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We study the influence of the fluctuations of a Lorentz-invariant and conserved vacuum on cosmological
metric perturbations, and show that they generically blowup in the IR.We compute this effect using theKällén-
Lehmann spectral representation of stress correlators in generic quantum field theories, as well as the
holographic bound on their entanglement entropy, both leading to an IR cutoff that scales as the fifth power of
the highest UV scale (in Planck units). Onemay view this as analogous to theHeisenberg uncertainty principle,
which is imposed on the phase space of gravitational theories by the Einstein constraint equations. The leading
effect on cosmological observables comes from anisotropic vacuum stresses which imply: i) any extension of
the standard model of particle physics can only have masses (or resonances) ≲24 TeV, and ii) perturbative
quantum field theory or quantum gravity become strongly coupled beyond a UV scale of Λ≲ 1 PeV. Such a
low strong coupling scale is independently motivated by the Higgs hierarchy problem. This result, which we
dub the cosmological nonconstant problem, can be viewed as an extension of the cosmological constant (CC)
problem, demonstrating the nontrivial UV-IR coupling and (yet another) limitation of effective field theory in
gravity. However, it is more severe than the old CC problem, as vacuum fluctuations cannot be tuned to cancel
due to the positivity of spectral densities or entropy. We thus predict that future advances in cosmological
observations and collider technology will sandwich from above and below, and eventually discover, new
(nonperturbative) physics beyond the standard model within the TeV–PeV energy range.
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I. INTRODUCTION

The cosmological constant problem is arguably one of
the deepest and most long-standing puzzles in theoretical
physics [1,2]. Naively one would expect energy in the
vacuum to couple to the spacetime metric and drive
accelerated expansion at an enormous rate, governed by
a UV scale Λ above which there are is no coupling to
gravity from modes in the vacuum. The observation of a
large and very slowly accelerating Universe [3,4] raises the
question of why the vacuum does not gravitate in this way
(or why Λ ∼ meV is so small, while quantum field theory
is well tested up to energies 15 orders of magnitude higher),
and much effort has been invested in understanding this
apparent gross inconsistency [5–7]. At this level, the
cosmological constant problem asks how the expectation

value of the vacuum stress-energy tensor hTðVÞ
μν i affects the

metric gμν as a source in Einstein’s equation. Quantum
mechanically, the vacuum is characterized by higher-order
correlators, beginning with the two-point function

hTðVÞ
μν ðxÞTðVÞ

μν ðyÞi. Just as the vacuum expectation value

hTðVÞ
μν i can influence the homogeneous background cos-

mology, these higher-order correlations influence higher-
order classical statistics of (inhomogeneous) cosmological
perturbations. Thus, there is a cosmological nonconstant

(or CnC) problem which asks how the ultraviolet physics of
the vacuum encoded in these correlators affects spacetime
geometry on infrared, cosmological scales.
In particular, we will here address the question of how

two-point functions for metric perturbations can be affected
by the vacuum, and whether cosmological observations can
place constraints on UV physics. While we find that energy
and momentum density fluctuations are small in the
infrared, the vacuum stress components TðVÞ

ij scale as

hTðVÞ
ij ðkÞTðVÞ

kl ðk0Þi ∼ δ3ðkþ k0ÞΛ5; ð1Þ

leading to point-like correlation in real space,

hTðVÞ
ij ðxÞTðVÞ

kl ðyÞi ∼ δ3ðx − yÞΛ5: ð2Þ

The gravitational potential Φ is affected by anisotropic
stress as k2Φ ∼M−2

p AijTij, where Aij is a tensor which
picks out the anisotropic part of Tij, andMp ≡ ð8πGÞ−1=2 is
the reduced Planck mass. So Eq. (1) yields a contribution

ðΔðVÞ
Φ Þ2 ∼ Λ5

M4
pk

ð3Þ

to the dimensionless power spectrum Δ2
Φ, defined by

hΦkΦk0 i≡ ð2πÞ3δ3ðkþ k0ÞΔ2
ΦðkÞðk3=2π2Þ−1: ð4Þ
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These fluctuations will affect observable quantities. To a
first-order approximation, we can require that Δ2

Φ ≲ 1 to
maintain consistencywith the observation of a homogeneous

background cosmology. Requiring that ΔðVÞ
Φ ≲ 1 on the

largest accessible scales, k ∼H0, leads to the condition

Λ≲ ðM4
pH0Þ1=5 ≈ 2 PeV: ð5Þ

In the following sections we will make this schematic
statement more precise, and strengthen the bound by study-
ing how the UV scale can be constrained with cosmological
information about the amplitude of Φ.
Vacuum stress-energy fluctuations—in particular two-

point correlators—have been studied in a flat-space context
[8] as well as on curved space [9,10], including de Sitter
space [11,12] and inflation [13]. The physical effects of
stress tensor fluctuations on the gravitational field were
reviewed in Ref. [14]. We also note that our results—in
particular Sec. VI—share some overlap with results in
stochastic gravity (see Ref. [15] and references therein).
Stress-energy correlators generically feature UV diver-

gences, requiring a method of regularization or renormal-
ization to obtain a finite and physically meaningful result.
We will encounter this obstacle in our treatment below, and
note that regularization of stress-energy correlators has
been studied extensively in the literature (e.g., see
Refs. [16,17] and references therein).
In Sec. II, we present Einstein’s constraint equations

for scalar and vector perturbations in a flat Friedmann-
Robertson-Walker (FRW) background, sourced by
stress-energy perturbations. We do not consider tensor
perturbations in this work, as they do not appear in
linearized Einstein constraint equations, and thus are much
less sensitive to the short-wavelength vacuum fluctuations,
due to time averaging over the past light cone. For further
discussion of this point see Sec. VIII.
In Sec. III, we parametrize vacuum stress-energy in a

