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Motivated by apparent persistent large scale anomalies in the cosmic microwave background we study
the influence of fermionic degrees of freedom on the dynamics of inflaton fluctuations as a possible source
of violations of (nearly) scale invariance on cosmological scales. We obtain the nonequilibrium effective
action of an inflaton-like scalar field with Yukawa interactions (YD;M) to light fermionic degrees of freedom
both for Dirac and Majorana fields in de Sitter space-time. The effective action leads to Langevin equations
of motion for the fluctuations of the inflaton-like field, with self-energy corrections and a stochastic
Gaussian noise. We solve the Langevin equation in the super-Hubble limit implementing a dynamical
renormalization group resummation. For a nearly massless inflaton its power spectrum of super-Hubble

fluctuations is enhanced, Pðk; ηÞ ¼ ðH
2πÞ2eγt½−kη� with γt½−kη� ¼ 1

6π2
½PND

i¼1 Y
2
i;D þ 2

PNM
j¼1 Y

2
j;M�fln2½−kη� −

2 ln½−kη� ln½−kη0�g for ND Dirac and NM Majorana fermions, and η0 is the renormalization scale at which
the inflaton mass vanishes. The full power spectrum is shown to be renormalization group invariant. These
corrections to the super-Hubble power spectrum entail a violation of scale invariance as a consequence of
the coupling to the fermionic fields. The effective action is argued to be exact in the limit of a large number
of fermionic fields. A cancellation between the enhancement from fermionic degrees of freedom and
suppression from light scalar degrees of freedom conformally coupled to gravity suggests the possibility of
a finely tuned supersymmetry among these fields.
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I. INTRODUCTION

Observational evidence of the cosmic microwave back-
ground (CMB) anisotropies with unprecedented accuracy
by theWMAP [1] and Planck [2] missions strongly supports
many of the main predictions of inflationary cosmology. A
simple paradigm of inflationary cosmology describes the
inflationary stage as dominated by the dynamics of a scalar
field, the inflaton, slowly rolling down a potential landscape
leading to a nearly de Sitter inflationary stage [3,4]. During
this period (adiabatic) cosmological perturbations are gen-
erated by quantum fluctuations that are amplified when their
wavelengths become larger than theHubble radius [5]with a
nearly scale invariant power spectrum. Upon reentering the
Hubble radius during the matter dominated era, these
fluctuations provide the seeds for structure formation.
One of the main predictions of these simple models—
a nearly scale invariant spectrum of adiabatic scalar
perturbations—is supported by observations of the CMB.
However since the early observations there remain persistent
apparent anomalies at large scales, such as low power at the
largest scales and unexpected alignments of low multipoles
[6–8]. If these are confirmed by the next generation of CMB
observations, these anomalies, taken togethermay indicate a
substantial violation of scale invariance of the primordial
power spectrum on the largest scales well beyond the small
violations predicted by slow roll inflation.

Is it possible that degrees of freedom that do not
participate directly in the dynamics of inflation and whose
quantum fluctuations do not become amplified during the
inflationary period, but which are nonetheless coupled to
the inflaton can be responsible for violations of scale
invariance with observational consequences on large scale
structure? Answering this question requires one to assess
the influence of these degrees of freedom upon the
dynamics of the quantum fluctuations of the inflaton field
(or more precisely of curvature perturbations).
Interactions of quantum fields in de Sitter (or nearly de

Sitter) space-time have been the focus of important studies
[9–29] which show strong infrared and secular effects.
Furthermore, non-Gaussianity a potentially important cos-
mological signature, is a consequence of self-interactions
of curvature perturbations and could leave an observable
imprint on the cosmic microwave background, although it
is suppressed by small slow roll parameters in single field
slow roll inflationary models [30,31].
At the fundamental level the study of interactions between

the inflaton and other fields requires one to obtain the time
evolution of the full density matrix that describes the inflaton
coupled to the extra degrees of freedom and tracing over the
latter ones thereby obtaining a reduced density matrixwhich
is the correct “effective field theory description” in a non-
equilibrium situation. The study of the nonequilibrium
effective action from tracing out degrees of freedom was
pioneered with the study of quantum Brownian motion
[32–38], the degrees of freedom of interest are considered*boyan@pitt.edu
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to be the “system” whereas those that are integrated out
(traced over) are the “bath” or “environment.” The effects of
the bath or environment are manifest in the nonequilibrium
effective action via an influence action which is in general
nonlocal and is determined by the correlation functions of
the environmental degrees of freedom. An alternative
description of the time evolution of the reduced density
matrix is the quantum master equation [39,40] which
includes the effects of coupling to the environmental degrees
of freedom via their quantum mechanical correlations. In
Ref. [41] the equivalence between the influence action and
the quantum master equation was established in Minkowski
space-time, and shown that they provide a nonperturbative
resummation of self-energy diagrams directly in real time
providing an effective field theory description of nonequili-
brium phenomena.
Ageneric quantummaster equation approach for a reduced

density matrix describing cosmological perturbations has
been advocated in Ref. [42] in terms of local correlations of
environmental degrees of freedom. More recently the non-
equilibriumeffective action that describes the nonequilibrium
dynamics of the fluctuations of an inflaton-like scalar field
coupled to nearly massless scalar fields conformally or
minimally coupled to gravity was studied both from the
quantum density matrix [43] as well as the influence func-
tional [44] approaches. These two approaches are comple-
mentary, both yield the effective equations of motion for
fluctuations whose solution represents a nonperturbative
resummation of self-energy diagrams, however the influence
action reveals a direct connection with a stochastic descrip-
tion [41,44]. In this formulation, the effective equations of
motion are of the Langevin form with a stochastic noise and
self-energy kernels that obey a curved space-time analog of
the fluctuation dissipation relation and are completely deter-
mined by the correlation functions of the degrees of freedom
that are traced over. The results both from the quantum
density matrix and influence action approaches reveal a
violation of scale invariance in the form of a suppression
of the power spectrum of super-Hubble inflaton fluctuations
as a consequence of the interaction with the “environmental”
scalar degrees of freedom.
Motivations and objectives.—Motivated by the possibil-

ity that the apparent large scale anomalies, if confirmed by
forthcoming CMB observations, may signal new physics
beyond the standard inflationary scenario, we continue the
study of the influence of the coupling of the inflaton field to
other degrees of freedom that do not directly influence the
dynamics of the inflationary stage. Inflaton couplings to
other degrees of freedom are a natural corollary of the
conjecture that all of the fields describing the standard model
(and beyond) are excited by inflaton oscillations around the
minimum of its potential at the end of inflation. However, if
this is the correct description of the postinflationary era, the
inflaton is necessarily coupled to these other fields even
during the inflationary stage. A large number of degrees of
freedom in the standard model and beyond are fermionic,

which motivates us to apply the methods developed in
Refs. [41,43,44] to the case when the inflaton is Yukawa
coupled to fermionic fields, to understand how the coupling
to these degrees of freedom affect the power spectrum of
inflaton fluctuations. Our work differs substantially from
previous studies of fermions coupled to the inflaton field in
the literature [19,45–48], which focused on fermion pro-
duction, or the fermionic contribution to the effective inflaton
mass or self-energy. Instead, we obtain the one-loop non-
equilibrium effective action for inflaton fluctuations by
obtaining the time evolution of the reduced density matrix
tracing over the fermionic degrees of freedom. This approach
leads directly to a stochastic description in terms of an
effective Langevin equation of motion [32,35–37,41,49] for
the inflaton fluctuations similar in form to that obtained in
Ref. [44] for the case of the inflaton coupled to a scalar field
but with important differences distinctly associated with the
fermionic nature of correlation functions of the degrees of
freedom integrated out. Early work [50] recognized that
integrating out sub-Hubble components of the inflaton scalar
field during inflation yields a stochastic effective description
and several studies showed that decoherence and effective
stochastic dynamics emerging from tracing over short wave-
length degrees of freedom are of fundamental importance in
cosmology [10,13,14,50–55]. The study presented here is, to
the best of our knowledge, the first example of a stochastic
nonequilibrium effective action for inflaton fluctuations
emerging from directly tracing over fermionic degrees of
freedom in the time-evolved density matrix.
Summary of results.—We obtain the nonequilibrium

effective field theory for an inflaton-like scalar field by
tracing out (integrating) Dirac or Majorana fermions
Yukawa coupled to the inflaton field up to one loop. The
nonequilibrium effective action has a stochastic interpreta-
tion in terms of a self-energy and a noise kernel that obey
the curved space-time analog of the fluctuation-dissipation
relation. The effective equation of motion for the inflaton
fluctuations becomes a Langevin equation. Although we
obtain the one-loop effective action for general Dirac or
Majorana fields, we specifically focus on light fermionic
degrees of freedom with masses ≪ H.
We implement the dynamical renormalization group

(DRG) [44,56,57] to solve the Langevin equation and obtain
the power spectrum of super-Hubble inflaton fluctuations.
For a massless inflaton field for which the unperturbed

power spectrum is scale invariant, we find forND Dirac and
NM Majorana light fermions,

Pðk; ηÞ ¼
�
H
2π

�
2

eγtðk;ηÞ;

γt½−kη� ¼ 1

6π2

�XND

i¼1

Y2
i;D þ 2

XNM

j¼1

Y2
j;M

�
fln2½−kη�

− 2 ln½−kη� ln½−kη0�g; ð1:1Þ
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η0 is a renormalization scale at which the renormalized
inflaton mass is set to vanish. This scale was chosen as the
beginning of the slow roll stage when modes of cosmo-
logical relevance today were deeply sub-Hubble. The full
power spectrum is shown to be invariant under a change of
scale η0. This result indicates a clear violation of scale
invariance for super-Hubble fluctuations. In contrast with
the case of scalar “environmental degrees of freedom”
studied in Ref. [44], in this case the power spectrum is
enhanced at large scales. We argue that the effective action
is formally exact in a large N limit of fermionic fields.
Comparing the result to the case of scalar environmental
degrees of freedom suggests the possibility of an under-
lying supersymmetry to cancel the enhancement from
fermionic degrees of freedom against the suppression from
scalar degrees of freedom that are nearly massless and
conformally coupled to gravity.

