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Asymptotically flat black holes in 2þ 1 dimensions are a rarity. We study the recently found black
flower solutions (asymptotically flat black holes with deformed horizons), static black holes, rotating black
holes and the dynamical black flowers (black holes with radiative gravitons) of the purely quadratic version
of new massive gravity. We show how they appear in this theory and we also show that they are also
solutions to the infinite order extended version of the new massive gravity, that is the Born-Infeld extension
of new massive gravity with an amputated Einsteinian piece. The same metrics also solve the topologically
extended versions of these theories, with modified conserved charges and the thermodynamical quantities,
such as the Wald entropy. Besides these we find new conformally flat radiating type solutions to these
extended gravity models. We also show that these metrics do not arise in Einstein’s gravity coupled to
physical perfect fluids.
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I. INTRODUCTION

In his 1884 book titled Flatland: A Romance of Many
Dimensions, Edwin A. Abbott ’s witty narrator, “the
Square,” who longs for and theorizes about the extra
dimensions beyond his World of 2þ 1, complains about
the dullness of life in such a universe as “How can it be
otherwise, when all one’s prospect, all one’s landscapes,
historical pieces, portraits, flowers, still life, are nothing
but a single line, with no varieties except degrees of
brightness and obscurity?” From today’s vantage point,
in the centenary of the birth of general relativity, we know
that the state of affairs in flatland is not that bleak if you do
not ignore gravity. (Note that Abbott did mention the
existence of gravity in Flatland, as the word “gravitation”
appears in one place just like the word flowers.) First there
is the famous Banados-Teiteilboim-Zanelli (BTZ) [1] black
hole in Einstein’s theory with a negative cosmological
constant. But this black hole is locally anti-de Sitter space
(AdS), and globally a rather complicated identification of
AdS and hence, a local observer, such as “the Square,” who
does not have access to the major part of the 2þ 1
dimensional universe will not notice this black hole (or
more properly, will not know that he is living in a black
hole spacetime). Since in 3 dimensions, the Ricci tensor
and the Riemann tensor are double-duals of each other,
there is no local gravity in Einstein’s theory save the
regions with sources. On the other hand, moving beyond
Einstein’s theory, one realizes that there are asymptotically
flat black holes, with nontrivial, nonconstant scalar

curvature and other curvature invariants and so these black
holes actually create tidal forces in nearby objects. So in
principle they can be “observed” by the flat-beings, in the
same way as the more realistic ones in three spatial
dimensions. Of course the rationale to study gravity in a
lower dimensional setting is to possibly learn something
about the inner-workings of the strong regime of gravity
and hopefully quantum gravity in our universe. For this
purpose black holes are the lamp-posts for any theory of
gravity: the plethora of the work done on the BTZ black
hole and its variants in the context of the AdS=CFT
correspondence is a testament to this. The new black holes,
the black flowers and their static, rotating and radiating
versions deserve a greater scrutiny as they also might hide
possible hints about quantum gravity. Of course, being
asymptotically flat, they are not canonical objects to look at
in the AdS=CFT context. So, holography in flat spacetime
needs to be better understood.
In this work, we show in more clear terms how they arise

as solutions to the purely quadratic part of new massive
gravity (NMG) [2]. This purely quadratic theory was
studied in [3] as a ghost-free theory of massless gravitons
in 3D. (For the sake of simplification of the names of the
theories, as there will be several of those, we shall call this
theory K-gravity, K-being the tuned quadratic curvature
invariant that we shall write.) Utilizing the recent obser-
vation [4,5] that the field equations of K-gravity split into
two natural parts as Kμν ¼ Jμν þHμν, whose explicit forms
will be given below, where the H-tensor is the 3 dimen-
sional version of the Bach tensor that vanishes for con-
formally flat (and conformally Einstein) geometries. On the
other hand the J-tensor does not have any derivatives of the
curvature and appeared as an interesting, bulk and boun-
dary unitary deformation of topologically massive gravity
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(TMG) [6] to the minimal massive gravity (MMG) [7]. All
the types of the black flower solution will appear as a
conformally flat solution (Hμν ¼ 0), that also has vanishing
J-tensor. This realization and dissection of the K-gravity’s
equations are crucial to upgrade the solution to other
extended theories of gravity, such as the Born-Infeld
extension of NMG, without the Einstein term (which we
shall call BIK-gravity) and their Chern-Simons modified
versions. We will also be able to show that there are in fact
3 types of such solutions and no more: Type-D solutions to
which the black flower, static and rotating metrics belong
to, Type-II solutions to which the dynamical black flower is
an example of and Type-N solutions.

