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We study the matter bispectrum of the large-scale structure by comparing different perturbative and
phenomenological models with measurements from N-body simulations obtained with a modal bispectrum
estimator. Using shape and amplitude correlators, we directly compare simulated data with theoretical
models over the full three-dimensional domain of the bispectrum, for different redshifts and scales. We
review and investigate the main perturbative methods in the literature that predict the one-loop bispectrum:
standard perturbation theory, effective field theory, resummed Lagrangian and renormalized perturbation
theory, calculating the latter also at two loops for some triangle configurations. We find that effective field
theory (EFT) succeeds in extending the range of validity furthest into the mildly nonlinear regime, albeit at
the price of free extra parameters requiring calibration on simulations: EFT is found to be accurate to 5% up
to a scale of k�max ≃ 0.4 h=Mpc at z ¼ 1, compared with k�max ≃ 0.2 h=Mpc at z ¼ 1 for most other one-
loop perturbative methods. For the more phenomenological halo model, we confirm that despite its validity
in the deeply nonlinear regime it has a deficit of power on intermediate scales, which worsens at higher
redshifts (the maximum deficit in the amplitude correlator is ∼20% at z ¼ 1, and up to 40% at z ¼ 2); this
issue is ameliorated, but not solved, by combined halo-perturbative models. We show from simulations that
in this transition region there is a strong squeezed bispectrum component that is significantly under-
estimated in the halo model at earlier redshifts. We thus propose a phenomenological method for alleviating
this deficit, which we develop into a simple phenomenological “three-shape” benchmark model based on
the three fundamental shapes we have obtained from studying the halo model. When calibrated on the
simulations, this three-shape benchmark model accurately describes the bispectrum on all scales and
redshifts considered, providing a prototype bispectrum HALOFIT-like methodology that could be used to
describe and test parameter dependencies.
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I. INTRODUCTION

The ΛCDM model has so far been successful in
describing the properties of the Universe, as recently
confirmed by the latest Planck satellite results [1,2]. The
initial conditions of this model are based on the
assumption that all the structure in the Universe was
generated by quantum fluctuations at primordial times,
during an inflationary phase [3,4]. The physics of
inflation has been extensively studied in recent years
and many scenarios have been proposed [5–9]; distin-
guishing between the numerous existing models is one of
the ultimate goals of cosmology. This problem can be
tackled observationally by studying the properties of
the perturbations at later times: the cosmic microwave

background (CMB) and the large-scale structure of the
Universe (LSS).
CMB anisotropies have provided in the past two decades

a wealth of cosmological information, which has been
exploited with increasing efficiency by subsequent obser-
vational campaigns, up to the exquisite accuracy of the
latest results from the Planck satellite [2]. The CMB has
also provided some of the strongest constraints on inflation.
On the one hand, the shape of the CMB two-point statistics
(power spectrum) is directly related to the power spectrum
of perturbations at the end of inflation, whose parameters
and features can thus be accurately constrained [10]. On the
other hand, many inflationary models predict a significant
non-Gaussian component in the distribution of primordial
perturbations [11]: higher-order statistics of the CMB
anisotropies, such as the three-point correlation function
(bispectrum), have provided strict constraints on such
models [12].
Nevertheless, the CMB can primarily supply only two-

dimensional data from the surface of last scattering, which
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in temperature has been already almost fully exploited to
the limit of cosmic variance by Planck. The LSS, traced by
current and upcoming galaxy surveys, contains much more
information than the CMB due to its three-dimensional
nature, and it can thus provide further complementary
insight on cosmology across cosmic time. In principle,
there is roughly a 1000-fold increase in the number of
modes available compared to the CMB [13], but this
information is more challenging to extract due to the more
limited theoretical understanding of the LSS physics in the
low-redshift universe, where additional complexity is
added by nonlinear structure formation, the relationship
between dark and visible matter (galaxy bias), and redshift-
space effects [14]. Indeed, the modelling of galaxy cluster-
ing is first based on a description of dark matter clustering;
the clustering of collapsed dark matter halos is then defined
by introducing halo bias, while the connection to observ-
able galaxies can be made by using halo occupation
distribution [15] or halo-abundance matching [16] meth-
ods, calibrated on N-body simulations. In this paper, we
only describe the clustering of dark matter in real space,
leaving the connection to galaxy observables, including
bias and redshift-space effects, to subsequent work.
Galaxy surveys like SDSS [17] and BOSS [18,19] have

dramatically increased our understanding of the Universe.
Ongoing and future surveys, like DES [20,21], LSST [22],
Euclid [23], DESI [24], WFIRST [25] and the proposed
SPHEREX mission [26] are expected to increase the
precision of the measurements even further.
To date, most cosmological implications from large-

scale structure data have been drawn from the power
spectrum of galaxies. At linear level, the matter power
spectrum encodes all the information available if the
primordial random fluctuations are Gaussian. The power
spectrum is also sensitive to some classes of primordial
non-Gaussianity (PNG) via the scale-dependent galaxy bias
[27,28], which has been widely used to obtain competitive
PNG constraints [29–34].
However, in order to fully exploit the LSS information

and to test all types of PNG, it is important to also study
higher-order statistics, such as the bispectrum [35–41].
Even for Gaussian initial conditions, where the primordial
bispectrum is zero, nonlinear coupling between Fourier
modes produces a nonzero bispectrum due to gravitational
collapse [42]. This gravitational bispectrum must be well
understood in order to be able to separate the primordial
component and to constrain the physics of inflation. At
the same time, it can provide additional cosmological
information [43], for example on the growth of structure
[44–46], and bias parameters [44,47–52].
Modeling the evolution of matter density perturbations

beyond linear scales is a complex problem. On relatively
large scales, in the quasilinear regime, significant progress
has been made using perturbative methods. Arguably, the
most common procedure is Eulerian standard perturbation

theory (SPT) [53–56], where the growth of structure is
described by a set of differential equations in terms of the
present-time density perturbations, expanded to the desired
order. Alternatively, in Lagrangian perturbation theory
(LPT) [57–63] the fluid equations are written in terms of
the initial density perturbations via a displacement field,
which reduces to the Zel’dovich approximation at linear
order [64]. Both methods have advantages and shortcom-
ings [65–68]; in particular, SPT has a narrow range of
validity at low redshift, and its series expansion shows poor
convergence properties. LPT has the additional drawback
that its perturbative approach cannot predict clustering
beyond shell crossing. For these reasons, recent years have
seen a proliferation of further developments: SPT has
been reformulated in the language of field theory by
Refs. [69–74], reorganizing the series expansion in terms
of vertices and propagators, and improving its convergence
properties [renormalized perturbation theory (RPT)]; this
has been later simplified to the MPTBREEZE scheme [75].
Related developments include the large-N expansion [76],
the closure theory [77], and renormalization group
approaches [78,79]. A resummation technique in
Lagrangian space (RLPT) was developed by Ref. [80];
subsequent extensions were developed by Refs. [80–87].
Most recently, the effective field theory of LSS (EFTofLSS)
has been developed by Refs. [13,88–95], based on the idea
that the contribution of small-scale physics to the quasi-
linear perturbations can be encapsulated into a set of
additional, unknown source terms in the equations of
motion, whose value can be fixed by comparison with
N-body simulations.
In the fully nonlinear regime, perturbation theories

necessarily break down and numerical N-body simulations
have to be used to calibrate phenomenological models of
gravitational clustering, such as the halo model [96–98].
This formalism is based on the approximation that all
matter in the Universe is in the form of spherical halos with
a universal density profile and without substructure, and it
can be used to describe the matter power spectrum and
bispectrum relatively accurately (typically better than 10%
at k < 1 h=Mpc at z ¼ 0) [99]. It is however difficult to
significantly improve the halo model accuracy beyond the
limits set by its underlying assumptions, especially on
intermediate scales. For this reason, Refs. [85,100,101]
combined a revised version of the halo model, valid on
small scales, with perturbative recipes that are more
accurate on quasilinear scales. Reference [102] also pro-
posed a halo model extension that improves its accuracy at
the cost of 12 extra parameters.
A more drastic approach was introduced by

Refs. [103,104], where the physically motivated small-
scale one-halo term was replaced with a series expansion in
the even powers of k, with free parameters to be calibrated
on N-body simulations. It is possible to extend these ideas
even further into the direction of phenomenology at the cost
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of a reduced physical understanding: the HALOFIT method
[105,106] achieves a higher accuracy matter power spec-
trum by combining halo model-inspired templates with
numerous heuristic parameters fit to N-body simulations
while, in the ultimate numerical and agnostic approach,
matter clustering is directly calculated by interpolating over
a grid of N-body simulations spanning a range of different
cosmologies [107]. No bispectrum counterpart exists to
date for these numerical methods.
At the same time, there has been progress in N-body

simulations studies and bispectrum estimators [40,43,
108–111]. In contrast with the standard brute-force method
of measuring the bispectrum for all possible triangular
configurations, Refs. [110,112] applied to the LSS the
modal decomposition of the bispectrum introduced for
CMB studies by Refs. [40,113], thus developing a signifi-
cantly faster and more efficient estimator. A simplified
version tailored to estimating the projection of the simu-
lation bispectrum on the tree-level prediction was presented
in Ref. [111].
Relatively few measurements of the bispectrum from

galaxy surveys exist [114–121]. The state of the art results
have recently been obtained by Refs. [122,123] from the
BOSS luminous red galaxies. These data have been used to
improve the power spectrum constraints on galaxy bias and
structure growth; however, to date no primordial non-
Gaussianity constraints exist from the LSS bispectrum.
In this paper, we make the first comprehensive com-

parison of models describing the matter bispectrum as a
function of scale and redshift. We review a selection of
different models from the literature and we analyze their
accuracy on different scales by comparing their predictions
with direct estimates of the bispectrum from N-body
simulations. We compare two classes of models: methods
based on perturbative approaches and phenomenological
halo models. The perturbative models considered are tree-
level, nonlinear tree-level, SPT, RPT, RLPT, and EFT (all at
one loop). In the nonlinear regime, we investigate the
standard halo model and a modified halo model combined
with EFT, based on the method by Ref. [101]. We base our
analysis on a full three-dimensional comparison of the
shapes and amplitudes of the bispectra, which allows us to
compare all the triangular configurations in the bispectra at
once, rather then confronting individual slices in specific
configuration limits, as usual with previous work. This
approach is relevant to observational forecasts of predicted
signal-to-noise where the full statistical significance
requires summation over all triangle configurations.
We then develop a simple phenomenological model

based on the three fundamental shapes of the halo model
components, which provides a good global fit to the
simulations. We quantitatively compare the simulations
with each of the theoretical models considered and we
discuss their advantages and limitations. We also show
how to numerically calculate the two-loop bispectrum in

the MPTBREEZE formalism in an infrared-safe manner
and we present the results for several scaled triangular
configurations.
The plan of this paper is as follows. After a brief

introduction to the bispectrum and its three-dimensional
estimators in Sec. II, we review the theoretical models we
consider in Sec. III (perturbation theory) and Sec. IV
(nonlinear and phenomenological models). We then
describe the N-body simulations in Sec. V. In Sec. VI
we discuss the measured bispectrum shapes, and use this to
introduce the phenomenological two-halo boost and three-
shape benchmark model. We next present the results of the
comparison between the different theoretical models and
simulations in Sec. VII, before concluding in Sec. VIII.
Several appendixes provide details of the considered
models.

II. BISPECTRUM INTRODUCTION

The statistical analysis of random fields, such as the
matter density perturbation δ≡ ðρ − ρ̄Þ=ρ̄, where ρ is the
matter density of mean ρ̄, involves measuring its N-point
correlation functions in real space, or its N-spectra in
Fourier space. We consider here the power spectrum and
bispectrum, which are defined as

hδðk1Þδðk2Þi ¼ ð2πÞ3δDðk1 þ k2ÞPðkÞ ð1Þ

hδðk1Þδðk2Þδðk3Þi ¼ ð2πÞ3δDðk1 þk2 þk3ÞBðk1; k2; k3Þ;
ð2Þ

where δD is the Dirac delta function. For statistically
homogeneous and isotropic cosmologies, to which we
restrict our attention here, the bispectrum only depends
on the wave numbers k1, k2, k3. While the power spectrum
is a 1D quantity, as it is simply a real function of the wave
number k, the bispectrum is a more complex 3D quantity, as
it is a real function of k1, k2, k3. The bispectrum therefore
contains more information, but it is also more cumbersome
to study, and it thus requires relatively more advanced
techniques to be measured and exploited. We introduce in
this section our method for analyzing the full 3D matter
bispectrum, and for comparing its observations with
theoretical models.

A. Shape and amplitude correlators

In order to compare the observed or simulated bispectra
with the corresponding theoretical predictions, we define
the signal-to-noise weighted scalar product between two
bispectrum shapes i and j [112,124]:

hBi; Bji≡ V
π

Z
VB

dVk
k1k2k3Biðk1; k2; k3ÞBjðk1; k2; k3Þ

Pðk1ÞPðk2ÞPðk3Þ
;

ð3Þ
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where the integration domain VB is the tetrahedral region of
volume V satisfying the triangle condition on the wave
numbers k1, k2 and k3 (such that k1 þ k2 þ k3 ¼ 0),
together with a chosen resolution limit k1; k2; k3 < kmax.
The bispectrum domain is the union of a tetrahedron with a
triangular pyramid on top (denoted the “tetrapyd”) and is
illustrated in Fig. 1. The inner product Eq. (3) provides a
natural definition for the signal-to-noise (SN) weighted
bispectrum,

BSN
i ðk1; k2; k3Þ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1k2k3

Pðk1ÞPðk2ÞPðk3Þ

s
Biðk1; k2; k3Þ; ð4Þ

where we use the measured (or HALOFIT) power spectrum
PNLðkÞ for wave numbers in the quasilinear and nonlinear
regimes (rather than the linear power spectrum Plin). The
SN-weighted bispectrum BSN

i is the relevant quantity
observationally if the matter bispectrum could be measured
directly, providing optimal forecasts for an ideal survey (i.e.
one without experimental noise or systematics). To develop
an intuitive understanding of the distinct gravitational
bispectrum contributions, we will plot the SN-weighted
bispectrum in three dimensions on half the tetrapyd domain
as shown in Fig. 2. Although the full tetrapyd has a sixfold
symmetry for the isotropic bispectrum of Eq. (2), leaving
this redundancy allows us to view BSN

i from equilateral,
flattened and squeezed limits simultaneously. (Future
work will include bispectrum cross-correlators, e.g., the
matter-matter-halo bispectrum where Fig. 2 shows the

complete domain, as for recent CMB polarization
results [12].)
Based on the scalar product of Eq. (3), we define the

shape correlator (or cosine) by

SðBi; BjÞ≡ hBi; BjiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihBi; BiihBj; Bji
p ; ð5Þ

which is restricted to −1 ≤ S ≤ 1. In the following, we will
typically calculate the shape correlators between theoretical
and simulated bispectra, to which the shapes i, j will
correspond respectively.
In order to measure how well the magnitude of the

theoretical bispectra i fit the (simulated) data j, we define
the amplitude correlator as

AðBi; BjÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hBi; Bii
hBj; Bji

s
: ð6Þ

We can thus introduce a single quantity that combines the
shape and amplitude information, the total correlator,
defined as

T ðBi; BjÞ≡ 1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hBj − Bi; Bj − Bii

hBj; Bji

s

¼ 1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2SðBi; BjÞAðBi; BjÞ þA2ðBi; BjÞ

q
:

ð7Þ
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FIG. 1. The tetrapyd bispectrum domain consists of a tetrahe-
dral region (blue) defined by the wave vector triangle condition in
Eq. (2), together with a pyramidal region (green) bounded by the
resolution limit kmax. For the autocorrelator bispectrum this has a
sixfold symmetry, so to illustrate the internal structure of the
bispectrum (equilateral limit) we will split the tetrapyd across the
vertical plane given by the red dashed lines, removing the front
half as shown in Fig. 2.

FIG. 2. The split 3D tetrapyd region used to illustrate the SN-
weighted bispectrum showing only the back half with k1 < k2.
Color-coded regions show the location of the squeezed (red),
flattened (green) and equilateral or constant (blue) shape signals.
In the bispectrum Ansatz Eq. (10) the shape Sðk1; k2; k3Þ is
defined on the K ≡ k1 þ k2 þ k3 ¼ const cross-sectional planes,
while the scale dependence fðKÞ is given along the dashed
diagonal k1 ¼ k2 ¼ k3.
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This total correlator offers an excellent means by which to
determine the overall goodness of fit as we essentially
measure the magnitude of the residual Bi − Bj relative to
the measured bispectrum jBjj. If Bi ¼ Bj, this is zero and
the total correlator is T ¼ 1. If Bi and Bj are misaligned
(S < 1) or differ in amplitude (A ≠ 1), the residual Bi − Bj

is nonzero and the total correlator T < 1. For increasing
relative bispectrum residual, the total correlator always
decreases. [Note that this is a more stringent test than the
shape correlator of Eq. (5) alone because S appears under a
square root in Eq. (7)].
It is possible to relate the total correlator T to the χ2

goodness of fit determined between the theoretical
bispectrum Bi and the estimated (or simulated) bispectrum
Bj, as [125]

χ2 ¼
X

k1;k2;k3

½Bjðk1; k2; k3Þ − Biðk1; k2; k3Þ�2
varðBiÞ

¼ hBj − Bi; Bj − Bii; ð8Þ

so that χ2 and the total correlator T are simply linked by

χ2 ¼ ½1 − T ðBi; BjÞ�2hBj; Bji: ð9Þ

As we are using a small number of simulations of limited
resolution, in the following we will consider the total
correlator T together with its uncertainty as a measurement
of the goodness of fit of each model. In principle, the use of
χ2=d:o:f: may be more suitable than T to distinguish
overfitting (χ2=d:o:f: < 1) from poor model performance
(χ2=d:o:f: > 1). However, our focus here is to determine
the kmax at which the model starts to become a poor
description of our present simulations, which corresponds
to the kmax where T becomes significantly smaller than
unity (given the estimated errors between simulations).
The three correlators here, S, A and T , are all cumu-

lative functions of kmax, which is the resolution cutoff used
in the scalar product of Eq. (3). We therefore obtain an
overall integrated measure of how well a particular theory
matches simulations (or observations) up to kmax.

B. Three canonical shape functions

As we shall see in subsequent sections of this paper, we
are able to obtain an accurate global description of the
nonlinear gravitational bispectrum from a sum over a
limited number of simple bispectrum shapes, provided
that we have the flexibility to modify an overall scale-
dependent amplitude. For this reason, we consider the
following nontrivial bispectrum Ansatz:

Bðk1; k2; k3Þ ¼ fðKÞSðk1; k2; k3Þ; ð10Þ
where K ≡ k1 þ k2 þ k3, and the “shape function” S is
taken, in turn, to be a separable function of the form

Sðk1; k2; k3Þ ¼ Aðk1ÞBðk2ÞCðk3Þ þ perms: ð11Þ

This separation between transverse K ¼ const slices and
the K-dependent diagonal is illustrated in Fig. 2.
The separable Ansatz [Eq. (10)] is motivated in part by

comparison with primordial non-Gaussian models, for
which we define the shape function S by taking out an
overall scaling ðk1k2k3Þ−2 after which S is (almost) scale
invariant, that is, independent of the summed wave number
K along the tetrapyd diagonal. For this reason, most
primordial bispectra depend only on the two degrees of
freedom transverse to the diagonal and can be completely
defined by the shape S on the triangular surface K ¼ const.
At late times, this simple separation of variables

[Eq. (10)] may not apply accurately because of the
scale-dependent transfer functions, which means that per-
turbations with different wave numbers ki receive different
amplifications. Nevertheless, this is encoded in the turnover
of the late-time linear matter power spectrum PlinðkÞ, which
can still be used to create a separable (though scale-
dependent) shape function, e.g. as we will see for the
tree-level gravitational bispectrum. For this reason, the
separable description [Eq. (10)] can still prove very useful
if physically well-motivated shapes Sðk1; k2; k3Þ are chosen
and an overall scaling dependence fðKÞ is allowed.
The three basic separable bispectrum shape functions

Sðk1; k2; k3Þ we shall employ are the constant shape [126],
the squeezed (or local) shape [127–129] and the tree-level
(or flattened) shape from standard perturbation theory
discussed earlier. These three functions are essentially
weighting functions for specific triangular configurations;
that is, constant treats all triangles equally across the
tetrapyd, squeezed favors those along the edges, and
flattened those near the faces, as illustrated in Fig. 2
(qualitatively encompassing the commonly discussed equi-
lateral, local and orthogonal shapes respectively). The
constant shape is simply given by

Sconstðk1; k2; k3Þ ¼ 1 ðMpc=hÞ6: ð12Þ

Physically, the constant bispectrum is produced by a
random set of point sources, together with an appropriate
scaling dependence fðKÞ. It is our first approximation to
the bispectrum of the nonlinear virialized end products of
gravitational collapse assumed in halo models, with a
SN-weighted version illustrated in Fig. 3(a).
The second shape is squeezed and we shall define it as

Ssqueezðk1; k2; k3Þ ¼
1

3
½Plinðk1ÞPlinðk2Þ þ Plinðk2ÞPlinðk3Þ

þ Plinðk3ÞPlinðk1Þ�; ð13Þ

which incorporates the scale dependence of the transfer
functions within the linear power spectrum PlinðkÞ. It is
illustrated in Fig. 3(b). This squeezed shape is motivated by
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“local” non-Gaussianity in which perturbation fields are
simply squared, and where the leading contribution has a
large wavelength mode affecting nonlinearity on small
scales (i.e., for squeezed triangles with k1 ≪ k2; k3).
However, Eq. (13) regularizes the related scale-invariant
primordial local shape,

Slocalðk1; k2; k3Þ ¼
1

3

�
k21
k2k3

þ k22
k3k1

þ k23
k1k2

�
; ð14Þ

which behaves poorly because it diverges for very squeezed
triangles.
Finally, the third flattened shape is the tree-level gravi-

tational bispectrum given by [53]

Streeðk1; k2; k3Þ ¼ 2Plinðk1ÞPlinðk2ÞFðsÞ
2 ðk1;k2Þ

þ 2 perms:; ð15Þ

where the kernel FðsÞ
2 can be expressed as

FðsÞ
2 ðq1;q2Þ ¼

5

7
þ 1

2

q1 · q2

q1q2

�
q1
q2

þ q2
q1

�
þ 2

7

ðq1 · q2Þ2
q21q

2
2

;

ð16Þ

which, although not immediately apparent, is also a
separable shape of the form of Eq. (11). Equation (16)
represents the leading-order gravitational non-Gaussianity
generated by nonlinear terms in the equations of motion. As
we shall see, the scaling dependence fðKÞ in Eq. (10)
allows us to approximately incorporate higher-order per-
turbative corrections. However, the actual gravitational
bispectrum is more closely approximated if the tree-level
shape [Eq. (15)] is modified by employing the nonlinear
power spectrum [130], given by the HALOFIT method
[106,131]:

StreeNLðk1; k2; k3Þ ¼ 2PNLðk1ÞPNLðk2ÞFðsÞ
2 ðk1;k2Þ

þ 2 perms: ð17Þ

For this reason, we will generally employ this improved
flattened bispectrum as the third shape in our subsequent
modeling. Both the tree-level [Eq. (15)] and the nonlinear
tree-level [Eq. (17)] shapes are illustrated in Fig. 4.