general quantum field theory context using the Källén-
Lehmann spectral representation, and identify the large-
scale behavior of metric perturbations. In Sec. IV, we study
the influence of vacuum stress-energy on gravitational
forces on astrophysical objects and the Hubble law. In
Sec. V, we introduce a classical toy model for a conserved,
generally covariant two-point function for stress-energy,
featuring a lack of spatial correlation, or Poisson statistics.
We compute the influence of this matter source on
cosmological perturbations and on the cosmic microwave
background (CMB) through the integrated Sachs-Wolfe
(ISW) effect. In Sec. VI, we study vacuum stress-energy for
a massive scalar field and find a spectral density closely
connected to that of the Poisson model of Section V,
through analytic continuation. Finally, in Sec. VII we
present an independent constraint on UV physics from
requiring that the entropy of a region of space not exceed

the holographic bound given by the Bekenstein-Hawking
area law. We discuss our results and conclude in Sec. VIII.
Those interested in our results may skip to the ends of

Secs. IV, V, and VII, and note the boxed equations there.
We will use the ð−þþþÞ metric signature, and natural
units ℏ ¼ c ¼ kB ¼ 1 throughout. We will denote the
scalar product of four-momentum as kμkμ ≡ k24 to distin-
guish it from the magnitude of three-momentum jkj≡ k.

II. METRIC PERTURBATIONS
IN FRW BACKGROUND

We work in the conformal Newtonian gauge for metric
perturbations,

ds2 ¼ a2ðηÞ½−ð1þ 2ϕÞdη2 þ 2Vidxidηþ ð1 − 2ψÞdx2�:
ð6Þ

The Einstein equations for scalar metric perturbations are,
in Fourier space,

3HðHϕþ ψ 0Þ þ k2ψ ¼ 4πGa2δT0
0; ð7Þ

−ikiðHϕþ ψ 0Þ ¼ 4πGa2δT0
i ; ð8Þ

ðψ 00 þH
�
2ψ þ ϕÞ0 þ ð2H0 þH2Þϕ −

1

2
k2ðϕ − ψÞ

�
δij

þ 1

2
kikjðϕ − ψÞ ¼ 4πGa2δTi

j; ð9Þ

where 0 components and 0 derivatives refer to conformal
time η. Equations (7)–(9) can be solved for ψ and ϕ in terms
of the stress-energy,

−k2ψ ¼ 4πG

�
δT00 −

3H
k2

ikiδTi0

�
; ð10Þ

−k2ϕ ¼ 4πG

�
δT00 −

3H
k2

ikiδTi0 þ
�
δij − 3

kikj

k2

�
δTij

�
;

ð11Þ

as well as the time derivatives

−k2ψ 0 ¼ 4πG

�
−HδT00 þ

�
1þ 3H2

k2

�
ikiδTi0

−H
�
δij − 3

kikj

k2

�
δTij

�
; ð12Þ

−k2ϕ0 ¼ 4πG

�
−HδT00 þ

�
1þ 3H2

k2

�
ikiδTi0

þ
�
δij − 3

kikj

k2

�
ðδT 0

ij −HδTijÞ
�
: ð13Þ
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Note that in the subhorizon regime k ≫ H, at leading order
we can drop OðHÞ and OðH2Þ terms

−k2ψ ¼ 4πGδT00; ð14Þ

−k2ϕ ¼ 4πG½δT00 þ ðδij − 3k̂ik̂jÞδTij�; ð15Þ

−k2ψ 0 ¼ 4πGikiδTi0; ð16Þ

−k2ϕ0 ¼ 4πG½ikiδTi0 þ ðδij − 3k̂ik̂jÞðδTijÞ0�; ð17Þ

where k̂i ≡ ki=k.
For vector metric perturbations, Einstein’s equations take

the form

k2Vi ¼ 16πGðδij − k̂ik̂jÞδTj0; ð18Þ

where the projection ðδij − k̂ik̂jÞ picks out the
purely vector part of δTj0. The conservation of
stress-energy, ∇μTμν ¼ 0, gives us the Fourier-space
constraints

ðδT0
0Þ0 ¼ ikiδT0

i − 3HδT0
0 þHδTi

i; ð19Þ

ðδT0
i Þ0 ¼ −4HδT0

i − ikjδTj
i ; ð20Þ

from which we see that

k2V 0
i ¼ 16πGðδij − k̂ik̂jÞðiklδTjl − 2HδTj0Þ: ð21Þ

Equations (10)–(13), (18), and (21) show the impact
of vacuum stress-energy on metric perturbations.

In subsequent sections we will consider specific
sources δTμν.
At the linear level, the Einstein equations hold unam-

biguously as equations for Heisenberg operators, with
metric fluctuations treated quantum mechanically in the
same way as stress-energy.
The effect of vacuum stress-energy on metric fluctua-

tions which we compute is exact for linear perturbations
around a Minkowski spacetime background. Additional
matter, or any form of background stress-energy, will
lead to curvature in the geometry. In this case, the effect
of vacuum stress-energy on the metric backreacts in turn
on other (nonvacuum) forms of stress-energy. A fully
self-consistent analysis would have to account for this
in solving Einstein’s equations. The flat-space effect,
however, is the leading contribution in an expanding
universe, with subleading contributions suppressed by
H=k on sub-Hubble scales. In the super-Hubble
regime k≲H, these corrections become large, and the
Minkowski-space result is no longer the approximate
solution.