II. THE MODEL

In comoving coordinates, the action is given by

S ¼
Z

d3xdt
ffiffiffiffiffiffi−gp �

1

2
_ϕ2 − ð∇ϕÞ2

2a2
− 1

2
ðM2 þ ζRÞϕ2

þ Ψ̄½iγμDμ −mf − Yϕ�Ψ
�
: ð2:1Þ

with

R ¼ 6

�
ä
a
þ _a2

a2

�
ð2:2Þ

being the Ricci scalar, ζ ¼ 0, 1=6 corresponds to minimal
and conformal coupling respectively. We consider de Sitter
space-time with aðtÞ ¼ eHt and minimally coupled scalar
fields, namely ζ ¼ 0.
We will consider both Dirac and Majorana Fermi fields,

for the case of Majorana fields the fermionic part of the
Lagrangian is multiplied by a factor 1=2. The Dirac γμ are
the curved space-time γ matrices and the fermionic covar-
iant derivative is given by [58–61]

Dμ ¼ ∂μ þ
1

8
½γc; γd�eνcðDμedνÞ;

Dμedν ¼ ∂μedν − Γλ
μνedλ;

where the vierbein field eμa is defined as

gμν ¼ eμaeνbη
ab;

ηab is the Minkowski space-time metric and the curved
space-time matrices γμ are given in terms of the Minkowski
space-time ones γa by (greek indices refer to curved space-
time coordinates and latin indices to the local Minkowski
space-time coordinates)

γμ ¼ γaeμa; fγμ; γνg ¼ 2gμν:

We work in a spatially flat Friedmann-Robertson-Walker
(FRW) metric and in conformal time wherein the metric
becomes

gμν ¼ C2ðηÞημν; CðηÞ≡ aðtðηÞÞ ð2:3Þ

and ημν ¼ diagð1;−1;−1;−1Þ is the flat Minkowski space-
time metric. In conformal time the vierbeins eμa are
particularly simple

eμa ¼ C−1ðηÞδμa; eaμ ¼ CðηÞδaμ ð2:4Þ

and the Dirac Lagrangian density simplifies to the follow-
ing expression:

ffiffiffiffiffiffi−gp
Ψ̄ðiγμDμΨ −mf − YϕÞΨ

¼ ðC3
2Ψ̄Þ½i∂ − ðmf þ YϕÞCðηÞ�ðC3

2ΨÞ; ð2:5Þ

where i∂ ¼ γa∂a is the usual Dirac differential operator in
Minkowski space-time in terms of flat space-time γa

matrices.
Introducing the conformally rescaled fields

CðηÞϕð~x; tÞ ¼ χð~x; ηÞ; C
3
2ðηÞΨð~x; tÞ ¼ ψð~x; ηÞ ð2:6Þ

focusing on de Sitter space-time with

CðηÞ ¼ − 1

Hη
; ð2:7Þ

and neglecting surface terms, the action becomes

S ¼
Z

d3xdηfL0½χ� þ L0½ψ � þ LI½χ;ψ �g; ð2:8Þ

where

L0½χ� ¼
1

2
½χ02 − ð∇χÞ2 −M2ðηÞχ2�; ð2:9Þ

L0½ψ � ¼ ψ̄

�
i∂ þ mf

Hη

�
ψ ; ð2:10Þ

LI½χ;ψ � ¼ −Yχ∶ψ̄ψ∶; ð2:11Þ

where we have normal ordered the interaction in the
interaction picture of free fields, and

M2ðηÞ ¼
�
M2

H2
þ 12

�
ζ − 1

6

��
1

η2
: ð2:12Þ

In the noninteracting case Y ¼ 0 the Heisenberg equa-
tions of motion for the spatial Fourier modes of wave vector
~k for the conformally rescaled scalar field are
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χ00~kðηÞ þ
�
k2 − 1

η2

�
ν2χ − 1

4

��
χ~kðηÞ ¼ 0; ð2:13Þ

where

ν2χ ¼
9

4
−
�
M2

H2
þ 12ζ

�
: ð2:14Þ

We will focus on minimally coupled ζ ¼ 0 light inflaton-
like fields withM2=H2 ≪ 1 consistently with a nearly scale
invariant power spectrum.
The Heisenberg fields are quantized in a comoving

volume V as

χð~x; ηÞ ¼ 1ffiffiffiffi
V

p
X
~q

½a~qgðq; ηÞei~q·~x þ a†~qg
�ðq; ηÞe−i~q·~x�:

ð2:15Þ
We choose Bunch-Davies conditions for the scalar fields,
namely

a~qj0iχ ¼ 0 ð2:16Þ
and

gðq; ηÞ ¼ 1

2
ei

π
2
ðνχþ1

2
Þ ffiffiffiffiffiffiffiffiffi−πηp

Hð1Þ
νχ ð−qηÞ: ð2:17Þ

Non-Bunch-Davies conditions can be studied by straight-
forward extension.
The Dirac equation for Fermi fields becomes

½i∂ −MψðηÞ�ψ ¼ 0; Mψ ðηÞ ¼ −mf

Hη
: ð2:18Þ

For Dirac fermions the solution ψð~x; ηÞ is expanded as

ψDð~x; ηÞ ¼
1ffiffiffiffi
V

p
X
~k;λ

½b~k;λUλð~k; ηÞei~k·~x þ d†~k;λVλð~k; ηÞe−i~k·~x�;

ð2:19Þ
where the spinor mode functions U, V obey the Dirac
equations

½iγ0∂η − ~γ · ~k −Mψ ðηÞ�Uλð~k; ηÞ ¼ 0 ð2:20Þ
½iγ0∂η þ ~γ · ~k −MψðηÞ�Vλð~k; ηÞ ¼ 0: ð2:21Þ

We choose to work with the standard Dirac representa-
tion of the (Minkowski) γa matrices.
It proves convenient to write

Uλð~k; ηÞ ¼ ½iγ0∂η − ~γ · ~kþMψ ðηÞ�fkðηÞUλ ð2:22Þ
Vλð~k; ηÞ ¼ ½iγ0∂η þ ~γ · ~kþMψðηÞ�hkðηÞVλ ð2:23Þ

with Uλ; Vλ being constant spinors [48,62] obeying

γ0Uλ ¼ Uλ; γ0Vλ ¼ −Vλ: ð2:24Þ

The mode functions fkðηÞ; hkðηÞ obey the following
equations of motion:

�
d2

dη2
þ k2 þM2

ψðηÞ − iM0
ψðηÞ

�
fkðηÞ ¼ 0; ð2:25Þ

�
d2

dη2
þ k2 þM2

ψ ðηÞ þ iM0
ψðηÞ

�
hkðηÞ ¼ 0: ð2:26Þ

We choose Bunch-Davies boundary conditions for the
solutions, namely

fkðηÞ−kη → ∞
						!

e−ikη; hkðηÞ−kη → ∞
						!

eikη; ð2:27Þ

which leads to the choice

hkðηÞ ¼ f�kðηÞ; ð2:28Þ

and fkðηÞ is a solution of

�
d2

dη2
þ k2 þ 1

η2

�
m2

f

H2
− i

mf

H

��
fkðηÞ ¼ 0: ð2:29Þ

We find

fkðηÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi−πkη
2

r
ei

π
2
ðνψþ1=2ÞHð1Þ

νψ ð−kηÞ; νψ ¼ 1

2
þ i

mf

H
:

ð2:30Þ

The sub-Hubble limit ð−kηÞ → ∞ of these modes is given
by (2.27) and also of interest is their super-Hubble behavior
ð−kηÞ → 0, given by

fkðηÞ ∝ ð−HηÞ−imf=H ∝ eimft; ð2:31Þ

remarkably, up to a constant the super-Hubble fermionic
modes behave just as the long-wavelength limit of
negative energy states in Minkowski space-time. The
important aspect, however, is that the amplitude of the
mode functions remains bound and of order unity for
super-Hubble wavelengths. In contrast, nearly massless
minimally coupled scalar fields feature a growing mode
in the super-Hubble limit with gðk; ηÞ ∝ 1=η which
results in amplification and classicalization of super-
Hubble fluctuations [63].
Introducing

wðk; ηÞ ¼ i
f0kðηÞ
fkðηÞ

þMψ ðηÞ; ð2:32Þ

where 0 ¼ d=dη, the Dirac spinors are found to be
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Uλð~k; ηÞ ¼ NkfkðηÞ
�wðk; ηÞχλ

~σ · ~kχλ

�
;

χ1 ¼
�
1

0

�
; χ2 ¼

�
0

1

�
; ð2:33Þ

and

Vλð~k; ηÞ ¼ Nkf�kðηÞ
�

~σ · ~kφλ

w�ðk; ηÞφλ

�
;

φ1 ¼
�
0

1

�
; φ2 ¼ −

�
1

0

�
: ð2:34Þ

These spinors are normalized

U†U ¼ V†V ¼ 1 ð2:35Þ

from which it follows that

jNkj2½ðif0 þMψfÞð−if� þMψf�Þ þ k2f�f� ¼ 1: ð2:36Þ

Using Eq. (2.25) it is straightforward to find that the bracket
is indeed η independent, and evaluating as−η → ∞we find
(up to an irrelevant phase)

Nk ¼
1

k
ffiffiffi
2

p : ð2:37Þ

Furthermore it is straightforward to confirm that the U and
V spinors obey the charge conjugation relation

iγ2U�
λð~k; ηÞ ¼ Vλð~k; ηÞ∶ iγ2V�

λð~k; ηÞ ¼ Uλð~k; ηÞ;
λ ¼ 1; 2: ð2:38Þ

In terms of these spinor solutions we can construct
Majorana (charge self-conjugate) fields obeying1

ψcð~x; ηÞ ¼ Cðψ̄ð~x; ηÞÞT ¼ ψð~x; ηÞ; C ¼ iγ2γ0 ð2:39Þ

and given by

ψMð~x; ηÞ ¼
1ffiffiffiffi
V

p
X
~k;λ

½b~k;λUλð~k; ηÞei~k·~x þ b†~k;λVλð~k; ηÞe−i~k·~x�:

ð2:40Þ

In the case of Majorana fields the free-field fermionic part
of the Lagrangian must be multiplied by a factor 1=2 since a
Majorana field has half the number of degrees of freedom
of the Dirac field. We will obtain the effective action for the
inflaton-like fluctuations in both cases.
The following projectors are needed:

Λþ
abð~k; η; η0Þ ¼

X
λ¼1;2

Uλ;að~k; ηÞ ⊗ Ūλ;bð~k; η0Þ ¼
fkðηÞf�kðη0Þ

2k2

�
wðk; ηÞw�ðk; η0Þ −wðk; ηÞ~σ · ~k

w�ðk; η0Þ~σ · ~k −k2
�

ab

; ð2:41Þ

Λ−
abð~k; η0; ηÞ ¼

X
λ¼1;2

Vλ;að~k; η0Þ ⊗ V̄λ;bð~k; ηÞ ¼
fkðηÞf�kðη0Þ

2k2

�
k2 −wðk; ηÞ~σ · ~k

w�ðk; η0Þ~σ · ~k −wðk; ηÞw�ðk; η0Þ

�
ab

: ð2:42Þ

III. EFFECTIVE ACTION: FERMIONIC
INFLUENCE FUNCTIONAL

The time evolution of a density matrix initially prepared
at time η0 is given by

ρðηÞ ¼ Uðη; η0Þρðη0ÞU−1ðη; η0Þ; ð3:1Þ

where Tr½ρðη0Þ� ¼ 1 and Uðη; η0Þ is the unitary time
evolution of the full theory, it obeys

i
d
dη

Uðη; η0Þ ¼ HðηÞUðη; η0Þ; Uðη0; η0Þ ¼ 1; ð3:2Þ

where HðηÞ is the total Hamiltonian. Therefore

Uðη; η0Þ ¼ T½e−i
R

η

η0
Hðη0Þdη0 �;

U−1ðη; η0Þ ¼ ~T½ei
R

η

η0
Hðη0Þdη0 � ð3:3Þ

with T the time-ordering symbol describing evolution
forward in time and ~T the antitime ordered symbol
describing evolution backwards in time.
Consider the initial density matrix at a conformal time η0

and for the conformally rescaled fields to be of the form

ρðη0Þ ¼ ρχðη0Þ ⊗ ρψðη0Þ: ð3:4Þ

1We set the Majorana phase to zero as it is not relevant for the
discussion.
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This choice while ubiquitous in the literature neglects
possible initial correlations; we will adopt this choice with
the understanding that the role of initial correlations
between the inflaton and the fermionic degrees of freedom
remains to be studied further.
The initial time η0 is chosen so that all the modes of the

inflaton field that are of cosmological relevance today are
deeply sub-Hubble at this time. Since we are considering a
de Sitter space-time, we take this initial time to be earlier
than or equal to the time at which the slow roll (nearly de
Sitter) stage begins (we discuss this point in Sec. IV below).
Our goal is to evolve this initial density matrix in

