmÞ

μν ; ð7Þ

where κ ¼ 8πG. The coefficient β is known to be β ¼
− 1

2880π2
ðns þ 11nf þ 62nvÞ [36], where ns is the number

of scalars, nf is the number of Dirac fermions, and nv is the
number of vector fields. It is interesting to notice that β is
always negative for a generic theory that contains scalar,
fermion, and vector fields. It is intriguing to notice that this
fact is crucial for obtaining a maximum energy density and
Hubble rate in the FLRW cosmology.
Homogeneity and isotropy requires the components of

the matter stress tensor to be TðmÞ
0
0 ¼ −ρ, TðmÞ

1
1 ¼

TðmÞ
2
2 ¼ TðmÞ

3
3 ¼ P, but since it is traceless, we have

P ¼ 1
3
ρ. I.e., the set up is only consistent with radiation

equation of state, i.e., conformal matter source. As in
standard cosmology, we get two independent equations

κρ − 3½1þ κβH2�H2 ¼ 0 ð8Þ

2äað1þ 2κβH2Þ þ a2H2ð1 − κβH2Þ þ κa2P ¼ 0; ð9Þ

where, H ¼ _a=a is the Hubble rate. The last equation is
equivalent to the continuity equation

_ρþ 3Hðρþ PÞ ¼ 0: ð10Þ
This last equation can take the following form

_Hð1þ 2κβH2Þ ¼ −
κ

2
ðρþ PÞ; ð11Þ

which can be put in a simpler form after using the above
equation of state

_H ¼ −2
�
1þ κβH2

1þ 2κβH2

�
H2: ð12Þ

As one can notice, Eq. (8) is a modification of the
Friedmann equation, which relates H and ρ through the
following roots [23]

H ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

3
βκ2ρ

q
2βκ

vuut
: ð13Þ

Since β < 0, the two roots which describe a universe with
H ≤ ð2κjβjÞ−1=2 correspond to two different solutions

H� ¼ � 1ffiffiffiffiffiffiffiffiffiffi
2jβjκp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4

3
jβjκ2ρ

rs
: ð14Þ

For these solutions the Hubble rate is always less than
or equal to the Planck energy scale and the density has a
maximum value ρmax ∼ ρplanck since β < 0. Now using the
continuity equation we get

ρðaÞ ¼ ca−4; ð15Þ

where c > 0. Using this density in Eq. (14) and rescale
a → η, and the time t → τ, we express the Hubble rate as

hðτÞ ¼ η0

η
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − η−4

qr
ð16Þ

where t ¼ τ
ffiffiffiffiffiffiffiffi
2βκ

p
, a=ac ¼ η, a4c ¼ 4βκ2c=3, and a

prime,“0” stands for a derivative with respect to τ.
Notice that at η ¼ 1, h ¼ �1.
Now Eq. (12) takes the form

h0 ¼ −
�
2 − h2

1 − h2

�
h2: ð17Þ

One notices that h0 diverges at h ¼ �1, this is a curvature
singularity since Ricci scalar is proportional to h0.
Before we discuss the previous equation let us go back to

Eq. (8). As we have mentioned, Eq. (8) is a modification of
the Friedmann equation, which was introduced in [23].
This relation and its generalizations (including, cosmologi-
cal constant, spatial curvature, and dark radiation terms) has
been introduced and discussed by other relevant approaches
in cosmology. Holographic cosmology based on AdS=CFT
correspondence [37,38] produces a more general form of
this modified Friedmann equation from AdS black holes
using holographic renormalization. For recent work in this
approach please see [39]. Based on quantum cosmological
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considerations [40] the path integral over metrics, where
free matter fields are conformally coupled to gravity, is
dominated by saddle points which produces the above
modified Friedmann equation. Furthermore, thermodynam-
ics at the apparent horizon of a cosmological solution3 is
dictated by the first law which can be used to obtain the
above modified Friedmann equation either through using a
generalized uncertainty principle [42] or certain volume
corrections to Bekenstein-Hawking entropy [43].
In all these approaches the modified Friedmann equation