III. VACUUM STRESS-ENERGY IN THE
KÄLLÉN-LEHMANN REPRESENTATION

We now move on to consider stress-energy fluctuations
in a general quantum field theory context. We can para-
metrize the non-time-ordered two-point function for a
conserved, Lorentz-invariant stress-energy source in the
Källén-Lehmann spectral representation [18] as

hTμνðxÞTαβðyÞic;s ≡ hTμνðxÞTαβðyÞis − hTμνðxÞihTαβðyÞi

¼
Z

d4k
ð2πÞ4 e

ik·ðx−yÞ
Z

∞

0

dμ

�
ρ0ðμÞPμνPαβ þ ρ2ðμÞ

�
1

2
PμαPνβ þ

1

2
PμβPνα −

1

3
PμνPαβ

��
2πδðk24 þ μÞ;

ð22Þ

where the projection tensors Pμν ≡ ημν − kμkν=k24 ensure
stress-energy conservation ∂μTμν ¼ 0. Here, the c subscript
denotes the connected part of the two-point function; in
what follows we will omit this subscript and implicitly
discuss only the connected part. his denotes the sym-
metrized two-point correlation, which makes it the expect-
ation value of a Hermitian operator, and thus a potential
quantum observable. In Appendix A, we discuss the tensor
structure and spectral densities ρ0;2, and show how scalar
contractions of Eq. (22) relate to the spectral densities. The
subscripts refer to spin-0 or spin-2 states; as shown in
Appendix A, only the tensor structure for the spin-0 part

contributes to correlators with the stress-energy trace Tμ
μ;

the spin-2 tensor structure comes from the traceless part of
Tμν. Equation (22) is consistent with unitarity if and only if
ρ0;2ðμÞ ≥ 0.1

It is important to note that for UV physics, only high
frequencies will contribute to hTμνðxÞTαβðyÞi; the spectral
densities ρ0;2 vanish for μ smaller than the masses of heavy
particles.

1This may be shown by requiring that the expectation value
hTðJÞ2i of the square of TðJÞ≡ R

d4xTμνJμν be non-negative for
an arbitrary real-valued source function JμνðxÞ.
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Fourier transforming the spatial arguments and
defining TμνðkÞ≡

R
d3xTμνðxÞe−ik·x, we have at equal

times

PðVÞ
μναβðk; tÞ¼

Z
∞

0

dμ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2þμ

p �
ρ0ðμÞPμνPαβ

þρ2ðμÞ
�
1

2
PμαPνβþ

1

2
PμβPνα−

1

3
PμνPαβ

��
;

ð23Þ

where−k24 ¼ μ in Pμν, and the equal-time power spectra are
defined by

hTðVÞ
μν ðk; tÞTðVÞ

αβ ðk0; tÞi≡ ð2πÞ3δ3ðkþk0ÞPðVÞ
μναβðk; tÞ: ð24Þ

Since we are interested in the leading effect on IR scales
k≡ jkj from physics at UV scales μ, we neglect k in these
expressions; that is, we drop terms at higher orders in k2=μ.
We define

JðsÞm ðμmaxÞ≡ 1

2

Z
μmax

0

dμμmρsðμÞ; s ¼ 0; 2: ð25Þ

We will drop the argument for μmax → ∞. Note that Jm has
mass dimension 2mþ 6, and in particular J−1=2, which is
most relevant here, is dimension five.
Due to the projection tensors in Eq. (22), which impose

stress-energy conservation, long-wavelength vacuum pres-
sure and stress fluctuations are large on infrared scales, and
energy and momentum density fluctuations are suppressed
in comparison. This is because 0 indices lead to a
suppression by k=

ffiffiffi
μ

p
, so that only spatial components

hTijTkli are dominant. At leading order, then,

PðVÞ
ijklðk; tÞ ¼ δijδklJ

ð0Þ
−1=2 þ

�
1

2
δikδjl þ

1

2
δilδjk −

1

3
δijδkl

�

× Jð2Þ−1=2 þOðk2Þ; ð26Þ

and components of hTμνTαβi with fewer spatial indices are
suppressed by powers of k.

A. Cosmological influence of vacuum stress-energy

We now treat the stress-energy of Eq. (22) as a
perturbation δTðVÞ

μν in Einstein’s equations, and find the
contribution to metric (equal-time) two-point functions
sourced by the stress-energy as given in Eq. (22). We will
place a V superscript on power spectra to indicate that only
the contribution to two-point functions sourced by the
vacuum are shown, not the full two-point functions. The
“0” index will indicate conformal time η.
In Einstein’s equations, (11)–(13), the traceless tensor

ðδij − 3k̂ik̂jÞ picks out only anisotropic stress to source

metric perturbations, and the transverse projection for
vector modes in Eq. (21) has the same effect. Thus,
(isotropic) pressure from the vacuum does not couple to
metric perturbations, and as noted above, other components
of Tμν are small in the infrared, leaving only anisotropic
stress as the vacuum source of infrared geometry. We
consider the subhorizon regime k ≫ H. Going from a
Minkowski to FRW geometry2 introduces a scale factor,
since k3PϕðkÞ is a physical quantity (it sets the real-space
variance of ϕ) and should therefore depend only on the
physical wave number, ∼1=kph ¼ a=k. The same applies to
k3Pϕ0 ðkÞ=a2, with an additional a2 coming from converting
physical time d=dt to comoving time d=dη.
Using Eq. (26) with Eqs. (15) and (17), then, we find

k3PðVÞ
ϕ ðk; aÞ ¼ 3

2

Jð2Þ−1=2

M4
p

a
k
¼ 3a

4M4
pk

Z
dμffiffiffi
μ

p ρ2ðμÞ; ð27Þ

1

a2
k3PðVÞ

ϕ0 ðk; aÞ ¼ 3

2

Jð2Þ1=2

M4
p

a
k
¼ 3a

4M4
pk

Z
dμ

ffiffiffi
μ

p
ρ2ðμÞ ð28Þ

with PðVÞ
ψ and PðVÞ

V;ijðkÞ suppressed by Oðk= ffiffiffi
μ

p Þ. In the
second line, the time derivative acting on Eq. (22) simply
adds a factor of k20 ≈ −k24 ¼ μ in the integral. Here, Mp ≡
ð8πGÞ−1=2 is the reduced Planck mass.
In the following section, we will use this result to

constrain the spectral density ρ2 via its effect on gravitational
forces ∼∇ϕ on astrophysical objects. Although only high
frequencies contribute to the integrals in Eqs. (27)–(28),
we argue in Sec. VI below that for a finite range of
time, transforming stress-energy correlators to real time
will lead to correlations at large time separation.
Furthermore, two high-frequency modes contributing to ϕ
can generate at nonlinear order a low-frequency mode. We
consider a resulting cosmological effect in the following
section.