II. BLACK HOLES IN PURELY QUADRATIC
THEORY: K-GRAVITY

This was already done in [8–10] partly inspired from
earlier solutions [11–13] but as stated above, we shall
make the appearance of the solution more transparent to be
able to upgrade it to other extended theories, classify the
solutions and show that there are no other possible classes
under the given conditions. The action of the K-gravity is

I ¼ 1

16πG

Z
d3x

ffiffiffiffiffiffi
−g

p
K; K ≡ RμνRμν −

3

8
R2; ð1Þ

where the 3D Newton’s constant G has dimensions of
mass which makes the theory power-counting super-
renormalizable. The theory has a massless ghost-free
graviton about its unique maximally symmetric, flat vac-
uum. The source-free field equations (Kμν ¼ 0) read

2□Rμν −
1

2
∇μ∇νR −

1

2
gμν□Rþ 4RμρνσRρσ − gμνRρσRρσ

−
3

2
RRμν þ

3

8
gμνR2 ¼ 0: ð2Þ

They look somewhat cumbersome but as observed in [4],
these field equations split into two natural pieces

Kμν ¼ Jμν þHμν ¼ 0; ð3Þ

where the J and H-tensors are defined as

Jμν ≡ 1

2
ημρσηνταSρτSσα;

Hμν ≡ 1

2
ημ

αβ∇αCβν þ
1

2
ην

αβ∇αCβμ; ð4Þ

with ηντη being the completely antisymmetric tensor, Sμν ¼
Rμν − 1

4
gμνR the Schouten tensor and Cμν ¼ ημ

αβ∇αSβν the
Cotton tensor. Observe that Hμν is traceless and so the
trace of the field equations yield K ¼ gμνKμν ¼ gμνJμν. As
for the covariant divergence of these tensors one has:
∇μHμν ¼ −∇μJμν ¼ ηναβSασCβ

σ. As we shall see, this

compact form of writing the equations is not merely about
aesthetics, but it will help us understand the solution better
since we shall know which parts of the equations vanish on
their own.
It is clear from the above discussion that all the solutions

ofK-gravity satisfy the on-shell vanishing ofK- (and so the
action)

RμνRμν ¼ 3

8
R2; ð5Þ

which can be recast as

I1 ≡ ~Rν
μ
~Rμ
ν ¼

1

24
R2; ð6Þ

where ~Rμν is the traceless Ricci tensor and I1 is a curvature
invariant which we shall use to understand the Segre
classification (based on the traceless Ricci tensor) of the
solutions along with R and a third one:

I2 ≡ ~Rν
μ
~Rρ
ν
~Rμ
ρ; ð7Þ

which form the algebraically independent set for a 3
dimensional symmetric tensor as is clear form the
Cayley-Hamilton theorem and Schouten identities applied
to the 3 × 3 matrix ð ~Rμ

νÞ. Now consider all the solutions of
the theory withHμν ¼ 0, and hence one must set Jμν ¼ 0 as
well yielding

Jμν ¼ − ~Rμρ
~Rρ
ν þ

1

3
gμνI1 þ

1

12
R ~Rμν ¼ 0; ð8Þ

where we wrote the explicit form of this tensor and used the
fact that its trace must vanish. At this stage the solutions
bifurcate into two main classes: R ≠ 0 and R ¼ 0. Let us
consider these cases separately as they will lead to spaces of
different types.

A. R ≠ 0 case

For this case the traceless Ricci tensor can be expressed
from (8) as

~Rμν ¼
12

R

�
~Rμρ

~Rρ
ν −

1

3
gμνI1

�
: ð9Þ

Multiplying this with ~Rμν, one finds that the 3 curvature
invariants are related as

I1 ¼
12

R
I2; I2 ¼

R3

288
; I31 ¼ 6I22: ð10Þ

Hence according to the Segre classification, all such
solutions of this theory are either type-D (metrics for
localized objects) or type-II (metrics for localized objects
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with gravitational radiation). Of course, this analysis does
not yet tell us that there are solutions to the theory. We must
search for them explicitly. The best way to start with is a
circularly symmetric ansatz:

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2dϕ2; ð11Þ

Computing Hμν ¼ 0, one finds that the metric function
satisfies fðrÞ ¼ br − μþ cr2, which yields the most gen-
eral spherically symmetric and conformally flat metric.
Inserting this solution to the remaining piece of the
equations, Jμν ¼ 0 equation, one finds that c ¼ 0 is
required. Hence the following, conformally flat, static
and asymptotically locally flat metric

ds2 ¼ −ðbr − μÞdt2 þ dr2

br − μ
þ r2dϕ2; ð12Þ

is a solution of K-gravity with two constants b and μ. It
is a static, asymptotically flat black hole as discussed in
[8,9,11] with a circular Schwarzschild horizon at rs ¼ μ

b as
long as μ > 0 and b > 0. One can easily see that its
traceless Ricci tensor is of Type-Ds given as

~Rμν ¼ −
R
12

ðgμν − 3ξμξνÞ; ð13Þ

where the scalar curvature and the relevant vector are
given as

R ¼ −
2b
r
; ξμ ¼ −rδϕμ ; ð14Þ

with ξμξ
μ ¼ 1. The fact that ξμ is a spacelike vector (hence

the subscript s in Ds) is important as we shall note below.
Note also that the scalar curvature R and the invariants I1,
I2 blow up at the singularity r ¼ 0, hidden safely inside the
Schwarzschild horizon rs. Going to the Euclidean version,
near the event horizon one finds that the Hawking temper-
ature of the black hole is T ¼ b

4π. Hence the dimensional
parameter b is related to the mass of the black hole while
the dimensionless parameter μ is a gravitational hair [8].
Other solutions can be generated from the above static

black hole. After a transformation (u ¼ t − r� with
dr� ¼ dr

br−μ) described in [8], the static metric becomes

ds2 ¼ −ðbr − μÞdu2 − 2dudrþ r2dϕ2: ð15Þ

With this form of the metric, one can introduce a defor-
mation [hðu;ϕÞ] along the spacelike Killing vector ∂ϕ as

ds2 ¼ −ðbr − μÞdu2 − 2dudrþ ðr − hðu;ϕÞÞ2dϕ2:

ð16Þ

Inserting this ansatz to Hμν ¼ 0, one finds that the
following linear equation must be satisfied1

∂u

�
∂u þ

b
2

�
h ¼ 0; ð17Þ

whose solution is

hðu;ϕÞ ¼ AðϕÞ þ BðϕÞe−b
2
u; ð18Þ

where AðϕÞ and BðϕÞ are arbitrary periodic functions of the
angular coordinate ϕ. As a simple example of a black
flower see Fig. 1. For this solution one has Jμν ¼ 0

automatically and the equations of K-gravity are solved.
Let us rewrite the metric in terms of the original coordinates
to get a better picture of its nature:

ds2 ¼ −ðbr − μÞdt2 þ dr2

br − μ
þ ðr − hðt; r;ϕÞÞ2dϕ2;

ð19Þ
where we have

hðt; r;ϕÞ ¼ AðϕÞ þ BðϕÞe−b
2
tðbr − μÞ1=2: ð20Þ

This solution is again Type-Ds or Type-II with the space-
like vector reading as

FIG. 1. A depiction of the black flower for the specific choice of
unitless AðϕÞ ¼ cosð8ϕÞ þ 1.5.

1Note that one can actually take a more general metric such as
ds2 ¼ −gðrÞdu2 − 2dudrþ ðr − hðu;ϕÞÞ2dϕ2 and find solu-
tions to Hμν ¼ 0 equations, but, it turns out unless
gðrÞ ¼ br − μ, one does not have Jμν ¼ 0.
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ξμ ¼ ðhðt; r;ϕÞ − rÞδϕμ : ð21Þ