C. Scale-dependent or “sliced” correlators

Having given the key shapes Si that we will use to
describe gravitational non-Gaussianity using the separable
Ansatz Eq. (10), we must also define a scale-dependent
correlator that can be used to test the accuracy of this
approximation. To determine this we need a more
“localized,” binned (or “sliced”) correlator, which only
integrates over the transverse degrees of freedom on the
K ¼ constant surfaces, modifying Eq. (3) to have the
restricted domain of integration,

hBi; BjiSK ≡ V
π

Z
ΔVB

dVk
k1k2k3Biðk1; k2; k3ÞBjðk1; k2; k3Þ

Pδðk1ÞPδðk2ÞPδðk3Þ
;

ð18Þ

such that the integral is now evaluated in a specific thin
slice of the tetrahedron with

FIG. 3. (a) The SN-weighted constant bispectrum of Eq. (12)
with a broadly equilateral signal shown together with (b) the
squeezed or local model [Eq. (13)] with high signal at the edges
near ki ≈ 0 (shown at redshift z ¼ 0). Note that the plotted
constant bispectrum does not have a constant cross-sectional
shape because of the nonuniform signal-to-noise weighting
[Eq. (4)] particularly near the edges; here Sconst in Eq. (12) is
multiplied by fðKÞ ¼ K3 (the color scale is normalized).
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K < k1 þ k2 þ k3 < K þ ΔK;

and where the index S denotes slice. Substituting the
localized inner product definitions in the correlators
[Eqs. (5)–(7)], this allows us to define the sliced correlators
SS, AS and T S; for example, the binned shape correlator
becomes

SSðKÞ≡ hBi; BjiSKffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hBi; BiiSKhBj; BjiSK

q : ð19Þ

Importantly, if we find a good binned shape correlation
SSðKÞ ≈ 1 between our target model (or simulation) and the
canonical shapes above [Eqs. (12), (13), (15)], then we can
use the binned amplitude correlation T S to determine the
overall scale dependence fðKÞ in our separable Ansatz of
Eq. (10). Later in Sec. VI we will combine these in a “three-
shape benchmark” model and establish that it can achieve
an excellent fit to simulations, thus dramatically reducing
the number of degrees of freedom required to accurately
describe the matter bispectrum.

III. PERTURBATION THEORY FOR
LARGE-SCALE STRUCTURE

The amplitude of the matter density fluctuations in the
Universe δ is small at early times and on large scales, so that
δ ≪ 1 and linear dynamics suffices for an accurate model-
ing in this regime. At later times and on smaller scales,
perturbations grow under gravity, making linear theory
increasingly inaccurate. Various methods exist that can
extend the range of validity of the model, accurately
describing the large-scale structure to smaller scales and
later times than linear theory.
A first possible approach, which we consider in this

section, is to extend linear theory perturbatively, by
expanding the evolution equations to higher order. This
leads directly to standard (Eulerian) perturbation theory
(SPT), which we review in Sec. III A; we next summarize
more recent developments, which extend the range of
validity by improving the SPT expansion convergence,
removing divergences, and adding counterterms. The
methods we consider are effective field theory (EFT)
in Sec. III B, renormalized (Eulerian) perturbation theory
(RPT) in Sec. III C, and resummed Lagrangian perturba-
tion theory (RLPT) in Sec. III D. For each method, we
provide a more complete review in the Appendixes A, B,
C, and D respectively. We discuss possible extensions to
two loops in Sec. III E and Appendix E. We finally
discuss the shapes of the perturbation theory bispectra in
Sec. III F.

A. Standard perturbation theory

Eulerian standard perturbation theory is derived by
expanding the evolution equations for the dark matter
density and velocity fields as a series of the linearly
evolved density field δ1. In analogy with field theory,
the resulting expansion for the power spectrum and
bispectrum can be grouped to loop orders according to
the number of δ1 ’s involved. We present here in the
following the expressions for the SPT matter power
spectrum and bispectrum, whose derivation is summarized
in Appendix A; see also Ref. [56] for a comprehensive
review.
The tree-level (zero-loop) power spectrum is simply

given by the linear power spectrum:

FIG. 4. Flattened shapes: (a) the SN-weighted tree-level bis-
pectrum of Eq. (15) compared with (b) the nonlinear tree-level
model [Eq. (17)], both shown at redshift z ¼ 2. Note that this
flattened shape is dominated by signal on the outer tetrapyd face
(front left) where k1 þ k2 ≈ k3 (see Fig. 2 for the geometry). The
nonlinear tree-level amplitude is substantially higher than the tree
level, but they share an excellent binned shape correlation
[Eq. (19)], which always remains above 99%.
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PSPT
tree ðk; zÞ ¼ P11ðk; zÞ ¼ D2ðzÞPlinðkÞ; ð20Þ

where DðzÞ is the linear growth function normalized to 1
today. This can be evaluated numerically by evolving the
primordial fluctuations through the Boltzmann equations
through codes such as CAMB [132]. The one-loop con-
tribution can be obtained from two diagrams and has the
following form [55]:

PSPT
1-loopðk; zÞ ¼ P13ðk; zÞ þ P22ðk; zÞ; ð21Þ

where the two contributions have the following expres-
sions:

P13ðk; zÞ ¼ D4ðzÞ
Z

d3q
ð2πÞ3 6PlinðkÞPlinðqÞFðsÞ

3 ðk;q;−qÞ

ð22Þ

P22ðk; zÞ ¼ D4ðzÞ
Z

d3q
ð2πÞ3 2PlinðqÞPlinðjk − qjÞ

× ½FðsÞ
2 ðq;k − qÞ�2; ð23Þ

and where the kernels FðsÞ
n are defined in Appendix A.

The tree-level bispectrum has the following expression
[53]:

BSPT
tree ðk1; k2; k3; zÞ ¼ 2D4ðzÞPlinðk1ÞPlinðk2ÞFðsÞ

2 ðk1;k2Þ
þ 2 perms: ð24Þ

In order to improve the accuracy of the tree-level bispec-
trum, Ref. [130] proposed simply replacing the linear
power spectrum in the tree-level formula with the nonlinear
power spectrum estimated e.g. with the HALOFIT method
[106,131]. This heuristically extends the range of validity
of the model, and is what we call “nonlinear tree level”
bispectrum [see Eq. (17)]. Reference [130] showed that a
further improvement can be achieved if, in addition to using
the nonlinear power spectrum, the F2 kernel is replaced
with a modified version Feff

2 , which includes six free
parameters that are fit to N-body simulations. Later, this
method was extended by Ref. [133] by adding three extra
parameters, as described in Appendix F, and recalibrated on
more precise N-body data over an extended range. This is
what we indicate as the “nine-parameter fit” model in the
discussion below.
For the one-loop bispectrum, there are four diagrams that

can be drawn [134]:

BSPT
1-loop ¼ B222 þ BðIÞ

321 þ BðIIÞ
321 þ B411: ð25Þ

These have the following expressions:

B222ðk1; k2; k3; zÞ ¼ 8D6ðzÞ
Z
q
PlinðqÞPlinðjk2 − qjÞ

× Plinðjk3 þ qjÞFðsÞ
2 ð−q;k3 þ qÞ

× FðsÞ
2 ðk3 þ q;k2 − qÞFðsÞ

2 ðk2 − q;qÞ
ð26Þ

BðIÞ
321ðk1; k2; k3; zÞ ¼ 6D6ðzÞPlinðk3Þ

Z
q
Plinðjk2 − qjÞ

× PlinðqÞFðsÞ
3 ð−q;−k2 þ q;−k3Þ

× FðsÞ
2 ðk2 − q;qÞ þ 5 perms: ð27Þ

BðIIÞ
321 ðk1;k2;k3;zÞ¼6D6ðzÞPlinðk2ÞPlinðk3ÞFðsÞ

2 ðk2;k3Þ

×
Z
q
PlinðqÞFðsÞ

3 ðk3;q;−qÞþ5perms:

ð28Þ

B411ðk1; k2; k3; zÞ ¼ 12D6ðzÞPlinðk2ÞPlinðk3Þ

×
Z
q
PlinðqÞFðsÞ

4 ðq;−q;−k2;−k3Þ

þ 2 perms:; ð29Þ

where
R
q ≡

R d3q
ð2πÞ3. The numerical integration of the expres-

sions above is nontrivial, and we discuss the necessary
procedures in Appendix A.
It is known [56] that SPT only succeeds in extending the

range of validity of linear theory by a small amount at low
redshift, while it overpredicts the power seen in N-body
simulations on smaller scales. This is because the SPT
loop corrections are integrated over all k modes, including
scales that are not in the linear regime, which are actually
suppressed in reality compared to SPT [104]. Furthermore,
the convergence of the SPT expansion is problematic, as it
relies on the near cancellation of large positive and negative
terms, so that increasing the loop order does not necessarily
improve the accuracy of the expansion, especially at low
redshift.

B. Effective field theory

Some of the problems of SPT mentioned in the previous
section are addressed by the effective field theory of LSS
(EFTofLSS, or simply EFT). At nonlinear level, the Fourier
modes do not evolve independently any more, and hence
small-scale fluctuations can influence much larger scales.
The basic assumption of EFT is to introduce additional free
parameters that describe the effect of nonperturbative
small-scale physics onto the larger observable scales.
The SPT expansion can only be expected to work when
the density contrast is small, δ ≪ 1, so that its range of
validity at low redshift becomes increasingly limited.
Nevertheless, even when this condition is not satisfied,
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the gravitational potential is still small and can be used to
produce a valid perturbative expansion. Based on this fact,
EFTofLSS has been developed in Refs. [13,88].
This method consists of adding to the equations of

motion an effective stress-energy tensor τμν, induced by
short wavelength modes. This has the effect of adding
corrections to the fluid equations, with terms corresponding
to the speed of sound, viscosity and stochastic pressure. As
we describe in more detail in Appendix B, the EFT method
leads to additional contributions to the SPT matter power
spectrum and bispectrum, with free parameters to be
calibrated with N-body simulations.
At one loop, one term is added to the SPT matter power

spectrum [135]:

PEFTðk; zÞ ¼ PSPTðk; zÞ þ Pcsðk; zÞ; ð30Þ

where

Pcsðk; zÞ ¼ −2ð2πÞc2sð1Þ
k2

k2NL
D2þζðzÞPlinðkÞ: ð31Þ

Here the parameters csð1Þ and ζ are fit to N-body simu-
lations, and kNL is defined as the scale where the perturba-
tive Ansatz (δ ≪ 1) breaks down.
Likewise, one term is added to the one-loop SPT matter

bispectrum:

BEFTðk1; k2; k3; zÞ ¼ BSPTðk1; k2; k3; zÞ
þ Bcsðk1; k2; k3; zÞ; ð32Þ

where

Bcsðk1; k2; k3; zÞ
¼ ½2Plinðk1ÞPlinðk2Þ ~FðsÞ

2 ðk1;k2Þ þ 2 perms:�DðzÞ4þζ

− ½2c̄1k21Plinðk1ÞPlinðk2ÞFðsÞ
2 ðk1;k2Þ

þ 5 perms�DðzÞ4þζ: ð33Þ

Here, c̄1 ¼ 2π
c2
sð1Þ
kNL

, and the sound speed parameter csð1Þ is
fixed at the power spectrum level only, so that the
bispectrum includes no extra free parameters. ~F is given
by Eq. (B3).
The additional EFT terms effectively subtract the excess

power that is present in the SPT results, so that an accurate
modeling can be achieved over an extended range of scales.

C. Renormalized perturbation theory

The renormalized perturbation theory (RPT) model has
been developed in Refs. [70–75]. This method uses the
formalism of the SPTand reorganizes the infinite expansion
differently using an idea from Ref. [69]. As described in
more detail in Appendix C, this approach is based on the
study of the nonlinear propagator connecting the initial

with the evolved fields describing density and velocity
perturbations. In this way, the perturbative expansion can
be written as a series of the nonlinear propagator. This
infinite series can be resummed, yielding the RPT expres-
sions for power spectrum and bispectrum at any number of
loops. Compared to SPT, this method has the advantage
that all the contributions involved are positive and the
resummation of the propagator terms gives a well-defined
perturbative expansion in the nonlinear regime. However,
the expressions involved are complicated and the solutions
are computationally demanding, the solution involving
solving numerically a set of integro-differential equations.
Moreover, more than one loop is required to obtain an
accurate result, even on mildly nonlinear scales.
In order to solve these problems, Refs. [73,75] proposed

a method that simplifies the calculation dramatically. The
scheme is called MPTBREEZE and in this formalism only
the late-time propagator is calculated and hence no time
integrations are required. As described in Appendix C, the
MPTBREEZE power spectrum contributions can be
expressed in terms of their SPT counterparts as follows:

PMPTbreeze
tree ðk; zÞ ¼ P11ðk; zÞ exp ½2fðkÞD2ðzÞ� ð34Þ

PMPTbreeze
1-loop ðk; zÞ ¼ P22ðk; zÞ exp ½2fðkÞD2ðzÞ�; ð35Þ

where the function fðkÞ is given in Eq. (C16).
The bispectrum contributions can be treated in a similar

manner [74], and the result up to one loop is given in terms
of the SPT one-loop contributions [Eqs. (26), (27)]:

BMPTbreezeðk1; k2; k3; zÞ
¼ ðBSPT

tree þ B222 þ BI
321Þðk1; k2; k3; zÞ

× exp ½ðfðk1Þ þ fðk2Þ þ fðk3ÞÞD2ðzÞ�: ð36Þ

The main advantages of RPTand its MPTBREEZE variant
are that the expansion series becomes positive definite, so
that no cancellation occurs and each successive term
improves the range of validity of the theory; and the
exponential prefactor term, which effectively suppresses
the theory outside its range of validity, thus avoiding some
of the SPT problems.

D. Resummed Lagrangian perturbation theory

Alternatively, perturbation theory can be derived as a
function of the Lagrangian coordinates of the initial
conditions. As the observable statistical quantities (power
spectra and bispectra) are always defined in the evolved
(Eulerian) coordinates, Lagrangian perturbation theory
(LPT) has to deal with the evolution of the displacement
field Ψ, which relates the two coordinate systems.
By expanding the evolved density and velocity pertur-

bations as a series of Ψ, it is possible to calculate
perturbative predictions for power spectrum and
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bispectrum at any chosen order, although the calculations
are complex [57–63]. A general drawback of LPT is that
this method cannot describe accurately the physics of shell
crossing, as particles continue to stream according to their
initial velocity; thus dark matter halos never collapse, and
LPT presents a power deficit on small scales.
More recently Ref. [80] used the cumulant expansion

theorem to obtain a simpler resummed expression for the
polyspectra, called resummed Lagrangian perturbation
theory (RLPT). This method yields a resummed series
expansion similar to, but simpler than, RPT.
We summarize the LPT and RLPT methods in

Appendix D; the final results are the RLPT power
spectrum [80]

PRLPTðkÞ ¼ exp
�
−

k2

6π2

Z
dpPlinðpÞ

�

×

�
PlinðkÞ þ PSPT

1-loopðkÞ

þ k2

6π2
PlinðkÞ

Z
dpPlinðpÞ

�
; ð37Þ

where PSPT
1-loop is the one-loop SPT term (without the tree-

level term); and the bispectrum [84]

BRLPTðk1; k2; k3Þ ¼ exp

�
−
k21 þ k22 þ k23

12π2

Z
dpPlinðpÞ

�

×

�
BSPT
tree þ BSPT

1-loop þ
k21 þ k22 þ k23

12π2
BSPT
tree

×
Z

dpPlinðpÞ
�
: ð38Þ

From Eqs. (37), (38) it is evident that the RLPT
power spectrum and bispectrum reduce back to SPT if
the exponential prefactor is expanded to first order.
Furthermore, this prefactor is similar to the RPT results:
in both cases, the theory decays rapidly to zero outside its
range of validity. Thus this method is not expected to yield
realistic predictions in the fully nonlinear regime where the
exponential cutoff dominates, but only on quasilinear
scales.

E. Going to two loops and estimating
perturbation residuals

So far, most of the LSS perturbation theory work has
considered up to two loops in the power spectrum [65,135]
and up to one loop in the bispectrum. The reason has been
mainly computational, but there is also a theoretical
constraint: perturbation theories are expected only to work
close to the linear regime, as they rely on perturbing
around small density fluctuations. Even in the EFTofLSS
approach, which significantly extends the range of validity
of the nonlinear power spectrum over SPT [135], it is not

possible to push the model further to scales associated with
dark matter halos: in the fully nonlinear regime only
phenomenological halo models and fits to N-body simu-
lations can be used. Nevertheless, it is interesting to
investigate how far into intermediate nonlinear scales
perturbation theory can be extrapolated.
Since the bispectrum is a three-dimensional quantity, its

expansion at two loops requires the computation of
challenging six-dimensional integrals. Moreover, the inte-
grals involved have divergences that cancel between differ-
ent terms, so these must be identified and eliminated before
numerical computation to ensure convergence. Fortunately,
in the MPTBREEZE formalism, the number of terms that
appear is reduced; as described in Appendix E, we have
therefore calculated analytically the terms involved, and we
have eliminated the divergences based on the ideas devel-
oped in Refs. [136–138]. Unfortunately, due to the com-
plexity of the integrals, we have not been able to perform
the full three-dimensional bispectrum calculation as in the
other one-loop cases. The analytic divergence-free expres-
sions obtained are presented in Appendix E, while here we
show in Fig. 5 three triangle configurations: equilateral,
squeezed and flattened, also with a comparison between all
the tree-level and one-loop perturbative methods at z ¼ 0.
The EFT bispectrum is expected to be accurate up to higher
k than one-loop RPT, as discussed by Ref. [138] and as
shown in Sec. VII below; therefore, knowing that the RPT
approach is a convergent expansion with the precision
increasing as the number of loops is increased, we can
estimate the range of validity of the one-loop and two-loop
MPTBREEZE results by comparison with EFT. In Fig. 5, we
observe that the two-loop MPTBREEZE bispectrum closely
follows the EFT prediction for an extra 0.04 h=Mpc more
than the one-loop bispectrum in the equilateral and flat-
tened cases, while the squeezed limit shows a more modest
improvement. It is therefore clear that extending
MPTBREEZE to two loops in the quantitative comparisons
of Sec. VII would significantly improve its range of
validity, but we decide not to pursue this for consistency
with the other PT methods, and because of the huge
analytic and numerical challenges which seem to be
entailed.
Controlled perturbative expansions become increasingly

accurate as the number of loops is increased, so a criterion
for determining where perturbation theory at a given order
breaks down is to calculate the next-order contribution and
find where they become significant. In Table I we show the
value of the wave number where the higher order expansion
deviates by more than 10% (20%) from the lower order.
Hence, we compare SPTwith tree level, the MPTBREEZE at
one loop to the tree level and the two-loop MPTBREEZE
bispectrum to its one-loop counterpart. For completeness,
we also determine the effect of the counterterm in EFT
which corrects SPT. At one loop we evaluate deviations
with the total correlator T , but at two-loop order we
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determine the worst case amongst the three limiting
configurations evaluated. Table I indicates that the tree-
level bispectrum is in fact valid only for small wave
numbers k≲ 0.1 h=Mpc at z ¼ 0 and k≲ 0.2 h=Mpc at
z ¼ 2, with one-loop contributions apparently offering only
a small incremental improvement. However, the compari-
son of SPT results with the EFT controlled expansion
indicates that it may be possible to extrapolate perturbative
expansions considerably further. As we shall see in
Sec. VII, there is an unexpectedly good correspondence
between some perturbative bispectra and the results of
numerical simulations, going well beyond the thresholds
estimated in Table I.

F. Shapes of perturbative bispectrum models

We conclude this section by describing the shapes of the
various terms appearing in the different perturbative
approaches using the binned shape correlator SS, defined
on K ¼ const slices in Eq. (18). We determine SS for each
perturbative model against the tree-level, squeezed and

constant shapes in Sec. II B. The results of this comparison
are illustrated in Fig. 6. In the SPT and EFT bispectra, the
tree-level term is always present, and so inevitably the flat
tree-level shape dominates the large-scale results. For this
reason, we restrict our attention to an analysis of the one-
loop SPT terms and EFT counterterms separately, in order
to achieve a better understanding of the underlying shape
corrections. This also simplifies the figures, because in this
way there is no mixture of different powers of the growth
factor and it is sufficient to test the shapes of these terms at
z ¼ 0. The left panel of Fig. 6 shows the shape correlators
in scale-invariant slices of K ≡ k1 þ k2 þ k3 ¼ constant
for the sum of the positive one-loop terms of SPT (thick
lines) and the negative contributions (thin lines). The
central panel represents the EFT counterterm for the tree
level, −Bcs , and the right panel shows the shapes of the
MPTBREEZE bispectrum. Figure 6 shows strong correla-
tions with the tree-level shape in the range 0.1 h=Mpc <
k < 0.5 h=Mpc and beyond, with only the exponential
cutoff in the MPTbreeze affecting the correlation.
Since the tree-level shape correlator is so dominant with

respect to the others, we conclude that the perturbative
approaches are indistinguishable in shape from the tree-
level shape Eq. (15) in each scale-invariant K-bin. This is
for the relevant range of scales probed by this analysis, with
the possible exception of some small deviations appearing
in the one-loop SPT terms at small k. Overall, Fig. 6 implies
these one-loop correction terms are not adding any quali-
tatively new shape degrees of freedom; thus perturbative
methods can be well approximated in terms of the tree-level
shape using the separable Ansatz:

BPTðk1; k2; k3Þ ¼ fðKÞStreeðk1; k2; k3Þ; ð39Þ

TABLE I. Domain of validity for perturbation theory: wave
number k�max where the two perturbative expansions are compared
show relative deviations greater than 10% (20%).