presented here or its generalizations has been derived and
discussed, but issues related to the nature of the singularity,
extendability of nonspacelike geodesics and the consis-
tency of that with the field equations through junction
conditions were not discussed. In Secs. III and IV we take
one step further and analyze these issues. We analyze the
nature of the above singularity through studying its strength
following Tipler and Krolak. More specifically, we show
the possibility of extending nonspacelike geodesics beyond
the singular point and use Gauss-Codazzi equations to
derive generalized junction conditions for this higher-
derivative gravity which are consistent with this geodesic
extension.
One might try to use phase-space method (An example

of this analysis is in [44]) to study Eq. (17) which has a
fixed point at h ¼ 0 (See Fig. 1), but this type of analysis is
not adequate to investigate the evolution beyond h ¼ 1
since h0 blows up and the scale factor is discontinues at this
point. In fact, we need to check the possibility of extending
the spacetime to continue the motion of a test particle
across the singular region. In Secs. III and IV we are going
to show that this extension is possible. Before we do that let
us have a quick discussion on the mechanical analogue of

this cosmology which will clarify few important points on
the nature of the above singularity.

C. A mechanical analogue

The dynamics of the system can be described by a simple
mechanical system that shows some interesting features.
Combining the two equations (14) and (15) one gets

Ekin þ Epot ¼
1

2
η02 −

1

2
η2
�
1∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − η−4

q �
¼ 0; ð18Þ

which is the energy conservation equation. In addition, the
equation of motion for the mechanical system obtained
from (12)

η00 ¼ η
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − η−4

p ∓1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − η−4

p : ð19Þ

We have two branches for this mechanical system which
give two potential energies and two classes of solutions.
The potential energy of the mechanical system is given by

V∓ ¼ −
1

2
η2
�
1∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − η−4

q �
: ð20Þ

Using Eq. (14) and the above form of the Hubble rate
one can obtain an exact solution of time τ as a function of
scale factor η

τ þ c1 ¼ �
" ffiffiffi

2
p

4
tanh−1

�
2−1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − η−4

qr �

þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1∓ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − η−4
pq

#
: ð21Þ

The potential with positive sign corresponds to solutions
with H ≥ ð2κjβjÞ−1=2, which is outside the realm of the
semiclassical treatment of cosmology since the curvature is
greater than or equal to 1=l2p. At this high curvature,
quantum gravity effects cannot be ignored and one should
have a full quantum gravity theory to describe this system.
Therefore, these solutions are outside the range of validity
of our semiclassical treatment. Therefore, we consider only
branches with a Hubble rate H ≤ ð2κjβjÞ−1=2.
Notice that although the density and pressure are

bounded, the curvature is unbounded at η ¼ 1, since η00
is unbounded, which are the features of a sudden singu-
larity. This is clear from the expansion of a, H, and _H
around t ¼ 0 as we will show in the last section. Anomaly
corrections changed the nature of the initial singularity
from big bang singularity to a past-sudden singularity.
Calculating Ricci scalar one finds
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FIG. 1. Phase-space diagram for the Hubble rate H.

3One can use thermodynamics at the apparent horizon to
produce different corrections to the Friedmann equation at Planck
scale, which depends on the form of the correction term to the
Bekenstein-Hawking entropy, for example see [41]
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R ∼ t−
1
2: ð22Þ

The mechanical model gives us some intuition on the
nature of the singularity which can be summarized as
follows;

(i) As one might notice although the force/acceleration
is blowing up at τ ¼ 0 and η ¼ 1, η0 ¼ 1, the system
needs only a finite amount of work or energy density
to evolve from the singular point to any other point
with a finite scale factor η. This is clear from
Eq. (18). In contrast with the usual big bang/crunch
singularities which has a different energy conserva-
tion equation, namely

1

2
η02 − Cη−2 ¼ 0; ð23Þ

with a singularity at η ¼ 0. In this case, the work
needed to take the system away from the singular
point is infinite. Compared with the big bang/crunch
singularity (i.e., R ∼ t−2), the singularity at hand is
much weaker.

