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We discuss Born-Infeld type fields (tachyon fields) in classical and quantum cosmology. We first partly
review and partly extend the discussion of the classical solutions and focus in particular on the occurrence
of singularities. For quantization, we employ geometrodynamics. In the case of constant potential, we
discuss both Wheeler-DeWitt quantization and reduced quantization. We are able to give various solutions
and discuss their asymptotics. For the case of general potential, we transform the Wheeler-DeWitt equation
to a form where it leads to a difference equation. Such a difference equation was previously found in the
quantization of black holes. We give explicit results for the cases of constant potential and inverse squared
potential and point out special features possessed by solutions of the difference equation.
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I. INTRODUCTION

The recent discovery of cosmic acceleration [1] and the
searches for dark energy, which can be responsible for such
a phenomenon [2], have stimulated studies of different
cosmological models, some of them including exotic types
of fluids and fields. Among them are the so-called tachyon
cosmological models [3–8], which arise as a byproduct of
string theory [9]. The energy-momentum tensor of the
tachyon field has a negative pressure component which can
be used for the description of the cosmic acceleration. In
spite of the somewhat misleading name, these tachyon
fields represent a development of the old idea by Born and
Infeld [10] that the kinetic term of a field Lagrangian is not
necessarily a (quadratic) polynomial, but can contain a
square root of fields and their derivatives.
In the framework of modern cosmology, even more

general Lagrangians are employed, including some with
arbitrary functions of the kinetic terms [11]; these models
are known as k-essence models. From our point of view,
however, the Born-Infeld type fields look more natural,
because square-root Lagrangians arise in various parts of
modern theoretical physics. The classical dynamics of
tachyon dark energy models is rich and cannot only
describe cosmic acceleration but can also lead to new
types of future singularities which are of interest in
themselves [7,12,13].
The quantization of a Born-Infeld type of model

presents, however, some challenge. Let us address the
most popular quantization method for cosmological

models, which is the construction of the wave function
of the Universe satisfying the Wheeler-DeWitt equation
[14,15]. The main problem which one encounters there
when applying this framework to tachyonic models is the
appearance of the momentum operators under the square
root [16]. When we represent these operators as partial
derivatives of the field, we obtain nonlocal differential
operators, and one has to invoke sophisticated methods
for treating them. One possible method is to use the analogy
with the quantum mechanics of black holes and thin shells
developed in [17–20]. The corresponding Lagrangian
contains the time derivatives of the observables under
the square root, but the Hamiltonian depends on the
momentum by a hyperbolic cosine. After quantization,
this leads to a difference equation for the wave function,
which displays interesting features. In the case of cosmol-
ogy, the possible transition to difference equations does not
arise automatically but can be achieved by means of an
appropriate canonical transformation. We shall discuss
such equations in our paper.
Besides the tachyonic field, there are also other Born-

Infeld type fields called pseudotachyons [7] and quasi-
tachyons [12]. Such fields arise in a natural way in some
cosmological models. In the model considered in [7], a
particular potential containing the square root of a trigo-
nometrical function was chosen. The dynamical evolution
of the model can bring the Universe to a point where the
expressions inside of the two square roots, in the potential
and in the kinetic term, change sign simultaneously. Thus,
to provide a smooth cosmological evolution one is forced to
change the Lagrangian of the Born-Infeld type tachyon
field, transforming it into the pseudotachyon field. After
having crossed this point, the Universe evolves towards a
future cosmological singularity called “big brake.” This
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singularity is characterized by a finite value of the cosmo-
logical radius of the Universe, by a vanishing Hubble
parameter, and by an infinite value of the cosmic decel-
eration. Singularities of such kind are rather soft and can be
passed through [21]; the details of the passage of the big
brake singularity in the model [7] are described in [22]. In
[23], it was also noticed that the presence of dust matter in
these big brake models can create additional difficulties.
In [12], it was shown that these difficulties can be overcome
by means of another Born-Infeld type field—the quasi-
tachyon, which will be briefly mentioned in the next
section. Some global aspects of quantum cosmology
similar to the ones here were recently investigated in
[13,16,24–28]. These concern, in particular, the fate of
classical singularities.
The structure of the paper is as follows. In Sec. II, we

present the models for tachyonic and other Born-Infeld type
fields and discuss their behavior in classical cosmology. In
Sec. III, we address the quantum cosmology of these fields
in the Wheeler-DeWitt framework. Section IV is devoted to
the alternative approach of reduced quantization. In Sec. V,
we rewrite the Wheeler-DeWitt equation in the form of a
difference equation. We discuss various asymptotic forms
and show ways towards its solution. The last section
contains our conclusion.

II. TACHYONIC AND OTHER BORN-INFELD
TYPE FIELDS IN CLASSICAL COSMOLOGY

We shall work with flat Friedmann models given by the
metric

ds2 ¼ N2ðtÞdt2 − a2ðtÞdl2; ð1Þ

where NðtÞ is the lapse function and aðtÞ is the scale factor;
we choose a to have the dimension of a length.
The Lagrangian density for the spatially homogeneous

tachyon field T is

LT ¼ −VðTÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

_T2

N2

s
; ð2Þ

where VðTÞ is the tachyon potential and the dot means time
derivative. The tachyon T has the dimension of a length
(and thus is a geometric quantity), and V has the dimension
of a mass (energy) density; we set c ¼ 1.
The energy density of the tachyon field is

ρ ¼ VðTÞffiffiffiffiffiffiffiffiffiffiffiffi
1 − _T2

N2

q ; ð3Þ

while the pressure is

p ¼ −VðTÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

_T2

N2

s
: ð4Þ

We choose VðTÞ ≥ 0 to have non-negative energy den-
sities. We note that p ¼ −V2ðTÞ=ρ.
The total (minisuperspace) action is given by

S ¼ V0

Z
dt

0
B@−

3a _a2

κ2N
− Na3VðTÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

_T2

N2

s 1
CA; ð5Þ

where κ2 ≡ 8πG, G is the gravitational (Newton) constant.
The volume of three-space is V0a3, where V0 is a pure
number that is set equal to one below.
Choosing N ¼ 1, the total Lagrangian then reads

L ¼ −a3VðTÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − _T2

p
−
3a _a2

κ2
: ð6Þ

We have j _Tj ≤ 1 for the square root to stay real. From
(6), we get the equations of motion

äþ _a2

2a
−
aκ2V
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − _T2

p
¼ 0; ð7Þ

and

T̈

1 − _T2
þ 3H _T þ V 0ðTÞ

VðTÞ ¼ 0; ð8Þ

where H ¼ _a=a is the Hubble parameter, and a prime
denotes a derivative with respect to the tachyon T.
The canonical momenta read

pa ¼ −
6_aa
κ2

; pT ¼ a3V _Tffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − _T2

p : ð9Þ

We note that both pa and pT have dimension of a mass.
The usual Legendre transform then yields the Hamiltonian