(conformal) time obtaining (3.1) and trace over the fer-
mionic degrees of freedom (ψ̄ ;ψ) leading to a reduced
density matrix for χ namely

ρrχðηÞ ¼ TrψρðηÞ: ð3:5Þ

There is no natural choice of the initial density matrices
for the inflaton or fermionic fields, therefore to exhibit the
main physical consequences of tracing over the fermionic
degrees of freedom in the simplest setting we choose both
fields to be in their respective Bunch-Davies vacuum state,
namely

ρχðη0Þ ¼ j0iχχh0j; ρψ ðη0Þ ¼ j0iψψh0j: ð3:6Þ

This condition can be generalized straightforwardly. In the
discussion below, we refer to ψ , ψ̄ generically as simply ψ
to avoid cluttering of notation. Fermionic fields are
associated with Grassmann-valued (anticommuting) fields
for the path integral representation of the time evolution of
the density matrix.
In the field basis the matrix elements of ρχðη0Þ; ρψ ðη0Þ

are given by

hχjρχðη0Þjχ0i ¼ ρχ;0ðχ; χ0Þ;
hψ jρψðη0Þjψ 0i ¼ ρψ ;0ðψ ;ψ 0Þ; ð3:7Þ

and we have suppressed the coordinate arguments of the
fields in the matrix elements. In this basis

ρðχf;ψf; χ
0
f;ψ

0
f; ηÞ

¼ hχf;ψfjUðη; η0Þρð0ÞU−1ðη; η0Þjχ0f;ψ 0
fi

¼
Z

DχiDψ iDχ0iDψ 0
ihχf;ψfjUðη; η0Þjχi;ψ iiρχ;0ðχi; χ0iÞ

× ρψ ;0ðψ i;ψ
0
iÞhχ0i;ψ 0

ijU−1ðη; η0Þjχ0f;ψ 0
fi: ð3:8Þ

The
R
Dχ etc. are functional integrals, for fermionic

degrees of freedom the corresponding measure Dψ ≡
Dψ̄Dψ is in terms of Grassmann valued fields and every-
where the spatial arguments have been suppressed.

The matrix elements of the forward and backward
time evolution operators can be written as path integrals,
namely

hχf;ψfjUðη; η0Þjχi;ψ ii ¼
Z

DχþDψþe
i
R

η

η0
dη0d3xL½χþ;ψþ�

ð3:9Þ

hχ0i;ψ 0
ijU−1ðη;η0Þjχ0f;ψ 0

fi ¼
Z

Dχ−Dψ−e−i
R

η

η0

R
d3xL½χ−;ψ−�

;

ð3:10Þ

where L½χ;ψ � can be read off (2.8) and the boundary
conditions on the path integrals are

χþð~x; η0Þ ¼ χið~xÞ; χþð~x; ηÞ ¼ χfð~xÞ;
ψþð~x; η0Þ ¼ ψ ið~xÞ; ψþð~x; ηÞ ¼ ψfð~xÞ; ð3:11Þ

χ−ð~x; η0Þ ¼ χ0ið~xÞ; χ−ð~x; ηÞ ¼ χ0fð~xÞ;
ψ−ð~x; η0Þ ¼ ψ 0

ið~xÞ; ψ−ð~x; ηÞ ¼ ψ 0
fð~xÞ: ð3:12Þ

The fields χ�, ψ� describe the time evolution forward
(þ) with Uðη; η0Þ and backward (−) with U−1ðη; η0Þ; the
doubling of fields is a consequence of describing the time
evolution of a density matrix; this is the Schwinger-
Keldysh formulation [33,64,65] of time evolution of
density matrices.
The reduced density matrix for the light field χ is

obtained by tracing over the bath (ψ ) variables, namely

ρrðχf; χ0f; ηÞ ¼
Z

Dψfρðχf;ψf; χ
0
f;ψf; ηÞ: ð3:13Þ

We find

ρrðχf; χ0f; ηÞ

¼
Z

DχiDχ0iT ½χf; χ0f; χi; χ0i; η; η0�ρχðχi; χ0i; η0Þ; ð3:14Þ

where the time evolution kernel is given by the following
path integral representation:

T ½χf; χ0f; χi; χ0i; η; η0� ¼
Z

DχþDχ−eiSeff ½χþ;χ−;η�; ð3:15Þ

where the total effective action that yields the time
evolution of the reduced density matrix is
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Seff ½χþ; χ−; η�

¼
Z

η

η0

dη0
Z

d3x½L0½χþ� − L0½χ−�� þ F ½χþ; χ−�;

ð3:16Þ

with the following boundary conditions on the forward (χþ)
and backward (χ−) path integrals

χþð~x; η0Þ ¼ χið~xÞ; χþð~x; ηÞ ¼ χfð~xÞ
χ−ð~x; η0Þ ¼ χ0ið~xÞ; χ−ð~x; ηÞ ¼ χ0fð~xÞ: ð3:17Þ

F ½χþ; χ−� is the influence action; it is completely deter-
mined by the trace over the fermionic degrees of freedom. It
is given by

eiF ½χþ;χ−� ¼
Z

Dψ iDψ 0
iDψfρψðψ i;ψ 0

i; η0Þ

×
Z

DψþDψ−ei
R

d4xf½Lþ½ψþ;χþ�−L−½ψ−;χ−��g;

ð3:18Þ

where we used the shorthand notation

L�½ψ�; χ�� ¼ L0½ψ�� − Yχ�ðxÞ∶ ψ̄�ðxÞψ�ðxÞ∶;
x≡ ðη; ~xÞ;Z

d4x≡
Z

η

η0

dη0
Z

d3x; ð3:19Þ

and the boundary conditions on the path integrals are

ψþð~x; η0Þ ¼ ψ ið~xÞ; ψþð~x; ηÞ ¼ ψfð~xÞ;
ψ−ð~x; η0Þ ¼ ψ 0

ið~xÞ; ψ−ð~x; ηÞ ¼ ψfð~xÞ: ð3:20Þ

The path integral in the fermionic sector is a representa-
tion of the time evolution forward and backwards of the
fermionic density matrix, in (3.18), χ� act as external
sources coupled to ∶ψ̄�ðxÞψ�ðxÞ∶, but these sources are
different along the different branches, namely

eiF ½χþ;χ−� ¼ Trψ ½Uðη; η0; χþÞρψðη0ÞU−1ðη; η0; χ−Þ�; ð3:21Þ

where Uðη; η0; χ�Þ is the time evolution operator in the ψ
sector in presence of external sources χ� namely

Uðη; η0; χþÞ ¼ Tðe−i
R

η

η0
Hψ ½χþðη0Þ�dη0 Þ;

U−1ðη; η0; χ−Þ ¼ ~Tðei
R

η

η0
Hψ ½χ−ðη0Þ�dη0 Þ; ð3:22Þ

where

Hψ ½χ�ðηÞ� ¼ H0ψðηÞ

þ Y
Z

d3xχ�ð~x; ηÞ∶ ψ̄�ð~x; ηÞψ�ð~x; ηÞ∶ :

ð3:23Þ
In (3.23)H0ψðηÞ is the free field Hamiltonian for the field ψ
which depends explicitly on time as a consequence of the η
dependent mass term in the fermionic Lagrangian density
(2.10) and in the interaction term χ� are classical c-number
sources.
The calculation of the influence action is facilitated by

passing to the interaction picture for the Hamiltonian
Hψ ½χ�ðηÞ�, defining

Uðη; η0; χ�Þ ¼ U0ðη; η0ÞU ipðη; η0; χ�Þ; ð3:24Þ
where U0ðη; η0Þ is the time evolution operator of the free
field ψ and cancels out in the trace in (3.21) and the
fermionic fields in U ipðη; η0; χ�Þ feature the free field time
evolution (2.19).
The trace can be obtained systematically in perturbation

theory in Y. Up to OðY2Þ in the cumulant expansion we
find [using the shorthand notation (3.19)]

iF ½Jþ; J−�

¼ −Y2

2

Z
d4x1

Z
d4x2fχþðx1Þχþðx2ÞGþþðx1; x2Þ

þ χ−ðx1Þχ−ðx2ÞG−−ðx1; x2Þ
− χþðx1Þχ−ðx2ÞGþ−ðx1; x2Þ
− χ−ðx1Þχþðx2ÞG−þðx1; x2Þg: ð3:25Þ

In this expression χ�ðxÞ≡ χ�ð~x; ηÞ, and the correlation
functions are given by

G−þðx1; x2Þ ¼ h∶ ψ̄ðx1Þψðx1Þ∶∶ ψ̄ðx2Þψðx2Þ∶ iψ
¼ G>ðx1; x2Þ; ð3:26Þ

Gþ−ðx1; x2Þ ¼ h∶ ψ̄ðx2Þψðx2Þ∶∶ ψ̄ðx1Þψðx1Þ∶ iψ
¼ G<ðx1; x2Þ; ð3:27Þ

Gþþðx1; x2Þ ¼ G>ðx1; x2ÞΘðη1 − η2Þ
þ G<ðx1; x2ÞΘðη2 − η1Þ; ð3:28Þ

G−−ðx1; x2Þ ¼ G>ðx1; x2ÞΘðη2 − η1Þ
þ G<ðx1; x2ÞΘðη1 − η2Þ; ð3:29Þ

in terms of interaction picture fields, where

hð� � �Þiψ ¼ Trψ ð� � �Þρψ ðη0Þ; ð3:30Þ

and we have used that normal ordering in the interaction
picture yields
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Trψð∶ ψ̄ðxÞψðxÞ∶ Þρψðη0Þ ¼ 0 ð3:31Þ

since the initial density matrix corresponds to the (Bunch-Davies) vacuum state for the fermionic degrees of freedom.
Furthermore, comparing (3.26) and (3.27) it follows that

G>ðx1; x2Þ ¼ G<ðx2; x1Þ: ð3:32Þ

Following the steps detailed in Ref. [41] we find

iF ½χþ; χ−� ¼ −Y2

Z
d3x1d3x2

Z
η

η0

dη1

Z
η1

η0

dη2fχþð~x1; η1Þχþð~x2; η2ÞG>ðx1; x2Þ þ χ−ð~x1; η1Þχ−ð~x2; η2ÞG<ðx1; x2Þ

− χþð~x1; η1Þχ−ð~x2; η2ÞG<ðx1; x2Þ − χ−ð~x1; η1Þχþð~x2; η2ÞG>ðx1; x2Þg; x1 ¼ ðη1; ~x1Þetc: ð3:33Þ

In a spatially flat FRW cosmology spatial translational invariance implies that

G≶ðx1; x2Þ ¼ G≶ð~x1 − ~x2; η1; η2Þ≡ 1

V

X
~p

K≶
p ðη1; η2Þei~p·ð~x1−~x2Þ: ð3:34Þ

Therefore we write the influence action in terms of spatial Fourier transforms, with