Perturbation theories

Threshold 10% (20%) k�max (h=Mpc)

Theory z ¼ 0 z ¼ 1 z ¼ 2

SPT/tree-level 0.07 (0.08) 0.08 (0.12) 0.12 (0.14)
EFT/SPT 0.12 (0.41) 0.41 (0.93) 0.77 (1.52)
RPT 1-loop/tree 0.08 (0.10) 0.09 (0.14) 0.13 (0.20)
RPT 2-loops/1-loop 0.09 (0.11) 0.13 (0.16) 0.19 (0.23)
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FIG. 5. Equilateral (left), squeezed (middle) and flattened bispectra (right) from perturbation theories at z ¼ 0. We show the theoretical
predictions of the tree-level bispectrum, SPT, EFTand the one- and two-loop MPTBREEZE bispectra. For this last model, we observe that
the wave number at which the theory starts decaying increases significantly when adding the two-loop terms in the case of the equilateral
and flattened configurations, closely following the EFT model down to smaller scales, while for the squeezed configuration the
improvement is negligible. Bispectra are plotted in units of ðMpc=hÞ6 throughout the paper.
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where K ¼ k1 þ k2 þ k3 and fðKÞ is an appropriate scale-
dependent function defined in Eq. (10). We will use this
result in the construction of the phenomenological bench-
mark model in Sec. V below.

IV. NONPERTURBATIVE MODELS OF
LARGE-SCALE STRUCTURE

A. Halo model basics

We next extend the clustering modeling deeper into the
nonlinear regime using the halo model of the large-scale
structure [96–98]. This framework is based on the
assumption that all the matter in the Universe is concen-
trated into discrete regions called halos. As summarized in
the review in Ref. [99], the matter power spectrum in this
model is described by two contributions:

Pðk; zÞ ¼ P1hðk; zÞ þ P2hðk; zÞ; ð40Þ

where the one- and two-halo terms describe contributions
from dark matter particle pairs that reside in the same or in
different halos respectively, given by

P1hðk; zÞ ¼
Z

∞

0

dmnðm; zÞ
�
m
ρ̄

�
2

u2ðkjm; zÞ; ð41Þ

P2hðk; zÞ ¼
Z

∞

0

dm1nðm1; zÞ
�
m1

ρ̄

�
uðkjm1; zÞ

×
Z

∞

0

dm2nðm2; zÞ
�
m2

ρ̄

�
uðkjm2; zÞ

× Phðkjm1; m2; zÞ: ð42Þ

Here ρ̄ is the mean density of the Universe today, and the
one- and two-halo terms can be calculated once the
following ingredients are specified: the halo mass function
nðm; zÞ; the Fourier transform of the halo profile uðkjm; zÞ;

and the halo power spectrum Phðkjm1; m2; zÞ, which we
describe in Appendix G below.
Likewise, the matter bispectrum can be expressed as a

sum of three terms:

Bðk1; k2; k3; zÞ ¼ B1hðk1; k2; k3; zÞ þ B2hðk1; k2; k3; zÞ
þ B3hðk1; k2; k3; zÞ; ð43Þ

where the one-, two-, and three-halo contributions refer to
dark matter particle triplets residing in one, two, or three
halos, given by

B1hðk1; k2; k3; zÞ ¼
Z

∞

0

dmnðm; zÞ
�
m
ρ̄

�
3Y3
i¼1

uðkijm; zÞ;

ð44Þ

B2hðk1; k2; k3; zÞ

¼
�Z

∞

0

dm1nðm1; zÞ
�
m1

ρ̄

�
uðk1jm1; zÞ

×
Z

∞

0

dm2nðm2; zÞ
�
m2

ρ̄

�
2

uðk2jm2; zÞuðk3jm2; zÞ

× Phðk1jm1; m2; zÞ
�
þ 2 cyc:; ð45Þ

B3hðk1; k2; k3; zÞ

¼
Y3
i¼1

�Z
∞

0

dminðmi; zÞ
�
mi

ρ̄

�
uðkijmi; zÞ

�

× Bhðk1; k2; k3jm1; m2; m3; zÞ: ð46Þ

Here Bh is the halo bispectrum, which we describe in
Appendix G below.
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FIG. 6. Shapes of the perturbation theory bispectra. For each of the theoretical bispectra considered, we show the shape correlators in k
slices SS [Eq. (18)] with respect to the constant, squeezed and tree-level shapes [Eqs. (12)–(15)]. The left panel shows the one-loop SPT
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321], while the thin lines refer to the sum of the negative terms [BðIIÞ

321 and B411].
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B. Combined halo-PT model

As we show below in Sec. VII, the halo model provides a
good description of N-body simulations in the fully non-
linear regime; however, some well-known shortcomings of
this formalism are that [99,139,140]: (i) in the transition
between linear and nonlinear scales, the halo model
description is less accurate, and in the mildly nonlinear
regime, perturbative methods are often more successful;
(ii) in the linear limit, the nonlinear contributions P1h, B1h,
B2h do not vanish, leading to excess power with respect to
linear theory for k → 0; (iii) at higher redshift, as the
fraction of matter in virialized structures decreases, the
accuracy of the halo model degrades rapidly.
The issues (i) and (ii) are addressed by a combined

formalism developed by Valageas and Nishimichi (VN)
[100,101], which we briefly summarize here; we will call
this model the “halo-PT model” in later sections.

1. Power spectrum

The one- and two-halo power spectrum terms can be
combined with perturbation theory as follows [100]:

PVN
1h ðkÞ¼

Z
∞

0

dmnðmÞ
�
m
ρ̄

�
2

½u2ðkjmÞ−W2
fðkqmÞ�; ð47Þ

PVN
2h ðkÞ ¼ F2hð1=kÞPPTðkÞ; ð48Þ

where qm ¼ Rf ¼ ½3m=ð4πρ̄Þ�1=3 is the Lagrangian radius
of a halo of mass m, F2h describes the probability that two
particles at this Fourier space separation are in distinct
halos, and PPTðkÞ is the nonlinear matter power spectrum in
perturbation theory, e.g. SPT or EFT. With respect to the
standard halo model presented in Sec. IV above, the one-
halo term is modified by subtracting the filter function
W2

fðkqmÞ, which ensures that the one-halo term vanishes in
the limit k → 0; the two-halo term is based on a perturba-
tion theory of choice, corrected by the probabilistic
prefactor F2h given in Eq. (H3). The derivation of this
model is summarized in Appendix H.

2. Bispectrum

Using a similar approach, Ref. [101] derived a combined
model for the bispectrum. In analogy with the power
spectrum case, the only term that should contribute to
the bispectrum on very large scales is the three-halo term.
Hence, that is the only perturbative contribution, while the
one- and two-halo terms are nonperturbative.
The one-halo bispectrum term is

BVN
1h ðk1; k2; k3Þ ¼

Z
∞

0

dmnðmÞ
�
m
ρ̄

�
3

×
Y3
i¼1

½uðkijmÞ −WfðkiqmÞ�: ð49Þ

This function has the correct behavior on large scales, as its
slope is at least BVN

1h ðk1; k2; k3Þ ∝ k2j for any kj → 0.
The full result for the two-halo bispectrum is

BVN
2h ðk1; k2; k3Þ

¼
Z

∞

0

dm1nðm1Þ
�
m1

ρ̄

�
½uðk1jm1Þ −Wfðk1qm1

Þ�

×
Z

∞

0

dm2nðm2Þ
�
m2

ρ̄

�
2

½uðk2jm2Þ −Wfðk2qm2
Þ�

× ½uðk3jm2Þ −Wfðk3qm3
Þ�Phhðk1jm1; m2Þ þ 2 cyc:

ð50Þ

Here Phhðk1jm1; m2Þ ¼ bðm1Þbðm2ÞPlinðk1Þ. This result
was however found to be unsatisfactory [101], because it
scales as BVN

2h ∼ k21Pðk1Þ for k1 → 0, while a scaling ∝
Pðk1Þ is expected; this implies that the approximations
made in the derivation of this term are not accurate enough.
Reference [101] therefore changes tack and argues for an
alternative result that scales more appropriately in the large-
scale limit, by replacing the halo with the matter power
spectrum, and removing one prefactor:

BVN
2h0 ðk1; k2; k3Þ

¼
Z

∞

0

dm1nðm1Þ
�
m1

ρ̄

�
½uðk1jm1Þ −Wfðk1qm1

Þ�

×
Z

∞

0

dm2nðm2Þ
�
m2

ρ̄

�
2

½uðk2jm2Þ −Wfðk2qm2
Þ�

× Plinðk1Þ þ 2 cyc: ð51Þ

The large-scale limit of this result is BVN
2h0 ∼ PðkjÞ for

kj → 0, as desired. Notice however that the rougher
approximations assumed while deriving Eq. (51) make
the accurate prediction of this term more uncertain.
Finally, the three-halo bispectrum is obtained with a

perturbative approach. Similarly to the two-halo power
spectrum, this contribution should match the tree-level
bispectrum on very large scales. The probability that the
three wave vectors belong to different halos can be
approximated by

F3hðk1; k2; k3Þ ¼
Z

νk1

0

dν1

Z
νk2

0

dν3

×
Z

νk3

0

dν3fðν1Þfðν2Þfðν3Þ: ð52Þ

The three-halo bispectrum can then be written as

BVN
3h ðk1; k2; k3Þ ¼ F3hð1=k1; 1=k2; 1=k3ÞBPTðk1; k2; k3Þ;

ð53Þ
where BPTðk1; k2; k3Þ is the matter bispectrum in the
perturbative method of choice. In practice, the probabilistic
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prefactor appears to be neglected and set to unity for the
bispectrum case [101].

C. Halo model shapes

By analogy with the shape investigation of perturbation
theory bispectra we described in Sec. III F, we characterize
here the shapes of the distinct halo model contributions,
each of which has been evaluated numerically for a specific
set of cosmological parameters (see Sec. V). In Fig. 7 we
show the binned shape correlator results SS [Eq. (18)], by
projecting the three halo model bispectrum components
onto the canonical constant, squeezed and tree-level shapes
[Eqs. (12)–(15)], defined on slices of K ¼ k1 þ k2 þ k3 ¼
constant, for redshifts z ¼ f0; 2g. The respective panels of
Fig. 7 showing the one-, two-, and three-halo terms
demonstrate that they are maximally correlated with the
constant, squeezed, and tree-level shapes respectively, on
all scales, and independently of redshift. This clear obser-
vation confirms the accuracy of the separable Ansatz
[Eq. (10)] and the completeness of our canonical three
shapes [Eqs. (12)–(15)] when characterizing the degrees of
freedom needed to describe the standard halo bispectrum.
This motivates us to find simple fitting functions fiðKÞ for
each of the three halo model components.

1. One-halo term

Given the excellent shape correlation between the one-
halo bispectrum [Eq. (44)] and the constant shape
[Eq. (12)] that we observe in Fig. 7, we note that this
term can be approximated by

B1hðk1; k2; k3Þ ¼ f1hðKÞSconstðk1; k2; k3Þ; ð54Þ

where K ≡ k1 þ k2 þ k3. Because of the constant cross-
sectional form of Eq. (54), without loss of generality we can
focus exclusively on the equilateral case to find a good fit.
In Fig. 8 (top panel) we illustrate the equilateral one-halo
bispectrum obtained from Eq. (44) at z ¼ f0; 1; 2; 3g,
compared with the following square-Lorentzian fitting
function we introduce:

f1hðKÞ ¼ A
½1þ bK2�2 ; ð55Þ

where A and b are functions of redshift z through the
perturbation growth factor DðzÞ. We first fit A, b for each
redshift separately, and then we obtain two overall redshift-
dependent fitting functions, taking account of the growth
factors in the following form:

A ¼ 2.45 × 106DðzÞ8
0.8þ 0.2DðzÞ−3 ð56Þ

b ¼ 0.054DðzÞ2.2h−2 Mpc2: ð57Þ

We can see in Fig. 8 (top panel) for the equilateral case, and
in Fig. 9 over the full 3D domain, that this is a good
approximation of the full one-halo term.
While this phenomenological fit may not be particularly

well-motivated physically, it does illustrate that once the
one-halo shape has been identified, then a relatively simple
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FIG. 7. Shapes of the halo model bispectrum. We show the correlation of the three components of the halo model with the constant,
squeezed and tree-level shapes at redshifts z ¼ 0 (upper panels) and z ¼ 2 (lower panels). The left panels show that the one-halo term
has a constant shape [Eq. (12)], the central panels demonstrate that the two-halo term is nearly fully correlated with the squeezed shape
[Eq. (13)], and the right panels indicate that the three-halo term has the same shape as the tree-level bispectrum [Eq. (15)]. These results
hold independent of scale and redshift.
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combination of growth factors can be used to describe the
scale-dependent amplitude for the relevant wave number
range around K ∼ 1 h=Mpc. Alternatively, it is sufficient to
model the one-halo bispectrum directly by evaluating
Eq. (44) for equilateral values only: k1 ¼ k2 ¼ k3. More
significantly, knowing empirically that Ansätze like
Eq. (55) are accurate may offer insight which leads to a
much simpler mathematical derivation of the individual
halo contributions.

2. Two-halo term

As seen in Fig. 7, the two-halo bispectrum [Eq. (45)] is
strongly correlated on all K ¼ const slices with the
squeezed shape Ssqueezðk1; k2; k3Þ constructed from prod-
ucts of the power spectrum defined in Eq. (13). This means
that we can write

B2hðk1; k2; k3Þ ¼ f2hðKÞSsqueezðk1; k2; k3Þ: ð58Þ

In order to obtain a phenomenological fit, we consider
again the equilateral configuration, which we show in
Fig. 8 (bottom panel). From this simple analysis, we find
that a useful fitting function valid for the redshift range
considered is

f2hðKÞ ¼ 155

1þ 26.2h2 Mpc−2DðzÞ−8=3K−2 ; ð59Þ

where it should be noted that the squeezed shape form
already includes a D4ðzÞ redshift dependence from the
linear power spectrum in Eq. (13).
However, as discussed above in Sec. IV B 2, the standard

two-halo term causes some large-scale power excess in the
full bispectrum, because it does not decay appropriately as

FIG. 9. The SN-weighted one-halo bispectrum of Eq. (44)
(upper panel) compared at z ¼ 0with the one-halo constant shape
Ansatz of Eq. (54) with scale dependence f1hðKÞ given by
Eqs. (55), (57) (lower panel). This fit is visually hard to
distinguish reflecting the high total correlation achieved over
all length scales (and redshifts). The cross-sectional shape does
not appear constant because of the SN weighting [Eq. (3)].
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corrected two-halo fitting function of Eq. (60).
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k → 0; thus the full bispectrum does not recover the tree-
level form on large scales. We can modify our fitting
function in order to solve this issue, by considering the
functional form

f2hðKÞ ¼ C
ð1þDK−1Þ3 : ð60Þ

This function is chosen to decay more rapidly on very large
scales, as in that regime there should be no contribution
from the two-halo term. By fitting the full two-halo term at
different redshifts and considering the halo-PT VN model,
we obtain

C ¼ 240 ð61Þ

D ¼ 2.5h Mpc−1DðzÞ−4=3: ð62Þ

We can see in Fig. 8 (bottom panel) for the equilateral
case, and in Fig. 10 over the full 3D domain, that this is a
good approximation of the two-halo bispectrum term.
Nevertheless, despite this improvement at z ¼ 0 as

k → 0 we will show later that the two-halo model does
not predict the appropriate growth rates at redshifts z > 0
when compared to simulations.

3. Three-halo term

The three-halo term [Eq. (46)] has a good shape
correlation with the tree-level bispectrum [Eq. (15)],
because it is essentially constructed out of this solution

or its one-loop extensions, all of which share the
same highly correlated flattened shape (as discussed in
Sec. III F). Hence, as we have discussed previously, the
three-halo term can be expressed again with a simple fitting
function [Eq. (39)] using the tree-level shape Stree. The
standard halo model effectively identifies the three-halo
term with the tree-level bispectrum so we can take the
fitting function to be unity. Extensions taking a perturbative
result with one-loop corrections can also be described at
high accuracy with Eq. (39) but with nontrivial scaling
fðKÞ (e.g. to simplify the halo-PT VN model which uses
BEFT). Since the closely related nonlinear tree-level bis-
pectrum StreeNL given in Eq. (17) provides a better approxi-
mation to the perturbative models, we can more
conveniently use this as our base tree-level Ansatz:

B3hðk1; k2; k3Þ ¼ f3hðKÞStreeNLðk1; k2; k3Þ: ð63Þ

Both tree-level and nonlinear tree-level shapes are plotted
in Fig. 4. We will employ Eq. (63) when developing the
phenomenological three-shape model in Sec. V.

V. POLYSPECTRA FROM SIMULATIONS

A. N-body simulations

We use the N-body simulations with Gaussian initial
conditions described in detail in Ref. [110]. The simulations
contain 5123 particles that are evolved from an initial redshift
of z ¼ 49 until today using the N-body GADGET-3 code
[141,142] with second-order Lagrangian Perturbation
Theory (2LPT) initial conditions [143,144]. These yield a
less-than-2% accuracy in the bispectrum, as shown in
Ref. [145]. The simulations are run using a flat ΛCDM
universe with the following WMAP7 [146] parameters:
baryon energy density Ωbh2 ¼ 0.0226; dark matter energy
density Ωch2 ¼ 0.11; cosmological constant energy density
ΩΛ ¼ 0.734; dimensionless Hubble constant h ¼ 0.71;
optical depth τ ¼ 0.088; amplitude of primordial perturba-
tions Δ2

Rðk0Þ ¼ 2.43 × 10−9; and scalar spectral index
nsðk0Þ ¼ 0.963, where k0 ¼ 0.002h Mpc−1. We use simu-
lations of three different box sizes of 1600, 400 and
100 Mpc=h respectively; the first one has glass Gaussian
initial conditions and the other two have regular grid initial
conditions. We denote the simulations using their names
from Ref. [110]:G512g,G512

400,G
512
100. Given the fixed number

of particles, the three box sizes lead to the following wave
number ranges: ½0.0039; 0.5� h=Mpc, ½0.016; 2.0� h=Mpc
and ½0.062; 8.0� h=Mpc respectively. For each box size,
three independent realizations are available.
We combine the power spectra and bispectra from the

different simulation boxes as follows. As it can be seen in
Fig. 6 of Ref. [110], where the matter power spectra from
the three simulations considered are compared to the
HALOFIT model, at any redshift z > 0 the power spectrum
of simulationG512g only follows the HALOFIT model up to

FIG. 10. The SN-weighted two-halo bispectrum of Eq. (45) at
z ¼ 0, showing the strongly squeezed signal. Like the one-halo
bispectrum shown in Fig. 9, an excellent fit to this model can be
obtained with the separable Ansatz of Eq. (58) using the standard
squeezed shape [Eq. (13)].
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kmax ≃ 0.2 h=Mpc; however, for k≳ 0.1 h=Mpc, the sim-
ulation G512

400 matches HALOFIT more closely. The same
behavior is seen at larger k for the G512

400 and G512
100 boxes.

Therefore, we combine the power spectra and bispectra
from the simulations in order to use each simulation in the
range of scales where its results are the closest to HALOFIT,
and we apply a smooth transition between the different
boxes. We define a smoothing function HðkÞ in the range
k ∈ ½ks; ke� of the form

HðkÞ ¼
1 − sin ðπ k−ke=2−ks=2

ke−ks
Þ

2
: ð64Þ

As we have three realizations for each of the simulations,
we match each realization i ¼ 1, 2, 3 from each simulation
with the same i realization in the other simulations, thus
obtaining three combined realizations of the power spectra
and bispectra over the full k range we consider. We have
checked that modifying the smoothing function has only a
small impact on the overall results. This procedure allows
us to use an overall large simulation data set covering the
entire region of interest in wave vector space with three
realizations. However, larger errors appear in the interior of
the domain where the transition between the simulations
occurs.
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FIG. 11. Overview of the matter power spectra predicted by the range of theoretical models we consider, compared with data measured
from N-body simulations. The data points are combined from N-body simulations with three different box sizes. The upper and lower
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prediction.
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B. Power spectrum

We estimate the power spectrum of the simulations in
each k-bin by averaging the squared absolute value of the
matter overdensity jδqj2 over all modes that fall into the
shell with distance k from the origin (i.e. over q with
jqj − Δk=2 ≤ k < jqj þ Δk=2, where Δk is the bin width).
We compare in Fig. 11 the power spectrum measured from
the simulations with the models that we consider: linear
theory; the nonlinear power spectrum from HALOFIT, EFT,
MPTBREEZE and RLPTat one loop; the halo model; and the
combined halo-PT model (based on EFT). The lower
panels of Fig. 11 show the power spectrum residuals with
respect to the HALOFIT model.
Focusing first on the perturbative methods, we note that

they increase their range of validity to higher kmodes as the
redshift is increased, as expected. We confirm that SPT
presents excess power in the quasilinear regime, departing
from the simulations by more than 10% at k≃ 0.15 h=Mpc
at z ¼ 0. The SPT excess power is however reduced at
higher redshifts, as expected given that the one-loop
corrections have a higher growth rate compared to the tree
level. The EFT method can extend the range of validity by
subtracting the SPTexcess power. However, the scale range
over which EFT is accurate strongly depends on which
simulations were used to calibrate the counterterm, and
over which range of scales and redshifts. In the present
case, the c2s counterterm we are using was calibrated by
Ref. [138] with the G512g simulation box we are present-
ing at z ¼ 0; therefore, there is no guarantee that this same
counterterm will be accurate at higher k over the smaller-
box simulationsG512

400,G
512
100, and at z > 0. Indeed, it is likely

that a refitting of c2s over the combined range of simulations
we are using would improve the EFT model accuracy over
an extended range of k and z. The MPTBREEZE and RLPT
approaches include an exponential cutoff: this reduces the
range in which the model is accurate to 10% to k <
0.10 h=Mpc at z ¼ 0; nonetheless, these models feature an
improved accuracy in the mildly nonlinear regime before
the cutoff sets in, although the precision of our N-body
simulations does not allow detailed quantitative statements
at the percent level.
We then consider the halo models: we see that at z ¼ 0

this formalism provides a good description of the matter
power spectrum on small scales and in the range
k ∈ ½0.01; 0.2� h=Mpc, after which we find the well-known
power deficit in the transition region between the one- and
two-halo terms. The model performs again better at smaller
scales (k≳ 2 h=Mpc at z ¼ 0), reaching an accuracy of
∼10%. On very large scales, the halo model amplitude
exceeds the simulations, as the one-halo term does not
decay to zero as it physically should. By moving to higher
redshifts, we see that at z ¼ 2 the halo model provides a
worse description of the simulations at intermediate and
small scales, as the power deficit in the transition region is
exacerbated. This is because the total fraction of dark

matter particles that belong to collapsed structures is
drastically reduced at this redshift, which undermines the
assumptions underlying the halo model approach. On large
scales on the other hand, the excess power nearly dis-
appears at high redshift, due to the quick decay of the one-
halo term as a function of z.
The combined halo-PT model based on EFT succeeds

in removing the excess power seen on large scales at
z ¼ 0; as we discuss below, this excess will appear even
more evidently in the bispectrum. This model is also
partly successful in reducing the power deficit on
intermediate scales, thanks to the extra power that is
added there from the perturbative term. However, due to
the negative counterterm, the EFT power spectrum
prediction becomes negative on small scales
(k≳ 1 h=Mpc at z ¼ 0). After this point, we base the
halo-PT model on the SPT prediction: this is the reason
for the cusp we see in the halo-PT model residuals in the
nonlinear regime.
We finally note that the results from the simulations are

in good agreement with the nonlinear HALOFIT power
spectrum, as they are within 10% accuracy over the entire
k-range considered at all z.