When BðϕÞ ¼ 0, time dependence drops out and one has a
static, circularly nonsymmetric black hole (black flower)
which is Type-Ds. But when BðϕÞ ≠ 0, then the spacetime
is dynamical and the black flower is formed only at t → ∞
for b > 0. Namely, one can interpret either as a black hole
radiating gravitons or as in-falling self-gravitating grav-
itons forming a black flower in the far future.
So the full metric is

gμν ¼ gSμν þ ξμξν; ð22Þ
where gSμν refers to the static circularly symmetric solution.
This form suggests that one can write it in a double Kerr-
Schild way as

gμν ¼ ημν þ fðrÞλμλν þ ξμξν; ð23Þ
with ημν the flat metric in the u, r, ϕ coordinates and
fðrÞ ¼ br − μ, λμ ¼ δuμ. While formally, this is correct,
since the ξ-vector is not null, quick exact linearization
techniques of Kerr-Schild metrics do not follow [14].
For completeness let us note that in the u, r, ϕ

coordinates one simply has

ξμ ¼ ðhðu;ϕÞ − rÞδϕμ ; ð24Þ

which has vanishing divergence ∇μξ
μ ¼ 0, but it is not a

Killing vector. Let us note that for both static asymptoti-
cally flat black hole and the black flower, and the
dynamical black flower, the Einstein tensor reads as

Gμν ¼ −
R
4
ðgμν − ξμξνÞ: ð25Þ

Defining the right-hand side as the energy-momentum
tensor Tμν one has

Tμν ¼ −
R
4
ðgμν − ξμξνÞ; ð26Þ

and one might wonder if these solutions appear in
Einstein’s gravity coupled to perfect fluid [15,16] with
the pressure (P) and mass density (ρ) given as P ¼ − R

4
,

ρ ¼ R
2
. While formally this is a strong energy condition-

violating fluid, since the fluid velocity ξμ is spacelike these
solutions do not exist in Einstein’s theory coupled to perfect
fluids. Before we move on to the other case, let us note that
for the black flower, the scalar curvature is

R ¼ −
2b

r − hðu;ϕÞ : ð27Þ

In the figure, we have depicted an example of a simple
black flower ½BðϕÞ ¼ 0.� One must be careful though in the

interpretation: from (27), it is clear that the scalar curvature
is singular for the values of the radial coordinate r ¼ AðϕÞ
and hence one must restrict r > AðϕÞ. On the other hand, it
is also clear from (19) that the event horizon is at rs ¼ b

μ. If
the singularity is pushed to the origin of the coordinates,
than the horizon takes the noncircular shape. Or another
way to see is to look at the induced metric on the horizon
gϕϕ ¼ ðrs − AðϕÞÞ2 as suggested in [8]. (2) R ¼ 0 case.
For this case one has

1

3
gμνI1 ¼ ~Rμρ

~Rρ
ν: ð28Þ

Multiplying this with ~Rμν, one arrives at

I2 ¼ 0: ð29Þ
also from (6)

I1 ¼ 0: ð30Þ
Hence according to the Segre classification, all such
solutions are Type-Ns with vanishing curvature invariants

Rμν ¼ ξμξν; ð31Þ

where ξμ is a null-like vector. For this type of solutions, we
can give a new example as

ds2 ¼ F2ðt; x; yÞð−dt2 þ dx2 þ dy2Þ; ð32Þ

where F2ðt; x; yÞ ¼ ðatþ bxþ cyÞq with b ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ c2

p
where q is an arbitrary real number.

III. BORN-INFELD EXTENSION
OF K-GRAVITY

Let us consider the Born-Infeld extension of K-gravity
given by the action [17–19]

I ¼ −
γ2

4πG

Z
d3x
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

− det
�
gμν þ

σ

γ
Gμν

�s

−
�
1 −

σ

4γ
R

� ffiffiffiffiffiffi
−g

p �
; ð33Þ

where γ is the BI parameter with ½γ� ¼ mass2 dimensions.
This parameter is needed to be able to define a BI extension
of gravity. It controls the scale where the higher derivative
terms significantly change the structure of the theory. At the
lowest order in the curvature expansion, this BI action
reproduces that of K-gravity and γ plays no role. But in
general there are two scales: the 3D Planck scale Mp ¼
16πG and

ffiffiffi
γ

p
. Of course one expects the latter to be several

orders of magnitude smaller than the former. The theory has
a unique maximally symmetric vacuum, that is the flat
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space and a massless unitary graviton about the vacuum.
To find field equations of (33), we define a new tensor as
Mμν ¼ gμν þ σ

γ Gμν. Now, (33) can be written as

I ¼ −
γ2

4πG

Z
d3x

� ffiffiffiffiffiffiffiffi
−M

p
−
�
1 −

σ

4γ
R

� ffiffiffiffiffiffi
−g

p �
: ð34Þ

Let us focus on the variation of first part of the action;

IM ¼
Z

d3x
ffiffiffiffiffiffiffiffi
−M

p

δIM ¼ 1

2

Z
d3x

ffiffiffiffiffiffiffiffi
−M

p X
μ;ν

ðM−1ÞμνδMμν

δIM ¼ 1

2

Z
d3x

ffiffiffiffiffiffi
−g

p
 ffiffiffiffiffi

M
g

s X
μ;ν

ðM−1ÞμνδMμν

!