χ�ð~x; ηÞ≡ 1ffiffiffiffi
V

p
X
~k

χ�~k ðηÞe
−i~k·~x; ð3:35Þ

and we obtain

iF ½χþ; χ−� ¼ −Y2
X
~k

Z
η

η0

dη1

Z
η1

η0

dη2fχþ~k ðη1Þχ
þ
−~kðη2ÞK

>
k ðη1; η2Þ þ χ−~k ðη1Þχ

−
−~kðη2ÞK

<
k ðη1; η2Þ

− χþ~k ðη1Þχ
−
−~kðη2ÞK

<
k ðη1; η2Þ − χ−~k ðη1Þχ

þ
−~kðη2ÞK

>
k ðη1; η2Þg: ð3:36Þ

A stochastic description emerges by following the steps detailed in Refs. [35,41,44] and introducing the center of mass
~χð~x; ηÞ and relative R variables as

~χð~x; ηÞ ¼ 1

2
ðχþð~x; ηÞ þ χ−ð~x; ηÞÞ; Rð~x; ηÞ ¼ ðχþð~x; ηÞ − χ−ð~x; ηÞÞ ð3:37Þ

in terms of which and neglecting surface terms [44] we find

iSeff ½~χ; R� ¼
Z

η

η0

dη0
X
~k

f−iR−~kðη0Þð~χ00~kðη
0Þ þ Ω2

kðη0Þ~χ~kðη0ÞÞg

−
Z

η

η0

dη1

Z
η

η0

dη2

�
1

2
R~kðη1ÞN kðη1; η2ÞR−~kðη2Þ þ R−~kðη1ÞiΣR

k ðη1; η2Þ~χ~kðηÞ
�
; ð3:38Þ

where

Ωk
2ðηÞ ¼

�
k2 − 1

η2

�
ν2χ − 1

4

��
: ð3:39Þ

The kernels N , Σ in (3.38) are given by

N kðη1; η2Þ ¼
Y2

2
½K>

k ðη1; η2Þ þK<
k ðη1; η2Þ�; ð3:40Þ
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ΣR
k ðη1; η2Þ ¼ Σkðη1; η2ÞΘðη1 − η2Þ;
Σkðη1; η2Þ ¼ −iY2½K>

k ðη1; η2Þ −K<
k ðη1; η2Þ�: ð3:41Þ

As discussed in Ref. [44] the above forms of the self-energy
and noise correlation function are a curved-space time
analog of the fluctuation dissipation relations [41].
The term quadratic in R in (3.38) can be written in terms

of a Gaussian noise variable, namely

exp

�
− 1

2

Z
dη1

Z
dη2R−~kðη1ÞN kðη1; η2ÞR~kðη2Þ

�

¼
Z

DξP½ξ�ei
R

dη0ξ−~kðη0ÞR~kðη0Þ; ð3:42Þ

where

P½ξ� ¼ exp

�
− 1

2

Z
dη1

Z
dη2ξ~kðη1ÞN −1

k ðη1; η2Þξ−~kðη2Þ
�
:

ð3:43Þ

Finally the time evolution kernel for the reduced density
matrix in Eqs. (3.14) and (3.15) is written as

T ½χf; χ0f; χi; χ0i; η; η0� ¼
Z

D~χDRDξP½ξ�eiSeff ½~χ;R;ξ;η�;

ð3:44Þ

where

Seff ½~χ; R; ξ; η�

¼ −
Z

η

η0

dη1
X
~k

R−~kðη1Þ
�
~χ00~kðη1Þ þΩk

2ðη1Þ~χ~kðη1Þ

þ
Z

η1

η0

dη2Σkðη1; η2Þ~χ~kðη2Þ − ξ~kðη1Þ
�
; ð3:45Þ

and the boundary conditions on the path integrals are given
by Eq. (3.17).
Obviously the effective action describes a stochastic

process, the path integral over the relative variable R in
(3.44) yields a functional delta function2

δ

�
~χ00~kðηÞ þ Ωk

2ðηÞ~χ~kðηÞ þ
Z

η

η0

dη1Σkðη; η0Þ~χ~kðη0Þ − ξ~kðηÞ
�

ð3:46Þ

whose solution is the Langevin equation

~χ00~kðηÞ þ Ωk
2ðηÞ~χ~kðηÞ þ

Z
η

η0

dη1Σkðη; η1Þ~χ~kðη1Þ ¼ ξ~kðηÞ:

ð3:47Þ

The noise ξ~kðηÞ is Gaussian and colored with the corre-
lation function

ξ~kðη1Þξ−~k0 ðη2Þ≡
R
DξP½ξ�ξ~kðη1Þξ−~k0 ðη2ÞR

DξP½ξ�
¼ N kðη1; η2Þδ~k;~k0 ;

ξ~kðηÞ ¼ 0; ð3:48Þ

where the fluctuation kernel N is given by Eq. (3.40). The
solutions of the Langevin equation depend on the initial
condition determined at η0 which are averaged with the
initial density matrix. As discussed in Refs. [41,44] there
are two averages:

(i) Average over the initial conditions χ~kðη0Þ; χ0~kðη0Þ
with the initial density matrix ρχðη0Þ.—We refer to
these averages simply as

hð� � �Þiχ ¼ Trχð� � �Þρχðη0Þ: ð3:49Þ

(ii) Average over the noise.—This is a Gaussian average
with the probability distribution function P½ξ� with
first and second moments given by Eq. (3.48); these
averages are referred to as

ð� � �Þ≡
R
DξP½ξ�ð� � �ÞR
DξP½ξ� : ð3:50Þ

(iii) Therefore the total average of correlation functions
is given by

¯hC½χ; ξ; η�iχ ¼
R
DξP½ξ�TrχðC½χ; ξ; η�ρχðη0ÞÞR

DξP½ξ� :

ð3:51Þ

The emerging stochastic description is strikingly similar
to the Martin-Siggia-Rose formulation of classical stochas-
tic field theory [66].
We can introduce an effective generating functional by

coupling sources h� to the fields χ� on the forward (þ) and
backward (−) branches in the effective action (3.16),
namely

L0½χ�� → L0½χ�� þ h�χ� ð3:52Þ
and taking the trace of the reduced density matrix (3.14),
thus defining

2Alternatively the equation of motion for ~χ is obtained from
δSeff=δR ¼ 0 [35].
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Zeff ½hþ; h−; η� ¼
Z

Dχfρ
rðχf; χf; hþ; h−; ηÞ; ð3:53Þ

so that functional derivatives with respect to these sources
yield the correlation functions along the time branches and
mixed correlation functions in the effective field theory, for
example

hχþðηÞχþðη0Þi ¼ TrTðχðηÞχðη0ÞÞρr ð3:54Þ

hχ−ðηÞχ−ðη0Þi ¼ Tr ~TðχðηÞχðη0ÞÞρr ð3:55Þ

hχþðηÞχ−ðη0Þi ¼ Trðχðη0ÞχðηÞρr ð3:56Þ

hχ−ðηÞχþðη0Þi ¼ TrðχðηÞχðη0Þρr: ð3:57Þ

The effective generating functional Zeff has distinct advan-
tages over the quantum master equation or the Fokker-
Planck equation because variational derivatives with
respect to the sources h� yield all the correlation functions
in the effective field theory for any time ordering and
automatically include both averages that yield the full
average (3.51). In order to obtain correlation functions at
different times within the context of the quantum master or
Fokker-Planck equations one must invoke (and prove) the
quantum regression theorem [39,40], a rather nontrivial
task when the noninteracting Hamiltonian is explicitly time
dependent (this is necessary in the interaction picture).
Although we can formally proceed to derive the effective

generating functional, here we are primarily interested in
obtaining the influence of fermionic correlations on the
power spectrum of inflaton fluctuations given by the equal
time correlation function

Pðk; ηÞ ¼ k3

2π2
hϕ~kðηÞϕ−~kðηÞi ¼

k3H2η2

2π2
hχ~kðηÞχ−~kðηÞi:

ð3:58Þ

This equal time average can be written in terms of a “center
of mass” combination

~χ~k ¼
1

2
ðχþ~k þ χ−~k Þ: ð3:59Þ

It is straightforward to confirm that

hχ~kðηÞχ−~kðηÞi ¼ h~χ~kðηÞ~χ−~kðηÞi: ð3:60Þ

This a consequence of the fact that at equal times, the time
and antitime ordered correlation functions coincide with the
Wightmann functions (3.56) and (3.57). This result will be
useful below to obtain the power spectrum from the
effective action. In this study we focus on the power
spectrum (3.58) which is a single time correlation function
and simpler than obtaining multitime correlation functions.

We postpone to future studies the more formal aspects
associated with the derivation and implementation of the
effective generating functional Zeff to obtain multitime
correlation functions.
To study the influence of fermionic fluctuations upon the

power spectrum, namely a single time expectation value, it
suffices to solve the Langevin equation (3.47) and carry out
the averages (3.51).
To highlight how the framework of the effective action is

implemented, let us first consider the case of free fields. In
the absence of interactions the Langevin equation (3.47) is
simply the equation of motion for free fields; its solution is
more conveniently written in terms of the real growing and
decaying modes as (see Refs. [43,44] for details),

~χð0Þ~k
ðηÞ ¼ Q~kgþðk; ηÞ þ P~kg−ðk; ηÞ ð3:61Þ

with

gþðk; ηÞ ¼
ffiffiffiffiffiffiffiffiffi−πη
2

r
Yνχ ð−kηÞ;

g−ðk; ηÞ ¼
ffiffiffiffiffiffiffiffiffi−πη
2

r
Jνχ ð−kηÞ; ð3:62Þ

where Y, J are Bessel functions. In the super-Hubble limit
−kη → 0

Yνχ ð−kηÞ ∝ ð−kηÞ−νχ ; Jνχ ð−kηÞ ∝ ð−kηÞνχ : ð3:63Þ

The relation between Q~k, P~k and the annihilation and

creation operators of Fock states a~k, a
†
~k
in the expansion

(2.15) is discussed in Refs. [43,44]. The operators Q~k, P−~k
form a canonical conjugate pair and feature the following
expectation values in the initial density matrix:

hQ~ki ¼ TrχQ~kρχðη0Þ ¼ 0;

hP~ki ¼ TrχP~kρχðη0Þ ¼ 0

hQ~kQ−~k0 i ¼ TrχQ~kQ−~k0ρχðη0Þ ¼
1

2
δ~k;~k0 ;

hP~kP−~k0 i ¼ TrχP~kP−~k0ρχðη0Þ ¼
1

2
δ~k;~k0

hQ~kP−~k0 i ¼ TrχQ~kP−~k0ρχðη0Þ ¼
i
2
δ~k;~k0 : ð3:64Þ

From the result (3.58) and the identity (3.60) the non-
interacting (Y ¼ 0) power spectrum for the case of light
fields M2=H2 ≪ 1 (νχ ≃ 3=2 −M2=3H2) in the super-
Hubble limit −kη → 0 is dominated by the growing mode

~χð0Þ~k
ðηÞ≃ Q~k

k3=2η
e

M2

3H2 ln½−kη� ð3:65Þ
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and from (3.58) and (3.64) it follows that

P0ðk; ηÞ ¼
�
H
2π

�
2

e
2M2

3H2 ln½−kη�; ð3:66Þ

which for M ¼ 0 becomes the usual scale invariant power
spectrum.
In the interacting theory, consider solving the Langevin

equation (3.47) in perturbation theory in the Yukawa
coupling Y, such solution is a function(al) ~χ~kðQ~k; P~k; ξ; ηÞ,

the power spectrum is obtained from the full average (3.51)
namely the averages (3.64) and the average over the noise
(3.48). In order to obtain the influence action in the
interacting theory it remains to obtain the kernels K≶

p .