C. Modal bispectrum methodology

We next follow the modal decomposition method to
reconstruct the dark matter bispectrum, using the method
developed by Refs. [112,113,147]. In this approach, the full
3D bispectrum Bðk1; k2; k3Þ is expanded on an orthonormal
basis defined on the same tetrapyd domain Qnðk1; k2; k3Þ,
with n ¼ 0;…; nmax. In this way, the full bispectrum
information is encoded in the expansion coefficients βQn ,
and the bispectrum estimator B̂ can be written as

B̂ðk1; k2; k3Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k1k2k3

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pðk1ÞPðk2ÞPðk3Þ

p ¼
Xnmax−1

n¼0

βQn Qnðk1; k2; k3Þ: ð65Þ

We note that the left-hand side is the signal-to-noise
weighted bispectrum BSN

i ðk1; k2; k3Þ defined in Eq. (4).
The accuracy of this estimator is regulated by the dimen-
sion of the expansion basis, nmax; for the smooth bispectra
that are typical of the LSS, Ref. [110] demonstrated that the
choice nmax ∼ 100 suffices to achieve a convergence of the
total bispectrum signal-to-noise; i.e. considering higher
nmax has negligible effect on the matter bispectrum. This
highlights the benefits of the modal method: once the basis
Qn is chosen, the entire three-dimensional bispectrum
information can be simply compressed in a set of ∼100
numbers.
Reference [113] tested several different choices of the

basis Qn, demonstrating that the modal method success-
fully reconstructs the bispectrum in all cases. The most
suitable choice for Qn is however built from a set of
tetrahedral polynomials qpðxÞ, which are analogues of the
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Legendre polynomials on the unit interval. In more detail,
the basis Qn can be written as

Qnðx; y; zÞ ¼ qfrðxÞqsðyÞqðzÞtg; ð66Þ

where n ¼ rþ sþ t, frstgmeans symmetrization over the
three indices, and the order of the permutations is taken as
in Ref. [113]. In turn, the tetrahedral polynomials of order
n, qnðxÞ, can be generated by taking the determinant

qnðxÞ ¼
1

N

��������������

1=2 7=24 � � � wn

7=24 1=5 � � � wnþ1

..

. ..
. . .

. ..
.

wn−1 wn � � � w2n−1
1 x � � � xn

��������������
; ð67Þ

where

wn ¼
nþ 6

2ðnþ 3Þðnþ 2Þ ; ð68Þ

and the normalization N is chosen so that the polynomials
qnðxÞ are orthonormal with respect to the product:

hqn; qmi ¼
Z

1

0

qnðxÞqmðxÞ
1

2
xð4 − 3xÞdx ¼ δnm: ð69Þ

D. Bispectrum reconstruction from simulations

A modal reconstruction for the matter bispectrum
BSN
i ðk1; k2; k3Þ [Eq. (65)] was obtained using the mode

functions [Eq. (67)] for the full array of simulations
described in Sec. VA. This decomposition and its vali-
dation were described in detail in Ref. [110]: a relatively
small number of modes were sufficient to recover the full
bispectrum at the required resolutions, that is, using 120
modes for the G512g simulations and 50 modes for the
other two simulations. We focus attention here on the low-
redshift regime z < 3 where the bispectrum is accessible to
current and future galaxy surveys and where nonlinearities
become important. To obtain the full bispectrum across the
widest range of scales we combined and averaged all the
simulation bispectra, interpolating in overlapping regions
using the same prescription as that described for the power
spectrum. Error bars for bispectrum correlators were
estimated by determining variances from the different
simulations.
In Fig. 12 we plot the full three-dimensional matter

bispectrum we have obtained across the tetrapyd domain
for 0.02 h=Mpc ≤ k ≤ 2 h=Mpc and at four different red-
shifts z ¼ f0; 1; 2; 3g. The color scheme is scaled using the
growth factor DðzÞ such that the tree-level bispectrum
would appear constant in the perturbative regime. These

plots range from quasilinear to highly nonlinear regions and
several qualitative observations about the nature and
evolution of the matter bispectrum are immediately
apparent.
At the higher redshifts z ¼ 2, 3 shown in Figs. 12(a)–(b),

a flattened signal is dominant up to K ≡P
iki ≲

4; 3.5 h=Mpc respectively (i.e. the tetrahedron region).
This is consistent with the flattened tree-level shape
[Eq. (15)] which is shown in Fig. 4(a) at z ¼ 2, but at
much lower amplitude on a more sensitive scale. This
means the flattened signal extrapolates with growing
amplitude well beyond the perturbative regime at these
redshifts (e.g. from Table I K ≲ 0.6 h=Mpc at z ¼ 2). We
focus further on the perturbative regime withK ≲ 1 h=Mpc
in Sec. VII A. For larger K, the bispectrum is dominated by
a nearly uniform signal associated with halo formation (i.e.
the top pyramidal region with K ≳ 4 h=Mpc). Also in
Figs. 12(a)–(b), we note that a significant squeezed signal is
visible for 1 h=Mpc≲ K ≲ 4 h=Mpc (on the left and
bottom tetrapyd edges), which can be compared
with Fig. 10.
At the lower redshifts z ¼ 0, 1 in Figs. 12(c)–(d), the

strong halo signal grows to become completely dominant
for K ≳ 1 h=Mpc (saturating the color scheme with
BSN
max ≈ 350). At z ¼ 0, this “constant” halo signal is so

large the other contributions seem to be absent (compare
with Fig. 9). However, this apparent suppression of
flattened and squeezed signals at z ¼ 0 is only relative,
due to the signal-to-noise weighting [Eq. (4)] with the
nonlinear power spectrum PNLðkÞ. This deeply nonlinear
nature of perturbations today is reflected in the greater
difficulty of matching phenomenological models to simu-
lations at low redshift.

VI. TOWARDS A THREE-SHAPE BISPECTRUM
BENCHMARK MODEL

In this section we analyze the measured bispectrum to
identify the shape degrees of freedom required for its
accurate construction. We study the growth rates of each of
these contributions, highlighting differences with the stan-
dard halo model, particularly for the squeezed shape. We
use these results to guide the development of simple
phenomenological bispectrum models: the two-halo boost
model and the three-shape benchmark model.

A. Simulation bispectrum shapes

We first analyze the shapes of the bispectra measured
from N-body simulations, in analogy with the investigation
of the perturbative and halo model shapes we presented in
Figs. 6, 7 above. We calculate the sliced or binned shape
correlators SSðKÞ between the N-body matter bispectrum
and the tree-level [Eq. (15)], squeezed [Eq. (13)], and
constant [Eq. (12)] shapes to determine whether, in combi-
nation, these three canonical shapes are sufficient to
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describe the actual bispectrum. The panels of Fig. 13 show
a consistent behavior across the range of redshifts consid-
ered. We know that, on large scales, perturbations approach
linearity and therefore the tree-level bispectrum is expected
to be a good approximation to the N-body data. The plots
show that this is indeed the case, as on these scales
(K ≲ 0.5 h=Mpc at z ¼ 0) there is a high correlation
between the simulated bispectrum and the tree-level shape.
The scales up to which the bispectrum is completely
dominated by the tree-level shape move significantly to
larger values of K as the redshift increases, as expected. On
small scales, Fig. 13 shows that deep into the nonlinear

regime (K ≳ 3 h=Mpc at z ¼ 0) the constant shape domi-
nates, which closely corresponds to the one-halo model
discussed in Sec. VII (and as shown previously in
Ref. [110]). On intermediate scales, there are several
competing contributions of comparable magnitude in the
transition between constant and flattened regimes.
Nevertheless, Fig. 13 reveals that at all redshifts there is
a range of wave numbers where the squeezed shape
exhibits the highest correlation, which is a new result.
These quantitative shape correlation results confirm the
qualitative picture developed from the evolution of the 3D
bispectrum reconstructions shown in Fig. 12.

(b)(a)

(c) (d)

FIG. 12. Evolution of the SN-weighted 3D bispectrum from N-body simulations into the nonlinear regime with ki ≤ 2 h=Mpc at
redshifts (a) z ¼ 3, (b) z ¼ 2, (c) z ¼ 1, and (d) z ¼ 0. The bispectrum color scheme is scaled with the growth factor DðzÞ and the
tetrahedral geometry of the bispectrum domain is illustrated in Fig. 2. Note the presence of both a strong flattened and squeezed signal
shape at redshifts z ¼ 2, 3 [front left face of tetrapyd and lower edge respectively in panels (a), (b)]. At lower redshift this is overtaken by
a strong uniform or one-halo signal throughout the interior region for k ≳ 1 h=Mpc [front right face in panel (d)]. The color scale is fixed
at z ¼ 3 in (a) to encompass all values up to the maximum. It is then scaled with the growth rate expected for the tree-level signal to aid
physical interpretation and reveal nonlinear growth rates. This means at small scales in (d) at z ¼ 0 the color scale is saturated, which is
useful to highlight features at intermediate scales.
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These observations can be interpreted using the halo
model formalism for which the basic underlying physical
assumptions appear to be corroborated qualitatively. On
large scales, the three-halo term is dominant because in this
regime the particle triplets over which the bispectrum is
estimated should typically be in different halos, thus
reflecting the large-scale quasilinear bispectrum predicted
by perturbation theory. As shown in Sec. IV C, at small K
the tree-level shape is the most important contribution to
the observed bispectrum. On small scales, the three
particles are typically in the same nonlinear virialized halo,

and hence the one-halo component dominates; this has a
constant shape, which we confirm to be the leading
observed bispectrum shape in the high-K limit. The two-
halo term contributes over intermediate length scales,
where two particles are in one halo and the third particle
is elsewhere; this corresponds to the squeezed shape, which
indeed we find to be dominating the bispectrum on
intermediate scales (though with a larger contribution for
z > 0 than expected in the standard halo model).
As a further illustration, we show in Fig. 14 the equi-

lateral bispectrum (k1 ¼ k2 ¼ k3) of the halo model at
z ¼ 0 and z ¼ 2 compared with the measured equilateral
N-body bispectrum. Here we can see more clearly the
three terms contributing to the halo model and how the two-
halo term provides the most significant contribution at
intermediate scales at z ¼ 0. However, a deficit emerges
relative to N-body simulations at z ¼ 2 where the predicted
two-halo term no longer dominates over the one- and three-
halo terms.
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Eq. (19).
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points). Note the emerging deficit on intermediate scales at z ¼ 2.
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B. Two-halo boost model

Based on the observation that the halo model has a deficit
at intermediate scales, which is found for bispectrum slices
in different configurations and becomes more severe as the
redshift increases, we have explored simple phenomeno-
logical ways of improving the model. The two-halo term of
the halo model has its highest and most important con-
tribution where the deficit is worst.
As a first simple method to improve the agreement

between the model and the simulations, we increase the
contribution of the two-halo term at higher redshifts in order
to compensate for the deficit. We find that a “boosted” two-
halo term can provide a much better fit to numerical
simulations for redshifts z > 0 by multiplying the existing
two-halo term by the heuristic factorDðzÞ−1.7. We determine
this “best-fit” factor by computing the total correlator T of
Eq. (7) between the model and the simulations separately at
each redshift, and then obtaining the scaling law by
maximizing the correlator T . We show in Fig. 15 that the
functionDðzÞ−1.7 describes well the numerical values found
over the relevant redshift range. This simple method solves
the power deficit in the intermediate regime but we discussed
previously how the halo model already has an excess of
power as k → 0, driven by the combination of one- and two-
halo terms (for z > 0). Therefore, there is a quantitative
problem with simply boosting the two-halo term because it
increases the excess on very large scales. In Sec. VII B, we
will make direct comparisons with the standard halo and
other models.

C. Two-shape time-shift model

In Ref. [110] using tree-level and constant bispectrum
shapes it was already recognized that simple phenomeno-
logical models of the bispectrum could be constructed; this
was motivated by explaining the different growth rates of
primordial non-Gaussian shapes in terms of an initial time
offset. This time-shift model relies on the fact that in the
nonlinear regime the matter bispectrum can be approxi-
mated by the constant bispectrum using the following
Ansatz [consistent with Eq. (10)]:

Bconstðk1; k2; k3Þ ¼ c1DðzÞnhKν; ð70Þ
with two free parameters, an amplitude c1 and a growth rate
nh determined from simulations, plus a scale dependence
ν ≈ −1.7 for equilateral configurations in the one-halo
model [101,139]. This two-shape model was further
improved by replacing the tree-level bispectrum
[Eq. (15)] with the nonlinear tree-level bispectrum
[Eq. (17)], i.e. the tree-level bispectrum calculated with
the nonlinear power spectrum from simulations:

BT-shiftðk1; k2; k3Þ ¼ c1DðzÞnhKν þ StreeNLðk1; k2; k3Þ
ð71Þ

While this model produced a reasonable description of the
matter bispectrum in terms of the shape correlation S (see
Ref. [110]), our more detailed analysis here with the binned
shape correlator SS has revealed the possibility of further
improvement on intermediate scales by extending the
model with the additional squeezed shape of Eq. (13).

D. Three-shape bispectrum model

Based on the three shapes we identified in the halo model
in Sec. IV C, we propose a more general benchmark model
that incorporates the physical behavior of all these com-
ponents, but with rescaled growth factors to provide an
improved quantitative fit to simulations. As shown in
Fig. 7, the one-, two- and three-halo terms have a high
shape correlation with the constant, squeezed and tree-level
shapes respectively on slices of constant K ≡ k1 þ k2 þ k3.
Since these shapes also describe the measured matter
bispectrum (see Fig. 13), we can construct it as a scale-
dependent sum of three templates:

B3-shapeðk1; k2; k3Þ ¼
X3
i¼1

fiðKÞSiðk1; k2; k3Þ

¼ f1hðKÞSconstðk1; k2; k3Þ
þ f2hðKÞSsqueezðk1; k2; k3Þ
þ f3hðKÞStreeNLðk1; k2; k3Þ; ð72Þ

where the nonlinear tree-level, squeezed, and constant
shapes StreeNL, Ssqueez, Sconst are defined in Eqs. (12), (13)
and (17) respectively, and the amplitudes f1h, f2h, f3h were
discussed in Sec. IV C in the context of the halo model.1
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FIG. 15. Best-fit boost coefficient to simulations for the two-
halo term compared to DðzÞ−1.7.

1An even simpler three-shape model can be obtained by
substituting the linear tree level [Eq. (15)] for the flattened
three-halo shape; it provides a satisfactory fit to the simulations.
In this simple scenario, the fitting functions f1h [Eq. (55)] and
f3h ¼ 1 are given by the standard halo model, while for the two-
halo term we allow an improved fit and growth scaling [Eq. (60)]
with coefficients C ¼ 240DðzÞ−1 and D ¼ 2.35 hMpc−1DðzÞ−1.
However, the three-shape model of Eq. (72) above provides an
improved fit in the flattened limit in the quasinonlinear regime.
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We know that the one-halo term provides an adequate
description of the matter bispectrum on small scales, so we
fix the amplitude f1h to the simple functional fit of Eq. (55)
for the one-halo model presented in Sec. IV C. On the
largest scales, where the three-halo term is dominant, we
know that the tree-level shape [Eq. (63)] provides an
excellent fit to simulations. However, on intermediates
scales, while the shape correlation remains good beyond
the strictly perturbative regime (see Fig. 13), its amplitude
is insufficient, as can be seen by comparing Fig. 4 with
Fig. 12. For this reason, we have chosen the nonlinear tree-
level form [Eq. (17)] instead because of its higher ampli-
tude and the fact that it is a better approximation to one-
loop perturbative expansions. Nevertheless, it is well
known that introducing the nonlinear power spectra into
halo models generically causes excess power at low red-
shifts z ≈ 0, so we need a prescription for cutting off the
flattened shape in nonlinear regions (see, for example, the
discussion about the combined halo-PT model in Sec. IV B
or the discussion of halo exclusion in Ref. [148]). In order
to keep this three-halo suppression as simple as possible we
take an exponential form:

f3h ¼ expð−K=EÞ; ð73Þ

where we fit E to simulations at several redshifts to obtain
an appropriate amplitude and growth rate; in principle, it
should be linked to the nonlinear scale kNL satisfying
k3Plinðk; zÞ ¼ 2π2. Finally, for the squeezed shape scaling
f2h we do not use the two-halo model amplitude, but
instead the prescription of Eq. (60) with the two free
parameters C and D obtained from simulations (see
discussion in Sec. IV C). By matching f2h to the excess
in the measured bispectrum at redshifts z ¼ f0; 1; 2; 3g,
together with the cutoff scale in f3h, we obtain the
following approximate fit for the coefficients C, D and E:

C ¼ 140DðzÞ−5=4
D ¼ 1.9 hMpc−1DðzÞ−3=2
E ¼ 7.5kNLðzÞ: ð74Þ

We emphasize that this is different from the previous two-
halo fits of Eqs. (61)–(62), because these were obtained by
fitting to the two-halo model predictions, which under-
estimate power for z > 0. This is illustrated starkly at z ¼ 2
in Fig. 17, where we compare the standard two-halo model
prediction with the squeezed shape of Eq. (60) with best-fit
simulation parameters of Eq. (74). We also note that for
redshifts z > 1, the length scale E moves rapidly to large
K ≫ 1 h=Mpc, so the exponential suppression f3h term
[Eq. (73)] acts primarily to reduce power in the z ¼ 0
bispectrum and is less relevant elsewhere.
In Fig. 16 we plot the value of the binned amplitude

jBjSðKÞ for the three-shape model of Eq. (72), which we

compare directly to the measured bispectrum from simu-
lations; we also show the binned shape SS and amplitude
AS correlators between the model and N-body bispectrum.
The plots show a good fit using the three-scale model
across all scales k > 0.1 h=Mpc and all redshifts. The
shape correlations in this range are approximately 99% or
higher and the amplitude correlator is within 10% of the
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FIG. 16. Comparison between the measured N-body matter
bispectrum and the three-shape model. The top panel shows the
binned amplitude jBjSðKÞ from the simulations (points and
dashed lines) and from the fitted three-shape model (solid lines)
at redshifts z ¼ f0; 1; 2; 3g. The middle and bottom panels show
a relative comparison between the simulations and the benchmark
model, using the binned shape and amplitude correlators, SS and
AS. These results demonstrate that the three-shape model exhibits
a high shape correlation on all scales and describes the simulated
data well.
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measured bispectrum (consistent given present simulation
uncertainties). These correlation results are in line with
expectations for a good fit for an nmax ¼ 50 eigenfunction
decomposition [Eq. (65)] (see validation discussions in
Ref. [110]). We note that given the high shape correlations,
we could introduce additional degrees of freedom in f1h,
f3h to improve this quantitative fit further, but our purpose
first is to demonstrate the efficacy of this simple approach.
Employing this new three-shape model as a benchmark

has several advantages over using the simulated bispectra
directly, though we will use both in subsequent discussions.

First, it smooths out any systematic discontinuities appear-
ing where the simulations are joined together. Secondly, it
allows direct comparisons with theoretical models without
performing eigenfunction decompositions on the latter, so
residual offsets do not have to be subtracted. And finally the
model is simple, capturing the most important features of
the halo model without requiring computationally costly
reevaluations at all wave number combinations ðk1; k2; k3Þ,
and thus it can be seen as an initial step towards a full
HALOFIT-style phenomenological model of the matter
bispectrum.