H ¼ −
κ2

12

p2
a

a
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
T þ a6V2

q
; ð10Þ

which is, in fact, a constraint, H ¼ 0.
If expressed in terms of the velocities, this Hamiltonian

constraint gives the Friedmann equation

H2 ¼ _a2

a2
¼ κ2

3
ρ; ð11Þ

with ρ given by (3). Using (3) and (11) in (7), we get

ä ¼ −
κ2aV
2

3 _T2 − 2

3
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − _T2

p : ð12Þ
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With (3) and (4), this equation can be written in the
standard form

ä ¼ −
κ2

2
aðρþ 3pÞ: ð13Þ

Let us first consider the special case of constant
potential, VðTÞ ¼ V0 ¼ constant. In this case, T is a cyclic
variable and pT thus a constant. It was noticed in [4] that
the corresponding cosmological model is equivalent to a
cosmological model with a Chaplygin gas [29], which has
the equation of state

p ¼ −
V2
0

ρ
: ð14Þ

From (8) and (11), one can then find the following
equation for _T2:

_T2 ¼ 1

1þ ð aa�Þ6
; ð15Þ

where a� is an integration constant,

a� ≔
�
pT

V0

�1
3

:

We see that _T2 vanishes for a → ∞ and becomes equal to
one for a → 0 (big bang). Using again (11), (15) can be
integrated to yield the curve in configuration space; one
finds

TðaÞ ¼ 2κ−1
ffiffiffiffiffiffi
1

3V

r �
a
a�

�
3=2

2F1

�
1

4
;
3

4
;
5

4
;−
�
a
a�

�
6
�
;

ð16Þ

where 2F1 denotes a hypergeometric function; see e.g. [30],
Chap. 15.
The asymptotic solution for large a reads

TðaÞ ¼ 1

κ
ffiffiffiffiffiffiffiffi
3V0

p
�
a�
a

�
3

þ constant: ð17Þ

Figure 1 displays the configuration space trajectory (16).
From (3) and (4), we get the following expressions for

density and pressure:

ρðaÞ ¼ V0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
a�
a

�
6

s
; pðaÞ ¼ −

V2
0

ρðaÞ : ð18Þ

For a → 0, both expressions diverge (big bang), while
for large a, they become constants with p ≈ −ρ, thus
mimicking dark energy. We mention that for small a the
equation of state resembles the one for dust. This model

thus encodes a transition from a matter to a vacuum
dominated state, which is a feature observed in the real
Universe.
Plugging the expression (18) into the Friedman equa-

tion (11) yields

_a2 ¼ κ2V0

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a4 þ a6�

a2

s
; ð19Þ

which is solved by

ffiffiffiffiffiffiffiffiffiffi
κ2V0

3

r
ðt − t0Þ ¼

2a3

3a6�

�
a4 þ a6�

a2

�3
4

2F1

�
1; 1;

5

4
;−
�
a
a�

�
6
�

þ constant: ð20Þ

The plot of this trajectory is displayed in Fig. 2.
Also of interest is the model of an inverse square

potential, V ¼ V1=T2; see, for example [8,31]. This model
exhibits a particular solution with constant _T, describing a
universe that undergoes a power-law inflation [5,6]. This

FIG. 1. Plot of the configuration space trajectory (16) for the
tachyon model with constant potential.

FIG. 2. Plot of the general solution aðtÞ for the tachyon model
with constant potential.
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can be seen as follows. From (3), (8), and (11), one obtains
the dynamical system

d
dt

�
T

s

�
¼
� s

−ð1 − s2Þ V 0ðTÞ
VðTÞ − κs

ffiffiffiffiffiffiffiffiffiffiffiffiffi
3VðTÞp ð1 − s2Þ34

�
;

ð21Þ

where s ≔ _T. The corresponding flow diagram is depicted
in Fig. 3. One recognizes from the diagram that the
particular solution with constant _T serves as an attractor.
For other tachyon potentials, see for example [8].
We shall now address another type of Born-Infeld type

field called “pseudotachyon” which, as was explained in
the Introduction, naturally arises in cosmological models
[7]; it is less habitual than the tachyon model, but displays
some interesting theoretical features. Its Lagrangian density
reads

Lp ¼ WðTÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
_T2 − 1

p
: ð22Þ

The Friedmann equation and the Klein-Gordon-type equa-
tion are given by

H2 ¼ _a2

a2
¼ κ2

3

WðTÞffiffiffiffiffiffiffiffiffiffiffiffiffi
_T2 − 1

p ð23Þ

and

T̈

1 − _T2
þ 3H _T þW0ðTÞ

WðTÞ ¼ 0; ð24Þ

respectively. Energy density and pressure of the pseudo-
tachyon read

ρ ¼ WðTÞffiffiffiffiffiffiffiffiffiffiffiffiffi
_T2 − 1

p and p ¼ WðTÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
_T2 − 1

p
: ð25Þ

In this case, both the energy density and the pressure are
positive. When the potential is constant, WðTÞ ¼ W0 ¼
constant, this model coincides with a cosmological model
containing an anti-Chaplygin gas [7,25]; this is a perfect
fluid with the equation of state

p ¼ W2
0

ρ
: ð26Þ

A universe with an anti-Chaplygin gas represents the
simplest example of a cosmological evolution with a big
brake singularity. It is interesting that the equation of state
(26) arises in the theory of wiggly strings [32]. In Fig. 4, we
depict the trajectory aðtÞ and in Fig. 5 the trajectory in
configuration space. We see explicitly the occurrence of the
big brake singularity.
The Hamiltonian is readily obtained by a Legendre

transform,

H ¼ −
κ2

12

p2
a

a
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
T − a6W2

q
: ð27Þ

In the following, we consider the case of the inverse square
potential, W ¼ W1=T2. This does not seem to have been
discussed so far in this way. For simplicity, we set here
κ2=3 ¼ 1. Similarly to the corresponding tachyon model we
find solutions with constant _T. In this case, however, we have
two solutions _T�¼ 2

3β�
, where β2�¼ 1

9
ð2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4−81W2

1

p
Þ. In

order to get real solutions, we have to demand W1 ≤ 2
9
. The

scale factors for these two solutions are given by

FIG. 3. Flow diagram of the tachyon model with the inverse
square potential. Inside the grey shaded region, the universe
undergoes a decelerated expansion, while it accelerates outside

this region. The parameter β is given by β ¼ 1
9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9κ4V2

1 þ 4
pq

;

T is in arbitrary units of time.
FIG. 4. Plot of the general solution aðtÞ for the pseudotachyon
model with constant potential.
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a�ðtÞ ∝ t
3β2�
2 : ð28Þ

In the limiting case W1 ¼ 2
9
, the two solutions merge into

one. Analogously to the tachyon case, one can express the
dynamics in the form

d
dt

�
T

s

�
¼
� s

ðs2 − 1ÞW0ðTÞ
WðTÞ þ 3s

ffiffiffiffiffiffiffiffiffiffiffiffi
WðTÞp ðs2 − 1Þ34

�
:

ð29Þ

The flow chart for the case W1 <
2
9
is shown in Fig. 6. A

closer inspection reveals that all solutions emerge from a big
bang on the line determined by s ¼ 1 or the single point
ðT ¼ 0; s ¼ 2

3β−
Þ.Oneexplicitly sees that one of the particular

solutions (s ¼ 2
3βþ

) serves as an attractor, while the other one

(s < 2
3β−

) is repulsive. The solutions in the region T > 0, s <
2

3β−
are attracted to the particular solution with s ¼ 2

3βþ
,

cf. (28). All other solutions end in a big brake. In the limiting
case W1 ¼ 2

9
, the two particular solutions merge into one

metastable solution. For W1 > 2
9
(not shown here), the

particular solutions disappear, and all solutions end in a
big brake.
In the following, we shall explicitly show the presence of

the big brake singularity for a typical case. By defining

u ≔ lnð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
_T2 − 1

p
Þ, one can find from (29),

du
dT

¼ 1

T

h
3 sgnðTÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2W1 coshðuÞ

p
− 2
i
: ð30Þ

Integration then yields a parametrization of T in terms of its
time derivative _T,

T ¼ Tð _TrÞ exp
�
−
Z

lnð
ffiffiffiffiffiffiffiffi
_T2−1

p
Þ

lnð
ffiffiffiffiffiffiffiffi
_T2
r−1

p
Þ

du

2–3 sgnðTÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2W1 coshðuÞ

p �
;

ð31Þ

where Tð _TrÞ is the value of T at some reference value _Tr.
This parametrization can now be used to prove the
existence of the singularities.
To be specific, we consider the case W1 < 2

9
and the

solutions in the region where T > 0 and _T > 2
3β−

. We shall
now show by using suitable estimates of the integral in (31)
that T → 0 as _T → 2

3β−
and that T approaches a finite value

T∞ as _T → ∞; here, it is convenient to use _Tr ¼ ∞ as a
reference value. Expression (31) then becomes

T ¼ T∞ exp

�Z
lnð

ffiffiffiffiffiffiffiffi
_T2−1

p
Þ

∞

du

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2W1 coshðuÞ

p
− 2

�
: ð32Þ

If we divide the function inside the integral by the function

1

3
ffiffiffiffiffiffiffiffiffiffiffi
W1eu

p
− 2

; ð33Þ

the resulting function approaches 1 as u → ∞. The integral
of (33) over the same interval as in (32) is finite for _T > 2

3β−
.

Consequently, we can use the limit comparison test to
conclude that the expression (32) is well defined and
therefore T approaches a finite value T∞ as _T → ∞.
If we do the resubstitution u ¼ lnð

ffiffiffiffiffiffiffiffiffiffiffiffi
s2 − 1

p
Þ, the integral

in (32) assumes the form

Z
_T

∞

ds

ðs2 − 1Þð3s
ffiffiffiffiffiffiffiffiffiffi
W1ffiffiffiffiffiffiffi
s2−1

p
q

− 2Þ
: ð34Þ

If we now choose s ∈ ½s−; s− þ εÞ, where s− ≔ 2
3β−

and
ε > 0, we can estimate the integrand to be bigger than

FIG. 5. Plot of configuration space trajectory for the pseudo-
tachyon model with constant potential.

FIG. 6. Flow diagram of the pseudotachyon model with the
inverse square potential for the caseW1 <

2
9
; T is in arbitrary units

of time.
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1

ððs− þ εÞ2 − 1Þ34ð3 ffiffiffiffiffiffiffi
W1

p
s − 2ðs2− − 1Þ14Þ : ð35Þ

By noting that s− is a zero of the denominator, we conclude
that the integral of this expression over the interval
½s−; s− þ εÞ blows up to þ∞. Therefore, the integral in
(32) goes to −∞ as _T → 2

3β−
and thus T → 0. By estimating

that

T∞ ¼
Z

t∞

t0

dt _T > t∞ − t0; ð36Þ

with t∞ corresponding to T∞ and t0 corresponding to
T ¼ 0, we deduce that T grows from 0 to T∞ in a finite
amount of time. Later on, we show that this model
possesses a constant of motion, see (111) below. This
relation can be written as

a3 ¼ C
3W1

_T

T
ffiffiffiffiffiffiffiffi
_T2−1

p − 2H
; ð37Þ

where C is a positive constant. The considerations above
now yield, on the one hand,

a → 0; ρ → ∞ and p → ∞ as _T →
2

3β−
ð38Þ

(big bang) and, on the other hand,

a →
C

3W1

T∞; ρ → 0 and p → ∞ as _T → ∞

ð39Þ
(big brake). The limit p → ∞ now implies that ä → −∞,
and we finally conclude that the solutions start from a big
bang and end in a big brake.
In the case of constant potential, one can employ

conformal diagrams to illustrate the behavior of solutions.
Diagrams of this kind have been used in quantum cosmol-
ogy before; see, for example, [33]. Figure 7 shows the case
of the tachyon, while Fig. 8 shows the case of the
pseudotachyon field. The blue lines mark the trajectories
in the ða; pTÞ phase space corresponding to lines with
constant pT . Here, V0 ¼ W0 ¼ 1

2
, respectively.

In some particular cases, yet another Born-Infeld type
field can arise [12], with the Lagrangian density

Lq ¼ UðTÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_T2 þ 1

p
: ð40Þ

In this case, the energy density is negative, while the
pressure is positive. This field is called “quasitachyon.”
When UðTÞ ¼ U0 ¼ constant, the quasitachyon field
behaves like a Chaplygin gas with negative energy density

and positive pressure. In this paper, however, we shall
restrict attention to the tachyon and the pseudotachyon
fields.
We now turn to the quantum versions of the tachyon and

pseudotachyon models.

III. QUANTUM COSMOLOGY FOR
BORN-INFELD TYPE FIELDS

In spite of their apparently simple character, already the
models with constant potentials are rather complicated
from the point of view of quantum cosmology. In the
following, we shall discuss various approaches for their
quantization.
From (10), we get the following Wheeler-DeWitt equa-

tion for a universe filled with a tachyonic field [16],

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
T þ a6V2

q
−
p2
a

2a

�
ΨðT; aÞ ¼ 0; ð41Þ

FIG. 7. Phase space trajectories of the constant potential
tachyon field models. All solutions (except the one in the middle)
evolve out of a big bang singularity marked by the red star and
end in the point ða ¼ ∞; pTÞ.