A. Dirac fermions

The field expansion for Dirac fermions is given by
Eq. (2.19), where the U, V spinors are given by Eqs. (2.33)
and (2.34) we find

G>
Dðx1; x2Þ ¼

1

V

X
~p

ei~p·ð~x1−~x2Þ 1
V

X
~k

Tr½Λþð~k; η1; η2ÞΛ−ð~k − ~p; η2; η1Þ�; ð3:67Þ

where Λ� are the projector operators defined by Eqs. (2.41) and (2.42). With the definition (3.34) we find

K>
p ðη1; η2Þ ¼

Z
d3k
ð2πÞ3

�
f�kðη2Þf�k0 ðη2Þfkðη1Þfk0 ðη1Þ

2k2k02

�
× ½k02wkðη1Þw�

kðη2Þ þ k2w�
k0 ðη2Þwk0 ðη1Þ

− ~k · ~k0ðwkðη1Þw�
k0 ðη2Þ þ wk0 ðη1Þw�

kðη2ÞÞ�; ~k0 ¼ ~p − ~k; ð3:68Þ

where fkðηÞ and wkðηÞ are given by Eqs. (2.30) and (2.32) respectively. It is straightforward to confirm that

K<
p ðη1; η2Þ ¼ ðK>

p ðη1; η2ÞÞ�: ð3:69Þ

B. Majorana fermions

In the case of Majorana (charge self-conjugate) fermions, the field expansion is given by (2.40) from which we find

G>
Mðx1; x2Þ ¼

1

V

X
~p

ei~p·ð~x1−~x2Þ 1
V

X
~k;λ;λ0;a;b

f½Uλ;bð~k; η1ÞŪλ;að~k; η2ÞVλ0;að~k0; η2ÞV̄λ0;bð~k0; η1Þ�

− ½Uλ;bð~k; η1ÞŪλ0;að~k0; η2ÞVλ;að~k; η2ÞV̄λ0;bð~k0; η1Þ�g; ~k0 ¼ ~p − ~k: ð3:70Þ

The first term yields the trace of the product of projection operators as in the Dirac case (3.67). Using the relations (2.38) it is
straightforward to prove the relation

X
a

½Ūλ0;að~k0; η2ÞVλ;að~k; η2Þ� ¼ −X
a

½Ūλ;að~k; η2ÞVλ0;að~k0; η2Þ� ð3:71Þ

(notice the labels) therefore the second line in (3.70)
(including the sign) equals the first term and as a result
the correlation function for Majorana fields is simply
twice the correlation function for Dirac fields, namely
G>

Mðx1; x2Þ ¼ 2G>
Dðx1; x2Þ.

Light fermions.—For arbitrary mf=H it is very difficult
to obtain analytic expressions for the correlation func-
tions and kernels. However progress can be made in the
case of light fermions with mf=H ≪ 1. While this limit
offers a drastic simplification, it is justified if the
fermionic degrees of freedom describe those of the
standard model assuming that H is much larger than
the electroweak scale. Therefore we pursue in detail the

case mf ¼ 0 where we can study analytically the various
correlation functions and kernels. In the following we
consider only the case of one Dirac fermion, as the
Majorana case only requires an overall factor 2 in the
kernels. We generalize the result to the case of several
Dirac and Majorana fermions in Sec. V.
For the case mf ¼ 0 it follows that the mode function is

given by

fkðηÞ ¼ e−ikη; wðk; ηÞ ¼ k ð3:72Þ

leading to
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K>
p ðη1; η2Þ ¼

Z
d3k
ð2πÞ3 e

−iðkþk0Þðη1−η2−iϵÞ
�
1 − ~k · ~k0

kk0

�
;

~k0 ¼ ~p − ~k; ð3:73Þ

where we have introduced a convergence factor ϵ → 0þ.
We find

K>
p ðη1; η2Þ ¼

�
d2

d2η2
þ p2

��
i

8π2
e−ipðη1−η2Þ

ðη1 − η2 − iϵÞ
�
: ð3:74Þ

It proves convenient to write

1

η1 − η2 − iϵ

≡− 1

2

d
dη2

ln

�ðη1 − η2Þ2 þ ϵ2

ð−η0Þ2
�
þ iπδðη1 − η2Þ; ð3:75Þ

where the first term is the principal part and following the
discussion of Ref. [44] we have introduced a renormaliza-
tion scale ð−η0Þ coinciding with the initial time. We show
below that after renormalization the power spectrum is
formally invariant under a change of this scale. With the
relation (3.69), the noise (3.40) and self-energy (3.41)
kernels are given by

N kðη1; η2Þ ¼ −Y2

8π

�
d2

d2η2
þ k2

��
δðη1 − η2Þ

− 1

π
sin½kðη1 − η2Þ�P

�
1

ðη1 − η2Þ
��

ð3:76Þ

Σkðη1; η2Þ ¼ − Y2

8π2

�
d2

dη22
þ k2

��
cos½kðη1 − η2Þ�

d
dη2

× ln
�ðη1 − η2Þ2 þ ϵ2

ð−η0Þ2
��

: ð3:77Þ

After integration by parts the self-energy contribution to
the Langevin equation (3.47) becomesZ

η

η0

dη1Σkðη; η1Þ~χ~kðη1Þ

¼ − Y2

4π2
~χ~kðηÞ
ϵ2

þ Y2

4π2
ln

�ð−η0Þ
ϵ

��
d2 ~χ~kðηÞ
dη2

þ k2 ~χ~kðηÞ
�

þ Y2

4π2

Z
η

η0

dη1 ln

�
η − η1
ð−η0Þ

�
d
dη1

�
cos½kðη − η1Þ�

×

�
d2 ~χ~kðηÞ
dη21

þ k2 ~χ~kðη1Þ
��

: ð3:78Þ

In obtaining this expression, we have neglected the con-
tribution from the lower limit (η0) in the integration by
parts; these contributions are finite and perturbatively
small (since the mode functions are assumed to be deeply

sub-Hubble at the initial time) as η → 0which is the limit of
interest in this work.

C. Renormalization of the effective action

The first two terms in (3.78) require renormalization: the
first term suggests a mass operator and the second term a
kinetic operator, namely wave function renormalization, as
counterterms. The counterterms are included in the free
field action and adjusted order by order in perturbation
theory to cancel the divergences from the self-energy terms.
In terms of the fields χ� on the forward and backward time
branches we introduce3

χ� ¼
ffiffiffiffi
Z

p
χ�R ð3:79Þ

with Z the wave function renormalization being the same
for both fields as these describe simply the field χ on
different time branches and

Z ¼ 1þ Y2z1 þ…: ð3:80Þ

In terms of the center of mass and relative variables (3.37)
this renormalization leads to

~χ ¼
ffiffiffiffi
Z

p
~χR; R ¼

ffiffiffiffi
Z

p
RR;

ffiffiffiffi
Z

p
ξ ¼ ξR: ð3:81Þ

We also introduce renormalizations for the effective mass
(2.12) (which includes the coupling to gravity),

ZM2 ¼ M2
R þ δM2; ð3:82Þ

and z1; δM2 are chosen to cancel the divergences from the
self-energy term. The choice

z1 ¼ − 1

4π2
ln

�ð−η0Þ
ϵ

�
ð3:83Þ

cancels the second term in the first line in (3.78). The first
term, however, does not quite amount to a mass or
gravitational coupling respectively, because to be identified
with any of these terms, it would have to be proportional to
1=η2 as inferred from (2.12). The problem is traced to the
fact that cutting off the momentum integral (3.73) with the
convergence factor −iϵ is equivalent to a hard ultraviolet
cutoff in comoving coordinates, a similar cutoff dependence
(with the incorrect η dependence to be associated with a
mass renormalization) was also found in Ref. [46]. In
contrast to this regularization, implementing dimensional
regularization as advocated in Ref. [45] does not yield
the first term (proportional to 1=ϵ2) in (3.78), only a single
pole in D − 4 (D is the space-time dimensionality) is

3To leading order in Y we do not need to specify the
renormalization of Yukawa coupling or fermionic fields.
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found4 which is associated with the logarithmically diver-
gent wave function renormalization. We choose the coun-
terterm δM2 in (3.82) to precisely cancel the first term in
(3.78) being aware that such term is a consequence of the
particular regularization procedure implemented. The sec-
ond term ∝ ln½ϵ=ð−η0Þ� is identified with a simple pole in
D − 4 in dimensional regularization and is canceled
accordingly by wave function renormalization with z1
given by (3.83). With M2 given by (2.12) we define the
combination of bare parameters (M, ζ)

M2

H2
þ 12ζ ≡ eM2

0

H2
⇒ M2 ¼ 1

η2

� eM2
0

H2
− 2

�
; ð3:84Þ

and fix the renormalized coupling to gravity ζR ¼ 0 so that
the renormalized scalar field has renormalized mass
MRðη0Þ and is minimally coupled to gravity and light,
so that

M2
Rðη0Þ ¼

1

η2

�
M2

Rðη0Þ
H2

− 2

�
;

M2
Rðη0Þ
H2

≪ 1; ð3:85Þ

where we have made explicit that the renormalized mass
has been defined at the renormalization scale η0. After
choosing δM2 in (3.82) to cancel the first term in (3.78) the
remaining renormalization condition ZM2 ¼ M2

Rðη0Þ
yields

eM2
0

H2
¼ M2

Rðη0Þ
H2

− Y2

2π2
ln

�ð−η0Þ
ϵ

�
þ…; ð3:86Þ

where we neglected terms of order Y2M2
R=H

2, etc. The left-
hand side of this equation is independent of η0, namely the
right-hand side is invariant under the change of renorm-
alization scale. As a corollary, we emphasize that the
combination

M2
Rðη0Þ
3H2

− Y2

6π2
ln

�ð−η0Þ
ϵ

�
ð3:87Þ

is manifestly independent of the choice of renormalization
scale η0, namely is a renormalization group invariant. This
observation will be of particular importance below since it
will imply that the power spectrum is truly independent of
the choice of renormalization scale (see below).
We now work solely with renormalized variables drop-

ping the labels R in the renormalized quantities to simplify
notation and take ζR ¼ 0 for a minimally coupled inflaton
field. In terms of renormalized fields, mass, gravitational

couplings and noise term, the Langevin equation (3.47)
now reads (all quantities are renormalized)

~χ00~kðηÞ þ Ωk
2ðηÞ~χ~kðηÞ þ

Y2

4π2

Z
η

η0

dη1 ln

�
η − η1
ð−η0Þ

�
d
dη1

×

�
cos½kðη − η1Þ�

�
d2 ~χ~kðη1Þ

dη21
þ k2 ~χ~kðη1Þ

��
¼ ξ~kðηÞ;

ð3:88Þ

where after renormalization and choosing the renormalized
fields to be minimally coupled to gravity

Ωk
2ðηÞ ¼

�
k2 − 1

η2

�
ν2χ − 1

4

��
; ν2χ ¼

9

4
−M2

Rðη0Þ
H2

:

ð3:89Þ

IV. SOLUTION OF THE LANGEVIN EQUATION
AND POWER SPECTRUM

We now proceed to the solution of the Langevin equation
by implementing the dynamical renormalization group
method presented in detail in Ref. [44].
Homogeneous solution.—We first solve the homo-

geneous equation (ξ~k ¼ 0) highlighting the resummation
of secular terms via the dynamical renormalization group.
Armed with the homogeneous solution we proceed to
include the inhomogeneity exploiting the multiplicative
renormalization in the same fashion as in Ref. [44]. We
begin with a perturbative expansion of the homogeneous
solution by writing

~χ~kðηÞ ¼ ~χð0Þ~k
ðηÞ þ Y2 ~χð1Þ~k

ðηÞ þ… ð4:1Þ

leading to the hierarchy of equations

d2

dη2
~χð0Þ~k

ðηÞ þ Ω2
kðηÞ~χð0Þ~k

ðηÞ ¼ 0 ð4:2Þ

d2

dη2
~χð1Þ~k

ðηÞ þ Ω2
kðηÞ~χð1Þ~k

ðηÞ ¼ I½k; η�

..