δIM ¼ 1

2

Z
d3x

ffiffiffiffiffiffi
−g

p
BμνδMμν; ð35Þ

where the B tensor is defined by Bμν ¼
ffiffiffiffi
M
g

q
ðM−1Þμν and

ðM−1Þμν are the elements of the inverse of the matrix Mμν.
Using this form is particularly useful in finding field
equations, which leads to

−Bμνþgμνþ
σ

γ

�
−∇α∇ðμBνÞαþ

1

2
ð∇α∇βBαβ−□BÞgμν

þ1

2
□Bμνþ

1

2
BμνRþ1

2
∇μ∇νB−

1

2
BRμνþ

1

2
Gμν

�
¼ 0;

ð36Þ

where B ¼ gμνBμν. See also [20] for a similar form of
these equations. The metrics (12) and (19) solve the BIK
equations without a change of the metric functions. Let
us rewrite the Born-Infeld extension of K-gravity given by
the action

IBIK ¼ −
γ2

4πG

Z
d3x

ffiffiffiffiffiffi
−g

p �
FðR; S1; S2Þ þ

σ

4γ
R

�
; ð37Þ

where

FðR; S1; S2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

σ

2γ

�
Rþ σ

γ
S1 −

1

12γ2
S2

�s
− 1;

S1 ¼ R2
αβ −

R2

2
;

S2 ¼ 8RαβRασRσ
β − 6RR2

αβ þ R3: ð38Þ

We shall need these in the computation of the entropy and
the mass of the black holes.

A. Some useful formulas for the calculation
of entropy and mass

What we present here is common knowledge, hence we
do not go into details but just quote the final results. Wewill
calculate the geometrical entropy using the Wald formula
where the black hole entropy is computed to be the Noether
charge on the horizon [21–23]. There exists a simplified
form of this formula given by [24–26]

S ¼ −2π
Z

dϕ
ffiffiffiffiffiffiffi
gϕϕ

p ∂L
∂Rμν

ϵμ
αϵνα: ð39Þ

Here, the binormal ϵνβ is defined through the timelike
killing vector χμ ¼ ð−1; 0;−ΩÞ, with Ω ¼ − gtϕ

gϕϕ
being the

angular velocity of the event horizon. One has the relation

ϵμν ¼
1

κ
∇μχν; ð40Þ

where κ is the surface gravity defined as

κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
1

2
∇μχν∇μχν

r
: ð41Þ

In the presence of the Chern-Simons term which we
will define below in (48), the black hole entropy is given
in [27,28]

S ¼ 2π

μCS

Z
dxσΓν

μσϵ
μ
ν: ð42Þ

Using the first law of thermodynamics, we also compute
the mass of the static and rotating asymptotically locally
flat black holes. It is an interesting property of these
solutions that the angular velocity of the horizon Ω
vanishes and the first law becomes TdS ¼ dM. As a result,
there is no way to compute the angular momentum with the
help of the first law. For the K-gravity, it was computed in
[8]; however the angular momentum for the BIK theory
remains to be computed by a direct method.
To compute the entropy and the mass of black holes in

BIK gravity, we need the following expression

∂F
∂Rμν

¼ −σ
4γðF þ 1Þ

��
1 −

σ

γ
Rþ 1

2γ2

�
R2
ρσ −

1

2
R2

��
gμν

þ 2

γ

�
σ þ 1

2γ
R

�
Rμν −

2

γ2
RμρRρ

ν

�
: ð43Þ

For the static black hole (12) and the black flower (19), one
finds through the above methods

S ¼ πb
4G

; M ¼ b2

32G
; ð44Þ
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which are exactly the same values found for the K-gravity
[8]. K-gravity has a rotating solution ([11,29]) given as

ds2 ¼ −NFdu2 − 2N1=2dudrþ ðr2 þ r20Þðdϕþ NϕduÞ2;
ð45Þ

with

F ¼ br − μ; N ¼ ð8rþ a2bÞ2
64ðr2 þ r20Þ

;