IV. CONSTRAINTS FROM THE HUBBLE FLOW

Here we consider the gravitational force ∇ϕðxÞ on
galaxy clusters in the kinematic Sunyaev-Zel’dovich effect,
and identify constraints on vacuum stress-energy via its
contribution to this force.
Take the action for a relativistic point particle,

Sp ¼ −m
Z

dt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ϕðx; tÞ − j _xj2

q
; ð29Þ

2We also expect the curvature to introduce contributions
scaling as H=k, which would likely prove difficult to compute,
since we would be computing vacuum expectation values in
curved space, where there is no unique vacuum. In Sec. VIII we
comment on the case of (anti–)de Sitter space, where we may be
able to compute vacuum stress-energy correlators.
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where, following the discussion above, we neglect other
metric perturbations compared to ϕ, so that−g00 ¼ 1þ 2ϕ.
Furthermore, the proper time of an observer at the origin is
given by

τ ¼
Z

dt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ϕð0; tÞ

p
: ð30Þ

Now, expressing the particle action to second order in ϕ and
_x, in terms of the observer’s proper time, yields

Sp ≃m
Z

dτ

�
−1þ 1

2
j _xj2 þ ϕð0; tÞ − ϕðx; tÞ þ 1

2
ϕðx; tÞ2

−
3

2
ϕð0; tÞ2 þ ϕðx; tÞϕð0; tÞ

�
: ð31Þ

Given that ϕ is oscillating at high frequencies (given by the
UV scale of the theory), the linear terms cannot affect the
dynamics of macroscopic observables (e.g. a galaxy). In
fact, averaging over the oscillations, the only nonvanishing
and nonconstant contribution to the effective Newtonian
potential is the cross term:

ΦNðx; tÞ≃ −hϕðx; tÞϕð0; tÞihigh; ð32Þ

where we have taken the quantum expectation value only
over high frequencies. Averaging over low frequencies
gives

hΦNðx; tÞilow ¼ −
Z

d3k
ð2πÞ3 expðik · xÞPϕðkÞ; ð33Þ

where PϕðkÞ ∝ k−4 is given by Eq. (27). While the integral
in ΦN (or the ϕ-correlation function) is formally divergent,
the acceleration is finite and given by

hx ·∇ΦNðx; tÞi≃ −
Z

d3k
ð2πÞ3 ðik · xÞ expðik · xÞPϕðkÞ

¼ 3

16π

Jð2Þ−1=2

M4
p
jxj: ð34Þ

The surprising conclusion is that, at second order in
perturbations, the high-frequency oscillations lead to a
uniform and constant centripetal acceleration. While
Eq. (34) provides the perturbation to the Newtonian
gravitational force due to high-frequency fluctuations, its
integral over the classical trajectory provides the change in
radial velocity. Within linear perturbation theory, this leads
to a constant infall peculiar velocity, or a negative offset to
the Hubble law3:

v ¼ Hx −
gðΩmÞ
H

∇ΦN ¼ Hx −
3gðΩmÞ
16πH

Jð2Þ−1=2

M4
p

x
jxj ; ð35Þ

where gðΩmÞ comes from solving for radial trajectories, to
linear order in perturbation theory in a ΛCDM background,

gðΩmÞ≡
R
1
0 ð1 − a2Þhða;ΩmÞ−3a−1daR

1
0 hða;ΩmÞ−3a−1da

;

hða;ΩmÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωma−3 þ 1 − Ωm

q
: ð36Þ

By measuring the kinematic Sunyaev-Zel’dovich effect
of x-ray selected galaxy clusters, the Planck satellite [19]
has measured the mean radial peculiar velocity to be
hvri ¼ 72� 60 km=s, which implies hvri > −25 km=s ¼
−8.3 × 10−5c at the 95% confidence level. Plugging this

into Eq. (35), and using the definition of Jð2Þ−1=2 (Eq. (25), as
well as Ωm ¼ 0.3 yields

½Jð2Þ−1=2�1=5 ¼
�
1

2

Z
dμffiffiffi
μ

p ρ2ðμÞ
�
1=5

< 1.0 PeV; ð37Þ

at the 95% confidence level.
Given that ρ2ðμÞ ∼ μ2 at high energies for a weakly

coupled quantum field theory [e.g., see Eq. (72) below],
we can interpret this upper limit as an upper limit on the
energy scale of perturbative quantum field theory, or quan-
tum gravity. Beyond this scale, the theory must be strongly
coupled (with no weakly coupled local UV completion), as

ρ2ðμÞ must decay faster than μ−1=2 for the Jð2Þ−1=2 integral to
converge.