(ii) From analyzing the mechanical system one realizes
that at η ¼ 1 and η0 ¼ 1, the system cannot go to
values less than η ¼ 1 and cannot stay at this point
(η0 ¼ 0), otherwise, it contradicts the energy con-
dition of Eq. (18). Therefore, one possibility is that
the system bounces back with opposite velocity
reversing its motion.

(iii) Using Eq. (21) with initial condition, τ ¼ 0 at η ¼ 1,
it is clear that the two regions (for jhj ≤ 1) with
τ ≥ 0 and τ < 0 are disjoint, as one can see in Fig. 2.
Starting from the region with τ < 0 the system
cannot reach the other side with τ ≥ 0, since
Δτ ¼ τjh¼1 − τjh¼−1 ≠ 0. In other words, the
spacetime is described by two disjoint manifolds.
Therefore, this spacetime cannot bounce back with

an opposite sign Hubble rate since it is discontinues
at the singularity. In the following sections we are
going to show that it is possible to glue these two
disconnected manifolds (or branches of solutions)
to have a bouncing solution which is geodesically
complete.

III. GEODESIC EQUATIONS AND STRENGTH
OF SINGULARITY

In this section we are going to show the criterion for
extending geodesics in FLRW models and why this
singularity evades Penrose-Hawking singularity theorems.
In addition, we check the strength of the singularity and
show that it is a weak singularity according to both Tipler
and Krolak.

A. Geodesic equations and extendability

Geodesic equations for FLRW metric are given by

d2xi

dλ2
¼ 2H

dt
dλ

dxi

dλ
; ð24Þ

dt2

dλ2
¼ a2H

�
dxi

dλ

�
2

; ð25Þ

which can be solved to get

dt
dλ

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ v2

a2

s
¼ gðtÞ; ð26Þ

dxi

dλ
¼ vi

a2
¼ fiðλÞ; ð27Þ

where, s and vi are integration constants and λ is a
nonspacelike affine parameter. The value of s is related
to the length of the tangent vector,ua, where s ¼ −uaua.
Parameter s controls the nature of λ, if s is 1, λ is a timelike
affine parameter but if s ¼ 0, it is a null affine parameter.
According to Picard-Lindelöf theorem, if fi and g are

continues in λ and Lipshitz continues in t, there exist unique
solutions for the geodesic equations. But as we have seen in
the previous section from Eq. (21), the scale factor is not
continuous at the singularity, τ ¼ 0, therefore, geodesics
ends at this point due to the fact that the whole manifold
consists of two disjoint parts. Notice that, this does not
mean that we cannot extend geodesics by defining a new
region of spacetime beyond this point. As we will see in the
next section it is possible to do this extension since the scale
factor and Hubble rate are finite at the singular point,
otherwise, this could be impossible as in the big bang/
crunch singularity. To understand the role played by the
finiteness of the scale factor and Hubble rate at τ ¼ 0, let us
have a brief discussion on the applicability of Penrose and
Hawking singularity theorems to our case.
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FIG. 2. Time τ as a function of scale factor η for the two
solutions described by H− and Hþ, with the condition τð1Þ ¼ 0.
Clearly, the two branches τ ≥ 0 and τ < 0 are disjoint.
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An important defining feature of spacetime singularities is
their geodesic incompleteness. A spacetime is singular at
some region if nonspacelike geodesics end at a finite value of
the affine parameter in this region. One of the general results
concerning spacetime singularities is the well-known singu-
larity theorems of Penrose and Hawking. These theorems
prove geodesic inextendibility of spacetimes with certain
energy conditions and global properties. An important
ingredient in these theorems is the gravitational focusing
of congruence of nonspacelike geodesics caused by curva-
ture, which is described by volume expansion θ. The
evolution of expansion θ is governed by Raychaudhuri’s
equation which leads to the formation of conjugate points for
some energy conditions, e.g., strong energy condition.
Existence of conjugate points combined with certain global
properties implies the occurrence of singularities. One can
show that the necessary and sufficient condition (see for
example [45]) for a point q to be conjugate to p is that the
congruence of nonspacelike geodesics emanating from p
must have an expansion θ → −∞ at q.
The Raychaudhuri equation for our spacetime is nothing