. ¼ ..
.
; ð4:3Þ

where

I½k; η� ¼ − 1

2π2

Z
η

η0

dη1 ln

�ðη − η1Þ
ð−η0Þ

�
d
dη1

×

�
cos½kðη − η1Þ�

~χð0Þ~k
ðη1Þ
η21

�
; ð4:4Þ

where we have used the zeroth order equation

4This is similar to obtaining the fermionic one-loop correction
in Minkowski space-time, a sharp ultraviolet cutoff Λ yields a
term proportional to Λ2 as a mass renormalization and a ln½Λ�
wave function renormalization, but dimensional regularization
only yields a pole in D − 4 associated with the latter.
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d2

d2η
~χð0Þ~k

ðηÞ þ k2 ~χð0Þ~k
ðηÞ ¼ 1

η2

�
2 −M2

Rðη0Þ
H2

�
~χð0Þ~k

ðηÞ; ð4:5Þ

and neglected a higher order term proportional to
Y2M2

Rðη0Þ=H2 for M2
Rðη0Þ=H2 ≪ 1. In the following

analysis we will neglect M2
Rðη0Þ=H2.

The zeroth order solution is given by (3.61) with (3.62),

~χð0Þ~k
ðηÞ ¼ Q~kgþðk; ηÞ þ P~kg−ðk; ηÞ: ð4:6Þ

The solution of the first order equation in (4.3) can be
formally found from the (retarded) Green’s function of the
differential operator on the left-hand side of the equation,
the resulting integrals are daunting and not easily available
in closed analytic form. However, we are only interested in
the asymptotic long time and super-Hubble limits, namely
for η → 0−, −kη → 0. In this limit the most important
contribution to the integrand of (4.4) arises from the
growing mode of ~χð0ÞðηÞ≃Q~k=ðk3=2ηÞ [see (3.65)] and
for η1 > η� ≃−1=k, since for −kη1 ≫ 1 both the mode
functions and the cosine oscillate rapidly averaging out and
not leading to secular growing corrections. Therefore we
approximate the integral of (4.3) by setting the lower limit
of integration at η� ≃−1=k, cos½kðη − η1Þ�≃ 1 and
~χð0Þðη1Þ≃Q~k=ðk3=2η1Þ. We find

I½k; η� ¼ − Q~k

2π2k3=2η3

�
ln

�
η

η0

�
− 3

2

�
; ð4:7Þ

and the solution of (4.3) is given by

~χð1Þ~k
ðηÞ ¼

Z
η

η0

Gkðη; η1ÞI½k; η1�dη1; ð4:8Þ

where the retarded Green’s function of the differential
operator on the left-hand side of (4.8) is

Gkðη; η1ÞΘðη − η1Þ;
Gkðη; η1Þ ¼ i½gðk; ηÞg�ðk; η1Þ − gðk; η1Þg�ðk; ηÞ�; ð4:9Þ

and the mode functions gðk; ηÞ are given by Eq. (2.17).
For M2

Rðη0Þ=H2 → 0 and in the super-Hubble limit
−kη → 0 (2.17) becomes

G~kðη; η1Þ → Gðη; η1Þ ¼
1

3

�
η2

n1
− n21

η

�
; ð4:10Þ

furthermore, since we are interested in the long time and
super-Hubble limits, we replace the lower limit in the
integral in (4.8) by η� ≃−1=k. The long time behavior of
the first order correction is therefore given by

~χð1Þ~k
ðηÞ ¼ Q~k

k3=2η
F ½η�; ð4:11Þ

where to leading order for η=η� ≃−kη → 0 and η�=η0 ≃
1=ð−kη0Þ → 0 we find

F ½η� ¼ 1

12π2

�
ln2

�
η

η�

�
þ 2 ln

�
η

η�

�
ln

�
η�
η0

��
: ð4:12Þ

Remarkably this solution is similar to that found in the case
when the inflaton field is coupled to a conformally coupled
massless scalar field in Ref. [44] but with the opposite sign
whose origin is traced back to the one-loop fermionic
correlators, a contrast that has important consequences
discussed below.
Therefore the solution of the homogeneous renormalized

Langevin equation (3.88) for ξ ¼ 0 in the long time
limit, for super-Hubble wavelengths and keeping only
the growing mode is

~χ~kðηÞ ¼
Q~k

k3=2η
½1þ Y2F ½η� þ…�: ð4:13Þ

Obviously F ½η� (4.12) features secular growth as η=η� ≃−kη → 0 and the perturbative solution eventually breaks
down in the asymptotic long time limit. Furthermore, the
form of the solution (4.13) suggests that the corrections are
a renormalization of the amplitude Q~k. In order to obtain a
solution that is asymptotically well behaved we implement
the DRG resummation program [56,57]. We introduce a
renormalization of the amplitude A½τ� and an arbitrary
renormalization scale τ and write the amplitude Q~k as

Q~k ¼ Q~k½τ�A½τ�; A½τ� ¼ 1þ Y2a1½τ� þ…: ð4:14Þ

Inserting this expansion in the solution (4.13),

~χ~kðηÞ ¼
Q~k½τ�
k3=2η

½1þ Y2ðF ½η� þ a1½τ�Þ þ…�: ð4:15Þ

We now choose a1½τ� to precisely cancel the secularly
growing term at the scale η ¼ τ thereby improving the
perturbative expansion up to this scale, with this choice the
improved solution is

~χ~kðηÞ ¼
Q~k½τ�
k3=2η

½1þ Y2ðF ½η� − F ½τ�Þ þ…�; ð4:16Þ

the convergence is improved by choosing τ arbitrarily close
to a fixed time η. However the solution does not depend on
the arbitrary renormalization scale τ, therefore

∂ ~χ~kðηÞ
∂τ ¼ 0; ð4:17Þ
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leading to the dynamical renormalization group equa-
tion [56,57]

d
dτ

Q~k½τ�½1þ…� −Q~k½τ�Y2
d
dτ

F ½τ� ¼ 0: ð4:18Þ

To leading order the solution is given by

Q~k½τ� ¼ Q~k½τ��eY
2½F ½τ�−F ½τ���: ð4:19Þ

Since the scales τ, τ� are arbitrary, we now choose τ ¼ η,
τ� ¼ η� and since F ½η�� ¼ 0 we finally find the DRG
improved growing mode solution of the homogeneous
Langevin equation in the long time and super-Hubble
limits [for M2

Rðη0Þ=H2 ¼ 0]

~χ~kðηÞ ¼
Q~k½η��
k3=2η

eY
2F ½η�: ð4:20Þ

Restoring the renormalized mass and for M2
Rðη0Þ=H2 ≪

1 ≠ 0 we find from (3.65)

~χ~kðηÞ ¼
Q~k½η��
k3=2η

e
M2
R
ðη0Þ

3H2 ln½−kη�eY2F ½η�; ð4:21Þ

with η� ¼ −1=k the exponent in (4.21) is�
M2

Rðη0Þ
3H2

− Y2

6π2
ln½−kη0�

�
ln½−kη� þ Y2

12π2
ln2½−kη�;

ð4:22Þ

however the renormalization condition (3.86) and the
discussion leading to Eq. (3.87) imply that the bracket
in the first term in (4.22) is independent of the renormal-
ization scale η0. In absence of coupling to fermions, a
massless inflaton scalar features a scale invariant power
spectrum of super-Hubble fluctuations in de Sitter space-
time. In order to guarantee a scale invariant power spectrum
when the Yukawa coupling is switched off the inflaton
mass must vanish during slow roll inflation. Therefore
choosing −η0 at the onset of slow roll inflation, and setting
MRðη0Þ ¼ 0, the unperturbed power spectrum during slow
roll (3.66) would be scale invariant. However, the fermionic
effective action leads to a breakdown of scale invariance
and the appearance of the scale η0 is a remnant of the
renormalization and the scale at which the renormalized
mass vanishes. If slow roll inflation lasts 50–60 e-folds and
the wavelengths of cosmological relevance today cross the
Hubble radius during the last ten e-folds, their wavelengths
were deep inside the Hubble radius at the onset of slow roll
inflation and −kη0 ≫ 1.
It is noteworthy that in contrast with the scalar field case

where the corrections lead to a suppression of the ampli-
tude as discussed in Refs. [43,44], the fermionic case yields
a growth of the amplitude when the wavelength of the

perturbation becomes super-Hubble. This important differ-
ence is traced back to the fermionic loop in the self-energy
in contrast with the bosonic loop studied in Refs. [43,44].
Inhomogeneous solution.—Armed with the solution of

the homogeneous equation, we now implement the meth-
ods developed in Ref. [44] to obtain the solution of the
inhomogeneous equation to leading order in Y2.
To begin with we follow the same procedure as for the

homogeneous case studied above and integrate by parts the
self-energy term absorbing the contribution of the upper
limit of integration into the mass renormalization and
neglecting the contribution from the lower limit which
vanishes in the long time limit. Second, we write the noise
term in the renormalized Langevin equation in (3.88) as

ξ~kðηÞ≡ Y ~ξ~kðηÞ ð4:23Þ

with ~ξ≃Oð1Þ to exhibit explicitly that formally the noise
is of OðYÞ. We now exploit the multiplicative renormal-
ization result (4.20) from the dynamical renormalization
group solution of the homogeneous equation found above
and write (for details see Ref. [44])

~χ~kðηÞ ¼ ~Ψ~kðηÞeαðηÞ; ð4:24Þ

where

αðηÞ ¼ Y2α1ðηÞ þ Y3α2ðηÞ þ… ð4:25Þ

and proceed to obtain ~Ψ and α systematically in a
resummed perturbative expansion so that ~χ~kðηÞ features
a uniform asymptotic long time and super-Hubble limit. We
insert the ansatz (4.24) in the Langevin equation (3.47)
with the noise on the right-hand side replaced by (4.23). At
this stage we follow the steps detailed in Ref. [44] with the
proper modifications for the case under consideration.
Recognizing that with αðηÞ given by (4.25) when taking
derivatives within the self-energy kernels, all derivatives of
eαðηÞ bring further powers of Y2; Y3;…. Since the self-
energy itself is multiplied by Y2, to leading order in Y we
will neglect the derivatives of α in the self-energy kernel
[third term in Eq. (3.88)], which now becomes

Y2

4π2

Z
η

η0

eαðη1Þ
d
dη1

Δ~kðη; η1Þdη1; ð4:26Þ

where we have introduced

Δ~kðη; η1Þ ¼
Z

η1

η0

ln

�ðη − η2Þ
ð−η0Þ

�
d
dη2

�
cos½kðη − η2Þ�

×
�
d2 ~Ψ~kðη2Þ

dη22
þ k2 ~Ψ~kðη2Þ

��
dη2 ð4:27Þ

so that
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d
dη1

Δ~kðη; η1Þ ¼ ln

�ðη − η1Þ
ð−η0Þ

�
d
dη1

�
cos½kðη − η1Þ�

×

�
d2 ~Ψ~kðη1Þ

dη21
þ k2 ~Ψ~kðη1Þ

��
;