V. A POISSON SPRINKLING
OF PHASE SPACE

In this section, we consider a toy model for the vacuum
comprised of a classical collection of massive particles in
phase space, which is manifestly Lorentz invariant and
conserved. We will see that a Lorentz-invariant stress-
energy correlator describes this model, along with a flat
Poisson spectrum, as in Eq. (1), and will find an ISW
plateau for masses ≳24 TeV, which is already constrained
by CMB observations. We shall show in Sec. VI below that
a free massive scalar quantum field theory reproduces an
identical structure to this toy model on large scales. Here
and in the following subsection we restrict to Minkowski
space; in Sec. V B we generalize to an FRW background.
With a phase-space distribution f, the stress-energy

tensor integrates over momenta with the Lorentz-invariant
measure

Tμνðx; tÞ ¼
Z

d3p
p0

pμpνfðx;p; tÞ: ð38Þ
Here, pμ is the four-momentum for classical point particles
of mass m. We consider a distribution fðx;p; tÞ

3Observers elsewhere would see the same effect in their proper
time, which depends differently on ϕðxÞ.
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characterized [like Eq. (2)] by point-like correlation or
Poisson noise4 in phase space,

hfðx;p; tÞfðx0;p0; tÞi − hfðx;p; tÞihfðx0;p0; tÞi
¼ hfðx;p; tÞiδ3ðx − x0Þδ3ðp − p0Þ: ð39Þ

The expectation value here is taken with respect to an
ensemble of distributions of particles, from which a particu-
lar realization f is drawn. From now on we will ignore the
constant hfi2 term, as thiswill only shift the background, and
not correlators for stress-energy fluctuations. We take the
mean distribution to be uniform in phase space,5

hfðx;p; tÞi ¼ hfðtÞi: ð40Þ

Wewill see below that this results in a Lorentz-invariant two-
point function.
To evaluate the stress-energy two-point function, we note

first that the phase-space distribution is related to the initial
distribution f0 at time t0 by

fðx;p; tÞ ¼ f0

�
x − ðt − t0Þ

dx
dt

;p; t0

�
: ð41Þ

Putting together Eqs. (39) and (41), we find

hTμνðx; tÞTαβðxþ Δx; tþ ΔtÞic
¼

Z
d3p
ðp0Þ2 p

μpνpαpβhf0iδ3ðΔxi − Δtpi=p0Þ: ð42Þ

For spacelike separation jΔxj > Δt, the delta function
vanishes for all p. For timelike separation it fixes

pμ ¼ m
Δxμffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−ΔxγΔxγ
p ; ð43Þ

andcontributes a normalization factorm3Δt2ð−ΔxγΔxγÞ−3=2.
That is, the only particles in the original collection contrib-
uting to the correlation function at separation Δxμ are those
with the corresponding four-momentum given by Eq. (43).
Putting everything together, we have

hTμνðxÞTαβðxþ ΔxÞic
¼ m5hf0i

ΔxμΔxνΔxαΔxβ

ð−ΔxγΔxγÞ7=2
Θð−ΔxγΔxγÞ: ð44Þ

Equation (44) is a conserved, generally covariant two-point
function in Minkowski space. We will use it as a proxy for

vacuum stress-energy, and argue below that the two behave
similarly on large scales.

A. Spectral density for Poisson stress-energy

The spectral densities for Poisson stress-energy
in the Källén-Lehmann representation can be found
by transforming to Fourier space. Defining TμνðkÞ≡R
d4xe−ik·xTμνðxÞ, we have

hTμνðkÞTαβðk0Þi ¼ ð2πÞ4δ4ðkþ k0Þ

×
Z

d4xeik·xhTμνðyÞTαβðxþ yÞi: ð45Þ

Using Eq. (A5) to relate the left-hand side to ρ0ð−k24Þ, we
find

2πρPoisson0 ð−k24Þ ¼ Sμναβ0

Z
d4xeik·xhTμνðyÞTαβðxþ yÞic;s:

ð46Þ

For Poisson stress-energy the Fourier transform can be
most easily obtained from Eq. (42). Eliminating the spatial
integral with the delta function there, and integrating over
time, we find

ρPoisson0 ð−k24Þ¼
1

9
hf0im4

Z
d3p
p0

δðkμpμÞ

¼ 1

18
hf0im4

Z
d4pδðp2þm2ÞδðkμpμÞΘðp0Þ:

ð47Þ

For k24 < 0, ρPoisson0 vanishes due to the delta function since
p2 < 0. For k24 > 0, we can evaluate the integral in a
Lorentz-invariant manner by replacing the delta functions
with integrals over phases, and using the stationary phase
approximation:

Z
d4pδðp2 þm2ÞδðkμpμÞΘðp0Þ

¼
Z

∞

−∞

dxdy
ð2πÞ2

Z
p0>0

d4peiðp2þm2ÞxþiðkμpμÞy: ð48Þ

The phase is stationary with respect to p at
2xpμ þ ykμ ¼ 0, so

4For zero correlation between different phase-space points as
in Eq. (39), the probability for finding N particles in a given
region of phase space is a Poisson distribution.

5To keep the distribution normalizable, we assume that at high
momenta p ≫ m, hfðpÞi falls to zero.
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Z
p0>0

d4pδðp2 þm2ÞδðkμpμÞ

≃
ffiffiffiffiffiffiffiffiffiffiffiffi
1

ð−iÞ3i

s Z
dxdy
ð2πÞ2

π2

2x2
exp

�
i

�
−
k24
4x

y2 þm2x

��

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

ð−iÞ3i2
s ffiffiffi

π
p
8

Z
dx
x2

ffiffiffiffiffi
4x
k24

s
eim

2x

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

ð−iÞ3i2
s ffiffiffi

π
p
4

ffiffiffiffiffiffi
m2

k24

s Z
dz

z3=2
eiz; ð49Þ

where in the first line the π2=2x2 comes from evaluating
the p integrals after shifting p → −ky=2x and
extracting the phase, and in the second line we have
integrated over y. The integral

R
dzeiz=z3=2 is divergent.