but Eq. (12) and expansion θ ∝ −H which is bounded. As a
result, one can conclude that the spacetime under consid-
eration is not singular a la Penrose and Hawking. As we
have mentioned before, the singularity under investigation
can be classified as a sudden singularity, which is known to
be geodesically extendible [20,21].

B. Strength of singularities

An important quantity to calculate is the tidal force near a
singularity. The tidal force for FLRW is known to be
proportional to the acceleration,

Ra
bcdu

bξcud ¼ c
a00

a
; ð28Þ

therefore, it is divergent at the singularity. Here, ξa is a
deviation vector and u ¼ ∂

∂t is the tangent vector to the
curve parameterized by the timelike affine parameter t.
Having infinite tidal forces does not necessarily means

that the singularity is strong enough to completely crush an
infalling finite size object. Important physical criteria for
measuring the strength of a singularity have been intro-
duced by Tipler [28] and Krolak [29]. Tipler’s criterion for
a strong singularity can be stated as follows: A singularity
is called strong if the volume spanned by three orthonormal
Jacobi fields shrunk to a zero size along every nonspacelike
geodesics at the singularity. Therefore, if the above volume
is shrinking to zero size at the singularity, then it is called a
strong singularity. On the other hand Krolak’s criterion for
a strong singularity is based on having a negative rate of
change for the volume at the singularity. As a result, there is
a class of singularities which are Tipler weak but Krolak
strong. A lightlike geodesic reaches a Tipler strong singu-
larity at λ ¼ λ0 if and only if the double integral

lim
λ→λ0

Z
λ

0

dλ0
Z

λ0

0

dλ00Rabuaub; ð29Þ

diverges. For Krolak, a lightlike geodesics meets a strong
singularity if and only if

lim
λ→λ0

Z
λ

0

dλ0Rabuaub; ð30Þ

diverges. For the timelike case the necessary and sufficient
conditions are a bit different. A timelike geodesic meets a
strong singularity according to Tipler if

lim
λ→λ0

Z
λ

0

dλ0
Z

λ0

0

dλ00Rabuaub; ð31Þ

diverges. For Krolak’s definition the condition is

lim
λ→λ0

Z
λ

0

dλ0Rabuaub; ð32Þ

diverges. According to Tipler, the necessary condition for a
timelike geodesics to meet a strong singularity is that

lim
λ→λ0

Z
λ

0

dλ0
Z

λ0

0

dλ00jRi
ajbu

aubj; ð33Þ

diverges. But according to Krolak, the necessary condition
for a timelike geodesics to meet a strong singularity is that

lim
λ→λ0

Z
λ

0

dλ0jRi
ajbu

aubj; ð34Þ

diverges. To calculate the above integrals, one needs to
obtain expressions for relevant physical quantities, namely,
Hubble rate and scale factor near the singularity (at t ¼ 0).
Using Eqs. (21) or (12) for t ≥ 0, one gets

HðtÞ ¼ H0½1 − ðH0tÞ1=2� þOðt2Þ ð35Þ
and

aðtÞ ¼ a0½1þH0t� þOðt2Þ; ð36Þ

where Hð0Þ ¼ H0 ¼ ð2βκÞ−1=2. Now integrating Eq. (43)
for tðλÞ, taking the initial condition λ ¼ 0, at t ¼ 0, one
obtains

tðλÞ ¼ χλþOðλ2Þ: ð37Þ

Then,

aðλÞ ¼ a0½1þ χH0λ� þOðλ2Þ; ð38Þ

where, χ ¼ ðsþ v2=a20Þ
1
2. Calculating the above integrals,

which gives necessary and sufficient conditions for timelike
and sufficient condition for lightlike cases, one gets
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lim
λ→0

