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We investigate a constraint on reheating followed by α-attractor-type inflation (the E-model and
T-model) from an observation of the spectral index ns. When the energy density of the Universe is
dominated by an energy component with the cosmic equation-of-state parameter wre during reheating, its
e-folding number Nre and the reheating temperature Tre are bounded depending on wre. When the reheating
epoch consists of two phases—where the energy density of the Universe is dominated by uniform inflaton
field oscillations in the first phase and by relativistic nonthermalized particles in the second phase—we find
a constraint on the e-folding number of the first oscillation phase, Nsc, depending on the parameters of the
inflaton potential. For the simplest perturbative reheating scenario, we find the lower bound for a coupling
constant of inflaton decay in the E-model and T-model depending on the model parameters. We also find a
constraint on the α parameter, α≳ 0.01, for the T-model and E-model when we assume a broad resonance
reheating scenario.
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I. INTRODUCTION

Inflation is a key to exploring the beginning of the
Universe. There are various inflation models. However,
recent precise observations of the cosmic microwave
background and the large-scale structure of galaxies impose
useful constraints on inflation models [1]. The combination
of constraints on the spectral index ns and the scalar-tensor
ratio r excludes the simplest single power-law potential
models. A class of inflation models that is consistent with
observations is the α-attractor-type models, which were
recently proposed in a unified manner [2–10]; they include
the Starobinsky model [11,12] (cf., Refs. [13–16]) and the
Higgs inflation model [17–21].
Reheating after inflation is important for the inflation

model itself as a mechanism to realize the hot big bang
Universe. The energy of an inflaton field is converted to
thermal radiation during a reheating epoch by processes
that may include the physics of particle creation and
nonequilibrium phenomena. Reheating processes have
been investigated in many studies (e.g., Refs. [22–29]),
in which successful scenarios of preheating and subsequent
thermalization processes were discussed; however, many
uncertainties still remain (see, e.g., Refs. [30,31] for a
review).
Some authors recently investigated a constraint on the

reheating epoch [32–34] that uses a recent precise con-
straint on the spectral index ns [1]. The authors of
Refs. [32–34] investigated constraints on the e-folding
number and reheating temperature depending on the
effective equation-of-state parameter of the reheating
epoch. In this paper, we investigate the constraint on the

reheating epoch of the α-attractor-type inflation models.
The authors of Ref. [34] investigated the constraint on the
reheating epoch in the Higgs inflation model; however, our
investigations focus on a wider class of α-attractor-type
models, the E-model and T-model [35,36], which are
consistent with the observations. Some aspects of reheating
followed by the E-model and T-model were investigated in
Ref. [37] by introducing a phase diagram, but we examine
this problem from a different perspective.
In our investigation, our approach to a constraint on

reheating differs from those of Refs. [32–34,37]. These
previous works assumed that the Universe is dominated by
an energy density with a constant equation-of-state param-
eter wre. In this work, we consider a reheating epoch
consisting of two phases. The first phase is an epoch in
which the energy of the Universe is dominated by uniform
inflaton field oscillations (the oscillation phase), and the
second phase is an epoch in which the Universe is
dominated by relativistic but nonthermalized particles
produced by decay of the inflaton field (the thermalization
phase). Our analysis constrains the e-folding number of the
oscillation phase using an observation of the spectral index
ns, which we use to discuss constraints on a parameter of
the inflaton potential and a coupling constant for inflaton
decay depending on two reheating scenarios.
This paper is organized as follows. In Sec. II, we briefly

review how to constrain the e-folding number of reheating
and the reheating temperature using an observational
constraint on the spectral index ns. In Sec. III, we
investigate a constraint on the reheating epoch in a
single-field α-attractor model, assuming that the reheating
epoch is dominated by an energy component with the
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equation-of-state parameter wre. We demonstrate that our
result is consistent with previous results. In Sec. IV, we
consider a reheating epoch consisting of the two phases,
i.e., the scalar field oscillation phase and the thermalization
epoch. In Sec. V, we discuss the impacts of our results on
two reheating scenarios. Section VI presents a summary
and conclusions. We adopt the convention M2

pl ¼ 1=8πG,
where G is the gravitational constant.