However, we can deform the contour to integrate along
down the positive imaginary axis, around the origin,
and back up with a small positive real part, so thatR
dzeiz=z3=2→ 2ffiffi

i
p
R
∞
0 dze−z=z3=2¼Γð−1=2Þ= ffiffi

i
p ¼−2

ffiffiffiffiffiffiffi
π=i

p
.

The appearance of factors of
ffiffi
i

p
reveal an ambiguity in our

regularization scheme; we choose the prescription which
gives positive spectral densities (see footnote 1).
Also recall that since the Poisson stress-energy correlator

is totally symmetric in its indices, its tensor structure in the
Källén-Lehmann representation will be totally symmetric,
PμνPαβ þ PμαPνβ þ PμβPνα, which fixes

ρPoisson2 ¼ ð6=5ÞρPoisson0 : ð50Þ

Putting everything together, then, we have

ρPoisson2 ð−k24Þ ¼
π

30
hf0im4

ffiffiffiffiffiffi
m2

k24

s
Θðk24Þ: ð51Þ

In the following section we will make use of this result to
study the cosmological influence of Poisson stress-energy.
The regularization of the divergence at small x or z in

Eq. (49) controls the divergent behavior of Poisson stress-
energy at large four-momentum p, which corresponds to
approaching the light cone Δx2 ¼ 0, as seen in Eq. (43).
This gives us a well-behaved result for power spectra
which, matches the IR limit of quantum field theory (QFT)
stress-energy correlators in the Källén-Lehmann represen-
tation, as we will see in Sec. VI.

B. Cosmological influence of Poisson stress-energy

We can now find the contribution to metric two-point
functions sourced by the stress-energy as given in Eq. (44),
which we take to be a small perturbation δTðPÞ

μν . We will
place a ðPÞ superscript on power spectra to indicate that
only the contribution to two-point functions sourced by
Poisson stress-energy is shown, not the full two-point

functions. Making use of the symmetrical index structure
of Poisson stress-energy, which leads to Eq. (50), we have

hδTðPÞ
μν ðkÞδTðPÞ

αβ ðk0Þic ¼ ð2πÞ4δ4ðkþ k0Þ2πρPoisson2 ð−k24Þ

×
1

2
ðPμνPαβ þ PμαPνβ þ PμβPναÞ:

ð52Þ

For the Poisson spectral density, Eq. (51), we find
from Einstein’s equations in the k≡ jkj ≫ H regime
the following results for two-point correlators in momen-
tum space, where we define hXðk;ωÞXðk0;ω0Þi≡
ð2πÞ4δ3ðkþ k0Þδðωþ ω0ÞPXðk;ωÞ:

PðPÞ
ϕ0 ðk;ωÞ ¼ π2

10

am5

M4
p
hf0i

ω2

k4
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 − ω2
p

×

�
1 −

4

3

k2

k2 − ω2

�
Θðk2 − ω2Þ; ð53Þ

PðPÞ
ψ 0 ðk;ωÞ ¼ π2

40

am5

M4
p
hf0i

ω2

ðk2 − ω2Þ5=2 Θðk
2 − ω2Þ; ð54Þ

PðPÞ
V 0;ijðk;ωÞ ¼

2π2

15

am5

M4
p
hf0iðδij − k̂ik̂jÞ

−ω2

k2

×
1

ðk2 − ω2Þ3=2Θðk
2 − ω2Þ: ð55Þ

We have included the scale factor aðηÞ to account for the
effect of FRW space, through the following argument: while
the power spectrumPϕ0 ðk;ωÞ is not a physical quantity itself,
the combination k3ωPϕ0 ðk;ωÞ=a2 is a physical quantity,

since the real-space correlation h _ϕðx1; t1Þ _ϕðx2; t2Þi for a
small range of momenta ðΔk;ΔωÞ peaked around ðk;ωÞ
goes like this combination. Thus, k3ωPϕ0 ðk;ωÞ=a2 should
depend only on physical frequencies and wave numbers,
kph ¼ k=a and ωph ¼ ω=a. Making this replacement in
Eqs. (53)–(55) adds the factor of aðηÞ, as shown above. A
time dependence to the frequency spectrum is valid for sub-
Hubble times ω≳HðηÞ.
Upon integrating over frequencies ω to obtain correlators

in real time, we obtain divergent pieces going as powers of

ωmax, but for P
ðPÞ
ϕ0 and PðPÞ

V 0;ij a finite, positive part remains

(despite the negativity of PðPÞ
V 0;ij), which we take to be the

physical effect of vacuum stress-energy. We also note that
as emphasized in Sec. III A this effect comes from the
correlator of spatial components hδTijδTkli, and from
anisotropic stress, that is from ρ2 rather than the isotropic
ρ0 part of Eq. (22).
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C. ISW effect from Poisson stress-energy

We now show that Poisson stress-energy contributes a
flat spectrum (independent of l) to the CMB angular power
spectrum, contributing most significantly at high l through
the ISW effect. Including the influence of vector modes
[20], the ISW effect is

δTISWðr̂Þ
T

¼
Z

ηtoday

ηLSS

dηðϕ0 þ ψ 0 þ V 0
ir̂

iÞ: ð56Þ

Here, the integration is carried out over the past light cone,
that is ϕ0 ¼ ϕ0ðr; r̂; ηÞ with rðηÞ=rLSS ≈ 1 − η=ηtoday. The
contribution to the CMB angular power spectrum is well
approximated by the Limber approximation [21], which,
for integration over the light cone, gives

CISW
l ≃

Z
dΩ
4π

dr
r2

Z
dω
2π

h
PðPÞ
ϕ0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2⊥ þ ω2

q
;ω

�

þ r̂ir̂jPðPÞ
V 0;ij

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2⊥ þ ω2

q
;ω

�i
; ð57Þ

where k⊥ ¼ ðlþ 1
2
Þ=r. Here, we have dropped the hψ 0ψ 0i

power spectrum and cross spectrum hϕ0ψ 0i, which only
have power-law divergent contributions after integration
over ω, as well as the cross spectra hϕ0V 0

ii and hψ 0V 0
ii,

which vanish due to the transverse nature of the vector
modes. We have also dropped power-law divergent con-
tributions to the hϕ0ϕ0i and hV 0

iV
0
ji correlators.