Δ~kðη; η0Þ ¼ 0: ð4:28Þ

Integrating by parts (4.26) and neglecting derivatives of
eαðηÞ since they bring higher powers of Y, to leading order
the Langevin equation (3.88) becomes

α00ðηÞ ~Ψ~kðηÞ þ 2α0ðηÞ ~Ψ0
~k
ðηÞ þ Y2

4π2
Δðη; ηÞ

¼ −½ ~Ψ00
~k
ðηÞ þ Ωk

2ðηÞ ~Ψ~kðηÞ − Y ~ξðηÞe−αðηÞ�: ð4:29Þ

In arriving at this expression we have neglected a term
∝ ðα0ðηÞÞ2 ∝ Y4, consistently with a leading order calcu-
lation. We now impose that the second line of (4.29)
vanishes, namely

~Ψ00
~k
ðηÞ þ Ωk

2ðηÞ ~Ψ~kðηÞ ¼ Y ~ξðηÞe−αðηÞ: ð4:30Þ

The solution of this equation is straightforward,

~Ψ~kðηÞ ¼ ~Ψð0Þ
~k
ðηÞ þ Y

Z
η

η0

G~kðη; η0Þ~ξðη0Þe−αðη
0Þdη0; ð4:31Þ

where G~kðη; η1Þ is given by (4.9) and

~Ψð0Þ
~k
ðηÞ ¼ Q~kgþðk; ηÞ þ P~kg−ðk; ηÞ ð4:32Þ

is the solution of the homogeneous equation in terms of the
growing gþðk; ηÞ and decaying g−ðk; ηÞ modes.
We now focus on the long time and super-Hubble limits

keeping only the growing mode in (4.32)

~Ψð0Þ
~k
ðηÞ≃ Q~k

k3=2η
ð4:33Þ

and to leading order in Y we insert ~Ψð0Þ
~k
ðηÞ in Δðη; ηÞ using

d2

d2η1
~Ψð0Þ
~k
ðη1Þ þ k2 ~Ψð0Þ

~k
ðη1Þ ¼

1

η21

�
2 −M2

Rðη0Þ
H2

�
~Ψð0Þ
~k
ðη1Þ;

ð4:34Þ

and neglect the mass term since it contributes a higher order
term proportional to Y2M2

Rðη0Þ=H2 for M2
Rðη0Þ=H2 ≪ 1.

We find that the equation for α1ðηÞ (the lowest order in Y)
in (4.25) is

α001 − 2

η
α01 ¼ − 1

2π2η2

�
ln

�
η

η0

�
− 3

2

�
; ð4:35Þ

where we have set the lower limit in Δðη; ηÞ at η�
and for super-Hubble wavelengths we have approximated
cos½kðη − η1Þ�≃ 1 in the integrand. To leading order we
find

α1ðηÞ ¼ F ½η� þ α1ðη�Þ; ð4:36Þ

where F ½η� is given by (4.12) and α1ðη�Þ is a constant of
integration. Therefore, to leading order in the long time and
super-Hubble limit the solution of the Langevin equation
with noise term is given by

~χ~kðηÞ ¼
Q~k½η��
k3=2η

eY
2F ½η� þ eY

2F ½η�

×
Z

η

η0

G~kðη; η0Þξ~kðη0Þe−Y
2F ½η0�dη0; ð4:37Þ

where G~kðη; η0Þ is given by (4.9) and

Q~k½η��≡Q~ke
Y2α1ðη�Þ: ð4:38Þ

For ξ ¼ 0 we find the homogeneous solution obtained via
the dynamical renormalization group (4.20) highlighting
the consistency of the method of solution of the inhomo-
geneous equation with the nonperturbative resummation
provided by the DRG. It is now straightforward to obtain
the power spectrum. From (3.58) and (3.60) and the
averages over the initial phase space variables and noise
[see Eqs. (3.49)–(3.51)] it is given by

Pðk; ηÞ ¼ k3

2π2
hϕ~kðηÞϕ−~kðηÞi ¼

k3H2η2

2π2
h~χ~kðηÞ~χ−~kðηÞi;

ð4:39Þ

neglecting the decaying mode, the super-Hubble and long
time limit yield [here we set MRðη0Þ ¼ 0]

Pðk; ηÞ ¼ H2

2π2
e2Y

2F ½η�
�
hQ~k½η��Q−~k½η��i þ k3η2

Z
η

η0

dη1

×
Z

η

η0

dη2G~kðη; η1ÞG~kðη; η2Þ

×N kðη1; η2Þe−Y2½F ½η1�þF ½η2��
�
; ð4:40Þ

where N kðη; η0Þ is given by (3.76) and the average in the
first term is in the initial density matrix (3.64). The integrals
with the noise kernel are very difficult to carry out
analytically, however we recognize that because F ½η� is
an increasing function of η when nonperturbative secular
growth dominates (when the wavelength becomes super-
Hubble), therefore the exponentials suppress the integrand
and we can obtain an upper bound by neglecting their
contribution. We obtain the long time and super-Hubble
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behavior of the resulting integrals implementing the fol-
lowing steps:

(i) In obvious notation we write [see (3.76)]

N kðη1; η2Þ ¼
�
d2

d2η2
þ k2

�
~Nðη1; η2Þ: ð4:41Þ

(ii) We integrate by parts twice successively, the lower
limit at η0 yields a strongly oscillatory contribution
that is further suppressed by 1=k for −kη0 ≫ 1 and
is neglected. Derivatives acting on the exponential
terms are neglected because they bring further
powers of Y2, the time dependent functions that
multiply them do not yield secular growth because
the exponentials damp out the integrand. Therefore
it is consistent to neglect the exponential terms.

(iii) We use the properties

G~kðη; ηÞ ¼ 0; ð4:42Þ
�
d2

d2η2
þ k2

�
G~kðη; η2Þ ¼

2

η22
G~kðη; η2Þ; ð4:43Þ

where we set MR ¼ 0 in the right-hand side
of (4.43).

(iv) In the long time and super-Hubble limits we replace
the lower limit in the integrals by η�, replace
G~kðη; η0Þ → Gðη; η0Þ [see (4.10)], and keep only the

delta function in (3.76), namely ~Nðη1; η2Þ ¼ −ðY2=
8πÞδðη1 − η2Þ.

The upper bound to the integrals with the noise kernel in the
bracket in (4.40) yields in the long time and super-Hubble
limits

− Y2

36π
k3η2

Z
η

η�

�
η2

η21
− η1

η

�
2

dη1

≃− Y2

108π
½1þ 6ð−kηÞ3 ln½−kη�� ≪ 1: ð4:44Þ

Therefore the contribution from the stochastic noise is
nonsecular, perturbatively small and therefore subleading
in the super-Hubble limit. The full power spectrum in this
limit is given by the DRG improved solution of the
deterministic (homogeneous) Langevin equation with the
self-energy term but without the noise term.
It remains to estimate Q~k½η�� in (4.40). This entails

carrying out the integrals in the self-energy term in (4.4)
from the initial time η0 up to the time η� when the particular
wavelength crosses the Hubble radius. However, in this
time interval, the mode functions are bound with amplitude
≃1=

ffiffiffiffiffi
2k

p
as can be seen in the minimally coupled case with

MRðη0Þ ¼ 0, νχ ¼ 3=2 when the mode functions (2.17) are
given by

gðk; ηÞ ¼ e−ikηffiffiffiffiffi
2k

p
�
1 − i

kη

�
: ð4:45Þ

For η → 0− the integrand in (4.4) is rapidly oscillatory in
the region η0 < η� ∼ −1=k and does not feature secular
growth, therefore the contribution from this interval to (4.4)
is nonsecular and perturbatively small and can be safely
neglected in the long time and super-Hubble limits.
Therefore we conclude that

Q~k½η�� ¼ Q~k þOðY2Þ: ð4:46Þ

Using the results (3.64) and restoring the contribution from
the renormalized mass to highlight the renormalization
group invariance of the result, we find the power spectrum
to be

P0ðk; ηÞ ¼
�
H
2π

�
2

ef
2M2

R
ðη0Þ

3H2 ln½−kη�þ2Y2F ½η�g: ð4:47Þ

The exponent is

�
2M2

Rðη0Þ
3H2

− Y2

3π2
ln½−kη0�

�
ln½−kη� þ Y2

6π2
ln2½−kη�;

ð4:48Þ

which is independent of renormalization scale η0 as a
consequence of the renormalization condition (3.86) as
pointed out above, namely the power spectrum is renorm-
alization group invariant. Therefore renormalizing the mass
so thatMRðη0Þ ¼ 0 and identifying the scale η0 as the onset
of slow roll inflation, the unperturbed power spectrum
would be scale invariant for super-Hubble wave vectors that
crossed the Hubble radius during slow roll inflation, but
the coupling to the fermionic degrees of freedom lead
to a violation of scale invariance with the super-Hubble
behavior

P0ðk; ηÞ ¼
�
H
2π

�
2

eγ½−kη�;

γ½−kη� ¼ Y2

6π2
fln2½−kη� − 2 ln½−kη� ln½−kη0�g: ð4:49Þ

V. DISCUSSION

There are several noteworthy features of the result (4.49):
(i) The term with ln½−kη0� is a direct consequence of

scaling violation as a consequence of renormaliza-
tion. The relation between mass renormalization and
this contribution equation (3.86) indicates that the
effective action is indeed invariant under a change of
scale. The term ln½−kη0� is therefore a remnant of
mass renormalization, taking −η0 to be earlier than
the onset of slow roll inflation and assuming that the
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renormalized mass vanishes during the stage of slow
roll inflation. This choice is also in accord with the
requirement that the wavelengths of interest are
deeply sub-Hubble at −η0, namely −kη0 ≫ 1.

(ii) The leading contribution to the power spectrum
arises from the self-energy correction, the noise
contribution is subleading. This is also a feature
in the case of inflaton coupling to a conformally
coupled massless scalar field discussed in
Refs. [43,44].

(iii) The power spectrum grows when the wave vector
crosses the Hubble radius (we had assumed that the
corresponding wave vector is deep inside the Hubble
radius at the beginning of slow roll inflation, there-
fore −kη0 ≫ 1). This is in striking contrast with the
case of coupling to a conformally coupled massless
field as studied in Ref. [44] where the power
spectrum is suppressed when the wavelength be-
comes super-Hubble. The difference is traced back
to the fermionic loop versus the bosonic loop in the
case of coupling to a massless conformally coupled
scalar field [44]. If slow roll inflation lasts ≃60 e-
folds, −η0 corresponds to the beginning of this stage
and the wavelength corresponding to k crosses the
Hubble radius ≈10 e-folds before the end of
inflation at −ηf, it follows that

fln2½−kηf� − 2 ln½−kηf� ln½−kη0�g≃ 1100; ð5:1Þ

therefore for Y2 ≃ 10−2 the scaling violations could
be substantial. The logarithmic corrections that we
find are broadly consistent with the general results
of Ref. [67].