II. CONSTRAINT ON REHEATING

We briefly review how to constrain the e-folding number
of reheating Nre and the reheating temperature Tre using
an observational constraint on the spectral index ns
[32–34,37]. We consider a single-field inflation model
with a potential VðϕÞ, which obeys

ϕ̈þ 3
_a
a
_ϕþ ∂V

∂ϕ ¼ 0; ð1Þ

where the dot indicates differentiation with respect to
cosmic time, and a is the scale factor determined by the
Friedmann equation:

�
_a
a

�
2

¼ 1

3M2
pl

�
_ϕ2

2
þ VðϕÞ

�
: ð2Þ

Adopting the slow-roll approximation during inflation, the
above equations are approximated as

3H _ϕþ V 0ðϕÞ ¼ 0; ð3Þ

H2 ¼ VðϕÞ
3M2

pl

; ð4Þ

where the prime denotes differentiation with respect to ϕ,
and H ¼ _a=a is the Hubble parameter. Introducing the
slow-roll parameters,

ϵ ¼ 1

2

�
MplV 0

V

�
2

; ð5Þ

η ¼ M2
plV

00

V
; ð6Þ

wemay write the spectral index and tensor-to-scalar ratio as

ns ¼ 1 − 6ϵþ 2η; ð7Þ

r ¼ 16ϵ; ð8Þ

and the energy density during the inflation epoch is written
as ρ ¼ ð1þ ϵ=3ÞV. We define the end of inflation as
ϵ ¼ 1, at which the energy density of the Universe can
be written as

ρend ¼
4

3
VðϕendÞ ¼

4

3
Vend; ð9Þ

where ϕend is the value of the scalar field at the end of
inflation. The e-folding number between horizon crossing
of a perturbation of wave number k and the end of inflation
is estimated as

Nk ¼ ln

�
aend
ak

�
¼ −

1

M2
pl

Z
ϕend

ϕ

V
V 0 dϕ; ð10Þ

where ak and aend are the scale factors at horizon crossing
of a perturbation of wave number k and at the end of
inflation, respectively (see Fig. 1).

FIG. 1. Sketch of the evolution of the Hubble horizon distance H−1 (solid curve) from the inflation epoch to the present epoch as a
function of the scale factor a. The long dashed line shows the evolution of the physical wavelength of a perturbation with the comoving
wave number k. Here a logarithmic scale is adopted for both axes. ak, aend, aeq, are, and a0 are the scale factors at horizon crossing during
inflation, at the end of inflation, at the equal time during reheating, at the end of reheating, and at the present epoch, respectively. The left
and right panels illustrate the assumptions in Secs. III and IV, respectively. In the present paper, we adopt k ¼ 0.05 Mpc−1.
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Following previous works [32–34,37], we first assume
that during the reheating epoch, the Universe is dominated
by an energy component with an effective equation-of-state
parameter wre. At the end of the reheating epoch, we
assume that the energy density of the Universe is written as

ρre ¼
π2gre
30

T4
re; ð11Þ

where Tre is the reheating temperature, and gre is the
number of internal degrees of freedom of relativistic
particles at the end of reheating, which we assume to be
gre ¼ Oð100Þ. Defining the scale factor at the end of
reheating, are, then, we can write the e-folding number
of the reheating epoch,

Nre ¼ ln

�
are
aend

�
¼ −

1

3ð1þ wreÞ
ln

�
ρre
ρend

�
; ð12Þ

where are is the scale factor at the end of reheating.
Using an observational constraint on the spectral index

of the initial curvature perturbations, we can constrain the
e-folding number Nre and the effective equation-of-state
parameter wre of the reheating epoch. The horizon crossing
of a perturbation with the wave number k occurs at
akHk ¼ k, where ak and Hk are the scale factor and
Hubble parameter, respectively, at horizon crossing during
inflation. Then, we can write