Z
λ

0

dλ0
Z

λ0

0

dλ00Rabuaub ¼ Clim
λ→0

λ3=2 ¼ 0; ð39Þ

lim
λ→0

Z
λ

0

dλ0Rabuaub ¼ C0lim
λ→0

λ1=2 ¼ 0: ð40Þ

Also, calculating the above integrals which gives the
necessary condition for timelike cases one gets

lim
λ→λ0

Z
λ

0

dλ0
Z

λ0

0

dλ00jRi
ajbu

aubj ¼ C1lim
λ→0

λ3=2 ¼ 0; ð41Þ

lim
λ→λ0

Z
λ

0

dλ0jRi
ajbu

aubj ¼ C2lim
λ→0

λ1=2 ¼ 0; ð42Þ

which indicates that the singularity is weak a la Krolak
and Tipler, therefore, it is not a strong physical singularity
capable of crushing a finite size object indefinitely. This
result suggests that this spacetime might admit some
extension which renders the new spacetime geodesically
complete.

IV. SINGULARITY CROSSING AND
JUNCTION CONDITIONS

In this section we are going to introduce a C1 geodesic
extension to nonspacelike geodesics beyond the singularity
through joining two branches of solutions. We derive
junction conditions for the field equation with Weyl
anomaly corrections. We also show that the extended
spacetime is consistent with the junction conditions of this
higher-derivative gravity.

A. Extending geodesics beyond the singularity

The geodesics equations for the FLRW metric are given
by

dt
dλ

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ v2

a2

s
¼ gðtÞ; ð43Þ

dxi

dλ
¼ vi

a2
¼ fiðλÞ: ð44Þ

Defining an extended spacetime through joining the two
regions with scale factors for t ≥ 0 and t < 0, one gets

aðtÞ ¼ a0

�
1þ jH0tj −

2

3
jH0tj3=2

�
þOðt2Þ: ð45Þ

The above first-order differential equations have unique
solutions according to Picard-Lendelof Theorem since fi

and g are Lipshitz continous (i.e., they have a bounded first-
derivative). Integrating Eq. (43), and taking the initial
condition λ ¼ 0, at t ¼ 0, one obtains

tðλÞ ¼ χλ − signðλÞH0v2

2a20
λ2 þOðλ3Þ: ð46Þ

Integrating Eq. (44) and taking the initial condition λ ¼ 0,
at xi ¼ x0i, one obtains

xiðλÞ ¼ x0i þ
vi

a20
λþ signðλÞH0v2

a20
χλ2 þOðλ3Þ: ð47Þ

Notice that these geodesics are C1 and are defined for
positive and negative values of λ. Divergences coming
from third-derivatives of t and xi with respect to affine
parameter do not affect geodesics. Therefore, the spacetime
defined through these geodesics is complete, since it is
defined to all values of the affine parameter λ and particles
going along them can cross the region at t ¼ 0 without
getting crushed indefinitely. Therefore, the singularity is
traversable.

B. Generalized junction conditions

Here we use Gauss-Codazzi equations to derive junction
conditions for the higher-derivative gravitational theory
given by Eq. (7). Using Gaussian normal coordinates near a
hypersurface Σ with a metric ~g, the line element takes the
form

ds2 ¼ ϵdw2 þ ~gijdxidxj; ð48Þ

where nμ is the normal vector to Σ, with nμnμ ¼ ϵ ¼ −1or1
for spacelike or timelike hypersurface respectively. Extrinsic
curvature is given by Kij ¼ − 1

2
~gij;w. Components of curva-

ture tensor can be expressed in terms of the curvature tensor
of the hypersurface and extrinsic curvature Kij and its
derivatives. These are Gauss-Codazzi equations which take
the following form