E. Directions for further improvement

The three-shape benchmark model achieves a high
degree of correlation with the full bispectrum from N-
body simulations; however undoubtedly further improve-
ments of this model can be achieved in the future, not least
by deriving some key results from first principles, such as
the modified two-halo growth rates. In principle, showing
that the matter bispectrum is well approximated by the
separable form of Eq. (72) should considerably simplify
mathematical modeling.
One improvement that can be incorporated into the

model is to replace the nonlinear tree-level shape
[Eq. (17)] with specific one- and two-loop perturbative
expansions. However, while this approach could extend the
tree-level shape further into the nonlinear regime, it
requires prescriptions for suppressing the two- and one-
halo terms more strongly to avoid overprediction. This is
similar in spirit to the suppression of the perturbative
bispectrum contribution in the halo-PT model by
Ref. [101]; but it is clear that an exponential cutoff where
the perturbative expansion breaks down is likely too
aggressive, since Fig. 13 shows that the tree-level shape
is present up to relatively high wave vector, k ∼ 1 h=Mpc.
Clearly further improvement of the three-shape model

can be achieved through more extensive comparisons with
higher-resolution N-body simulations, over a finer grid of
scales and redshifts. The quality of fits obtained in the
squeezed and flattened limits are constrained in accuracy
by the restricted Ansätze chosen, allowing only three
redshift-dependent parameters. The likely outcome is a
finer tuning of a larger number of phenomenological free
parameters, again in the spirit of the HALOFIT method, with
extensive surveys required to uncover dependencies on
cosmological parameters.
A final point of interest is the question whether the three-

shape model we introduced satisfies well-known con-
straints in the squeezed limit. For example, Ref. [149]
derived a consistency relation between the integrated
squeezed-limit bispectrum and a response function derived
from the power spectrum. In the case of our three-shape
model [Eq. (72)], the tree-level shape term satisfies the
consistency relation automatically, as was demonstrated
by Ref. [149] for tree-level SPT. We know that the

FIG. 17. The SN-weighted two-halo bispectrum [Eq. (45)]
(upper panel) at z ¼ 2 compared to the best-fit two-halo squeezed
shape Ansatz [Eq. (58)]; this allows the three-shape benchmark
model to accurately match the simulation data shown in Fig. 12.
The two-halo model clearly exhibits a large deficit and does not
describe squeezed contributions adequately at higher redshift.
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squeezed- and constant-shape terms of the benchmark
model are similar to two- and one-halo terms of the
standard halo model; furthermore, as we show in
Sec. VII below, our model performs well compared with
the N-body simulations in the squeezed limit over the
configurations we have tested, so that it is unlikely that
there is any large inconsistency. However, a more quanti-
tative test of the consistency relation would require a full
numerical evaluation of the integrated bispectrum, which
we leave for future investigation.

VII. BISPECTRUM MODEL COMPARISON
WITH SIMULATIONS

We next use the N-body simulations to compare the
accuracy of the different theoretical bispectrum models
described in the previous sections, both perturbative and
nonperturbative. We present this model comparison in two
ways: we first directly compare the simulated and theo-
retical bispectra over a range of representative triangular
configurations (equilateral, squeezed, and flattened), and
we then use the full three-dimensional amplitude and shape
correlators presented in Sec. II.
At high redshift, all models are expected to perform well

over an extended range of scales, as the fluctuations are
nearly linear, the power spectrum is linear and the bispec-
trum can be described by the tree-level expression. At lower
redshifts, nonlinearities become more important and sig-
nificant differences appear between the models. In the
comparisons, we concentrate on redshifts z ¼ f0; 1; 2g, as
these span the observable redshift range of most current and
future observations from galaxy surveys. We investigate the
perturbative methods and the halo models separately,
because the perturbative methods decay quickly in the
nonlinear regime and therefore their predictions for high k
are of no interest; we present the comparison of PT models
on scales k ≤ 0.4 h=Mpc only. On the other hand, the
phenomenological models, which are either based on or at
least inspired by halo models, are expected to perform well
even in the fully nonlinear regime; in this case we extend
the model comparison up to the smallest scales accessible
to the present simulations, i.e. k ≤ 7.8 h=Mpc.

A. Testing alternative perturbative approaches

We first qualitatively compare perturbative bispectrum
predictions with the matter bispectrum measured from
simulations. In Fig. 18 we plot most of these predictions
at redshift z ¼ 2 in three dimensions for wave numbers
0.02 h=Mpc < k < 0.6 h=Mpc, together with the actual
N-body bispectrum (upper left). We choose z ¼ 2 so that
the perturbative models decay at higher k, and more of the
signal is visible, but the overall behavior is comparable at
lower z. The N-body bispectrum shows a dominant
flattened signal over the whole domain, which grows in
amplitude as k increases. Qualitatively, this measured

signal matches well the one-loop SPT and EFT models,
as well as the nonlinear tree-level bispectrum, in regions
well beyond the strictly perturbative regime. However, the
tree-level and MPTBREEZE predictions are appreciably
lower for large k ≈ 1 h=Mpc (with the latter exponentially
suppressed for large k by prescription).
We confirm these observations for three specific limiting

cases in Fig. 19 with a comparison of PT bispectrra
amplitudes with measured values: from top to bottom we
show the equilateral, squeezed, and flattened triangle con-
figurations. In addition to the bispectrum amplitudes, in each
case we also plot residuals with respect to the tree-level
model. Figure 19 demonstrates that all models converge to
the tree level for k≲ 0.1 h=Mpc at z ¼ 0 in agreement with
simulations; the range of validity of the tree-level theory
increases for higher redshift and for flatter shapes. For the
phenomenological models, we note that both the simple
nonlinear tree-level model and the nine-parameter tree-level
fit both increase the range over which there is agreement
with simulations. For z ≥ 1 these two cases are nearly
indistinguishable and both show a similar deficit in power
for larger k. In principle the nine-parameter model does
provide a better match to the z ¼ 0 bispectrum; however, it
also exhibits large oscillations which originate through the
slope parameter n for a power spectrumwith baryon acoustic
oscillations (BAO) features, as noted and circumvented in
Ref. [133]. While it is possible to remove these unwanted
oscillations of n with a spline smoothing, we do not apply
this extra processing step here for simplicity.
For the one-loop perturbative models plotted in Fig. 19,

all approaches agree in the strictly perturbative regime at
z ¼ 0. However, beyond this regime for larger k, SPT
generally overestimates the bispectrum, while the RLPT
and RPT MPTBREEZE models underestimate it. The EFT
approach lies in between the SPT and RLPT curves, and
typically extends the range of agreement with simulations.
This trend is also apparent at higher redshift with the
exception of the squeezed limit where even SPT falls below
the measured bispectrum in the quasilinear regime.
Given these interesting observations, we have under-

taken a comprehensive quantitative comparative analysis
using the integrated amplitude correlator A [Eq. (6)] and
the shape correlator S [Eq. (5)], the results of which are
plotted in Fig. 20. This corresponds to a signal-to-noise
weighted integration over all triangular configurations up to
a given resolution kmax, rather than the specific limiting
configurations Fig. 19. Here, we directly compare the
theoretical predictions Bj

theory to the three-shape benchmark
model B3-shape given in Eq. (72) with parameters given in
Eq. (74), which provides an excellent fit and a smoother
representation of the actual bispectrum from simulations
(see Sec. VI D).
We estimate the uncertainties on the correlators as

follows. From each simulation realization i, we obtain
the amplitude and shape correlators AðBi

sim; B3-shapeÞ,
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SðBi
sim; B3-shapeÞ as a function of kmax. For each value of

kmax, we can thus derive the mean and standard deviation of
the correlators: μA, σA, and similarly for the shape. As we
are comparing all theoretical models with the benchmark
three-shape model, the total uncertainty σtot on the corre-
lators between each model j and the benchmark,
AðBj

theory; B3-shapeÞ, will be larger than the variance σA
obtained from the scatter of AðBi

sim; B3-shapeÞ; this is
because of the small k-dependent discrepancy that exists
between the simulations and the smooth benchmark model.
The grey shaded areas in Fig. 20 represent two different
estimates of σtot, as follows. The light grey area represents a
conservative error estimate obtained by adding the error
bars of the simulation to the deviation from one of the mean
of the correlator, i.e. assuming σtot ¼ jμA − 1j þ σA, while

the darker grey area represents the part of the benchmark
model outside the 1σA error bars, i.e. assuming

σtot ¼
8<
:

0 if 1 ∈ ½μA − σA; μA þ σA�
μA − σA − 1 if μA − σA > 1

1 − μA − σA if μA þ σA < 1:

ð75Þ

The same reasoning applies to the shape correlators S, with
the difference that μS ≤ 1.
From Fig. 20, we note that there are always high shape

correlations well beyond the perturbative regime. For
example, at z ¼ 0 all theories have a shape correlation
greater than 99% up to k < 0.2 h=Mpc, even when there
are variations ofOð20%Þ in the amplitude correlator. These
remarkably high shape correlations imply that bispectrum

FIG. 18. Comparison at redshift z ¼ 2 of the SN-weighted bispectrum for perturbative models with the simulation data (top left): the
perturbative models are respectively tree-level bispectrum (top center), nonlinear tree level (top right), standard one-loop perturbation
theory SPT (bottom left), one-loop effective field theory EFT (bottom center) and renormalized perturbation theory MPT (bottom right);
RLPT is not plotted as it appears very similar to MPT. Note that all perturbation theories have signal concentrated at flattened triangles
(from front face), and so are highly correlated with the tree-level bispectrum shape of Eq. (15), when using the binned shape correlator
[Eq. (19)]. The N-body bispectrum also exhibits a squeezed signal for k ≳ 0.4 h=Mpc. We have chosen z ¼ 2 so that the PT models
decay at higher k and there is more signal to display, but the general behavior is similar at lower z.
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estimators that measure the projection of the full bispec-
trum on these theoretical shapes (like in Ref. [111]) should
yield a high proportion of the total bispectrum signal-to-
noise. Since the shape correlator is not as discerning a tool

for distinguishing between different perturbative models,
we focus most attention on amplitude deviations.
We also employ the total correlator T , which combines

the information of amplitude and shape, in order to directly
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FIG. 19. Comparison of perturbation theory models of the matter bispectrum with N-body simulations, at redshifts 0, 1, 2 (left to
right), for the equilateral, squeezed, and flattened configurations (top to bottom). The lower panels show the residuals with respect to the
tree-level model.
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estimate the range of validity of each model as a function of
redshift. In Table II we give the maximum wave number
k�max at which the total correlator between each model and
the benchmark model deviates from unity by more than a
fixed threshold of 10% (and 5%). While we show results at
the three redshifts considered, z ¼ f0; 1; 2g, an important
caveat is that the comparison at z ¼ 0 is more approximate,
due to the less-than-perfect match between the simulations
and the benchmark model; we therefore do not report the
5% results at z ¼ 0, and choose to focus primarily on the
results at z ¼ f1; 2g in the following discussion. A striking
feature of Table II is the wide range of wave numbers for
which there is good correspondence between theoretical
predictions and the measured bispectrum, well beyond
expectations for the limits of the perturbative regime
estimated in Table I. This shows that even where these
theories are no longer expected to be accurate, they can
nevertheless be successfully extrapolated into the nonlinear
regime for phenomenological modeling.
The tree-level [Eq. (15)] and the nonlinear tree-level

[Eq. (17)] models are the simplest approximations to the
matter bispectrum, and their range of validity can be

verified from Fig. 20: at z ¼ 1 we find k�max ¼
0.22 h=Mpc for the tree level and k�max ¼ 0.30 h=Mpc
for the nonlinear tree level (at 10%). The nonlinear
bispectrum improves faster than the linear one at higher
redshifts: the tree level increases by roughly 0.05 h=Mpc at
each redshift, while the nonlinear tree level increases
by > 0.1 h=Mpc.
The one-loop SPT bispectrum adds four extra terms to

the tree-level shape. Two of them give positive contribu-
tions and the other two negative contributions. As seen in
Fig. 20, at low redshift the additional SPT contributions
tend to overshoot the measured bispectrum, apparently
lowering the value of k�max up to which predictions are
accurate (see Table II). However, at z ¼ 2 the overshoot
remains within bounds, extending the fit up as far as k <
0.66 h=Mpc in the case of the 10% threshold (almost
accidentally at this specific redshift, possibly because of
additional squeezed contributions in the measured bispec-
trum). In general, SPT predicts an excess of power on
quasilinear scales, before finally decaying in the fully
nonlinear regime. This overshoot phenomenon appears
because the loop integrals involved require integrating
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FIG. 20. The amplitudeA (top row) and shape S (bottom row) correlators at redshifts 0, 1, 2 for the perturbative methods, obtained by
comparing with the benchmark model. The shaded areas represent error estimates between the benchmark model and the simulations
and are explained in the main body of the paper.
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momenta over an infinite range, a regime in which the basic
assumption δ ≪ 1 is no longer valid. Despite this problem,
the shape correlation is excellent up to k ∼ 0.3 h=Mpc,
improving significantly over the tree-level result. We also
note that evidence for the amplitude overshoot is not very
strong from our simulations because they have rather large
uncertainty on A, especially at z ¼ 0.
The one-loop EFT bispectrum includes one counterterm,

which increases the accuracy of the model due to the one
free parameter that is introduced and fitted at the level of the
power spectrum. In Fig. 20 we observe that this method
provides substantially improved agreement with the sim-
ulations, albeit at the cost of an extra parameter, which was
calibrated on the power spectrum of N-body simulations,
assuming a specific cosmological model. This counterterm
effectively removes excess power provided by SPT in the
quasilinear regime and the results that we obtain from
the three-dimensional comparison are consistent with the
improved agreement found in Ref. [138]. The EFT method
appears to work well up to k�max ¼ 0.45 h=Mpc at z ¼ 1
and k�max ¼ 0.60 h=Mpc at z ¼ 2. However, we must
proceed cautiously before using such projections because
the detailed correspondence in the equilateral and squeezed
limits shown in Fig. 19 is not as encouraging. (We also
observe additional correlated squeezed signals emerging on
these scales in the measured bispectrum which require
more sophisticated joint fitting.) At higher redshift, the
contribution of the counterterm becomes less significant,
because the growth rate of the term is ∝ D7.1ðzÞ compared
to ∝ D6ðzÞ from the one-loop SPT terms. Although one can
in principle add another three additional counterterms for
the one-loop EFT bispectrum, we have found that the
improvement in the accuracy is modest relative to the cost
of introducing these further free parameters.
The RPT approach (MPTBREEZE formalism) at one loop

solves the SPT excess by cutting off terms appropriately
with an exponential function, as can be seen in Fig. 20.
Compared to SPT, all terms are positive to any number of
loops, and so this is a convergent expansion. With accuracy

increasing with number of loops, the amplitude on all
scales should always approach the measured bispectrum
from below. We see in Table II that the RPTmethod appears
to be accurate to 10% at k < 0.24 h=Mpc at z ¼ 1,
improving to k < 0.32 h=Mpc at z ¼ 2. The main
improvement of MPTBREEZE compared with the other
methods arises on large scales, before the exponential
damping begins. The disadvantage of this suppression is
that it precludes any extrapolations into the nonlinear
regime.
The RLPT results we have obtained are similar to RPT,

although the validity range is marginally smaller due to the
increased power suppression; in this case we find k�max ¼
0.22 h=Mpc at z ¼ 1, and k�max ¼ 0.30 h=Mpc at z ¼ 2.
We conclude that all one-loop perturbative methods

match simulations at present precision within the expected
perturbative regime. In terms of phenomenological extrapo-
lation into the nonlinear regime, the EFT method goes
furthest (once the counterterm coefficient has been appro-
priately fitted). Both RLPT and RPT undershoot the
measured bispectrum in this regime by construction, while
SPT generically overshoots. On the other hand, the non-
linear tree-level bispectrum Eq. (17) provides a useful
projection to larger k which has the advantage of being
much simpler to calculate.

B. Testing phenomenological halo models

By analogy with the discussion of the PT methods above,
we first make qualitative comparisons of the phenomeno-
logical halo models with the measured bispectrum. In
Fig. 21, we plot these bispectra in three dimensions at
two redshifts z ¼ 0, 2. While the standard halo model
provides a reasonable fit at z ¼ 0, it reveals a large deficit
on intermediate scales k ∼ 1 h=Mpc. This is corrected in
the three-shape model by using the nonlinear tree-level
bispectrum and adopting a different growth rate for the
squeezed signal at higher redshift. In Fig. 22 we offer a
more detailed picture in the limiting equilateral, squeezed
and flattened configurations, also showing residuals rela-
tive to the standard halo model. From Fig. 21, we can see
that for all configurations the standard halo model provides
a good match to the N-body data on both linear and fully
nonlinear scales, while a more significant mismatch
appears in the transition regime at redshifts z > 0. The
problem may be due in part to the approximate nature of
the assumption in the halo model about all the matter in the
Universe being in collapsed halos, while other sources of
inaccuracy are the spherical shapes of the halos as well as
neglecting their internal substructure; it is an issue
acknowledged in the literature both for the power spectrum
and the bispectrum [100–102,148]. We confirm that this
mismatch becomes more severe at higher redshift: for
example, at z ¼ 2 there is up to a factor of three mismatch
on these intermediate scales.

TABLE II. Wave number k�max where the total correlator T
[Eq. (7)] between the perturbative theory and the benchmark
model deviates by more than 10% (5%) from unity. In the case of
z ¼ 0, we only report the 10% results, as the accuracy of the
benchmark model is lower.

Perturbation theories

Threshold 10% (5%) k�max (h=Mpc)

Theory z ¼ 0 z ¼ 1 z ¼ 2

Tree level 0.13 0.22 (0.17) 0.27 (0.20)
NL tree level 0.17 0.30 (0.22) 0.42 (0.31)
SPT 0.11 0.37 (0.14) 0.66 (0.49)
EFT 0.29 0.45 (0.36) 0.60 (0.50)
MPTBREEZE 0.16 0.24 (0.21) 0.32 (0.28)
RLPT 0.15 0.22 (0.19) 0.30 (0.26)
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The other phenomenological models we consider
attempt to improve the behavior in the transition region
in different ways, and with varying degrees of success; they
are also plotted in Fig. 22. The combined halo-PT model
provides some improvement at z ¼ 0 for flattened con-
figurations, but it fails to significantly improve the situation
at higher redshifts and especially in the squeezed limit. The
phenomenological two-halo boost and three-shape bench-
mark models improve the N-body results over a broader
range of redshifts and configurations, largely by increasing
the relative amplitude of the two-halo term at z > 0. The
three-shape benchmark, in particular, achieves a satisfac-
tory fit in all limits and at all redshifts using only the
restricted Ansatz [Eq. (72)] by also increasing power in the
flattened limit with the nonlinear tree-level bispectrum.

We now turn to a full three-dimensional analysis with the
amplitude (A) and shape (S) correlators plotted in Fig. 23
for redshifts z ¼ 0, 1, 2; as in the previous subsection, we
again compare to the three-shape benchmark model with
best-fit parameters of Eq. (74). We also determine where
the accuracy of different phenomenological models and fits
break down in Table III.
It is apparent from Fig. 23 that the standard halo model

offers an insightful description of the matter bispectrum in
the nonlinear regime at redshift z ¼ 0; the shape correlation
is above 99% everywhere investigated and the amplitude
deviates by less than 15% from the measured simulation
bispectrum over the range 0.4 h=Mpc < k < 8 h=Mpc.
Nevertheless, we observe some excess power on large
scales, e.g. at kmax ∼ 0.1 h=Mpc, which is a well-known

FIG. 21. Comparison between between N-body simulation bispectrum (left panels) with the standard halo bispectrum model
Eqs. (44)–(46) (centre panels) and the three-shape benchmark model Eq. (72) (right panels) shown at two redshifts z ¼ 1, 2. The
standard halo model is effectively normalized to fit the measured bispectrum at z ¼ 0, which is also achieved well by the
phenomenological three-shape model (upper panels). However, at higher redshift z ¼ 2 the halo model exhibits the wrong growth rates
for the flattened three-halo and squeezed two-halo configurations, yielding a substantial deficit (lower panel center); the measured
bispectrum behavior can be accommodated in the three-shape benchmark model (lower panel right).
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FIG. 22. Comparison of phenomenological nonlinear models of the matter bispectrum with N-body simulations, at redshifts 0, 1, 2
(left to right), for the equilateral, squeezed, and flattened configurations (top to bottom). The lower panels show the substantial residuals
with respect to the standard halo model for z > 0, demonstrating that the simple three-shape benchmark model provides a good fit to the
N-body matter bispectrum for all three limits and redshifts.
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problem of the standard halo model, due to the one-halo
term approaching a constant and the two-halo term not
vanishing as k → 0. The large-scale excess is less impor-
tant as the redshift is increased. However, we see in
Fig. 23 that there is a new problem on intermediate scales
where an amplitude deficit emerges, which increases
significantly as a function of redshift: in the transition
regime, the amplitude correlator decreases from 0.9 at z ¼
0 to 0.65 at z ¼ 1, and 0.45 at z ¼ 2. As discussed in
previous sections, this is primarily due to an under-
prediction of the two-halo component (squeezed shape)
in this k-range. Moreover, the lowest point in the tran-
sition regime shifts to higher k at higher redshift, from
k ≈ 0.5 h=Mpc at z ¼ 0 to k ≈ 1.5 h=Mpc at z ¼ 2 (see
Fig. 8 for an illustration of this in the equilateral
configuration). In the strongly nonlinear regime, after
the two-halo component has decayed and the one-halo
term becomes dominant, the halo model again approaches
the simulations. As we discussed above in Sec. V, a
possible way of solving this problem is by boosting the
two-halo component, which peaks exactly in the regime of
interest; this leads to the two-halo boost model also shown

in Fig. 23, which entails a minimal cost of introducing
additional power on large scales.
The power excess produced on linear scales by the

standard halo model is corrected in the combined halo-PT
model of Sec. IV B. As this model can use any perturbative
theory on linear scales, we choose to use EFT, because we
found it in the previous section to offer the most extended
range of validity. In this prescription, the two- and three-
halo terms of the halo model are switched on as the
perturbation theory is decaying. Hence, at z ¼ 0, this
model provides the best fit across all scales considered;
in the strongly nonlinear regime, the model converges
towards the standard halo model result, because on small
scales the improved two-halo and the improved one-halo
terms are the same as their standard counterparts.
Nonetheless, for z > 0, the combined halo-PT model has
the same problem as the standard halo model, as there is a
deficit in the transition regime, though marginally weaker.
In this model, the improved one- and especially the two-
halo terms are heavily suppressed on large and intermediate
scales. This is not visible in Fig. 23 because most of the
signal comes from EFT on these scales, making it more
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FIG. 23. The amplitude A (top row) and shape S (bottom row) correlators at redshifts 0, 1, 2 for the phenomenological halo models,
obtained by comparing with the three-shape benchmark model. The shaded areas represent error estimates between the three-shape
benchmark model and the simulations and are explained in Sec. VII A.
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challenging to solve the deficit by a simple boost of the
improved two-halo term.
The nine-parameter fit, which is based on the simple

tree-level model, fitted to k ≤ 0.4 h=Mpc and for z ≤ 1.5 is
fairly accurate when extrapolated across the full domain at
z ¼ 0. (In principle, improvements could be obtained by
refitting the parameters to higher redshifts and further into
the nonlinear regime, though the model does not naturally
include the squeezed and constant shapes required.)
Spurious peaks appearing at z ¼ 0 are produced by the
BAO features of the power spectrum, as discussed pre-
viously. However, at z ¼ 1, 2 this model becomes increas-
ingly inaccurate at large kwith its amplitude decreasing in a
similar fashion to the nonlinear tree-level bispectrum.
Nevertheless, the nine-parameter model produces an accu-
rate result up to kmax ∼ 0.8 h=Mpc for all the redshifts
considered.
As for perturbation theories, in Table III we present the

maximum value of the wave number k�max for which the
phenomenological halo models show good agreement, that
is, by considering the point where the amplitude correlator
deviates by more than 20% from unity. The numerical
results of the table confirm the general trends discussed
above. In contrast to the PT case, here the agreement
between models and simulated data becomes worse at
higher redshift, as the basic assumptions underlying the
halo model become less valid. At higher redshifts, a
secondary range of validity exists at high k after the
transition region, which is visible from Fig. 23 but not
reported in the table.
Among the alternative phenomenological models we

tested, we conclude that the combined halo-PT model
based on EFT is the most accurate, offering a physically
well-motivated attempt to solve problems of the standard
halo model. Nevertheless, like the standard halo model, it
also does not exhibit appropriate growth rates for the
two-halo contribution at high redshift and, further, the
prescription for transitioning between EFT and the other
halo contributions deserves closer scrutiny. From a
phenomenological point of view there is a straightforward
means to improve the theory by boosting the two-halo

term at higher redshifts, as in the three-shape bench-
mark model.