0 ¼ ln

�
k

akHk

�
¼ ln

�
aend
ak

are
aend

a0
are

k
a0Hk

�
; ð13Þ

where a0 is the scale factor at the present epoch. Using the
definitions (10) and (12), Eq. (13) yields

Nk þ Nre þ ln

�
a0
are

�
þ ln

�
k

a0Hk

�
¼ 0: ð14Þ

The geometrical meaning of Eq. (14) is the equality in the
lengths lx ¼ ly in the left panel of Fig. 1.
From the conservation of entropy, we may write

are
a0

¼
�

43

11gre

�
1=3 T0

Tre
; ð15Þ

where T0 ¼ 2.725 K is the temperature of the Universe at
the present epoch. Using Eq. (11), Eq. (15) is rewritten as

are
a0

¼
�

43

11gre

�
1=3

T0

�
π2gre
30ρre

�
1=4

: ð16Þ

Furthermore, using Eqs. (9) and (12), we have

ρre ¼
4

3
Vend

�
are
aend

�
−3ð1þwreÞ ¼ 4

3
Vende−Nre3ð1þwreÞ: ð17Þ

Then, the logarithm of Eq. (16) yields the following
expression in terms of Nre:

ln

�
are
a0

�
¼ 1

3
ln

�
43

11gre

�
þ 1

4
ln

�
π2gre
30

�
þ 1

4
ln

�
3T4

0

4Vend

�

þ 3Nreð1þ wreÞ
4

: ð18Þ

Using the amplitude of the scalar perturbations,
As ¼ H4=ð4π2 _ϕ2Þ, and the slow-roll approximation, we
may write

Hk ¼
πMpl

ffiffiffiffiffiffiffi
rAs

p
ffiffiffi
2

p : ð19Þ

Inserting Eqs. (18) and (19) into Eq. (14), we finally have

Nre ¼
4

1 − 3wre

�
−Nk − ln

�
k

a0T0

�
−
1

4
ln

�
40

π2gre

�

−
1

3
ln
�
11gre
43

�
þ 1

2
ln
�
π2M2

plrAs

2V1=2
end

��
: ð20Þ

In our analysis, we adopt the amplitude of the scalar
perturbation at the pivot scale As given by 1010As ¼ e3.064

(Table 4 of Ref. [38]) and k ¼ 0.05 Mpc−1 as a pivot wave
number. Combining Eqs. (9), (12), and (15), we also have

Tre ¼ exp

�
−
3

4
ð1þ wreÞNre

��
2Vend

5π2

�
1=4

: ð21Þ

Because the wave number k and ns are related implicitly
through the scalar field ϕ with Hkak ¼ k [Eqs. (7) and
(10)], one can write Nre and Tre as functions of the spectral
index ns.

III. SINGLE-FIELD α ATTRACTORS

In this paper, we focus on a class of single-field inflation
models of the α-attractors in a unified manner [7–9], which
includes Starobinsky’s R2 inflation model [11,12] and the
Higgs inflation model [17–21]. This class of inflation
models can be generated by spontaneously breaking the
conformal symmetry [2,4,35,36]. In this paper, we consider
the E-model and T-model as generalized models of α
attractors, which are specified by the potentials (23) and
(27), respectively. Starobinsky’s model corresponds to the
E-model with α ¼ 1 and n ¼ 1 in Eq. (23). Single power-
law inflation models are reproduced as the limit of large α.
The authors of Ref. [1] demonstrated that the α-attractor

models are consistent with observations of the cosmic
microwave background anisotropies. For rough consis-
tency with the observed tensor-to-scalar ratio, we require
that the parameter α is less than Oð100Þ. In Figs. 4–6, the
shaded region in each panel is excluded from the constraint
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on the scalar-tensor ratio. We first investigate constraints on
reheating after an inflation of the E-model and T-model by
following previous works [32–34,37]. To this end, we
adopt

ns ¼ 0.9667� 0.0040 ð22Þ
(see Table 4 in Ref. [38]).