Several fermionic families.—Although we focused on
just one Dirac fermionic species in the calculations above,
it is straightforward to generalize the result to the case of
ND families of Dirac fermions and NM of Majorana
fermions; the result for the exponent γ½−kη� in (4.49) is
now given by

γt½−kη� ¼ 1

6π2

�XND

i¼1

Y2
i;D þ 2

XNM

j¼1

Y2
j;M

�

× fln2½−kη� − 2 ln½−kη� ln½−kη0�g; ð5:2Þ

where Yi;D ≪ 1;Yj;M ≪ 1 are the Yukawa couplings for
Dirac and Majorana fields respectively and the factor 2 for
Majorana fields stems from the fact that the fermionic
correlation function in the case of Majorana fields is twice
the one for the Dirac case as explained in Sec. III B. The
restriction to weak Yukawa couplings is because the result
for γ½−kη� is a leading order result in Y2 as we made several
approximations that rely on weak coupling to obtain this
result.

We recognize that formally the effective action is exact in
the limit of large numberN of fermionic fields coupled with
a Yukawa coupling Y=

ffiffiffiffi
N

p
in the formal limitN → ∞. This

can be seen from the diagrams shown in Fig. 1, the one-
loop self-energy diagram is of order N × Y2=N ∝ Y2

whereas diagrams that lead to self-couplings of the inflaton
field, such as the quartic self coupling diagram of Fig. 1 are
all suppressed by higher inverse powers of N. The resulting
effective action is therefore given by the first loop self-
energy diagram only, even for Yukawa coupling Y ≃Oð1Þ.
However, we emphasize that while the full effective action
is given exactly by the self-energy diagram in the large N
limit even for intermediate or strong Yukawa coupling, the
result obtained above for the solution of the Langevin
equation and the power spectrum relies on a weak Yukawa
coupling expansion, specifically for Y2 ≪ 1 because to
obtain the solution we neglected higher order contributions
from various derivatives. Therefore, while we conclude that
formally the one-loop effective action with only the first
diagram (self-energy) in Fig. 1 is exact in the large N limit
with all the families featuring the same Yukawa coupling,
the full solution of the Langevin equation for intermediate
and strong Yukawa couplings would require a more power-
ful technique to provide a resummation of secular terms
beyond the leading order in Y2. This task lies beyond the
scope of this article and must await the development of
more powerful nonperturbative methods to implement the
dynamical renormalization group.
Supersymmetry?.—In Ref. [44] the case of the inflaton

field ϕ with a cubic coupling λϕφ2 to a (nearly) massless
scalar field φ conformally coupled to gravity was studied.
The resulting power spectrum was also of the form
P0ðk; ηÞ ¼ ðH

2πÞ2eγs½−kη� but with

γs½−kη� ¼ − λ2

12π2H2
fln2½−kη� − 2 ln½−kη� ln½−kη0�g

ð5:3Þ

FIG. 1. Large N limit: dashed lines correspond to the inflaton
scalar field, and the solid line is the fermion loop. The self-energy
graph is ∝ Y2, the effective quartic self-coupling is ∝ Y4=N,
higher order inflaton self-couplings are suppressed by powers of
1=N for N → ∞.
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describing a suppression of the power spectrum for super-
Hubble fluctuations. It is striking that the momentum and
conformal time dependence is similar to the fermionic case
but of opposite sign as a consequence of the fermionic loop
rather than the bosonic loop.
Consider the case in which the inflaton is Yukawa

coupled to one (nearly) massless Majorana fermion and
coupled with a cubic interaction λϕφ2 to one (nearly)
massless scalar field φ conformally coupled to gravity. The
corresponding one-loop effective action features a self-
energy and noise correlator that are simply the sum of both
contributions and the resulting power spectrum is of the
same form as above but with a total γt½−kη� given by

γt½−kη� ¼ 1

3π2

�
Y2 −

�
λ

2H

�
2
�
fln2½−kη�

− 2 ln½−kη� ln½−kη0�g: ð5:4Þ

If these scaling violations are ruled out by more precise
measurements of CMB anisotropies, it could mean a
fortuitous cancellation between the scalar and fermionic
contributions; this, in turn may mean an underlying
supersymmetry: massless fermions are conformally related
to fermionic degrees of freedom in Minkowski space-time,
and conformally coupled massless scalars are similarly
related to massless scalar fields in Minkowski space-time
and supersymmetry is manifest among these fields just as in
Minkowski space-time. This can be understood from the
fact that the mode functions both for massless fermions and
massless scalars conformally coupled to gravity are of the
form e−ikη up to a normalization factor. Because of the
conformal equivalence for massless fields supersymmetry
is realized just as in Minkowski space-time, whereas
supersymmetry between fermions and scalar fields mini-
mally coupled to gravity cannot be symmetry as can be
understood from their free field mode functions even in the
massless case; furthermore, correlation functions of scalar
fields minimally coupled to gravity feature a growing and a
decaying mode even for massless fields leading to a
classicalization of fluctuations [63], obviously this is not
the case for fermionic degrees of freedom. Therefore it is
conceivable that there could be an underlying (quasi)
supersymmetry of environmental fields between fermionic
and scalar fields conformally coupled to gravity with
masses ≪ H. In such a case a fine-tuning between
Yukawa and scalar coupling Y ¼ λ=2H could make
γt½−kη� ¼ 0 avoiding the scaling violation entailed by
the radiative corrections altogether. We refer to a quasisu-
persymmetry because such supersymmetry would be exact
only for massless fermions and scalars conformally coupled
to gravity, a mass term for each of these fields, even when
the masses are the same for fermionic and bosonic degrees
of freedom would break the symmetry. This is manifest in
the mode functions, which for fermions features a complex
index νψ ¼ 1=2þ imf=H whereas for conformally

coupled scalars νφ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

φ=H2
q

=2. The possibility

of a (quasi)supersymmetry among fermionic and scalar
degrees of freedom conformally coupled to gravity per se
merits further study.
At this point we would like to comment on discrepancies

between our results and those reported recently in Ref. [47]:
whereas we find secular logarithmic divergences including
Sudakov type ln2½−kη� terms that are resummed via the
DRG, Ref. [47] reports corrections to the power spectrum
that become powers of k=H at late time to leading order in
the Yukawa coupling. Although these corrections seem
innocuous they are actually very large as compared to the
unperturbed power spectrum since the modes of cosmo-
logical relevance cross the Hubble radius about 50 e-folds
after the onset of slow roll inflation, therefore setting
the scale factor to unity at the beginning of inflation
k=H ≃ e50. Despite our best efforts we have been unable
to find the origin of the discrepancy between our result and
those reported in Ref. [47], however, the renormalization
group invariance on the renormalization scale −η0 gives us
confidence on our result. Furthermore, the wave function
renormalization in a Yukawa theory in Minkowski space-
time leads to anomalous dimensions in scalar correlation
functions as a solution of renormalization group equation,
consistently with the logarithmic exponents that we find in
the DRG resummation program. Despite our efforts at
trying to elucidate the discrepancies with the results of
Ref. [47], a resolution remains to be found.

VI. CONCLUSIONS AND FURTHER QUESTIONS

If the apparent large scale anomalies reported in obser-
vations of the CMB are confirmed, these imply departures
from near scale invariance on the largest scales and may be
a harbinger of new physics beyond the standard slow roll
paradigm. Motivated by these possible anomalies, we
studied the influence of fermionic degrees of freedom
Yukawa coupled to the inflaton on the power spectrum
of inflaton fluctuations, as a possible origin of violations of
scale invariance. We obtained the effective action of
inflaton fluctuations by tracing over the fermionic degrees
of freedom in the nonequilibrium density matrix to leading
order in the Yukawa coupling for both Dirac and Majorana
fermions. The effective action yields a stochastic descrip-
tion and the effective equations of motion for the inflaton
fluctuations become of the Langevin type with a self-
energy and a stochastic Gaussian noise related by a curved-
space-time analog of the fluctuation dissipation relation.
Although we obtained the effective action for general
fermionic masses, we focused specifically on the case of
light fermions with mass mf ≪ H with the practical
purpose of pursuing an analytic treatment, but also because
assuming that H is larger than the electroweak scale, most
of the fermionic degrees of freedom in the standard model
feature masses well below this scale.
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The Langevin equation is solved by implementing a
dynamical renormalization group resummation, for the
general case of ND Dirac and NM Majorana fermions
we find that for a massless inflaton the power spectrum in
the super-Hubble limit depends on (conformal) time η and
is given by

P0ðk; ηÞ ¼
�
H
2π

�
2

eγt½−kη�;

γt½−kη� ¼ 1

6π2

�XND

i¼1

Y2
i;D þ 2

XNM

j¼1

Y2
j;M

�
fln2½−kη�

− 2 ln½−kη� ln½−kη0�g: ð6:1Þ

In this expression −η0 is a renormalization scale at which
the renormalized inflaton mass vanishes; it is taken to be
the onset of slow roll inflation so that modes that become
super-Hubble during this stage would feature a scale
invariant power spectrum in absence of coupling to the
fermionic degrees of freedom. Whereas the full power
spectrum (including the mass renormalized at the scale η0)
is renormalization group invariant, setting the renormalized
mass to zero at the scale −η0 identified with the beginning
of the slow roll stage, such scale remains in the power
spectrum as a consequence of the renormalization scale.
The time dependent corrections to the power spectrum
entail a violation of scale invariance, the term ln½−kη0�
reflects such violation as a consequence of renormalization,
a feature that also emerges in field theories in Minkowski
space-time where wave function renormalization leads to
anomalous scaling dimensions that feature ratios of the
wave vector to a renormalization scale. We noticed an
intriguing and striking similarity between the corrections to
the power spectrum from nearly massless fermionic degrees
of freedom and those found in Refs. [43,44] for the case of
an inflaton coupled to a nearly massless scalar field
conformally coupled to gravity but with the opposite sign
reflecting a fermionic loop instead of a bosonic loop. This
striking similarity leads us to conjecture that if these

corrections to the power spectrum are observationally
ruled out, perhaps there is an underlying supersymmetry
between a (Majorana) fermionic degree of freedom
Yukawa coupled to the inflaton and a scalar degree of
freedom φ that is conformally coupled to gravity and
couples to the inflaton with a coupling of the form λϕφ2. If
such supersymmetry is a possible manifestation of envi-
ronmental degrees of freedom, it would have to be finely
tuned to explain a cancellation of their contribution to the
power spectrum.
Caveats and further questions.—In this article we have

studied the influence of fermionic degrees of freedom on
the dynamics of the inflaton fluctuations, however to
understand the effects on large scale and the CMB
anisotropies more precisely this study must be applied to
curvature perturbations. Our underlying assumption is the
usual relation (in a definite gauge) between the curvature
perturbation and the inflaton fluctuations (δϕ), ∝ δϕ= _ϕ0

with ϕ0 the “zero mode” of the inflaton field. However a
precise formulation must work directly with the curvature
perturbation, in particular perhaps implementing the
Arnowitt, Deser, Misner (ADM) [68] formulation
[30,31] to extract the (Yukawa?) coupling of the curvature
perturbation to the fermionic fields. In Ref. [69] the authors
implemented the ADM formulation and found that loop
corrections from various scalar fields yield scale and time
dependent corrections to the power spectrum of curvature
perturbations consistent with the general results of
Ref. [67]. The results in this reference suggest that under-
standing the effect of fermionic degrees of freedom
motivated by the possible violations of scale invariance
in the power spectrum of curvature perturbations is a
worthy endeavor. This approach will be the focus of future
studies on which we expect to report.
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