VIII. CONCLUSIONS

The bispectrum of large-scale structure has so far been a
relatively neglected observable, due to the high cost of
measuring it with most current suboptimal estimators, and
the relative complexity of its modeling and interpretation.
This is however bound to change in the current age of
precision cosmology and ever-larger galaxy surveys, as the
combination of two- and three-point statistics can improve
the constraining power of the upcoming data, by breaking
the existing degeneracies between cosmological and astro-
physical parameters. The ultimate goal of large-scale
structure bispectrum measurements is its potential to
constrain models of the early Universe via their non-
Gaussian contribution to the primordial density perturba-
tions, thus complementing and improving existing CMB
constraints [38,49].
Achieving these ambitious objectives will require efforts

on multiple fronts. A first issue shared with power spectrum
analysis is the endeavor to improve the theoretical model-
ing as far as possible into the nonlinear regime; other
outstanding points include making the bispectrum estima-
tion faster and more efficient, and developing a compre-
hensive method for comparing bispectrum predictions with
observations.
In this paper we have made progress on all these fronts.

Firstly, we studied how accurately different theoretical
models for the matter bispectrum work on different scales,
by comparing them with N-body simulations and intro-
ducing a new simplified phenomenological model based on
three canonical bispectrum shapes. Secondly, we have used
for our study the efficient modal bispectrum estimator by
Ref. [110], which allowed us to reconstruct the full three-
dimensional bispectrum information based on ∼100 modes
only. Thirdly, we have introduced the amplitude, shape, and
total correlators as instruments to estimate the overall
goodness of match between a bispectrum model and
measurements across its full three-dimensional domain,
thus greatly simplifying the process of model comparison
and parameter estimation.
The different bispectrum models we considered can be

divided into two categories: methods based on perturbation
techniques, and phenomenological models based on or
inspired by the halo model. The perturbative methods
assume a small departure from linear scales, when the
density fluctuations are small, and therefore have limited
range of validity. Multiple approaches exist for increasing
the scales of validity of perturbative theories, such as
effective field theories, and resummed perturbation theo-
ries. We have confirmed that such one-loop recipes manage
to accurately model nonlinearities up to kmax ≃
0.15 h=Mpc at z ¼ 0 for the matter bispectrum and further
at higher redshift (kmax ≃ 0.4 h=Mpc at z ¼ 2). This is

TABLE III. Wave number k�max where the amplitude deviation
for phenomenological halo models is greater than 20% when
compared to the three-shape benchmark model matched to
simulations. (The small k excess problem of the standard halo
model is ignored.) At z ¼ 0 all models agree within 20% over the
entire range of scales.

Phenomenological halo models

Threshold 20% k�max [h=Mpc]

Theory z ¼ 0 z ¼ 1 z ¼ 2

Standard halo model > 8 0.47 0.51
Combined halo-PT model > 8 0.48 0.68
9-parameter fit > 8 0.82 0.90
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already beyond the expectations for the strictly perturbative
regime, but some methods appear to be amenable for even
more ambitious extrapolations into the nonlinear regime,
with effective field theory predictions apparently showing
good agreement to k≃ 0.3 h=Mpc at z ¼ 0, though at the
cost of introducing free extra parameters calibrated to
simulations. The much simpler nonlinear tree-level bispec-
trum also offered useful nonlinear projections out to kmax ≃
0.17 h=Mpc at z ¼ 0.
In addition, we have derived for the first time the

expressions of the two-loop MPTBREEZE bispectrum in
an infrared-safe manner, demonstrating that it is analyti-
cally and numerically tractable, even if computationally
challenging. We have shown the improvement in the wave
number range over the one-loop calculation for three
triangle shape configurations.
From a different perspective, the halo models rely on

models of matter collapse in order to describe nonlinearities
from a phenomenological point of view. In that sense, they
are valid much further beyond the scales that can be
modeled by perturbation theories, and can match simu-
lations reasonably well in the strongly nonlinear regime at
z ¼ 0. The combined halo-PT model [101] represents a
compromise between the two approaches. It relies on a
perturbative method on large scales, chosen here to be the
EFT, where the halo model is not accurate, while relying on
the halo model on nonlinear scales. For these reasons, we
found that the halo-PT model gives the most accurate
predictions on all scales at z ¼ 0. Nevertheless, at higher
redshifts, a significant deficit appears at intermediate scales
for all halo models.
We have found that a simple way to solve this halo deficit

problem is to increase the contribution of the squeezed or
two-halo shape at z > 0, which we have found dominates
in the transition regime. Driven by the observations from
N-body simulations, we have generalized this idea, thus
developing a simple phenomenological three-shape model
that fits the simulations well over the full range of scales
and redshifts considered. This benchmark model is based
on the fundamental shapes of the halo model—tree-level,
squeezed and constant shapes, corresponding to the three-,
two- and one-halo terms respectively. This model can be
seen as a first step towards the development of an accurate
phenomenological model calibrated on N-body simula-
tions, translating the idea behind the HALOFIT method to
the bispectrum domain. This will be observationally
relevant for weak gravitational lensing which is sensitive
to the matter bispectrum.
Solving this two-halo deficit problem motivates our new

benchmark model but it uncovers a more serious miscon-
ception in the standard halo approach built as it is on a
hierarchical picture of structure formation. The basic
premise that nonlinear halos form first and then using
these to classify and calculate non-Gaussian structures may
need to be carefully reconsidered. This is clear already from

the tree-level bispectrum, which is present at high redshifts
z > 30 long before any halos form; fundamentally it is
associated with the initial stage of gravitational collapse in
the first dimension which causes “pancakelike” structures
to form. The three-halo term accommodates this a poste-
riori by noting that the large-scale tree-level signal will be
imprinted on the halo distribution. In the same manner,
there will be a squeezed signal from the formation of
filamentary structures (due to the onset of collapse in the
second dimension), which again precedes halos on any
given length scale. At present the two-halo model is flawed
by assuming a hierarchical origin for this squeezed bispec-
trum contribution, and so it does not capture the appropriate
growth rate at higher redshift. Our investigations here
present quantitative bispectrum data in the relevant inter-
mediate regime, which shows clear pathways ahead for
improving the halo model (see also Ref. [85]), as well as
mathematical simplifications due to the approximate sepa-
rability of the underlying bispectrum.
Future developments of this work will on the one hand

lead to a more comprehensive and accurate phenomeno-
logical model of the matter bispectrum, fitted on higher-
resolution simulations, which will provide a bispectrum
counterpart to the HALOFIT method. On the other hand, we
will extend the modeling and the comparison to the case of
biased tracers, i.e. dark matter halos and galaxies, to bridge
the gap between modeling and observations by galaxy
surveys. Finally, we plan to include the effects of primor-
dial non-Gaussianity of different types to determine how it
is amplified through gravitational collapse and how it can
be optimally identified.
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APPENDIX A: STANDARD EULERIAN
PERTURBATION THEORY

We summarize here the derivation of the SPT power
spectrum and bispectrum, following Ref. [56]. The density
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contrast δ and the peculiar velocity u are defined in terms of
the average density and velocity v as

ρðx; τÞ ¼ ρ̄ðτÞ½1þ δðx; τÞ� ðA1Þ

vðx; τÞ ¼ Hxþ uðτÞ: ðA2Þ

Then the cosmological gravitational potential Φ satisfies
the Poisson equation:

∇2Φðx; τÞ ¼ 3

2
ΩmðτÞH2ðτÞδðx; τÞ: ðA3Þ

If we define the momentum as p ¼ amu, the particle
number density in phase space fðx;p; τÞ satisfies the
Vlasov equation:

df
dτ

¼ ∂f
∂τ þ

p
ma

·∇f − am∇Φ ·
∂f
∂p ¼ 0: ðA4Þ

In order to obtain the spatial distribution of the particles,
the moments of Eq. (A4) can be taken by appropriate
integration in momentum space. The first three moments
are of interest here:Z

d3pfðx;p; τÞ ¼ ρðx; τÞ ðA5Þ
Z

d3p
p
am

fðx;p; τÞ ¼ ρðx; τÞuðx; τÞ ðA6Þ
Z

d3p
pipj

am
fðx;p; τÞ ¼ ρðx; τÞuiðx; τÞujðx; τÞσijðx; τÞ:

ðA7Þ

Equation (A5) gives the continuity equation and Eqs. (A6),
(A7) give the Euler equation, in analogy to fluid mechanics
[150]:

∂δðx; τÞ
∂τ þ∇ · ½ð1þ δðx; τÞÞuðx; τÞ� ¼ 0 ðA8Þ

∂uðx; τÞ
∂τ þHuðx; τÞ þ uðx; τÞ · ∇uðx; τÞ

¼ −∇Φðx; τÞ − 1

ρ
∇jðρσijÞ: ðA9Þ

On large scales, the Universe is expected to be
smooth and hence Eqs. (A8), (A9) can be linearized.
By defining the divergence and vorticity of the velocity
field as

θðx; τÞ ¼ ∇ · uðx; τÞ ðA10Þ

wðx; τÞ ¼ ∇ × uðx; τÞ; ðA11Þ

it can be shown that the vorticity decays quickly due to
the expansion of the Universe, and hence it can be
ignored. δ and θ satisfy the following equations in
Fourier space:

∂δðk; τÞ
∂τ þ θðk; τÞ ¼ −

Z
d3k1d3k2δDðk − k12Þαðk1;k2Þ

× θðk1; τÞδðk2; τÞ ðA12Þ

∂θðk; τÞ
∂τ þHθðk; τÞ þ 3

2
ΩmH2δðk; τÞ

¼ −
Z

d3k1d3k2δDðk − k12Þβðk1;k2Þθðk1; τÞθðk2; τÞ;

ðA13Þ

where k12 ¼ k1 þ k2 and

αðk1;k2Þ ¼
k12 · k1

k21
ðA14Þ

βðk1;k2Þ ¼
k12ðk1 · k2Þ

2k21k
2
2

: ðA15Þ

In a ΛCDM universe, Eqs. (A12), (A13) can be solved
with the expansions

δðk; τÞ ¼
X∞
n¼1

DnðaÞδnðkÞ ðA16Þ

θðk; τÞ ¼ −H
X∞
n¼1

DnðaÞθnðkÞ; ðA17Þ

with DðaÞ the linear growth factor and δn and θn given in
terms of the expansions

δnðkÞ ¼
Z

d3q1 � � �
Z

d3qnFnðq1 � � �qnÞ

× δ1ðq1Þ � � � δ1ðqnÞδDðk − q1 − � � �qnÞ ðA18Þ

θnðkÞ ¼
Z

d3q1 � � �
Z

d3qnGnðq1 � � �qnÞ

× δ1ðq1Þ � � � δ1ðqnÞδDðk − q1 − � � �qnÞ: ðA19Þ

In what follows, DðaÞ and DðzÞ will be used interchange-
ably, using the relation between the scale factor and redshift
1þ z ¼ 1

a. The kernels Fn and Gn are homogeneous
functions of the wave vectors and are given in terms of
α, β by the following recurrence relations:
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Fnðq1;…;qnÞ ¼
Xn−1
m¼1

Gmðq1;…;qmÞ
ð2nþ 3Þðn − 1Þ ½ð2nþ 1Þαðk1;k2ÞFn−mðqmþ1;…;qnÞþ2βðk1;k2ÞGn−mðqmþ1;…;qnÞ� ðA20Þ

Gnðq1;…;qnÞ ¼
Xn−1
m¼1

Gmðq1;…;qmÞ
ð2nþ 3Þðn − 1Þ ½3αðk1;k2ÞFn−mðqmþ1;…;qnÞþ2nβðk1;k2ÞGn−mðqmþ1;…;qnÞ�; ðA21Þ

where F1 ¼ G1 ¼ 1, k1 ¼ q1 þ � � � þ qm, and k2 ¼
qmþ1 þ � � � þ qn. For the correlation functions, the sym-
metrized versions of these functions are required, denoted

FðsÞ
n and GðsÞ

n . In up to one-loop calculations for the power
and bispectrum, only the expressions up to n ¼ 4 for Fn are
required. The explicit expressions for F3 and F4 are given
explicitly in Ref. [54]. For F2, the expression is given in
Eq. (16) and here we show how it can be derived. Con-
sidering a matter-only universe, with Ωm ¼ 1, a ¼ τ2 and
H ¼ 2

τ, Eqs. (A12), (A13) become

δ0 þ θ ¼ −I1½δ; θ� ðA22Þ

θ0 þ 2

τ
θ þ 6

τ2
δ ¼ −I2½δ; θ�; ðA23Þ

where I1 and I2 are the expressions on the rhs of Eqs. (A12),
(A13). Expanding δ and θ to second order, one obtains the
following equations:

δ ¼ τ2δ1 þ τ4δ2 ðA24Þ

δ0 ¼ 2τδ1 þ 4τ3δ2 ðA25Þ

θ ¼ −2τθ1 − 2τ3θ2 ðA26Þ

δ ¼ −2θ1 − 6τ2θ2: ðA27Þ

For n ¼ 1, I1 and I2 are second-order quantities and hence
Eqs. (A22), (A23) are solved by θ1 ¼ δ1. For n ¼ 2, one has
to use the first-order solutions for the integrals on the rhs of
the expressions, and the following equations are obtained:

4τ3δ2 − 2τ3θ2 ¼ −I1½τ2δ1;−2τδ1� ðA28Þ

−10τ2θ2 þ 6τ2δ2 ¼ −I2½τ2δ1;−2τδ1�: ðA29Þ

The above equations can be solved for δ2 by substituting the
integral expressions I1 and I2 and then α [Eq. (A14)] and β
[Eq. (A15)]. One finds the integral expression

δ2ðkÞ¼
Z

d3q1

Z
d3q2δDðk−q1−q2Þ

×

�
5

7
þ2

7

ðq1 ·q2Þ2
q21q

2
2

þq1 ·q2

7

�
6

q21
þ 1

q22

��
: ðA30Þ

The expression of FðsÞ
2 from Eq. (16) is finally obtained by

symmetrization over the arguments q1 and q2.
We have defined in Sec. II the matter power spectrum

and bispectrum. Their expressions in SPT can be
obtained by inserting the expansions of Eqs. (A16),
(A18) into Eqs. (1), (2) respectively. The full expansion
is then grouped according to the number of δ1 ’s
involved. This loop expansion can be interpreted in
analogy with the loop diagrams from quantum field
theory and this represents an intuitive manner of
determining all the contributions at each order in the
expansion. In this diagrammatic expansion, the exterior
lines represent the arguments of the correlation function,
vertices where n lines meet are the kernels Fn, and the
interior lines represent wave vectors that are integrated
over. As usual, the sum of wave vectors into any vertex
should be 0 and numerical factors in front of each
diagram represent its symmetry. The loop order repre-
sents the number of interior lines in each of its vertices.
Following this procedure yields the power spectrum
and bispectrum expressions presented in Sec. III A
[Eqs. (20)–(29)].
The actual numerical evaluation of the integrals

[Eqs. (20)–(29)] is nontrivial because the kernels
may diverge. It has been shown [151,152] that the
divergences exactly cancel each other when summing
the whole contributions at each loop order together,
both in the power spectrum and bispectrum, provided
that the linear power spectrum grows slowly enough on
very large scales. However, for the numerical evalu-
ation, a method to remove the divergences should be
used. For the power spectrum at one loop only, a
convenient split of the integration regions has been
used in Ref. [55] which solves the divergence prob-
lems. More recently, both the power spectrum and
bispectrum divergences have been eliminated in
Refs. [135–138]. We briefly explain this last method
in the next paragraphs.
By considering Eqs. (22)–(29), it can be easily seen

that divergences appear at q ¼ 0 and q ¼ �ki. The
basic idea of the method is to first perform a convenient
change of variable in order to move the divergences to 0
and then, as the variable of integration spans all space,
to do a symmetrization in q ↔ −q. For the power
spectrum, this method yields
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PSPT
1-loopðk; zÞ ¼ D4ðzÞ

Z
d3q
ð2πÞ3 ½6PlinðkÞPlinðqÞFðsÞ

3 ðk;q;−qÞþ2PlinðqÞPlinðjk − qjÞ½FðsÞ
2 ðq;k − qÞ�2Θðjk − qj − qÞ

þ 2PlinðqÞPlinðjkþ qjÞ½FðsÞ
2 ð−q;kþ qÞ�2Θðjkþ qj − qÞ�; ðA31Þ

whereΘ is the Heaviside step function. For the bispectrum, BðIIÞ
321 and B411 only have divergences at 0 and hence do not need

any change of variable. The integrand b222 of B222 needs to be reexpressed in the following manner [137,138] (where we
correct a typo in the original paper):

bðk3>k1Þ
222 ¼ 8PlinðqÞPlinðjk2 − qjÞPlinðjk3 þ qjÞFðsÞ

2 ð−q;k3 þ qÞFðsÞ
2 ðk3 þ q;k2 − qÞ

× FðsÞ
2 ðk2 − q;qÞΘðjk2 − qj − qÞΘðjk3 þ qj − qÞ

þ 8Plinðjk3 þ qjÞPlinðj − k1 þ qjÞPlinðqÞFðsÞ
2 ðk3 þ q;−qÞFðsÞ

2 ð−q;−k1 þ qÞ
× FðsÞ

2 ð−k1 þ q;−q − k3ÞΘðj − k1 þ qj − jk3 þ qjÞΘðjk3 þ qj − qÞ
þ 8Plinðjk2 − qjÞPlinðqÞPlinðjk1 þ qjÞ × FðsÞ

2 ð−k2 þ q;−k1 − qÞ
× FðsÞ

2 ð−k1 − q;qÞFðsÞ
2 ðq;k2 − qÞΘðjk2 − qj − qÞΘðjk1 þ qj − jk2 − qjÞ

þ 8Plinðjk2 − qjÞPlinðqÞPlinðjk1 þ qjÞFðsÞ
2 ð−k2 þ q;−k1 − qÞFðsÞ

2 ð−k1 − q;qÞ
× FðsÞ

2 ðq;k2 − qÞΘðjk2 − qj − qÞΘðjk2 − qj − jk1 þ qjÞ ðA32Þ

bðk3<k1Þ
222 ¼ bðk3>k1Þ

222 jk1↔k3
; ðA33Þ

with the note that this expression is only valid under the
integral sign due to the various remappings. Similarly, bI321
becomes

bI321 → 2bI321Θðjk2 − qj − qÞ: ðA34Þ

The sum of the four contributions is then calculated by
performing the integrals directly. They can be calculated
numerically fast using the multidimensional integrator
CUBA [153].

APPENDIX B: EFFECTIVE FIELD THEORY

The equations governing this effective field theory are
obtained by considering the collisionless Boltzmann
equation in an expanding universe and smoothing it on
a length scale Λ−1. Hence, the theory is determined by
the equations of motion of the long-wavelength modes,
sourced by a stress-energy tensor. In the absence of the
stress-energy tensor, the SPT Eqs. (A12)–(A13) are
recovered. This stress-energy tensor only modifies the
Euler equation for the velocity, by adding a term − 1

ρl
∇τ

on the rhs of Eq. (A9); the continuity and Poisson
equation remain unchanged, but valid for the long-wave-
length modes only.
Therefore, the equations of motion are modified and the

expansions for the density [Eq. (A16)] and velocity
[Eq. (A17)] perturbations are modified to

δðk; aÞ ¼
X∞
n¼1

DnðaÞδnðkÞ þ ϵ
X∞
n¼1

DnþζðaÞ~δnðkÞ ðB1Þ

θðk; aÞ ¼
X∞
n¼1

DnðaÞθnðkÞ þ ϵ
X∞
n¼1

DnþζðaÞθδnðkÞ; ðB2Þ

where δn and θn can be expressed in terms of the kernels
Fn and Gn [Eqs. (A18)–(A21)], while the expressions
with tildes can be expressed similarly in terms of ~Fn and
~Gn. The kernels with tildes satisfy however slightly more
complicated recurrence relations, shown in Ref. [138]. ζ
is a constant fixed from the scaling of the power
spectrum.
In the case of the power spectrum, the lowest level

counterterm that appears is the two-point correlation
function between δ1 and ~δ1. This can be expressed in
terms of a single free parameter, the sound speed c2sð1Þ.
Hence, the term of Eq. (31) is added to the linear and
SPT one-loop terms [135]. The free parameter is fixed by
fitting the one-loop EFT power spectrum with the non-
linear power spectrum at a low value of k, where the SPT
result is still valid, while ζ is fixed by looking at the
redshift evolution of the power spectrum, and a value of
ζ ¼ 3.1 is found to best fit simulations as well as scaling
properties of the Universe.
For the bispectrum, we use the counterterm correspond-

ing to the tree-level bispectrum. Only the ~FðsÞ
2 kernel is

required, which has the following expression:
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~FðsÞ
2 ðk1;k2Þ ¼ −

c̄1
ð1þ ζÞð7þ 2ζÞ

��
5þ 113ζ

14
þ 17ζ2

7

�
ðk21 þ k22Þ þ

�
7þ 148ζ

7
þ 48ζ2

7

�
k1 · k2

þ
�
2þ 59ζ

7
þ 18ζ2

7

��
1

k21
þ 1

k22

�
ðk1 · k2Þ2 þ

�
7

2
þ 9ζ

2
þ ζ2

��
k21
k22

þ k22
k21

�
k1 · k2

þ
�
20ζ

7
þ 8ζ2

7

� ðk1 · k2Þ3
k21k

2
2

	
: ðB3Þ

The bispectrum counterterm that follows has no extra
free parameters in addition to those needed for the power
spectrum, and can be expressed as given in Eq. (33).
Four counterterms corresponding to the one-loop bis-

pectrum can be added to the one above. The counterterms
have three free parameters. Their expressions are shown in
Ref. [138], but the improvement in the accuracy of the
bispectrum is modest, and we will thus disregard them.