A. E-model

The E-model is specified by the potential [35,36]

V ¼ Λ4
�
1 − e

−
ffiffiffi
2
3α

p
ϕ

Mpl

�
2n
; ð23Þ

where Λ, n, and α are the parameters. Using the slow-roll
approximation, we find the expressions for the spectral
index and the tensor-to-scalar ratio,

ns ¼ 1 −
8n

�
e

ffiffiffi
2
3α

p
ϕ

Mpl þ n
�

3α
�
e

ffiffiffi
2
3α

p
ϕ

Mpl − 1
�
2
; ð24Þ

r ¼ 64n2

3α
�
e

ffiffiffi
2
3α

p
ϕ

Mpl − 1
�
2
; ð25Þ

and for the e-foldings as functions of ϕ from Eq. (10),

Nk ¼ −
3α

4n

�
e

ffiffiffi
2
3α

p
ϕend
Mpl − e

ffiffiffi
2
3α

p
ϕ

Mpl þ
ffiffiffiffiffiffi
2

3α

r
ϕ − ϕend

Mpl

�
: ð26Þ

Thus, we can write Tre andNre as functions of ns, regarding
ϕ as an implicit parameter.
Figure 2 plots Nre (upper panels) and Tre (lower panels)

as functions of ns, where we fix n ¼ 1. The left, central,
and right panels adopt α ¼ 0.1, 1, and 5, respectively. The
curves in each panel represent different equation-of-state
parameters wre: −1=3 (red curve), 0 (blue curve), 1=6
(orange curve), and 2=3 (green curve). Our result for n ¼ 1
is the same as that in Ref. [34].
The yellow region shows the observational constraint on

ns, Eq. (22). Note that for a set of the parameters wre, n, and

α, there appears the maximum value NðmaxÞ
re so that the

curve of Nre is consistent with the observational constraint
on ns. For example, in the central panels, which assume
n ¼ 1 and α ¼ 1, the maximum values are Nre ¼ 8, 15, 30,
and 40, respectively, for wre ¼ −1=3; 0; 1=6, and 2=3.

B. T-model

The T-model is specified by the potential [4,35,36]

V ¼ Λ4tanh2n
�

ϕffiffiffiffiffiffi
6α

p
Mpl

�
; ð27Þ
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FIG. 2. Nre (upper panels) and Tre (lower panels) as functions of ns for the E-model with n ¼ 1 and α ¼ 0.1 (left panels), α ¼ 1
(central panels), and α ¼ 5 (right panels). In each panel, the curves represent different equation-of-state parameters wre: −1=3 (red
curve), 0 (blue curve), 1=6 (orange curve), and 2=3 (green curve). Yellow regions indicate the observational constraint, Eq. (22). In each
panel, the point at which the four curves intersect—which corresponds to instant reheating—gradually moves from left to right as the
value of α increases. The light purple and dark purple regions in the lower panels show temperatures below the electroweak scale,
T < 100 GeV, and the big bang nucleosynthesis scale, T < 10 MeV, respectively. For consistency with big bang nucleosynthesis,
Tre ≳ 10 MeV.
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where Λ, n, and α are the parameters. Within the slow-roll
approximation, we find expressions for the spectral index,
tensor-to-scalar ratio, and e-foldings as functions of ϕ:

ns ¼ 1 −
1

3α

�
8nð1þ nÞcsch2

ffiffiffiffiffiffi
2

3α

r
ϕ

Mpl

þ 4nsech2
ffiffiffiffiffiffi
1

6α

r
ϕ

Mpl

�
; ð28Þ

r ¼
64n2csch2

ffiffiffiffi
2
3α

q
ϕ
Mpl

3α
; ð29Þ

Nk ¼ −
3α

4n

�
cosh

ffiffiffiffiffiffi
2

3α

r
ϕend

Mpl
− cosh

ffiffiffiffiffiffi
2

3α

r
ϕ

Mpl

�
: ð30Þ

Figure 3 is the same as Fig. 2 but for the T-model; Nre
(upper panels) and Tre (lower panels) are plotted as
functions of ns, where we fix n ¼ 1. In the left, central,
and right panels, α ¼ 0.1, 1, and 5, respectively. In each
panel, the curves represent different equation-of-state
parameters wre: −1=3 (red curve), 0 (blue curve), 1=6
(orange curve), and 2=3 (green curve).

IV. TWO-PHASE REHEATING MODEL

In this section, we consider a simple scenario of
reheating that consists of two phases. The first is an epoch
in which the energy density of the Universe is dominated by
uniform oscillations of the inflaton field (the oscillation

phase), and the second is an epoch in which the Universe is
dominated by relativistic but nonthermalized particles
produced by decay of the inflaton field (the thermalization
phase). Figure 1 illustrates the difference between the
assumption of this section and that of the previous section.
In the oscillation phase, the scalar field and scale factor
follow Eqs. (1) and (2), respectively. When the scalar field
oscillates around the minimum, which is approximated as

V ¼ Λ4

�
2

3αM2
pl

ϕ2

�
n

ð31Þ

and

V ¼ Λ4

�
1

6αM2
pl

ϕ2

�
n

ð32Þ

for the E-model and T-model, respectively, the equation-of-
state parameter of the scalar field is expressed in terms of
the parameter n. When the time scale of oscillation about
the minimum is small, the virial theorem predicts that the
energy density of the oscillating scalar field has the
equation-of-state parameter

wsc ¼
n − 1

nþ 1
ð33Þ

for a potential V ∝ ϕ2n around the minimum [29]. One can
check the validity of this formula by numerical solutions for
an expanding universe. This is because the period of
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FIG. 3. Same as Fig. 2 but for the T-model. We fix n ¼ 1 and α ¼ 0.1 (left panels), α ¼ 1 (central panels), and α ¼ 5 (right panels). In
each panel, the curves represent different equation-of-state parameters wre:−1=3 (red curve), 0 (blue curve), 1=6 (orange curve), and 2=3
(green curve).
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oscillation is small compared to the Hubble time. Thus, the
first oscillation phase of reheating is characterized by
coherent oscillations of inflaton, in which the energy
density is specified by the equation-of-state parameter
wsc in Eq. (33).
During the oscillation phase, light relativistic particles

are produced gradually by a certain mechanism.We assume
that the energy density of the oscillating field and the
energy density of relativistic particles become equal at the
scale factor aeq and that the relativistic particle component
dominates the energy density of the Universe after aeq.
However, the thermalization process might not be com-
pleted quickly. Then, the second phase of reheating is for
thermalization. We assume that the thermalization phase
continues until the scale factor becomes are, at which the
temperature of the Universe is Tre and the energy density is
given by Eq. (11). Then, the e-folding number of the
reheating epoch is written as a combination of the two
phases:

Nre ¼ ln

�
are
aend

�
¼ ln

�
are
aeq

aeq
aend

�
¼ Nsc þ Nth; ð34Þ

where we defined

Nsc ¼ ln

�
aeq
aend

�
¼ −

1

3ð1þ wscÞ
ln

�
ρeq
ρend

�
; ð35Þ

Nth ¼ ln

�
are
aeq

�
¼ −

1

4
ln

�
ρre
ρeq

�
; ð36Þ

and Nsc and Nth are the e-folding numbers for the
oscillation phase and thermalization phase, respectively.
On the basis of this assumption, we repeat the compu-

tation in Sec. II, which yields the following expressions
instead of Eqs. (20) and (21):