Furthermore, for the vector term, only the isotropic part
of Eq. (55) contributes.
The power spectra in Eqs. (53) and (55) go like 1=k2⊥

after integration over ω, canceling the r dependence in the
integrand of Eq. (57). However, the scale factor in
Eqs. (53)–(55) leads to the radial integral contributingR
draðrLSS − rÞ ≈ R

dηaðηÞ ¼ R
dt ≈H−1

0 for Ωm ¼ 0.3
and ΩΛ ¼ 0.7. Making use of Eqs. (53) and (55) and
using ðΩm;ΩΛÞ ¼ ð0.3; 0.7Þ, we find that at high l

ðΔ2
l ÞISW ≡ lðlþ 1ÞCISW

l

2π
¼ 49π

720

m5t0
M4

p
hf0i

≃ 49π

720

m5

M4
pH0

hf0i; ð58Þ

which is a flat spectrumwith l, and thus largest compared to
CMB anisotropies in linear theory at the end of the
damping tail at high l. In Appendix B, we show that at
the 95% confidence level, current CMB observations
roughly translate to

ðΔ2
l ÞISW ≃ 2.2 μK2

ð2.73KÞ2 ≲ 3.0 × 10−13: ð59Þ

Since Mp ¼ 2.44 × 1018 GeV and H0 ≈ 70 km=s=Mpc ¼
1.5 × 10−33 eV, requiring the ISW contribution, Eq. (58),
to be consistent with the observed values implies

m≲ ð24 TeVÞ
�ð2πÞ3hf0i

2

�−1=5
: ð60Þ

In Sec. VI, we motivate this choice for hf0i by drawing an
analogy to quantum field theory of a free massive sca-
lar field.

VI. POISSON-LIKE STRESS-ENERGY
FOR A MASSIVE SCALAR FIELD

In this section, we compute the stress-energy of a
massive scalar field, and show that it behaves similarly
to the Poisson spectrum considered above. While we find
that due to the requirement of positive energy, the ampli-
tude of stress-energy fluctuations vanishes for small jk2j,
for large enough time separations Δt the spectral density at
high energies contributes to the stress-energy correlator in
the same way as the low-energy Poisson spectral density.
For a massive scalar field we have

TμνðxÞ ¼ ∂μφ∂νφ −
1

2
gμν½ð∂φÞ2 þm2φ2�: ð61Þ

Defining the momentum-space quantities

φk ≡
Z

d4xe−ik·xφðxÞ;

TμνðkÞ≡
Z

d4xe−ik·xTμνðxÞ; ð62Þ

we have

TμνðkÞ ¼
Z

d4p
ð2πÞ4Mμνðp; k − pÞφpφk−p; ð63Þ

where

Mμνðk; k0Þ≡ −kμk0ν þ
1

2
gμνðkαk0α −m2Þ: ð64Þ

The two-point correlation is then given by

hTμνðkÞTαβðk0Þi ¼
Z

d4p
ð2πÞ4

d4p0

ð2πÞ4Mμνðp; k − pÞ

×Mαβðp0; k0 − p0Þhφpφk−pφp0φk0−p0 i:
ð65Þ

The scalar-field two-point correlation can be evaluated in
terms of commutation relations for creation and annihila-
tion operators:

hφkφk0 i ¼ ð2πÞ4δ4ðkþ k0Þ2πδðk2 þm2ÞΘðk0Þ: ð66Þ

Evaluating the connected four-point correlation in the same
way, we find
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hφpφk−pφp0φk0−p0 ic ¼ ð2πÞ4δ4ðkþ k0Þδðp2 þm2Þ
× ð2πÞ2δððk − pÞ2 þm2Þ
× ½ð2πÞ4δ4ðpþ p0Þ
þ ð2πÞ4δ4ðk − pþ k0Þ�
Θðp0ÞΘðk0 − p0Þ: ð67Þ

Consequently, letting p → −p in the integral, we have

hTμνðkÞTαβðk0Þic
¼ δ4ðkþk0Þ

Z
d4pMμνðp;k−pÞMαβðp;k−pÞ

× ð2πÞ2δðp2þm2Þδððk−pÞ2þm2ÞΘðp0ÞΘðk0−p0Þ:
ð68Þ

To find ρ2 via Eq. (A6), we contract with Sμναβ2 ,

Sμναβ2 Mμνðp; k − pÞMαβðp; k − pÞ

¼ 1

60
½−k4 þ 2m2k2 þ 8m4 þ ð2k2 þ 4m2Þp · k

þ 2ðp · kÞ2�: ð69Þ

Here we have used the fact that p2 ¼ −m2. We also have

Sμναβ0 Mμνðp; k − pÞMαβðp; k − pÞ

¼ 1

9
½k2 −m2 − p · k�2: ð70Þ

For timelike k we are free to choose k ¼ 0, so
k · p ¼ −k0p0, and

2ρ2ð−k2ÞΘðk0Þ ¼
Z

d4p
ð2πÞ4 ð2πÞδðp

2 þm2Þδððk − pÞ2 þm2ÞΘðp0ÞΘðk0 − p0Þ½Sμναβ2 MμνMαβ�

¼ 1

ð2πÞ3
Z

d3p
2ωp

δð−k20 þ 2k0ωpÞΘðk0 − ωpÞ½Sμναβ2 MμνMαβ�

¼ 1

ð2πÞ3
Z

d3p
2ωp

ωp

2k0jpj
δðjpj −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20=4 −m2

q
ÞΘðk0 − 2mÞ k40

120

�
1 − 4

m2

k20

�
2

; ð71Þ

where ωp ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jpj2 þm2

p
. In the second line, the delta

function sets the step function equal to unity, but requires
the addition of the step function in the third line. The factor
of 2Θðk0Þ indicates the unsymmetrized expectation value.
Symmetrizing as in Eq. (A6), and replacing k20 → −k24 to
write the expression in its covariant form, we have