Rl
ijk ¼ ~Rl

ijk þ ϵðKijKk
l − KikKl

jÞ
Rw

ijk ¼ −ϵðKijjk − KikjjÞ
Rw

iwj ¼ ϵðKij;w þ KilKl
kÞ: ð49Þ

This leads to the following component for the Ricci tensor

Ri
j ¼ ~Ri

j þ ϵðKi
j;w − KKi

jÞ
Rw

j ¼ −ϵðKi
jji − KjjÞ

Rw
w ¼ ϵðK;w − trK2Þ; ð50Þ

where K ¼ Ki
i and trK2 ¼ KijKij. One can use the above

equations to rewrite the field equations (7) in terms of
hypersurface intrinsic curvatures and Kij and its derivatives.
To do that we collect the terms on the left-hand side in two
terms
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Gμν þHμν ¼ κTðmÞ
μν ; ð51Þ

where

Hμν ¼ −κβ
�
R2

12
gμν − RρσRρμσν

�
: ð52Þ

Let us start with Einstein tensor

Gw
w ¼ −

1

2
~Rþ 1

2
ϵ½K2 − trK2�

Gw
i ¼ −ϵ½Ki

mjm − Kji�

Gi
j ¼ ~Gi

j þ ϵ

�
ðKi

j − δijKÞ;w − KKi
j

þ 1

2
δijK2 þ 1

2
δijtrK2

�
: ð53Þ

Now let us join two spacetimes (i.e., solutions of the field
equations) at the hypersurface w ¼ 0. One observes that
to avoid powers of Dirac delta function in curvature tensors
one must require the continuity of the metric at the joining
surface, i.e., gμνð0þÞ ¼ gμνð0−Þ. Now integrating the above
components of Einstein tensor one gets

lim
σ→0

Z
σ

−σ
Gw

wdw ¼ ½Gw
w� ¼ 0

lim
σ→0

Z
σ

−σ
Gw

idw ¼ ½Gw
i� ¼ 0

lim
σ→0

Z
σ

−σ
Gi

jdw ¼ ½Gi
j� ¼ ϵð½Ki

j� − δij½K�Þ ð54Þ

where ½A� ¼ Að0þÞ − Að0−Þ ¼ Aþ − A−, is the jump in “A”
across the junction at w ¼ 0. For a moment let us set
Hμν ¼ 0, i.e., considering only GR. In this case, the
continuity of Gw

w ¼ κTw
w and Gw

i ¼ κTw
i is a conse-

quence of the continuity of the metric across the junction.
But the last equation is telling us that if there is a jump in the
extrinsic curvature Kij it will lead to a jump in Gi

j ¼ κTi
j,

therefore, these components of the stress-energy tensor will
have Dirac delta functions. This is a consequence of having
terms linear inKij;w and no higher powers inKij;w or higher-
derivative terms in w.
Now let us consider the case with Hμν ≠ 0 and calculate

the following components; Hw
w, Hw

i, and Hi
j to get the

junction condition for the above higher-derivative gravity
theory. One finds that, Hw

w and Hi
j contains quadratic

expressions in Kij;w, but Hw
j has only up to linear terms in

Kij;w. If we naively choose the junction condition to be
½Kij� ¼ 0, it will lead to the continuity of all component of
Tμ
ν and will not allow any surface layer to form. It is more

convenient to split the extrinsic curvature into a trace and
traceless part;

K̂ij ¼ Kij −
~gij
3
K: ð55Þ

This splitting allows us to deal with K̂ij and K separately,
which was useful in investigating junction conditions in
higher-derivative gravity theory like FðRÞ theories [46].
Now expressing the above component of Hμν in terms of K
and K̂ij instead of Kij, we get