Nsc ¼
4

1 − 3wsc

�
−Nk − ln

�
k

a0T0

�
−
1

4
ln

�
40

π2gre

�

−
1

3
ln

�
11gre
43

�
þ 1

2
ln

�
π2M2

plrAs

2V1=2
end

��
; ð37Þ

TreeNth ¼ exp

�
−
3

4
ð1þ wscÞNsc

��
2Vend

5π2

�1
4

: ð38Þ

Note that the expression for Nsc is equivalent to Nre in
Eq. (20) and that the reheating temperature is modified by
the e-folding number of thermalization Nth, but TreeNth is
the same as the right-hand side of Eq. (21).
As we described in the previous section, a maximum

e-folding number appears for consistency with the con-
straint on ns. From Eq. (37), for the two-phase reheating
model, we obtain the maximum e-folding number for Nsc,
which is the same as that for Nre, when we fix α, n, and wsc
instead of wre. In addition, from Eq. (38), we obtain the
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FIG. 4. The red solid curve is the maximum value of Nsc (upper panels) and the minimum value of log10ðTre=GeVÞ þ Nthlog10e
(lower panels) as a function of α for the E-model with n ¼ 1=2 (left panel), n ¼ 3=4 (central panel), and n ¼ 1 (right panel). The dashed
curve in the left panels shows the minimum value of Nsc and the maximum value of log10ðTre=GeVÞ þ Nthlog10e. The brown line in the
upper panels shows the e-folding number forN osc ¼ 20 oscillations, which is required for broad resonance preheating. The light shaded
region in the central and right panels is excluded from the observational constraint on the tensor-to-scalar ratio r.
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minimum reheating temperature. Note that TreeNth in the
two-reheating-phase model is the same as the right-hand
side of Eq. (21); therefore, we obtain the minimum
reheating temperature, log10Tre þ Nthlog10e, in this case.
Figure 4 shows the maximum value ofNsc (upper panels)

and log10ðTre=GeVÞ þ Nthlog10e (lower panels) as func-
tions of α with n ¼ 1=2 (left panels), n ¼ 3=4 (central
panels), and n ¼ 1 (right panels) for the E-model. Figure 5
is the same as Fig. 4 but for the T-model.

V. IMPACT ON REHEATING SCENARIOS

In this section, we discuss the impacts of the results in
the previous section on reheating scenarios by comparing
the results with theoretical predictions. We may consider
two types of interaction between an inflaton field ϕ and a
light scalar field χ,

Lð4Þ
I ¼ −

1

2
~g2ϕ2χ2 ð39Þ

and

Lð3Þ
I ¼ −gϕχ2; ð40Þ

which describe χ-particle production through the processes
ϕþ ϕ → χ þ χ and ϕ → χ þ χ, respectively, where ~g and g
are their respective coupling constants.

A. Perturbative reheating

We first consider a scenario in which effective resonant
particle creation does not occur. We consider the perturba-
tive reheating scenario as an elementary reheating scenario

in which inflatons decay perturbatively through the inter-
action (40). In this case, the evolution of the number density
of inflatons is described by

dða3nϕÞ
dt

¼ −Γϕ→χχða3nϕÞ; ð41Þ

where the decay rate Γϕ→χχ , described through the inter-
action in Eq. (40), is

Γϕ→χχ ¼
g2

8πmϕ
; ð42Þ

where mϕ is the inflaton’s mass. Assuming that the back-
ground Universe is dominated by the energy density of
inflaton oscillation, which might be treated as a fluid with
the equation-of-state parameter wsc in Eq. (33), the
Friedmann equation is

_a2

a2
¼ ρend

3M2
pl

�
a

aend

�
−6n=ð1þnÞ

: ð43Þ

The above e-folding of perturbative reheating is simply
understood as follows. We may estimate the epoch of
χ-particle decay as