FIG. 8. Phase space trajectories of the constant potential
pseudotachyon field models. All solutions evolve out of a big
bang singularity marked by the red star and end in a big brake
singularity at the edge of the grey shaded region, where the
Hamiltonian (27) becomes ill defined. In the case of a contracting
universe, the trajectories go along the same lines, starting from
the big brake towards the big crunch singularity.
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where ΨðT; aÞ is the quantum state of the universe and pT ,
T, a, and pa are now operators; here and in the following
we set κ2 ¼ 6.
Equations such as (41) are plagued by the factor-ordering

problem: there is no unique way to transform the classical
configuration and momentum variables into operators [15].
Here, we shall adopt a pragmatic attitude and choose a
simple factor ordering which facilitates the finding of
explicit solutions.
Usually, one implements a and T as multiplication

operators and pa and pT as derivative operators. In view
of the square root in (41), this is, however, a delicate issue.
But in the particular case of constant potential, we can use
the fact that the field T does not enter explicitly into the
Wheeler-DeWitt equation. Thus, we can use a momentum
representation for the tachyon and consider instead of the
wave function ΨðT; aÞ the wave function ΨðpT; aÞ (using,
for simplicity, the same letter). In this case, the operator pT
becomes multiplicative, and the Wheeler-DeWitt equation
acquires the form

� ∂2

∂a2 þ 2a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
T þ a6V2

0

q �
ΨðpT; aÞ ¼ 0: ð42Þ

We can look for a solution of (42) in the form

ΨðpT; aÞ ¼ ψðpT; aÞχðpTÞ; ð43Þ

where χðpTÞ denotes an arbitrary function of pT . In this
case, we arrive at

� ∂2

∂a2 þ 2a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
T þ a6V2

0

q �
ψðpT; aÞ ¼ 0; ð44Þ

where pT is a fixed parameter. The solutions of these
equations do not seem to belong to known special func-
tions, but we can consider some limiting cases. Namely, in
the case when the cosmological radius is small, we have

� ∂2

∂a2 þ 2ajpT j
�
ψðpT; aÞ ¼ 0: ð45Þ

The solution of this equation is known; it can be expressed
by means of Airy functions:

ψðpT; aÞ ¼ c1Aiðð−2jpT jÞ1=3aÞ þ c2Biðð−2jpT jÞ1=3aÞ:
ð46Þ

However, because (45) is valid only in the limit a → 0, we
need to take into account in the solution (46) only the
leading terms and rewrite it as

ψðpT; aÞ ¼ d1 þ d2a: ð47Þ

Because a ¼ 0 corresponds in the classical model to the big
bang, the question of singularity avoidance in quantum
cosmology can be addressed. DeWitt has proposed the
heuristic criterion that the wave function should vanish at
the point of the classical singularity [14]. This criterion
was implemented in the models discussed in [25–27].
If we adopt this criterion here, we have to demand that
ψðpT; 0Þ ¼ 0, that is, we have to choose d1 ¼ 0. For this
choice, then, the big bang singularity would be avoided in
the sense of DeWitt.
When a is very large, we get from (44) the following

equation:

� ∂2

∂a2 þ 2a4V0

�
ψðpT; aÞ ¼ 0: ð48Þ

Its solution can be expressed in terms of Bessel functions,

ψðpT; aÞ ¼ f1
ffiffiffi
a

p
J−1=6

� ffiffiffiffiffiffiffiffi
2V0

p
a3

3

�

þ f2
ffiffiffi
a

p
J1=6

� ffiffiffiffiffiffiffiffi
2V0

p
a3

3

�
: ð49Þ

(Recall that V0 ≥ 0.) This is the quantum solution that
corresponds to the asymptotic de Sitter phase of the
classical solution, which is well known from the solution
of the Wheeler-DeWitt equation with a cosmological
constant ([15], Chap. 8).
Keeping only the leading terms at a → ∞, this becomes

ψðpT; aÞ ¼ g1 exp

�
i

ffiffiffiffiffiffiffiffi
2V0

p
a3

3

�
þ g2 exp

�
−i

ffiffiffiffiffiffiffiffi
2V0

p
a3

3

�
:

ð50Þ

Let us now consider the pseudotachyon field with
constant potential. In this case, the Wheeler-DeWitt equa-
tion has the following form:

� ∂2

∂a2 þ 2a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
T − a6W2

0

q �
ΨðpT; aÞ ¼ 0: ð51Þ

With an ansatz of the form (43), we get

� ∂2

∂a2 þ 2a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
T − a6W2

0

q �
ψðpT; aÞ ¼ 0: ð52Þ

At small values of a, this equation coincides with (45) and
thus leads to the same solution in this limit.
The value of the scale factor

a� ≔
�jpT j
W0

�1
3 ð53Þ
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corresponds to the big brake singularity. Let us consider the
Wheeler-DeWitt equation (52) in the neighborhood of this
point and write for this purpose

a ≕ a� − ~a: ð54Þ

We then have

� ∂2

∂ ~a2 þ 2
ffiffiffi
6

p
W0ða�Þ7=2

ffiffiffi
~a

p �
ψðpT; ~aÞ ¼ 0: ð55Þ

Its solution is

ψðpT; aÞ ¼ c1
ffiffiffi
~a

p
J−2=5

�
4

5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
ffiffiffi
6

p
W0ða�Þ7=2

q
ð ~aÞ5=4

�

þ c2
ffiffiffi
~a

p
J2=5

�
4

5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
ffiffiffi
6

p
W0ða�Þ7=2

q
ð ~aÞ5=4

�
:

ð56Þ

For small values of ~a, it behaves as

ψðpT; aÞ ¼ d1 þ d2 ~a: ð57Þ

The self-adjointness of the Hamiltonian operator in the
Wheeler-DeWitt equation is an open issue [15]. But if we
demand this property to hold here, ~a cannot be negative
because otherwise the expressions under the square roots in
(52) and (55) would become negative. We thus have to
impose the boundary condition

ψðpT; aÞ ¼ 0 at ~a ≤ 0: ð58Þ

According to the DeWitt criterion, the big brake singularity
is then avoided, too. This is similar to the avoidance found
in [25–27].
The question of the reality of the spectrum of the

Hamiltonian in quantum cosmology was considered
already in [34]. There, another approach to the construction
of the wave function of the Universe called reduced
quantization was discussed [15]. In this approach, a time
parameter is chosen from the classical phase space
variables, and a nonzero Hamiltonian appears, which
depends on this time parameter and the physical degrees
of freedom in the reduced phase space of the theory. Upon
quantization, one arrives at a Schrödinger equation for the
wave function of the Universe, depending on time and the
physical degrees of freedom. In this case, the Hamiltonian
almost unavoidably contains square roots, even if the initial
Lagrangian does not contain them. This, together with
other problems, makes the reduced approach untractable in
most cases [15,35].
Later, the reduced approach was developed in great

detail in [36], and its relation with Dirac quantization
approach was analyzed. Its application to some rather
simple cosmological models was presented in the recent

paper [37]. However, considering the Born-Infeld type
models, we encounter a more complicated problem,
because here the square-root type Hamiltonians are present
in the Wheeler-DeWitt equation defined on the full phase
space. We shall apply the reduced approach to these models
in the next section.
Note that in the case of the tachyon field discussed

above, the demand for a self-adjoint Hamiltonian does not
impose any restrictions on the wave function which is a
solution of (44).
If we demanded the avoidance of both the big bang and

the big brake singularities in the sense of the DeWitt
criterion, we would have to impose the boundary con-
ditions ψðpT; 0Þ ¼ 0 and ψðpT; ð2jpT j=W0Þ1=3Þ ¼ 0. The
situation would then be analogous to that of a nonrelativ-
istic particle in an infinite potential well, which is known to
lead to a discrete spectrum. In our case, this would lead to
discrete tachyon momenta pT ¼ �jpT jn, n ∈ N.
For the case of a more general potential than the constant

one, the quantization becomes complicated, for T and pT
appear simultaneously under the square root. In the
following, we show one possibility how to deal with this
problem. We first perform the canonical transformation