Nϕ ¼ −
a
2

�
br − μ

r2 þ r20

�
; r20 ¼

a2

4

�
μþ a2b2

16

�
: ð46Þ

In [10], this solution is obtained by taking the flat-space
limit of NMG and a contracted conformal field theory with
the BMS3 symmetries is proposed as a dual description of
K-gravity. This is a type-Ds metric with the following
properties

~Rμν ¼ −
R
12

ðgμν − 3ξμξνÞ;

ξμ ¼
�
0;−

1

2
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

r20 þ r2

s
;−

a2b
8

− r

�
;

ξμξ
μ ¼ 1: ð47Þ

With this form of the Ricci tensor, one can show that the
rotating metric, remarkably, also solves the BIK gravity
with a lot more complicated field equations. Calculation of
the entropy and the mass also yields the same result as the
static and the black flower cases (44).
Before we move on to the Chern-Simons extensions

of these theories, let us note that K-gravity admits a

second Born-Infeld type extension with Mð2Þ
μν ¼ gμνþ

σ
γ ðRμν − 1

6
gμνRÞ.

B. Topologically extended K-gravity and BIK gravity

The Lagrangian density of topologically extended
K-gravity [6]

L ¼ ffiffiffiffiffiffi
−g

p �
1

16πG

�
RμνRμν −

3

8
R2

�

þ 1

2μCS
ημναΓβ

μσ

�
∂νΓσ

αβ þ
2

3
Γσ

νλΓλ
αβ

��
: ð48Þ

Let us calculate the mass and entropy of the static and
rotating black holes.
(1) The theory has an asymptotically flat black hole

solution. Using the static and asymptotically locally
flat metric (12), one can obtain

S ¼ πb
4G

; M ¼ b2

32G
: ð49Þ

(2) The theory has a rotating black hole solution. Using
the rotating asymptotically locally flat metric (45),
one can obtain

S ¼ πb

�
1

4G
þ 2πa

μCS

�
; M ¼ b2

�
1

32G
þ 3πa
4μCS

�
:

ð50Þ

The Lagrangian density of topologically extended BIK
gravity

L ¼ ffiffiffiffiffiffi
−g

p �
−

γ2

4πG

�
FðR;K; SÞ þ σ

4γ
R

�

þ 1

2μCS
ημναΓβ

μσ

�
∂νΓσ

αβ þ
2

3
Γσ

νλΓλ
αβ

��
; ð51Þ

has the same entropy and mass expressions for these
solutions. Hence the Chern-Simons term does its job and
changes the thermodynamics and conserved charges of the
rotating solution. Note that naively, for a choice of the
Chern-Simons parameter μCS, the mass or the entropy of
the black hole vanishes.

IV. CONCLUSION

In this work we have studied the recently found
asymptotically flat black holes (static ones, rotating ones,
the black flowers) and the dynamical space-times of purely
quadratic part of the three dimensional new massive
gravity. After identifying their types, according to the
traceless Ricci tensor, we were able to upgrade these
solutions to the Born-Infeld extension of the same theory
which in principle has infinite powers of curvature. As
expected, static black hole, rotating black hole and the
black flower are type-D, albeit with a spacelike vector,
hence do not appear as solutions to Einstein’s theory
coupled to perfect “physical fluids.” Dynamical black
flower is of type-II representing the appearance static
black hole in the far future either forming due to the
infalling gravitons or outgoing gravitons from a black hole.
We also gave some new type-N solutions.
By dissecting the quadratic part of the field equations of

new massive gravity into two tensors one of which vanishes
for conformally Einstein spaces and one of which is purely
algebraic in the powers of the curvature, one understands
better how these rather rare curiosities arise in the claustro-
phobic theoretical lab of 2þ 1 dimensions. The fact that
these solutions are conformally flat allows us to extend
them trivially to be solutions of Chern-Simons Lagrangian
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added versions of the same theories. Even though the
solutions are intact, the conserved charges and the entropy
get corrections from the Chern-Simons term which com-
puted. An exhaustive reach for all solutions with nontrivial
3D Bach tensor (namely, Hμν ≠ 0) also needs to be done
in the K-gravity and the BIK gravity along the lines of
done for the new massive gravity and other extended 3D
theories [15,30–33].
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