H ¼ Γϕ→χχ ; ð44Þ

which yields

�
aeq
aend

�
3n=ð1þnÞ

¼ 8πmϕ

g2Mpl

ffiffiffiffiffiffiffiffi
ρend
3

r
¼ 16πmϕ

3g2Mpl
V1=2
end ; ð45Þ
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FIG. 5. Same as Fig. 4 but for the T-model.
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where we used Eq. (9) in the second equality. We may write
Vend ∼ Λ4ð2=3αÞn and Vend ∼ Λ4ð1=6αÞn for the E-model
and T-model, respectively; then, we have the following
expressions for the e-folding number, defined by
eNsc ¼ aeq=aend:

Nsc ¼ −
nþ 1

3n
ln

�
3Mpl

16πmϕ

�
g
Λ

�
2
�
3α

2

�
n=2

�
; ð46Þ

Nsc ¼ −
nþ 1

3n
ln

�
3Mpl

16πmϕ

�
g
Λ

�
2

ð6αÞn=2
�

ð47Þ

for the E-model and T-model, respectively. This puts a
useful constraint on the coupling constant g for a successful
perturbative reheating scenario that is consistent with the
observational constraint obtained in the previous section.
When we choose mϕ ¼ 1013 GeV and define

g
Λ
¼ 10β−15; ð48Þ

we have

β ≳ 12.9 − nγ − 0.65
n

nþ 1
Nsc −

n
4
log10α; ð49Þ

where γ ¼ 0.044 and γ ¼ 0.19 for the E-model and
T-model, respectively. Figure 6 shows the minimum value
of β as a function of α for the E-model (left panel) and
T-model (right panel) with n ¼ 1. For example, β > 7.9
for the E-model with α ¼ 1 and Λ ¼ 1015 GeV. For the
T-model with α ¼ 1 and Λ ¼ 1015 GeV, for successful
perturbative reheating, β > 9.4 is imposed.

B. Broad resonance preheating

After the end of slow-roll inflation, the inflaton field ϕ
oscillates around a potential minimum, which is assumed to
be approximated by Eqs. (31) and (32) for the E-model and

T-model, respectively. When n ¼ 1, these potentials are the
harmonic potential, and we may assume that the oscillation
of ϕðtÞ is approximated by

ϕðtÞ≃ Φ sinmϕt; ð50Þ
where Φ is the amplitude of the oscillation, and mϕ is
understood as mϕ ¼ 2Λ2=

ffiffiffiffiffiffi
3α

p
Mpl and mϕ ¼ Λ2=

ffiffiffiffiffiffi
3α

p
Mpl

for the E-model and T-model, respectively. When n ≠ 1,
the oscillation of ϕðtÞ is not approximated by such a simple
function.
We here consider a resonant particle production scenario

that was intensively investigated by Kofman et al. [26] (see
also Ref. [27]). The equations of motion for a Fourier mode
of the χ field are

χ̈kðtÞ þ 3
_a
a
_χkðtÞ þ

�
k2

a2
þm2

χ þ ~g2ϕ2ðtÞ
�
χk ¼ 0 ð51Þ

and

χ̈kðtÞ þ 3
_a
a
_χkðtÞ þ

�
k2

a2
þm2

χ þ 2gϕðtÞ
�
χk ¼ 0 ð52Þ

for the interactions in Eqs. (39) and (40), respectively.
This scenario of reheating relies on resonant particle

creation due to the periodic time-dependent background at
the earlier stage of reheating, which is called preheating.
Particle creation effectively occurs when the Wentzel-
Kramers-Brillouin approximation breaks down, which
occurs at cos 2mϕt ∼ 0 or sinmϕt ∼ 0, depending on the
interaction. We follow this scenario (see Ref. [12] for a
review). We first consider the four-point interaction. After
N osc oscillations of the inflaton field around the minimum,
the ratio of the number density of χ particles to that during
inflaton is estimated as

nχ
nϕ

∼
k3�nkðN oscÞ

1
2
mϕΦ2

0

∼m1=2
ϕ ~g3=23N oscΦ−1=2

0 ; ð53Þ

where we choose k� ¼ m3
ϕð~gΦ0=mϕÞ3=2, and Φ0 is the

inflaton’s oscillation amplitude, which we take to be
Φ0 ∼Mpl. Using this relation, we can estimate the
ratio of the energy density of χ particles to that during
inflation as