T → ϕ ≔
Z

VðTÞdT; pT → pϕ ≔
pT

VðTÞ : ð59Þ

The Hamiltonian constraint then takes the form

H ¼ −
p2
a

2a
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
ϕ þ a6

q
VðTðϕÞÞ: ð60Þ

Thus the transformation enables us to move V out of the
square root. In the following, we specialize to potentials of
the form VðTÞ ¼ V1Tn, where n ≠ −1. According to (59),
we obtain ϕ ¼ V1

nþ1
Tnþ1, and therefore the Hamiltonian

constraint becomes

H ¼ −
p2
a

2a
þ V1

�ðnþ 1Þϕ
V1

� n
nþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
ϕ þ a6

q
: ð61Þ

After quantization and imposing a simple factor ordering,
we get

� ∂2

∂a2 þ μa
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
ϕ þ a6

q � ∂
∂pϕ

� n
nþ1

�
Ψðpϕ; aÞ ¼ 0; ð62Þ

where μ ≔ 2V1ðiðnþ1Þ
V1

Þ n
nþ1. The Wheeler-DeWitt equation is

thus a fractional partial differential equation, which can be
well defined in the sense of fractional calculus; see, for
example, [38]. Note, however, that fractional derivatives
can be represented as integral (and thus nonlocal) operators.
For the special case of the inverse square potential

(n ¼ −2), the Wheeler-DeWitt equation becomes
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� ∂2

∂a2 −
2a
V1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
ϕ þ a6

q ∂2

∂p2
ϕ

�
Ψðpϕ; aÞ ¼ 0: ð63Þ

This is a wave equation with variable coefficients. In the
region where a6 ≪ p2

ϕ, it assumes the asymptotic form

� ∂2

∂a2 −
2ajpϕj
V1

∂2

∂p2
ϕ

�
Ψða; pϕÞ ¼ 0: ð64Þ

The separation ansatz Ψða; pϕÞ ¼ χðaÞφðpϕÞ yields the
solutions

χðaÞ ¼ b1Ai

��
2λ

V1

1
3

a

��
þ b2Bi

��
2λ

V1

1
3

a

��
;

φðpϕÞ ¼ c1
ffiffiffiffiffiffi
pϕ

p
I1
�
2
ffiffiffiffiffiffiffiffiffiffiffi
λjpϕj

q �
þ c2

ffiffiffiffiffiffi
pϕ

p
K1

�
2
ffiffiffiffiffiffiffiffiffiffiffi
λjpϕj

q �
;

ð65Þ

where b1, b2, c1, c2 ∈ C, and λ ∈ C is a separation
constant; I1 and K1 are the modified Bessel functions.
In the region where a6 ≫ p2

ϕ, the asymptotic form of the
Wheeler-DeWitt equation is

� ∂2

∂a2 −
2a4

V1

∂2

∂p2
ϕ

�
Ψða; pϕÞ ¼ 0: ð66Þ

A separation ansatz of the form Ψða; pϕÞ ¼ ~χðaÞ ~φðpϕÞ
then yields

χ̄ðaÞ ¼ d1
ffiffiffi
a

p
J1

6

 ffiffiffiffiffiffi
2~λ

V1

s
a3

3

!
þ d2

ffiffiffi
a

p
J−1

6

 ffiffiffiffiffiffi
2~λ

V1

s
a3

3

!
;

φ̄ðpϕÞ ¼ f1 exp
� ffiffiffi

~λ
p

pϕ

�
þ f2 exp

�
−

ffiffiffi
~λ

p
pϕ

�
; ð67Þ

where d1, d2, f1, f2, ~λ ∈ C.
If applied to the case of the pseudotachyon, the above

procedure leads to the Wheeler-DeWitt equation

� ∂2

∂a2 −
2a
W1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
ϕ − a6

q ∂2

∂p2
ϕ

�
Ψðpϕ; aÞ ¼ 0: ð68Þ

In the region where a6 ≪ p2
ϕ, the asymptotic solutions are

the same as in the tachyon case. An open question is the
behavior of the wave function near the big brake singu-
larity. Using the same method as in the constant W case
does not work here, since pϕ cannot be treated as a fixed
parameter anymore.

IV. REDUCED PHASE SPACE QUANTIZATION

In this section, we shall study the cosmological models
with the Born-Infeld type fields with a constant potential,

using the reduction to physical degrees of freedom
approach [34,36,37]. In the case of tachyons, one can
choose as a time parameter τ the cosmological radius a
(such a choice is sometimes called an intrinsic time choice).
Indeed, in this case the classical evolution of the Universe is
such that the cosmological radius changes monotonically
from the big bang to an infinite expansion or from an
infinite contraction ending in the big crunch singularity.
As a matter of fact, it is convenient to choose τ ¼ a for
the expansion and τ ¼ −a for the contraction. (We choose
here the letter τ to avoid confusion with the classical time
parameter t.)
Let us first choose the case

τ ¼ a: ð69Þ

Then, the effective nonvanishing Hamiltonian in the
reduced phase space of the physical degrees of freedom
is given by the corresponding conjugate momentum pa,
taken with the inverse sign and expressed in terms of the
physical degrees of freedom and τ,

Hred ¼ −pa ¼ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2τ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
T þ τ6V6

0

qr
: ð70Þ

The chosen negative sign of the momentum pa corresponds
to the expansion of the universe, cf. (9). The expression
for this Hamiltonian is well defined for 0 ≤ τ < ∞. The
general solution of the Schrödinger equation corresponding
to (70) is

ψðpT; τÞ ¼ ψðpT; 0Þ exp
�
−i
Z

τ

0

d~τ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2~τ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
T þ ~τ6V6

0

qr �
:

ð71Þ

Here, we have used the fact that the time-dependent
Hamiltonian (70) commutes with itself at different
moments of time. Otherwise, it is necessary to use the
chronological T-exponentiation, which makes the formal-
ism more involved.
Analogously, to describe a contracting quantum uni-

verse, it is convenient to choose the time parameter as

τ ¼ −a: ð72Þ

Then the Hamiltonian is

Hred ¼ −pa ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2τ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
T þ τ6V6

0

qr
; ð73Þ

and it is well defined for −∞ < τ ≤ 0. The solution of the
Schrödinger equation is
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ψðpT;τÞ¼ψðpT;−∞Þexp
�
þi
Z

τ

0

d~τ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2~τ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
Tþ ~τ6V6

0

qr �
:

ð74Þ

The only requirement which one should impose on these
solutions is the normalizability of the wave functions
ψðpT; 0Þ and ψðpT;−∞Þ, prescribing the initial conditions.
The time-dependent part of the solutions (71) and (74) is
simply a phase factor, which behaves well at the values of
time corresponding to both the singularities and the infinite
volume of the universe.
For constant potential, the classical momentum conju-

gated to the tachyon field is constant, because then the
Hamiltonian (10) is T-independent. Thus, it seems that it is
impossible to describe the dynamics in terms of this
momentum, which is the only observable on which the
wave functions (71) and (74) depend. However, in quantum
theory there is no strong causal relation between the geo-
metric characteristics of the Universe and the quantities that
characterize the matter content. In our case, one can say that
the cosmological radius is not a geometric characteristic, but
a time parameter. Hence, the cosmological singularity can be
associated with a state of the system corresponding to
infinite energy density. In our case, this means that the time
derivative of the tachyon field tends to one, see (3), and the
conjugate momentum tends to infinity. It is clear that the
requirement of the normalizability of the wave function of
the Universe implies the rapid vanishing of this function at
jpT j → ∞ and this fact could be interpreted as a suppression
of the big bang–big crunch singularity [16].
The case of the cosmological model with a pseudo-

tachyon field is more complicated, because the Universe
begins its evolution from the big bang singularity, then
expands until the occurrence of the big brake singularity,
after which it contracts to the big crunch singularity. In such
a situation, it is preferable to employ an extrinsic instead
of an intrinsic time [15,35]; an extrinsic time is one that
depends on the extrinsic curvature; see [37] and the
references therein. In fact, we cannot use the cosmological
radius or a function of it as a time parameter, because it
changes nonmonotonically during the evolution.
It is convenient to perform a canonical transformation,

which leads to the new coordinate

q ≔
pa

a2
: ð75Þ

It is easy to check that q is equal to the Hubble parameter
H ¼ _a=a, taken with the opposite sign. If we identify this
new coordinate with the extrinsic time parameter, τ≡ q,
the latter is defined in the interval −∞ < τ < þ∞. The
conjugate momentum to q is

pq ¼ −
a3

3
: ð76Þ

The reduced Hamiltonian depends on the physical degree
of freedom pT and on τ and is given by

Hred ¼ −pq ¼
a3

3
¼ jpT j

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4
τ4 þW2

0

q : ð77Þ

Here, we have used the Hamiltonian constraint to express
the momentum pq in terms of the physical variable pT and
τ. Note that this constraint represents a simple quadratic
equation with respect to a3, but because of the non-
negativity of the cosmological radius a we should take
the positive square root. This means that, in contrast to the
preceding case of the tachyon field, we have only one
possibility for the choice of the Hamiltonian and, hence,
there exists only one branch of the physical wave function
of the Universe,

ψðpT; τÞ ¼ ψðpT;−∞Þ exp
�
−i
Z

τ

−∞
dτ

jpT j
3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4
τ4 þW2

0

q �
:

ð78Þ

The existence of only one branch for the wave function
in the reduced approach is in agreement with the fact that
the wave function satisfying the Wheeler-DeWitt equation,
as described in the preceding section, should obey a
boundary condition that guarantees the self-adjointness
of the super-Hamiltonian. Note that the form of the
Hamiltonian (77) is automatically self-adjoint as it should
be. The presence of two branches in the Wheeler-DeWitt
wave function or of two different wave functions, with two
different Hamiltonians in the case of the tachyon field
model, is connected with the fact that there are two different
classical cosmological evolutions: expansion and contrac-
tion. In the model with a pseudotachyon field we have only
one Hamiltonian for the Schrödinger equation in the
reduced space and an additional boundary condition for
the solution of the Wheeler-DeWitt equation. This corre-
sponds to only one type of cosmological evolution in this
model—from the big bang to the big crunch, passing
through the point of maximal expansion where the universe
crosses the big brake singularity.
Speaking about singularities, we can say that the same

arguments which we have used in analyzing the relation
between the wave function and the big bang singularity in
the model with the tachyon field can be applied to the
case of the pseudotachyon field as well. The situation with
the big brake singularity is different. Its appearance is not
connected with some particular behavior of the momentum
pT and it is not suppressed by the wave function of the
Universe. This seems natural, because classically a universe
can pass through this singularity without any difficulty; see
e.g. [12,13] and the references therein.
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We finally note that the reduced approach becomes
rather complicated in the general situation of a nonconstant
potential.

V. QUANTUM COSMOLOGY AND
DIFFERENCE EQUATIONS

In this section, we shall perform a canonical trans-
formation in such a way that the square root in the
Hamiltonian disappears, making the problem more trac-
table. Here, then, we can use the analogy that was already
mentioned in the Introduction; this analogy concerns the
quantum mechanics of a collapsing (expanding) thin shell
[17–20]. Identifying the Hamiltonian of the system under
consideration with the physical mass, one obtains there an
expression for the Hamiltonian which contains a hyperbolic
function of the momentum operator. Because the exponent
of the momentum operator is the generator of spatial
translation, one then arrives at finite difference equations
for the wave function.
In cosmology, we can try to follow this analogy and

perform a transition to new canonical variables and
momenta such that the new Hamiltonian will be free of
square roots and will instead contain a combination of
translation operators. Hence, the Wheeler-DeWitt equation
will become a finite difference equation; more precisely,
a mixed difference-differential equation. Such difference
equations are common in loop quantum cosmology
[39,40], but have so far not been discussed in the frame-
work of standard quantum cosmology.
To be concrete, we introduce a new canonical momen-

tum P by

pT ≕ a3VðTÞ sinhP: ð79Þ

The reason for this choice is that it turns the square root
in (10) into the expression a3V coshP. Such a form for
the kinetic term has been found in the above-mentioned
papers [17–20].
We now have to construct the corresponding new

canonical coordinate Q such that

fQ;Pg ¼ 1: ð80Þ

Generally, the tachyon field T can depend on Q as well as
on P. Then,

fT; pTg ¼ ∂T
∂Q × a3VðTÞ coshP

þ ∂T
∂Q × a3

dVðTÞ
dT

∂T
∂P sinhP

−
∂T
∂P × a3

dVðTÞ
dT

∂T
∂Q sinhP ¼ 1; ð81Þ

which gives the condition

a3VðTÞ coshP ∂T
∂Q ¼ 1: ð82Þ

The last equation can be rewritten as

VðTÞdT ¼ dQ
a3 coshP

: ð83Þ

The canonical coordinate Q can thus be written as

Q ¼ a3 coshP
Z

VðTÞdT: ð84Þ

What about the modification of a and pa? It is convenient
to keep the scale factor as the configuration variable.
Unfortunately, this is not possible for its momentum.
The reason is that the Poisson brackets between pa and
T and between pa and pT must vanish. This is not the case
for an unmodified pa. One can easily see that the trans-
formation

pa → ~pa ≔ pa −
3Q tanhP

a
ð85Þ

leads to the vanishing of those brackets; that is, the new
variables a, Q, ~pa, P arise from the old ones a, T, pa, pT
by a canonical transformation.
In the terminology of [41], Sec. 9. 1, the generator of this

canonical transformation reads

F2ða; ~pa;T;PÞ ¼ a3 sinhP
Z

VðTÞdT þ a ~pa; ð86Þ

where

pT ¼ ∂F2

∂T ; pa ¼
∂F2

∂a ; ð87Þ

and

Q ¼ ∂F2

∂P ; a ¼ ∂F2

∂ ~pa
: ð88Þ

In principle, with the help of this generating function,
one may use the method discussed in [42] to relate the
corresponding wave functions.
After the canonical transformation, the Hamiltonian

constraint (10) assumes the form

H≡ −
1

2a

�
~pa þ

3Q tanhP
a

�
2

þ a3V coshP ¼ 0: ð89Þ

In a particular factor ordering, the Wheeler-DeWitt equa-
tion can now be written as
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−
1