APPENDIX C: RENORMALIZED
PERTURBATION THEORY

Using the notation from SPT and defining η≡ log aðτÞ,
we have the following two-component vector:

Ψðk; ηÞ ¼ ðδðk; ηÞ;−θðk; ηÞ=HÞ: ðC1Þ

Equations (A12), (A13) may be recast in a matrix notation,

∂ηΨaðk; ηÞ þ Ωabðk; ηÞ
¼ γðsÞabcðk;k1;k2ÞΨbðk1; ηÞΨcðk; ηÞ; ðC2Þ

where

Ωab ¼
�

0 −1=2
−3=2 1=2

�
; ðC3Þ

and γðsÞabc is a symmetrized vertex matrix given in terms of
the functions α [Eq. (A14)] and β [Eq. (A15)]. Finally, the
solution to the perturbation equations can be given in terms
of an inverse Laplace transform,

Ψaðk;ηÞ¼gabðηÞϕðkÞþ
Z

η

0

dη0gabðη−η0Þ

×γðsÞbcdðk;k1;k2ÞΨcðk1;η0ÞΨdðk;η0Þ; ðC4Þ

where gab is the linear propagator, defined for positive η as

gabðηÞ¼
eη

5

�
3 2

3 2

�
−
e−3η=2

5

�−2 −2
3 −3

�
ðC5Þ

and gabðηÞ ¼ 0 for η < 0. Analogously to SPT, Eq. (C4)
can be solved by a series expansion,

Ψaðk; ηÞ ¼
X∞
n¼1

ΨðnÞ
a ðk; ηÞ; ðC6Þ

where

ΨðnÞ
a ðk; ηÞ ¼

Z
δDðk − k1���nÞF ðnÞ

aa1���anðk1;…;kn; ηÞ

× ϕðk1Þ � � �ϕðknÞ ðC7Þ

and k1���n ¼ k1 þ…kn. The kernel function F satisfies
recurrence relations that are analogous to Eqs. (A20),
(A21). In this fashion, the SPT solutions are obtained.
However, this approach allows for a simplified formalism,
because Feynman diagrams can be used. The basic rules are
described in detail in Ref. [70].
Nonlinearities modify the linear propagator into a fully

nonlinear one, defined as

Gabðk; ηÞδDðk − k0Þ ¼


δΨaðk; ηÞ
δϕbðk0Þ

�
: ðC8Þ

This represents the response of the final density and
velocity fields to variations in initial conditions. Using
the series expansion [Eq. (C6)], it can be expressed in terms
of the linear propagator:

Gabðk; ηÞ ¼ gabðk; ηÞ þ
X∞
n¼2



δΨðnÞ

a ðk; ηÞ
δϕbðk0Þ

�
: ðC9Þ

Nonlinearities also modify the vertex functions. Thus, the
symmetric full vertex function Γ is defined in terms of the
fully nonlinear propagator, with the vertex function γ
becoming just the first term of a perturbative expansion:



δ2Ψaðk; ηÞ

δϕeðk1Þδϕfðk2Þ
�

¼ 2

Z
η

0

ds
Z

s

0

ds1

Z
s

0

ds2Gabðη − sÞ

× ΓðsÞ
bcdðk; s;k1; s1;k2; s2ÞGceðs1ÞGdfðs2Þ: ðC10Þ

Switching again to the Feynman diagram formalism, the
nonlinear propagator satisfies Dyson’s formula:

ANDREI LAZANU et al. PHYSICAL REVIEW D 93, 083517 (2016)

083517-38



Gabðk; ηÞ ¼ gabðηÞ þ
Z

η

0

ds1

Z
s1

0

ds2gacðη − s1Þ

× Σcdðk; s1; s2ÞGdbðk; s2; η0Þ; ðC11Þ

where Σ represents the sum of the principal path irreducible
diagrams (diagrams that cannot be split into disjoint pieces
by removing a linear propagator from the principal path).
In the small-scale limit, the infinite series for the

propagator can be resummed after a lengthy computation
to [71]:

Gabðk; aÞ ¼ gabðaÞ exp
�
−
k2σ2d
2

�
; ðC12Þ

where σ2d ¼ ða−1Þ2
3

R d3q
2π3

Plin
q2 .

This method permits the calculation of the n-point
correlation function in RPT for an arbitrary number of
loops. Explicit expressions for the power spectrum and
bispectrum are presented in Ref. [73]. Compared to SPT,
this method has the advantage that all the contributions
involved are positive and the resummation of the propa-
gator terms gives a well-defined perturbative expansion in
the nonlinear regime. However, the expressions involved
are computationally demanding—one has to solve numeri-
cally a set of integro-differential equations. Moreover, more
than one loop is required to obtain an accurate result, even
on mildly nonlinear scales.
In order to solve these problems, Refs. [73,75] proposed

a method that simplifies the calculation dramatically. The
scheme is called MPTBREEZE and in this formalism only
the late-time propagator is calculated and hence no time
integrations are required. First, the nonlinear propagator is
generalized to an arbitrary number of points. The (nþ 1)-
point propagator ΓðpÞ has been defined as

1

p!



δΨp

aðk; aÞ
δϕb1ðk1Þ � � � δϕbpðkpÞ

�

¼ δDðk − k1���pÞΓðpÞ
ab1���bpðk1;…;kp; aÞ; ðC13Þ

where k1���p ¼ k1 þ � � � þ kp. In this framework, the
power spectrum can be expressed as

Pðk; zÞ ¼
X
r≥1

r!
Z

δDðk − q1���rÞ½ΓðrÞðq1;…;qr; zÞ�2

× Plinðq1Þ � � �PlinðqrÞd3q1 � � � d3qr: ðC14Þ

If only the growing mode initial conditions are consid-
ered, the growing mode solutions reduce to the following
simple expression,

ΓðnÞ
δ ðk1;…;kn;zÞ¼DnðzÞFðsÞ

n ðk1;…;knÞexp½fðkÞD2ðzÞ�;
ðC15Þ

where the function f depends only on the linear power
spectrum today:

fðkÞ ¼
Z

d3q
ð2πÞ3

Plinðq; z ¼ 0Þ
504k3q5

�
6k7q − 79k5q3 þ 50q5k3

−21kq7 þ 3

4
ðk2 − q2Þ3ð2k2 þ 7q2Þ log jk − qj2

jkþ qj2
�
:

ðC16Þ

The numerical results obtained with this method agree
well with the more exact method RegPT [154] over the
relevant range of scales. Using the simplified MPTBREEZE
formalism, the power spectrum up to one loop can be
expressed as

PMPTbreeze
tree ðk; zÞ ¼ ½Γð1Þðk; zÞ�2PlinðkÞ ðC17Þ

PMPTbreeze
1-loop ðk; zÞ ¼ 2

Z
d3q
ð2πÞ3 ½Γ

ð2Þðk − q;q; zÞ�2

× Plinðjk − qjÞPlinðqÞ: ðC18Þ

Using Eq. (C15) and Eqs. (20) and (23) from Sec. III A and
Eq. (97) from Ref. [135], the MPTBREEZE contributions
can be expressed in terms of their SPT counterparts as
given in Eq. (34).
The bispectrum contributions can be treated in a similar

manner [74], and the result up to one loop is given in
Eq. (36) in terms of the SPT one-loop contributions
[Eqs. (26), (27)].
This prescription allows an easy computation of the

power spectrum and bispectrum for this method once the
SPT counterparts have been determined, as only one
integral function (f) needs to be evaluated, the other terms
being calculated in SPT. Unfortunately, applying this
theory up to one loop is only expected to give a reliable
prediction for the bispectrum up to kmax ¼ 0.15 h=Mpc at
z ¼ 0. Therefore, it is desirable to go to two loops in order
to increase the range of validity of the model.

APPENDIX D: RESUMMED LAGRANGIAN
PERTURBATION THEORY

Alternatively, perturbation theory can be derived as
a function of the Lagrangian coordinates q, which are
related to their Eulerian counterparts x by the displacement
field Ψ:

xðq; tÞ ¼ qþΨðq; tÞ: ðD1Þ

Under the assumption that the density perturbations at
initial times are negligible, Eulerian and Lagrangian
coordinates are related by the continuity equation:
ρðxÞd3x ¼ ρ̄d3q. Using the properties of the Dirac δD
distribution, this leads to
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δðxÞ ¼
Z

d3qδD½x − q −ΨðqÞ� − 1; ðD2Þ

whose Fourier transform is [155]

δðkÞ ¼
Z

d3qe−ik·q½e−ik·ΨðqÞ − 1�: ðD3Þ

This expression can be used to derive the observable power
spectrum in Eulerian space [80,155,156],

PðkÞ ¼
Z

d3Δ12e−ik·Δ12fhe−ik·½Ψðq1Þ−Ψðq2Þ�i − 1g; ðD4Þ

where Δij ≡ qi − qj, and the expectation value only
depends on the separation Δ12 due to homogeneity.
Likewise, the bispectrum can be written as [84]

Bðk1; k2; k3Þ ¼
Z

d3Δ12

Z
d3Δ13e−ik·ðΔ12þΔ13Þ

× fhe−ik2·½Ψðq1Þ−Ψðq2Þ�−ik3·½Ψðq1Þ−Ψðq3Þ�i − 1g;
ðD5Þ

also here the expectation value only depends on the
separations Δ12, Δ13. Equations (D4), (D5) relate the
observable (Eulerian) density polyspectra to the displace-
ment field Ψ. We follow Ref. [80] and use the cumulant
expansion theorem:

he−iXi ¼ exp

�X∞
N¼1

ð−iÞN
N!

hXNic
�
; ðD6Þ

where hXNic represents the cumulant of the random
variable X [56]. By applying the cumulant expansion to
Eqs. (D4), (D5), and expanding the powers of N with the
binomial theorem, two types of terms are obtained: those
depending on Ψ at one point, and those depending on Ψ at
two different points. In Refs. [80,84] it was demonstrated
that, if both sets of terms are expanded to the same order,
the LPT results are identical to those obtained in SPT for
both the power spectrum and bispectrum. However in
Ref. [80] it was found that, for large separations, the terms

depending on Ψ at one point are much larger than those
depending on Ψ at two points, so that the first set of terms
should be kept as it is, and only the second set should be
expanded. This renormalized approach is called RLPT.
In order to derive explicit expressions for the matter

power spectrum and bispectrum, we need to expand the
displacement field as a function of the matter overdensity δ.
The displacement field follows the equation of motion

d2Ψ
dt2

þ 2H
dΨ
dt

¼ −∇xϕ½qþΨðqÞ�; ðD7Þ

where ϕ is the gravitational potential. The polyspectra ofΨ
can be calculated by expanding it as a series of the density
field:

ΨðnÞðpÞ ¼ iDn

n!

Z
d3p1

ð2πÞ3 …
d3pn

ð2πÞ3 δD
�Xn

j¼1

pj − p

�

×LðnÞðp1;…;pnÞδ1ðp1Þ…δ1ðpnÞ; ðD8Þ

where δ1 indicates the linear density perturbation at present
times, and the perturbative kernelsLðnÞ are the analogues of
the SPT kernels Fn, Gn, and are also obtained from a
recursion relation [56].
Using this expansion leads to the RLPT power spectrum

of Eq. (37) [80], and to the bispectrum of Eq. (38) [84].

APPENDIX E: GOING TO TWO LOOPS

We outline in this appendix the two-loop calculations for
the matter power spectrum and bispectrum in perturbation
theory.

1. Two-loop power spectrum in perturbation theories

a. SPT two-loop terms

The two-loop power spectrum in SPT can be expressed
as [65,135]

P2-loop ¼ P15 þ P24 þ PðIÞ
33 þ PðIIÞ

33 ; ðE1Þ

where the four terms are

P51ðkÞ ¼ D6ðzÞ
Z

d3p
ð2πÞ3

Z
d3q
ð2πÞ3 30F

ðsÞ
5 ðk;q;−q;p;−pÞPlinðkÞPlinðqÞPlinðpÞ ðE2Þ

P42ðkÞ ¼ D6ðzÞ
Z

d3p
ð2πÞ3

Z
d3q
ð2πÞ3 24F

ðsÞ
2 ðq;k − qÞFðsÞ

4 ð−q;q − k;p;−pÞPlinðqÞPlinðpÞPlinðjk − qjÞ ðE3Þ

PðIÞ
33 ðkÞ ¼ D6ðzÞ

Z
d3p
ð2πÞ3

Z
d3q
ð2πÞ3 9F

ðsÞ
3 ð−k;p;−pÞFðsÞ

3 ðk;q;−qÞPlinðkÞPlinðqÞPlinðpÞ ðE4Þ

PðIIÞ
33 ðkÞ ¼D6ðzÞ

Z
d3p
ð2πÞ3

Z
d3q
ð2πÞ3 6F

ðsÞ
3 ðq;p;k− q− pÞFðsÞ

3 ð−q;−p;−kþ qþ pÞPlinðqÞPlinðpÞPlinðjk− q− pjÞ: ðE5Þ
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b. Two-loop RPT power spectrum

In the case of RPT, the two-loop calculation is simplified
considerably, because only one of the terms from
Eqs. (E2)–(E5) appears in this theory [75]. Thus, the
two-loop power spectrum can be calculated by modifying
the expression of PðIIÞ

33 as follows:

PMPTbreeze
2-loop ðk; zÞ ¼ PðIIÞ

33 ðk; zÞ exp ½2fðkÞD2ðzÞ�: ðE6Þ

The IR-safe evaluation of this integral has been described in
Ref. [136].

2. Two-loop bispectrum in perturbation theories

In SPT, the loop expansion is obtained by considering
the expansion from Eq. (A16) up to the relevant order,
together with the integral expression (A18) and then using
Wick’s theorem. For two loops, there are terms up to FðsÞ

6 in
the kernels, which make the numerical evaluation cumber-
some. In RPT, the number of terms is however drastically
reduced.

a. Two-loop RPT calculation

The tree-level and one-loop bispectrum in this theory
have been discussed above, and hence we proceed directly
to the two-loop terms. The generating function for the RPT
bispectrum is given by Eq. (59) of Ref. [73]. At two loops,
using the notation from Ref. [73], we need to take
rþ sþ t ¼ 4. As only one of these numbers can be 0,
there are only three choices for r, s and t (plus permuta-
tions) giving nonvanishing contributions, which we will
treat in turn:

(a) r ¼ 3, s ¼ 1, t ¼ 0 (þ5 perms.)
(b) r ¼ 2, s ¼ 2, t ¼ 0 (þ2 perms.)
(c) r ¼ 1, s ¼ 1, t ¼ 2 (þ2 perms.).
In all three cases, the expressions involved will depend

on the functions ΓðnÞ only up to Γð4Þ, which in turn can be
expressed in terms of the corresponding kernel functions
Fs
n through Eq. (C15). Even though the expressions that we

obtained for the MPTBREEZE two-loop bispectra are
relatively simple, they cannot be integrated directly because
they have various poles where at least one of the arguments

of FðsÞ
n vanishes. However, we know that the divergences

between the various terms must cancel exactly after
performing the integration, but numerically this is an issue
because the divergent parts are expected to be much bigger
than the finite result and thus the numerical result may not
be reliable. In order to solve this problem, we will use the
methods developed in Refs. [136–138]. Compared to SPT,

where some of the terms involve the kernel FðsÞ
6 , the

expressions appearing in this method represent a significant
simplification.
We note that from Eq. (C15) all expressions will have a

prefactor,

D8ðzÞ exp ½ðfðk1Þ þ fðk2Þ þ fðk3ÞÞD2ðzÞ�; ðE7Þ

and therefore in the following paragraphs we will omit this
factor because it does not affect the calculation. We will
denote the three integrals by Ba, Bb and Bc and the
integrands with corresponding lowercase letters. Then
the final two-loop MPTBREEZE bispectrum is

BMPTbreeze
2-loop ðk1; k2; k3; zÞ ¼ D8ðzÞ exp ½ðfðk1Þ þ fðk2Þ þ fðk3ÞÞD2ðzÞ�½Baðk1; k2; k3Þ þ Bbðk1; k2; k3Þ þ Bcðk1; k2; k3Þ�:

ðE8Þ

The expressions for the three bispectra are as follows:

Baðk1; k2; k3Þ ¼ 24

Z
d3q1
ð2πÞ3

Z
d3q2
ð2πÞ3 F

ðsÞ
4 ðq1;q2;−k3 − q1 − q2;−k2ÞFðsÞ

3 ð−q1;−q2;k3 þ q1 þ q2Þ

× Plinðq1ÞPlinðq2ÞPlinðk3ÞPlinðjq1 þ q2 þ k3jÞ ðE9Þ

Bbðk1; k2; k3Þ ¼ 24

Z
d3q1
ð2πÞ3

Z
d3q2
ð2πÞ3 F

ðsÞ
4 ðq1;k3 − q1;q2;−k2 − q2ÞFðsÞ

2 ð−q2;k2 þ q2ÞFðsÞ
2 ð−q1;k3 þ q1Þ

× Plinðq1ÞPlinðq2ÞPlinðjq1 þ k3jÞPlinðjq2 þ k2jÞ ðE10Þ

Bcðk1; k2; k3Þ ¼ 36

Z
d3q1
ð2πÞ3

Z
d3q2
ð2πÞ3 F

ðsÞ
3 ðq1;q2;k1 − q1 − q2ÞFðsÞ

2 ð−k1 þ q1 þ q2;−k3 − q1 − q2Þ

× FðsÞ
3 ðk3 þ q1 þ q2;−q1;−q2ÞPlinðq1ÞPlinðq2ÞPlinðjk1 − q1 − q2jÞPlinðjk3 þ q1 þ q2jÞ: ðE11Þ

We will treat each of them in turn and show how to remove the singularities before the integration.
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1. Ba

The expression for Ba has singularities when q1 ¼ 0, q2 ¼ 0 and q1 þ q2 ¼ −k3. By considering the variable
q3 ¼ −q1 − q2 − k3, Ba can be reexpressed in terms of a triple integral by adding a Dirac-delta function:

Baðk1; k2; k3Þ ¼ 24

Z
d3q1
ð2πÞ3

Z
d3q2
ð2πÞ3

Z
d3q3
ð2πÞ3 F

ðsÞ
4 ðq1;q2;q3ÞFðsÞ

3 ð−q1;−q2;−q3ÞδDðq1 þ q2 þ q3 þ k3Þ

× Plinðq1ÞPlinðq2ÞPlinðk3ÞPlinðq3Þ: ðE12Þ

This expression is now completely symmetric in q1 ↔ q2 ↔ q3 and hence all ordering of the magnitudes of these
three wave vectors are equivalent after a suitable relabeling of the variables. As there are six possible permutations of q1, q2
and q3,

Ba ¼
Z Z Z

d3q1d3q2d3q3
ð2πÞ9 bb6Θðq3 − q2ÞΘðq2 − q1Þ: ðE13Þ

Hence, the delta function and q3 can now be eliminated and the final expression is obtained:

Baðk1; k2; k3Þ ¼ 24

Z
d3q1
ð2πÞ3

Z
d3q2
ð2πÞ3 F

ðsÞ
4 ðq1;q2;−k3 − q1 − q2;−k2ÞFðsÞ

3 ð−q1;−q2;k3 þ q1 þ q2Þ

× Plinðq1ÞPlinðq2ÞPlinðk3ÞPlinðjq1 þ q2 þ k3jÞ × 6Θðjq1 þ q2 þ k3j − q2ÞΘðq2 − q1Þ: ðE14Þ

The expression of Eq. (E14) has a leading divergence when q1 ¼ q2 ¼ 0 and a subleading divergence when q1 ¼ 0, q2

fixed. The two divergences corresponding to q1 þ q2 ¼ −k3 and q2 ¼ 0, at fixed q1, have disappeared because the
Heaviside functions evaluate to 0 in those limits. In order to eliminate all divergences at the integrand level, we can also
symmetrize in q1;2 ↔ −q1;2:

baðq1;q2Þ →
1

4
½baðq1;q2Þ þ bað−q1;q2Þ þ baðq1;−q2Þ þ bað−q1;−q2Þ�: ðE15Þ

We will use this symmetrization for the b and c terms as well.

2. Bb

The Bb term has divergences for q1 ¼ 0, q1 ¼ −k3, q2 ¼ 0 and q2 ¼ −k1. We note that bb is symmetric under the
transformations q1 ↔ −k3 − q1 and q2 ↔ −k2 − q2. We can exploit the three symmetries that now appear in the integrand
by restricting the integration region to q1 < jk3 þ q1j and q2 < jk1 þ q2j and introducing two Heaviside functions and a
factor of 22:

Bbðk1; k2; k3Þ ¼ 24

Z
d3q1
ð2πÞ3

Z
d3q2
ð2πÞ3 F

ðsÞ
4 ðq1;k3 − q1;q2;−k2 − q2ÞFðsÞ

2 ð−q2;k2 þ q2ÞFðsÞ
2 ð−q1;k3 þ q1Þ

× Plinðq1ÞPlinðq2ÞPlinðjq1 þ k3jÞPlinðjq2 þ k2jÞ × 4Θðjk2 þ q2j − q2ÞΘðjk3 þ q1j − q1Þ: ðE16Þ

This expression is not symmetric in q1 ↔ q2, but we can symmetrize it by symmetrizing the whole integrand (including the
delta functions):

bbðq1;q2Þ →
1

2
½bbðq1;q2Þ þ bbðq2;q1Þ�: ðE17Þ

After the symmetrization, we aim to restrict the integration range to q1 < q2, and we achieve this by adding an additional
Θ-function, thus obtaining the final answer:
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Bbðk1; k2; k3Þ ¼ 24

Z
d3q1
ð2πÞ3

Z
d3q2
ð2πÞ3 ½F

ðsÞ
4 ðq1;k3 − q1;q2;−k2 − q2ÞFðsÞ

2 ð−q2;k2 þ q2ÞFðsÞ
2 ð−q1;k3 þ q1Þ

× Plinðq1ÞPlinðq2ÞPlinðjq1 þ k3jÞPlinðjq2 þ k2jÞ × 4Θðjk2 þ q2j − q2ÞΘðjk3 þ q1j − q1Þ
þ FðsÞ

4 ðq2;k3 − q2;q1;−k2 − q1ÞFðsÞ
2 ð−q1;k2 þ q1ÞFðsÞ

2 ð−q2;k3 þ q2Þ
× Plinðq1ÞPlinðq2ÞPlinðjq2 þ k3jÞPlinðjq1 þ k2jÞ × 4Θðjk2 þ q1j − q1ÞΘðjk3 þ q2j − q2Þ�Θðq2 − q1Þ:

ðE18Þ

Hence all the leading and subleading divergences have been moved to q1 ¼ q2 ¼ 0 and q1 ¼ 0, at q2 fixed. For all the other
poles in the kernels, the Heaviside functions vanish.