ϵχ
ϵϕ

∼
mχnχ
mϕnϕ

∼ ~g5=2m−1=2
ϕ N −1

osc3
N oscΦ1=2

0 ; ð54Þ

where we assumed mχ ¼ OðmϕÞ ¼ Oð~gΦÞ ∼ ~gΦ0=N osc.
Then ϵχ ≃ ϵϕ appears after N osc oscillations,

N osc ≃ 12–30; ð55Þ

for a wide range of 10−5 < ~g < 10−3, where we assumed
mϕ ¼ 1013 GeV. Here we compute the e-foldings to realize

FIG. 6. The blue curve is the minimum value of β for the
coupling constant g=Λ ¼ 10β−15 as a function of α for the
E-model (left panel) and the T-model (right panel). Here we
adopted n ¼ 1 and mϕ ¼ 1013 GeV. Note that the coupling
constant is defined so as to be g ¼ 10β GeV when we choose
Λ ¼ 1015 GeV.
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N osc ¼ 20 inflaton oscillations; this yields the minimum
duration required for successful preheating. The e-folding
number for N osc ¼ 20 oscillations is of order Oð1 ∼ 2Þ.
Then we may write Nsc ≳Oð1–2Þ. A more explicit value is
obtained by solving Eqs. (1) and (2). χ particles can decay
into other lighter particles quickly, which do not directly
couple to the inflaton [39]. The brown line in the upper
panels of Figs. 4 and 5 shows the value of Nsc for a broad
resonance preheating scenario with N osc ¼ 20. For the
interaction in Eq. (40), the estimation is essentially the
same as the above estimation of the interaction in Eq. (39).
When we also consider the constraint in the previous

section, for consistency with the broad resonance preheat-
ing scenario, we need the rough condition

α ≳ 0.01: ð56Þ

VI. SUMMARY AND CONCLUSIONS

We investigated a constraint on the reheating epoch
using an observational constraint on the spectral index ns,
in which we assumed the E-model and T-model as
generalized α-attractor models of inflation. When the
reheating epoch is dominated by an energy component
of the cosmic equation-of-state parameter wre, the e-folding
number for reheating, Nre, is bounded depending on wre,

which also limits the reheating temperature Tre. Assuming
that the reheating consists of two phases, an oscillation
phase and a thermalization phase, we investigated the
e-folding number of the oscillation phase Nsc and the
reheating temperature Tre, depending on the equation-of-
state parameter wsc, which is determined by the potential.
Nsc is constrained by the observational constraint on ns,
and the allowed regions of Nsc and Tre were obtained in
Sec. IV. For example, we found Nsc ≲ 16 and TreeNth ≳
1010 GeV for the E-model with n ¼ 1 and α ¼ 1, whereas
Nsc ≲ 10 and TreeNth ≳ 1012 GeV for the T-model with
n ¼ 1 and α ¼ 1. We discussed the implications of our
results for two simple reheating scenarios. For the simplest
perturbative reheating scenario, the ratio of the coupling
constant g for a decay to the mass scale of the potential of
inflation Λ should be g≳ 107.9ðΛ=1015 GeVÞ GeV for the
E-model and g≳ 109.4ðΛ=1015 GeVÞ GeV for the T-model
for n ¼ 1 and α ¼ 1. Along a broad resonance preheating
scenario, the α parameter is roughly constrained, α≳ 0.01,
for the T-model and E-model.
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