Hw
w ¼ ϵβκK̂ij;w

~Rij þ ϵ2βκ

�
K̂ij;wK̂

ij
;w þ K̂ij

;w

�
4

3
KK̂ij þ K̂m

i K̂jm

�
−K̂ij;wð3KK̂ij þ 2K̂jrK̂i

rÞ
�
;

Hw
i ¼ ϵ2βκ

�
K̂ij;w

�
ˆKmjjm −

2

3
K̂j

j

�
− K̂rs

;wK̂rijs − K̂rs
;wK̂rsji

�
;

Hi
j ¼ −

1

3
ϵβκ½K;w

~Rδij − K;w
~Ri
j − 3K̂rs

;w
~Ri
rjs� þ ϵ2βκ

�
K;w

3
ð3K̂i

j;w−2K̂irK̂rj −
5

3
KK̂i

j −
4

9
K2δijÞ − K̂i

j;w

�
2

9
K2 þ trK̂2

�

þK̂rs
;w

�
K̂rjK̂i

s − K̂rsK̂i
j −

δij
3
KK̂rs

�
þ K̂s

j;wK̂i
sK

�
: ð56Þ

As one can noticeHw
w andHw

j contains quadratic and linear
expressions in K̂ij;w, no dependence onK;w, butHi

j depends
on K;w only linearly, and no higher powers. Therefore, it is
convent to have the following junction conditions

½K̂ij� ¼ 0; ½K� ≠ 0; ð57Þ

i.e., in addition to the continuity of themetric ~g at the junction
we require the continuity of the traceless part of the extrinsic

tensor while allowing for a discontinuity or a jump in its trace.
These conditions lead to the following equations:

κ½Tw
w� ¼ ½Gw

w� þ ½Hw
w� ¼ 0;

κ½Tw
i� ¼ ½Gw

i� þ ½Hw
i � ¼ 0;

κ½Ti
j� ¼ ½Gi

j� þ ½Hi
j� ¼ Si

j ð58Þ

where,
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Si
j ¼ lim

σ→0

Z
σ

−σ
dwK;w

�
ϵ

3
ðβκ½ ~Ri

j − ~Rδij� − 2δijÞ

þ ϵ2βκ

�
K̂i

j;w −
4

27
K2δij

��
; ð59Þ

and

lim
σ→0

Z
σ

−σ
Hμ

νdw ¼ ½Hμ
ν �: ð60Þ

Junction conditions for FLRW with Weyl anomaly: We
are going to use the extended spacetime

aðtÞ ¼ a0

�
1þ jH0tj −

2

3
jH0tj3=2

�
þOðt2Þ; ð61Þ

joining the two regions for all values of t, to calculate the
jumps in the stress tensor components, ½Ti

j�. The Hubble
rate and its derivative are given by

HðtÞ ¼ sgnðtÞH0 − sgnðtÞH3=2
0

ffiffiffiffiffi
jtj

p
þOðtÞ: ð62Þ

_HðtÞ ¼ 2δðtÞH0 − δðtÞH3=2
0

ffiffiffiffiffi
jtj

p
−
H3=2

0ffiffiffiffiffijtjp þOðtÞ: ð63Þ

Our hypersurface is spacelike where w ¼ t, ϵ ¼ −1 and
~gij ¼ aðtÞ2δij. Now the extrinsic curvature is given by

Kij ¼ −
1

2
~gij;t ¼ − _aaδij; ð64Þ

also,

K̂ij ¼ 0; K ¼ −3HðtÞ; K;t ¼ −3 _HðtÞ: ð65Þ

Given the facts that ~Ri
j ¼ 0, since our metric is spatially flat

(i.e., k ¼ 0), and K̂ij ¼ 0, the expression for Si
j in Eq. (59),

is reduced to

Si
j ¼ lim

σ→0

Z
σ

−σ
dtK;t

�
2

3
−
4βκ

27
K2

�
δij

¼ −4H0

�
1 −

Hð0Þ2
H0

2

�
δij; ð66Þ

where, H0 ¼ 1=
ffiffiffiffiffiffiffiffiffiffi
2κjβjp

. As t → 0, Hð0Þ → sgnð0ÞH0,
therefore, it depends on our choice of sgnðtÞ at t ¼ 0.
We have two choices; either sgnð0Þ ¼ �1, or sgnð0Þ ≠ �1.
The first choice satisfies the above cosmological equations
and surprisingly leaves no Dirac delta functions on the
stress tensor i.e., Si