3. Bc

The expression for Bc has only one direct symmetry q1 ↔ q2, but this is not enough. Therefore we introduce the
following notation,

q3 ¼ k1 − q1 − q2 ðE19Þ

q4 ¼ k1 þ k2 − q1 − q2; ðE20Þ

and we then introduce two additional integrations and two Dirac delta functions. The integral becomes

Bcðk1; k2; k3Þ ¼ 36

Z Z Z Z
d3q1d3q2d3q3d3q4

ð2πÞ12 FðsÞ
3 ðq1;q2;q3ÞFðsÞ

2 ð−q3;q4ÞFðsÞ
3 ð−q4;−q1;−q2Þ

× Plinðq1ÞPlinðq2ÞPlinðq3ÞPlinðq4ÞδDðk1 − q1 − q2 − q3ÞδDðk2 þ q3 − q4Þ: ðE21Þ

This expression is already symmetric in q1 ↔ q2, and we symmetrize it in all the other variables, obtaining 12 possible
permutations and a fully symmetric expression. We can now introduce an ordering of the four variables in terms of their
magnitude (e.g. q4 ≥ q3 ≥ q2 ≥ q1), knowing that all the other orderings can be obtained by a suitable relabeling of the
variables. There are 4! ¼ 24 permutations of the four variables and, keeping only one of the permutations, we need to
multiply it by the following product of Heaviside functions:

24Θðq4 − q3ÞΘðq3 − q2ÞΘðq2 − q1Þ: ðE22Þ

There are now 12 summands, and each of them involves integrals over q1, q2, q3 and q4, three Heaviside functions and two
delta functions. The aim is now to perform two of the integrations, in order to eliminate the delta functions. In ten of the
terms, it turns out that it is possible integrate over q3 and q4. In the other two, q3 and q4 appear in the same combination in
both delta functions. For those terms we integrate over q2 and q4, and then relabel q3 → q2. The final expression that we
thus obtain only has divergences for q1 ¼ q2 ¼ 0 and q1 ¼ 0, with q2 fixed as required:

bcðk1; k2; k3Þ
¼ 36ð2FðsÞ

2 ðk2 − q1;q1ÞFðsÞ
3 ð−q1;−q2;−k1 − k2 þ q1 þ q2ÞFðsÞ

3 ðq1 − k2;k1 þ k2 − q1 − q2;q2Þ
× Plinðq1ÞPlinðjq1 − k2jÞPlinðjk1 þ k2 − q1 − q2jÞPlinðq2Þ
× Θðjk1 þ k2 − q1 − q2j − jq1 − k2jÞΘðjq1 − k2j − q2jÞΘðq2Þ − q1Þ
þ 2FðsÞ

2 ð−q1;k2 þ q1ÞFðsÞ
3 ð−k2 − q1;−q2;−k1 þ q1 þ q2ÞFðsÞ

3 ðq1;k1 − q1 − q2;q2ÞPlinðq1ÞPlinðjk2 þ q1jÞ
× Plinðjk1 − q1 − q2jÞPlinðq2ÞΘðjk1 − q1 − q2jÞ − jk2 þ q1jÞΘðjk2 þ q1Þj − q2ÞΘðq2 − q1Þ
þ 2FðsÞ

2 ð−q1;k2 þ q1ÞFðsÞ
3 ð−k2 − q1;−q2;−k1 þ q1 þ q2ÞFðsÞ

3 ðq1;k1 − q1 − q2;q2Þ
× Plinðq1ÞPlinðjk2 þ q1jÞPlinðjk1 − q1 − q2jÞPlinðq2ÞΘðjk2 þ q1j − jk1 − q1 − q2jÞΘðjk1 − q1 − q2j − q2ÞΘðq2 − q1Þ
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þ 2FðsÞ
2 ðk1 þ k2 − q1 − q2;−k1 þ q1 þ q2ÞFðsÞ

3 ð−q1;−q2;−k1 − k2 þ q1 þ q2ÞFðsÞ
3 ðq1;k1 − q1 − q2;q2Þ

× Plinðq1ÞPlinðjk1 − q1 − q2jÞPlinðjk1 þ k2 − q1 − q2jÞPlinðq2Þ
× Θðjk1 þ k2 − q1 − q2j − jk1 − q1 − q2jÞΘðjk1 − q1 − q2j − q2ÞΘðq2 − q1Þ
þ 2FðsÞ

2 ðk2 − q1;q1ÞFðsÞ
3 ð−q1;−q2;−k1 − k2 þ q1 þ q2ÞFðsÞ

3 ðq1 − k2;k1 þ k2 − q1 − q2;q2Þ
× Plinðq1ÞPlinðjq1 − k2jÞPlinðjk1 þ k2 − q1 − q2jÞPlinðq2Þ
× Θðjq1 − k2jÞ − jk1 þ k2 − q1 − q2jÞΘðjk1 þ k2 − q1 − q2j − q2ÞΘðq2 − q1Þ
þ 2FðsÞ

2 ðk1 þ k2 − q1 − q2;−k1 þ q1 þ q2ÞFðsÞ
3 ð−q1;−q2;−k1 − k2 þ q1 þ q2ÞFðsÞ

3 ðq1;k1 − q1 − q2;q2Þ
× Plinðq1ÞPlinðjk1 − q1 − q2jÞPlinðjk1 þ k2 − q1 − q2jÞPlinðq2Þ
× Θðjk1 − q1 − q2j − jk1 þ k2 − q1 − q2jÞΘðjk1 þ k2 − q1 − q2j − q2ÞΘðq2 − q1Þ
þ 2FðsÞ

2 ðk2 − q2;q2ÞFðsÞ
3 ð−q1;−q2;−k1 − k2 þ q1 þ q2ÞFðsÞ

3 ðq1;k1 þ k2 − q1 − q2;q2 − k2Þ
× Plinðq1ÞPlinðjk1 þ k2 − q1 − q2jÞPlinðq2ÞPlinðjq2 − k2jÞ
× Θðjk1 þ k2 − q1 − q2j − q2ÞΘðjq2 − k2j − jk1 þ k2 − q1 − q2jÞΘðq2 − q1Þ
þ 2FðsÞ

2 ðk2 − q2;q2ÞFðsÞ
3 ð−q1;−q2;−k1 − k2 þ q1 þ q2ÞFðsÞ

3 ðq1;k1 þ k2 − q1 − q2;q2 − k2ÞPlinðq1Þ
× Plinðjk1 þ k2 − q1 − q2jÞPlinðq2ÞPlinðjq2 − k2jÞΘðjk1 þ k2 − q1 − q2j − jq2 − k2jÞΘðjq2 − k2j − q2ÞΘðq2 − q1Þ
þ 2FðsÞ

2 ð−q2;k2 þ q2ÞFðsÞ
3 ð−q1;−k2 − q2;−k1 þ q1 þ q2ÞFðsÞ

3 ðq1;k1 − q1 − q2;q2ÞPlinðq1Þ
× Plinðjk1 − q1 − q2jÞPlinðq2ÞPlinðjk2 þ q2jÞΘðjk1 − q1 − q2j − q2ÞΘðjk2 þ q2j − jk1 − q1 − q2jÞΘðq2 − q1Þ
þ 2FðsÞ

2 ð−q2;k2 þ q2ÞFðsÞ
3 ð−q1;−k2 − q2;−k1 þ q1 þ q2ÞFðsÞ

3 ðq1;k1 − q1 − q2;q2Þ
× Plinðq1ÞPlinðjk1 − q1 − q2jÞPlinðq2ÞPlinðjk2 þ q2jÞΘðjk1 − q1 − q2j − jk2 þ q2jÞΘðjk2 þ q2j − q2ÞΘðq2 − q1Þ
þ 2FðsÞ

2 ðk2 − q1;q1ÞFðsÞ
3 ð−q1;−q2;−k1 − k2 þ q1 þ q2ÞFðsÞ

3 ðq1 − k2;k1 þ k2 − q1 − q2;q2ÞPlinðq1Þ
× Plinðjq1 − k2jÞPlinðjk1 þ k2 − q1 − q2jÞPlinðq2ÞΘðjq1 − k2j − q1ÞΘðjk1 þ k2 − q1 − q2j − q2ÞΘðq2 − jq1 − k2jÞ
þ 2FðsÞ

2 ð−q1;k2 þ q1ÞFðsÞ
3 ð−k2 − q1;−q2;−k1 þ q1 þ q2ÞFðsÞ

3 ðq1;k1 − q1 − q2;q2Þ
× Plinðq1ÞPlinðjk2 þ q1jÞPlinðjk1 − q1 − q2jÞPlinðq2ÞΘðjk2 þ q1j − q1ÞΘðjk1 − q1 − q2j − q2ÞΘðq2 − jk2 þ q1jÞÞ:

ðE23Þ

The three long expressions can be added together with
their corresponding permutations to obtain the final two-
loop result, which is then free of any divergences before the
integration.

APPENDIX F: NINE-PARAMETER MODEL

The tree-level prediction is the simplest model for the
bispectrum. As its simpler counterpart, the linear power
spectrum, it is only accurate for very low values of the
wave number. A simple improvement over the tree level
would be to substitute the linear with the nonlinear
power spectrum in Eq. (24), e.g. as calculated with the
HALOFIT method [106,131]; this result can then be
tuned further by modifying the kernel FðsÞ

2 in order to
better fit simulations. This idea has been proposed in
Ref. [130] and here we discuss a more elaborate version
of it, which fits N-body simulation better, introduced by
Ref. [133]. Each of the three terms of the kernel

[Eq. (16)] is modified by a multiplicative function, as
follows:

Feff
2 ðq1;q2Þ ¼

5

7
aðn1; q1Þaðn2; q2Þ

þ 1

2

q1 · q2

q1q2

�
q1
q2

þ q2
q1

�
bðn1; q1Þbðn2; q2Þ

þ 2

7

ðq1 · q2Þ2
q21q

2
2

cðn1; q1Þcðn2; q2Þ; ðF1Þ

such that the bispectrum can be expressed as

Bðk1; k2; k3Þ ¼ Feff
2 ðk1;k2ÞPHalofitðk1ÞPHalofitðk2Þ

þ 2 perms: ðF2Þ
The functions aðn; kÞ, bðn; kÞ, cðn; kÞ can be expressed

in terms of nine coefficients that are determined
numerically (a1;…; an) by fitting N-body simulations:
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aðn; kÞ ¼ 1þ σa68 ðzÞ½0.7Q3ðnÞ�1=2ðqa1Þnþa2

1þ ðqa1Þnþa2
ðF3Þ

bðn; kÞ ¼ 1þ 0.2a3ðnþ 3Þðqa7Þnþ3þa8

1þ ðqa7Þnþ3.5þa8
ðF4Þ

cðn; kÞ ¼ 1þ 4.5a4=½1.5þ ðnþ 3Þ4�ðqa5Þnþ3þa9

1þ ðqa5Þnþ3.5þa9
: ðF5Þ

The functions nðkÞ, Q3ðnÞ and q are defined as

nðkÞ ¼ d logPlinðkÞ
d log k

ðF6Þ

Q3ðnÞ ¼
4 − 2n

1þ 2nþ1
ðF7Þ

q ¼ k
kNL

; ðF8Þ

where kNL is the nonlinear scale defined as the solution
to the equation

k3NLPlinðkNLÞ
2π2

¼ 1: ðF9Þ

The parameters have been calibrated to give a maximum
of 10% error in the matter bispectrum for z ∈ ½0; 1.5� and
k ≤ 0.4 h=Mpc and they are a1 ¼ 0.484, a2 ¼ 3.740,
a3 ¼ −0.849, a4 ¼ 0.392, a5 ¼ 1.013, a6 ¼ −0.575,
a7 ¼ 0.128, a8 ¼ −0.722 and a9 ¼ −0.926.

APPENDIX G: INGREDIENTS OF THE
HALO MODEL

We assume that dark matter halos are virialized spheres
of mass m ¼ 4π

3
R3
vΔvρ̄, where Rv is the virial radius. The

virial overdensity is Δv ¼ 18π2 ≃ 180 in matter domina-
tion and it depends weakly on cosmology; we fixΔv ¼ 200
in our model in order to match the assumptions of the
numerical fits for the mass function and concentration. The
initial overdensity of spherically collapsed objects, extrapo-
lated to the present time using linear theory, is δc ¼
3
5
ð3π
2
Þ2=3 ≃ 1.686 [157].

1. Halo profile

We use the Navarro-Frenk-White (NFW) profile [158],
which can be expressed in terms of two parameters, ρsðmÞ
and rsðmÞ, describing the scaling radius and associated
density, where the profile slope changes:

ρðrjmÞ ¼ ρs
r=rsð1þ r=rsÞ2

: ðG1Þ

The NFW profile can be recast in terms of the concentration
c≡ Rv=rs, which can be calibrated from N-body simu-
lations [159]. Hence,

ρs ¼
Δvρ̄

3

c3

log ð1þ cÞ − 1
1þc

; rs ¼
�

3m
4πc3Δvρ̄

�
1=3

:

ðG2Þ

Substituting these definitions into Eq. (G1) and applying a
Fourier transformation, we obtain [160]

uðkjmÞ

¼ 4πρsr3s
m

�
sinðkrsÞ½Siðð1þ cÞkrsÞ − SiðkrsÞ�

−
sinðkrsÞ

ð1þ cÞkrs
þ cosðkrsÞ½Ciðð1þ cÞkrsÞ − CiðkrsÞ�

	
;

ðG3Þ

where SiðxÞ and CiðxÞ are the sine and cosine integral
functions. We use the fitting function to the concentration
obtained from the Bolshoi simulation [161],

cðm; zÞ ¼ 9.2κðzÞDðzÞ1.3
�

m
1012h−1M

�
−0.09

×

�
1þ 0.013

�
m

1012h−1M
DðzÞ− 1.3

0.09

�
0.25

�
ðG4Þ

with κðzÞ ¼ 1.26 at z ¼ 0 and κðzÞ ¼ 0.96 at z ≥ 1, as in
Ref. [162].

2. Halo mass function

The number density of halos of mass m and redshift z is
given by nðm; zÞ, which can be written as [163]

m
ρ̄
nðm; zÞdm ¼ fðνÞdν: ðG5Þ

Here the peak height ν≡ δ2c=σ2ðm; zÞ is obtained from the
variance of the linear density field filtered with a top-hat
function in Fourier spaceWfðxÞ¼ð3=x3Þ½sinðxÞ−xcosðxÞ�
on the scale Rf ¼ ½3m=ð4πρ̄Þ�1=3:

σ2ðm; zÞ ¼ D2ðzÞ
2π2

Z
∞

0

dkk2W2
fðkRfÞPlinðkÞ; ðG6Þ

where PlinðkÞ is the linear matter power spectrum and DðzÞ
is the linear growth function.
Different choices for the mass function fðνÞ are possible.

The simplest form was derived by Press and Schechter
[163] analytically assuming spherical collapse, finding

fPSðνÞ ¼
ffiffiffiffiffiffiffiffiffiffi
2ν=π

p
e−ν=2: ðG7Þ

This simple model only matches the results from N-body
simulations within a factor of two (see e.g. Ref. [164]);
more elaborated models calibrated on N-body simulations
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include those by Refs. [165,166]. We use here the numeri-
cal fit by Tinker et al. [167], where

fTðνÞ ¼ α½1þ ðβνÞ−2ϕ�ν2η expð−γν2=2Þ; ðG8Þ

the coefficients β, γ, η and ϕ have the following redshift
dependence,

β ¼ β0ð1þ zÞ0.20; γ ¼ γ0ð1þ zÞ−0.01
η ¼ η0ð1þ zÞ0.27; ϕ ¼ ϕ0ð1þ zÞ−0.08 ðG9Þ

with α ¼ 0.368, β0 ¼ 0.589, γ0 ¼ 0.864, η0 ¼ −0.243
and ϕ0 ¼ −0.729.

3. Halo clustering

Finally, we need a model for the clustering of the dark
matter halo centers, i.e. Ph and Bh. Under the simplest
assumption of local deterministic bias, the halo overdensity
in real space can be expressed as a Taylor expansion of the
dark matter overdensity field, where the coefficients are the
bias parameters [168], assuming both fields have been
smoothed on a relatively large scale R. This expression also
holds in Fourier space, where the first constant term b0 is
relegated to k ¼ 0 and is thus irrelevant.
If we calculate the matter power spectra using SPTat tree

level, we obtain [168]

Phðkjm1;m2Þ
¼b1ðm1Þb1ðm2ÞD2ðzÞP0ðkÞ;
Bhðk1;k2;k3jm1;m2;m3;zÞ
¼b1ðm1Þb1ðm2Þb1ðm3ÞD6ðzÞB0ðk1;k2;k3Þ
þ½b1ðm1Þb1ðm2Þb2ðm3ÞD4ðzÞPlinðk1ÞPlinðk2Þþ2 cyc�;

ðG10Þ

where we only need the first two bias parameters b1, b2.
They can be derived from the halo mass function using the
peak-background split technique [160,165,169–171]; this
method consists of dividing the Lagrangian density per-
turbations into short and long wavelength modes, and
assuming that halo collapse happening on the short scales
is enhanced or suppressed by the long-scale modulations in
the dark-matter perturbations, which effectively alter the
collapse threshold. After transformation from Lagrangian
to Eulerian space assuming spherical collapse, the first
two bias coefficients for the Press-Schechter mass function
are [170]

bPS1 ðνÞ ¼ 1þ ν − 1

δc
; ðG11Þ

bPS2 ðνÞ ¼ 8

21

ν − 1

δc
þ ν4 − 3ν2

δ2c
: ðG12Þ

While using the Tinker et al. mass function we find

bT1 ðνÞ ¼
2ϕ

δc½ðβνÞ2ϕ þ 1� þ
γν2 þ δc − 2η − 1

δc
; ðG13Þ

bT2 ðνÞ ¼
2ð42γν2ϕþ 8δcϕ − 84ηϕþ 42ϕ2 − 21ϕÞ

21δ2c½ðβνÞ2ϕ þ 1�

þ 21γ2ν4 þ 8γδcν
2 − 84γην2 − 63γν2

21δ2c

þ −16δcη − 8δc þ 84η2 þ 42η

21δ2c
: ðG14Þ

In order to enforce consistency with the definition of
matter overdensity, and to recover linear theory for k → 0,
we must finally impose the following conditions [172]:Z

∞

0

dm
m
ρ̄
nðmÞ ¼ 1 ðG15Þ

Z
∞

0

dm
m
ρ̄
nðmÞb1ðmÞ ¼ 1; ðG16Þ

Z
∞

0

dm
m
ρ̄
nðmÞbiðmÞ ¼ 0; ∀ i > 1: ðG17Þ

APPENDIX H: COMBINED HALO-PT MODEL

The derivation of this model can be summarized as
follows. The probability that a particle at Lagrangian
position q1 belongs to a halo with mass in [m, mþ dm]
is dF ¼ fðνÞdν. The probability that a particle at position
q2, at a distance q ¼ jq2 − q1j is situated in the same halo
can be expressed as

FmðqÞ ¼
ð2qm − qÞ2ð4qm þ qÞ

16q3m
; if 0 ≤ q ≤ 2qm; ðH1Þ

and FmðqÞ ¼ 0 if q > qm. Then the probability that the pair
½q1;q2� belongs to one (or two) halos is respectively

F1hðqÞ ¼
Z

∞

νq=2

dνfðνÞFmðqÞ; ðH2Þ

F2hðqÞ ¼ 1 − F1hðqÞ: ðH3Þ

In order to derive an analytic expression in Eulerian space,
the function F2hðqÞ at perturbative level is further approxi-
mated by its value at F2hðq ∼ 1=kÞ.
In terms of the Eulerian particle positions xðq; tÞ, the

matter power spectrum can be expressed as [155,173]

PðkÞ ¼
Z

d3qheik·Δx − eik·qi; ðH4Þ
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where Δx ¼ xðqÞ − xð0Þ and h� � �i represents statistical
average. The term eik·q is normally neglected in perturba-
tion theory as it only produces a nonzero contribution at
k ¼ 0, but it is important in the halo model [100]. The
power spectrum can be split between the contributions
coming from pairs in one (or two) halos as

P1hð2hÞðkÞ¼
Z

∞

0

d3qF1hð2hÞðqÞheik·Δx−eik·qi1hð2hÞ; ðH5Þ

where in this case the averages are conditional on the set of
pairs being in exactly one of the terms. The terms described
in Eq. (H5) correspond to the one- and two-halo terms from
the halo model of Sec. IV.
We can then split the power spectra further between

perturbative and nonperturbative regimes. Considering the

perturbative case and the expected physical behavior of the
two terms, it must hold F1h ≡ 0 at all levels of perturbation
theory. Hence F2h ≡ 1, and the two-halo contribution is
fully perturbative. However, the two-halo power spectrum
can be obtained more easily by replacing the conditional
average of Eq. (H5) with the full average given by
perturbation theory, and by weighting instead the results
with F2h from Eq. (H3). This yields the result of Eq. (48).
For the one-halo contribution, it is assumed that the halos

are fully virialized, and hence,

heik·Δxim ¼ u2ðkjmÞ: ðH6Þ

Substituting the result back into Eq. (H5) and changing the
order of integration yields the result of Eq. (47).
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