2a

�
ℏ
i
∂
∂aþ 3Q

a
tanh

�
ℏ
i
∂
∂Q
��

2

ψða;QÞ

þ a3V cosh

�
ℏ
i
∂
∂Q
�
ψða;QÞ ¼ 0; ð90Þ

where V ¼ VðTða;Q;PÞÞ. This equation has a rather
complicated form. We note that tanh ðℏi ∂

∂QÞ is not a suitable
operator, since the series expansion of tanh has a finite
radius of convergence. But since H is a constraint, we
can multiply it by an arbitrary factor and the resulting
quantity will be a constraint as well. If we define ~H ≔
2a3cosh2ðPÞH and perform the transformation a → α ¼
ln a, ~pa → ~pα ¼ a ~pa, we obtain the new constraint

~H ≔− ~p2
αcosh2P þ 9Q2sinh2P þ 6Q ~pα sinhP coshP

þ 2e6αVcosh3P: ð91Þ

We emphasize that the hyperbolic functions with the
momentum as argument generate a translation in the
argument; we have, for example,

cosh

�
−i

∂
∂Q
�
ψð ~pα;QÞ¼1

2
ðe−i ∂∂Qþei

∂∂QÞ

¼1

2
ðψð ~pα;Q− iÞþψð ~pα;Qþ iÞÞ:

ð92Þ

After naive factor ordering, setting ℏ ¼ 1, and returning to
the case of constant potential, the Wheeler-DeWitt equation
assumes the following form:

V0e6α

4
ψðα;Qþ 3iÞ − 1

4
ð ~pα − 3QÞ2ψðα;Qþ 2iÞ

þ 3V0e6α

4
ψðα;Qþ iÞ þ − ~p2

α þ 9Q2

2
ψðα;QÞ

þ 3V0e6α

4
ψðα;Q − iÞ − 1

4
ð ~pα þ 3QÞ2ψðα;Q − 2iÞ

þ V0e6α

4
ψðα;Q − 3iÞ ¼ 0: ð93Þ

This is a mixed difference-differential equation (or partial
difference equation, if we use the momentum representa-
tion for α).
In the asymptotic limit of large a, (90) reads

∂2ψ

∂a2 þ 2a4V0 cosh

�
ℏ
i
∂
∂Q
�
ψ ¼ 0: ð94Þ

Apart from the cosh-term, this coincides with the earlier
form (48), which guarantees the consistency of the for-
malism. Employing the product ansatz

ψða;QÞ ¼ ϕðQÞχðaÞ; ð95Þ

we find

d2χ
da2

¼ 12

κ2
a4V0λχðaÞ; ð96Þ

cosh

�
−iℏ

d
dQ

�
ϕðQÞ ¼ −λϕðQÞ; ð97Þ

where we take λ to be a real constant. Introducing
for convenience Λ ≔ 2V0λ (recall V0 > 0), we find for
the solutions of (96) a combination of Bessel functions.
For Λ > 0, we find the solutions

ffiffiffi
a

p
I1=6ð

ffiffiffiffi
Λ

p
a3=3Þ andffiffiffi

a
p

K1=6ð
ffiffiffiffi
Λ

p
a3=3Þ, while for Λ < 0, we findffiffiffi

a
p

J1=6ð
ffiffiffiffiffiffiffi
−Λ

p
a3=3Þ and

ffiffiffi
a

p
J−1=6ð

ffiffiffiffiffiffiffi
−Λ

p
a3=3Þ. We note

that for λ ¼ 1 this corresponds to the solutions (49).
In order to make a selection amongst these Bessel

functions, we inspect their asymptotic behavior. Let us first
consider the case Λ>0. The solution

ffiffiffi
a

p
I1=6ð

ffiffiffiffi
Λ

p
a3=3Þ

increases exponentially with large a and is thus not normal-
izable; it must be excluded. The solution

ffiffiffi
a

p
K1=6ð

ffiffiffiffi
Λ

p
a3=3Þ

decreases exponentially and is thus normalizable. The
solutions for Λ < 0, on the other hand, are oscillatory and
thus both allowed; they correspond to (49) with λ ¼ −1.
The second equation (97) can be rewritten in the form of

the following difference equation:

1

2
½ϕðQþ iÞ þ ϕðQ − iÞ� ¼ −λϕðQÞ: ð98Þ

Making the ansatz

ϕðQÞ ¼ eαQ; ð99Þ

one finds

iα1;2 ¼ ln
�
−λ�

ffiffiffiffiffiffiffiffiffiffiffiffi
λ2 − 1

p �
: ð100Þ

Inserting this into (99) and writing −λ ≕ coshP0, one gets
for λ < 0,

ϕðQÞ ¼ d1e−iP0Q þ d2eiP0Q; ð101Þ

with constants d1 and d2. (This is also expected from the
momentum representation of the Wheeler-DeWitt equa-
tion.) Taking all this together, the most general allowed
asymptotic solution for Λ < 0 is given by

ψða;QÞ
¼ ðd1e−iP0Q þ d2eiP0QÞ
× ½c1

ffiffiffi
a

p
J1=6ð

ffiffiffiffiffiffiffi
−Λ

p
a3=3Þ þ c2

ffiffiffi
a

p
J−1=6ð

ffiffiffiffiffiffiffi
−Λ

p
a3=3Þ�:
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For Λ > 0, one obtains

ψða;QÞ ¼ ðe1e−iP0Q þ e2eiP0QÞe−πQ ffiffiffi
a

p
K1=6ð

ffiffiffiffi
Λ

p
a3=3Þ:

Can we say something about the general equation (90)?
In the limit of small a, this equation assumes the form

ða ~paÞ coshPψða;QÞ þ 3Q sinhPψða;QÞ ¼ 0: ð102Þ

This leads to the difference equation

ða ~paÞ½ψða;Qþ iÞ þ ψða;Q − iÞ�
− 3Q½ψða;Qþ iÞ − ψða;Q − iÞ� ¼ 0: ð103Þ

After switching to the variable α and going to momentum
space, it reads

ð ~pα − 3QÞψð ~pα;Qþ iÞ þ ð ~pα þ 3QÞψð ~pα;Q − iÞ ¼ 0:

A particular set of solutions is

ψð ~pα;QÞ ¼ μð ~pα;QÞΓð−
i
2
½ ~pα
3
þQþ i�Þ

Γð i
2
½ ~pα
3
−Q − i�Þ ; ð104Þ

where μð ~pα;QÞ is a function that is an arbitrary 2i-periodic
function in the second argument, that is, μð ~pα;QÞ ¼
μð ~pα;Qþ 2iÞ.
We emphasize that the occurrence of the Gamma

function in (104) is not an accident. The Gamma function
obeys the perhaps most famous difference equation,
Γðxþ 1Þ ¼ xΓðxÞ, and it is known that it does not satisfy
any algebraic differential equation whose coefficients are
rational functions; the latter property is known as Hölder’s
theorem (see e.g. [43,44]). Thus, as emphasized in [44], one
gets from difference equations transcendental functions of a
very different kind than from differential equations.
Let us now consider the case of the inverse T-squared

potential,

V ¼ V1

T2
; ð105Þ

whose classical behavior was discussed in Sec. II. For this
potential, one can perform the canonical transformation

pT ¼ a3V1 sinhP; ð106Þ

T ¼ −
a3V1 coshP

Q
; ð107Þ

pa ¼ ~pa þ
3Q tanhP

a
: ð108Þ

The Hamiltonian constraint becomes

H ¼ −
1

2a

�
~pa þ

3Q tanhP
a

�
2

þ Q2

a3V1 coshP
: ð109Þ

After another canonical transformation a → α ¼ ln a,
~pa → ~pα ¼ a ~pa, the Hamiltonian assumes the form

H ¼ e−3α
�
−
1

2
ð ~p2

α þ 3Q tanhPÞ2 þ Q2

V1 coshP

�
: ð110Þ

We observe that ∂H
∂α ¼ −3H ¼ 0. Thus the canonical

momentum ~pα ¼ pα − 3Q tanhP is a constant of motion.
If we reinsert the old coordinates, this leads to

apa þ 3pTT ¼ constant ≕ C: ð111Þ

As a side remark, we want to mention that the canonical
transformation for the pseudotachyon case looks similar.
One just has to replace sinh → cosh, cosh → sinh and
tanh → coth. The constant of motion is then also present
(with the same value) in the pseudotachyon model with
inverse T-squared potential.
If we employ in the tachyon case the same procedure as

for the constant V model, we obtain

~H ¼ − ~p2
αcosh2P − 6Q ~pα sinhP coshP − 9Q2sinh2P

þ 2Q2

V1

coshP: ð112Þ

With naive factor ordering, the Wheeler-DeWitt equation
reads

−
1

4
ð ~pα − 3QÞ2ψð ~pα;Qþ 2iÞ þQ2

V1

ψð ~pα;Qþ iÞ

þ − ~p2
α þ 9Q2

2
ψð ~pα;QÞ þQ2

V1

ψð ~pα;Q − iÞ

−
1

4
ð ~pα þ 3QÞ2ψð ~pα;Q − 2iÞ ¼ 0: ð113Þ

This is an analytic difference equation. The foundations for
such equations are presented in the book by Nø rlund [44].
In order to achieve conformity with Nø rlund’s notation, we
define z ≔ −iQ and uðzÞ ≔ ψðQðzÞÞ. The function u then
fulfills the difference equation

X4
k¼0

PkðzÞuðzþ kÞ ¼ 0; ð114Þ

where the polynomials Pk are given by
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P0ðzÞ ¼
1

4
ð ~pα − 3izÞ2; P1ðzÞ ¼

z2

V1

;

P2ðzÞ ¼
~p2
α þ 9z2

2
; P3ðzÞ ¼

z2

V1

;

P4ðzÞ ¼
1

4
ð ~pα þ 3izÞ2:

The problem of solving the difference equation (114) is
equivalent to the problem of finding a fundamental system
of solutions. The solution space is a subset of the
meromorphic functions and the fundamental system will
be a vector space over the field of 1-periodic meromorphic
functions. Following Nørlund, we expect the fundamental
system to be composed of four linearly independent
functions. Note that degPk ¼ 2 for all k ¼ 0; 1;…; 4,
and thus the difference equation fulfills the first criterion
to belong to a certain class which Nø rlund calls normal
difference equations. To check the second criterion we have
to rewrite

PkðzÞ ¼
X2
l¼0

ck;l
Yl−1
n¼0

ðzþ kþ nÞ: ð115Þ

The second criterion demands the nondegeneracy of the
zeros an of the polynomial f2ðsÞ, where

flðsÞ ≔
X4
k¼0

ck;lsk: ð116Þ

The zeros are given by complicated expression. However,
they are nondegenerate. Nørlund shows explicitly that the
solutions to normal difference equations can be written in
terms of products of Gamma functions and a series of
rational functions (Chap. 11, Sec. II in [44]). In our case,
the solutions will be of the form

unðzÞ ¼ azn
ΓðzÞ

Γð−βnÞΓðzþ βn þ 1ÞΩðz; βnÞ; ð117Þ

where

Ωðz; βnÞ ¼
X∞
ν¼0

Aν
ðβn þ 1Þðβn þ 2Þ…ðβn þ νÞ
ðzþ βn þ 1Þ…ðzþ βn þ νÞ ð118Þ

and n ¼ 1, 2, 3, 4. The coefficients Aν can in principle be
determined by plugging the solutions into (114). The
coefficients βn, however, depend on the explicit form of

the singular solutions of a certain differential equation in a
neighborhood of the an’s and cannot be determined easily.
Nevertheless, the above discussion shows how difference
equations occurring in quantum cosmology can in principle
be dealt with.
We finally mention that, with the Hamiltonian (110), wet

get in the momentum representation an ordinary differential
equation.

VI. CONCLUSION

The purpose of our paper is to investigate a certain class
of cosmological models with Born-Infeld (tachyon) type of
fields. This is of interest for (at least) two reasons. First,
such models have been encountered in the study of models
for dark energy. Second, the Lagrangian is of a square-root
type and thus poses challenges for quantization, which we
have discussed here in detail. In the classical part, we have
in particular obtained new results concerning the occur-
rence of a big brake singularity for the inverse square
potential in the pseudotachyon case. Concerning quantiza-
tion, we have managed to get nontrivial results for two
models: for the model with a constant tachyon (pseudo-
tachyon) potential, which is equivalent to the Chaplygin
(anti-Chaplygin) gas and for the model where the potential
is inversely proportional to the tachyon field squared. We
have derived and discussed the Wheeler-DeWitt equation
for these models. For constant potential, it is convenient to
use the momentum representation for the quantum state and
to consider the reduced phase space of physical variables.
This becomes quite complicated for nonconstant potentials.
We have thus pointed out a general method to transform the
Wheeler-DeWitt equation into a form without square roots.
This leads to a difference equation, which requires new
methods for its solution. We have discussed these methods
and pointed out that difference equations lead in general to
solutions of a different type than solutions from differential
equations. We have outlined a general procedure to finding
such solutions. The methods may also be of use in loop
quantum cosmology [39,40].
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