j ¼ κ½Ti
j� ¼ 0. One might see that as a

natural extension of the spacetime which has no Dirac delta
function on the hypersurface at t ¼ 0. The second choice
leads to a Dirac delta function but Hð0Þ will not satisfy

cosmological equations. One might think of the last choice
as throwing out the singular point and replace it with a
regular point which is not constrained by cosmological
equations. We prefer the first choice since it leaves all the
values of HðtÞ constrained by our cosmological equations
and more importantly gives no Dirac delta function in
pressure terms, therefore, does not change the equation
of state.
Notice that the above modified Friedmann’s equations

and its solutions are completely equivalent to the usual
Friedmann’s equations of GR with the following equation
of state

Pe ¼
ρe
3

ð1þ ρe=ρ0eÞ
ð1 − ρe=ρ0eÞ

; ð67Þ

where ρ0e ¼ 3H2
0. The effective energy density and effective

pressure can be written as

κρe ¼ 3H2 ¼ κðρþ 3βH4Þ ð68Þ

κPe ¼ −2ä −
κ

3
ρe ¼ κðP − 3βH4 − 4βH2 _HÞ: ð69Þ

This interesting equivalence provides us with another way
to check the above results of junction conditions for our
cosmological model. One can observe that this cosmology
has a divergent pressure, Pe as a result of a divergent _H.
This is a typical feature of sudden singularities in GR. Now
this effective stress tensor satisfies

Gμν ¼ κTμν
e : ð70Þ

Now consider the junction condition resulted from joining
two solution as before at the hypersurface, t ¼ 0. We get

κ½Tw
e w� ¼ ½Gw

w�;
κ½Tw

e i� ¼ ½Gw
i� ¼ 0;

κ½Ti
ej� ¼ ½Gi

j� ¼ −4H0δ
i
j: ð71Þ

Therefore, there is a delta Dirac function in the tress tensor
Ti
ej components. This is in agreement with the earlier

junction analysis since the relation between Pe and P has a
linear term in _H.

V. CONCLUSION

It is well known that a full resolution of spacetime
singularities requires a consistent theory of quantum gravity.
Until we have such a resolution, it is constructive to ask how
large is the impact of quantum effects, in matter sources, on
the FLRW model singular behavior. Here we have consid-
ered the role of the Weyl anomaly on modifying FLRW
model singular behavior. We only considered anomaly
corrections that lead to regularization-scheme and gauge
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independent corrections. As an example we chose N ¼ 4
Super Yang Mills theory to be our field theory since its trace
anomaly is one-loop exact [4–7]. Therefore, no corrections
to these higher derivative terms which modify the field
equations. Weyl anomaly corrections to FLRW models have
been considered in the past, we would like to revive interest
in this model through showing that this singularity is weak
according to Tipler and Krolak [28,29], therefore, it is not a
strong physical singularity capable of crushing a finite size
object indefinitely. Weyl anomaly corrections change the
nature of the initial singularity from a big bang singularity to
a sudden singularity. The two branches of solutions con-
sistent with the semiclassical treatment form disjoint space-
times. Joining the branches of solutions provides us with a

C1 extension to nonspacelike geodesics ending at the
singularity, which shows geodesic completeness. We use
Gauss-Codazzi equations to derive generalized junction
conditions for this higher-derivative gravity. The extension
of spacetime through joining the two branches of solutions is
consistent with these junction conditions and the above
geodesic extension. These results suggest that FLRW
cosmology can be described by a contracting phase before
going to its expanding phase.
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