ρ2ð−k24Þ¼
1

240

k44
16π2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4

m2

k24

s �
1þ4

m2

k24

�
2

Θð−k24−4m2Þ:

ð72Þ
[For spacelike k on the other hand, we are free to set
k0 ¼ 0, leading to Θðp0ÞΘð−p0Þ ¼ 0 and a vanishing
correlator, so that Eq. (72) applies for all k.] In the same
way, we find from Eq. (70) that

ρ0ð−k24Þ ¼
1

18

k44
16π2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

m2

k24

s �
1

2
−
m2

k24

�
2

Θð−k24 − 4m2Þ:

ð73Þ
Equations (72)–(73) are consistent with existing literature
on scalar-field stress-energy; see e.g. Refs. [15,22].
In order to find stress-energy correlators in real time at a

separation Δt, we integrate over frequencies k0, as in
Eqs. (22)–(23). Physically, in the absence of very energetic
particles we do not expect linear macroscopic observables to
be sensitive to very high-frequency fluctuations in themetric.
If we lack access to energies above some scale ωmax, the

stress-energy correlators that are physically relevant for
metric perturbations will be approximately given by a
Fourier transform over frequencies that is damped above
ωmax

Jφðk;ΔtÞ≡
Z

∞

−∞
dk0ρ2ðk20 − k2Þe−ik0Δte−k20=ω2

max : ð74Þ

For jk24j ≫ m2, Jφ becomes aGaussian integral,which can be
evaluated analytically, and is equal to a polynomial
× exp ð− 1

4
ω2
maxΔt2Þ. This allows for the integration over

k0, which runs over jk0j >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 4m2

p
, to be done along the

contour C∞ shown in Fig. 1, as long as it is closed at
jk24j ≫ m2. The parts of the contour around the branch cuts
along the real axis give us 4 times the original integral, while
the integration at jk0j → ∞ can be dropped for
ωmaxjΔtj ≫ 1. We can then shrink the contour to C1, which
encloses the branch points at k0 ¼ �jkj. Takingωmax ≫ jkj
and dropping terms suppressed by jkj2=m2 in Eq. (72), this is

Jφðk;ΔtÞ ¼
m4

120π2

Z
C1

dk0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

−k20 þ k2

s
e−ik0Δt;

for jΔtj ≫ ω−1
max: ð75Þ

So the scalar-field stress-energy contributes in the same way
as a spectral density at low frequencies
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ρeffective2;φ ð−k24Þ ¼ −
m4

120π2

ffiffiffiffiffiffi
m2

k24

s
Θðk24Þ; ð76Þ

integrated for real k0.
The scalar-field spectral density, Eq. (72), therefore

contributes to correlations in real time in the same way
as the effective spectral density, Eq. (76). This is equivalent
to the low-frequency spectral density for the Poisson stress-
energy of Sec. VA, so we expect the same stress-energy
correlations at long times Δt and large distances jkj ≪ m
which led to the TeV-scale bound discussed there. (The
Poisson stress-energy correlation is that of a collection of
pointlike particles, which we only ought to compare to the
quantum field theory case on spatial scales much larger
than the Compton wavelength m−1 of the particles.)
Comparing to Eq. (76), we see that

jρeffective2;φ j ¼ 2

ð2πÞ3hf0i
ρPoisson2 : ð77Þ

Motivated by the similar behavior of these spectral den-
sities, we consider equating them to fix hf0i ¼ 2=ð2πÞ3. As
noted in Sec. V C, this places the bound at m≲ 24 TeV.
We note that the ratio of the effective spectral densities ρ0
and ρ2 for a scalar field is equal to the ratio for Poisson
stress-energy, strengthening the analogy. Following the
above procedure for Eq. (73) to pick out the leading term
in the k24 ≪ m2 limit leads to

ρeffective0;φ ð−k24Þ ¼
5

6
ρeffective2;φ ð−k24Þ: ð78Þ

We conjecture that the same Poisson behavior arises
generically in the k24 → 0 limit for massive quantum field
theories.

VII. HOLOGRAPHIC ENTANGLEMENT
ENTROPY BOUND AND AN IR

CUTOFF OF GRAVITY

In this section, we argue that an IR cutoff in quantum
gravity, similar to what we have discovered in the CnC
problem above, should have also been anticipated from a
holographic bound on entanglement entropy of nongravita-
tional degrees of freedom.This independent line of reasoning
reinforces the interpretation of the scale where metric
fluctuations become large (due to stress-energy sources)
as a minimum energy scale or maximum distance scale for
the theory. It also shows the uniqueness of our results to
gravity in comparison to other gauge theories such as QED
(see Sec. VIII D), which lack a holographic entropy bound.
Imagine a quantum system, described by the

Hamiltonian H0 in its ground state j0i∘, whose energy is
set to zero for convenience. Now, if we turn on a
perturbation Hint, then the static wave function j0i∘ is no
longer a solution of the Schrodinger equation, but rather
will slowly evolve in the Hilbert space of H0 with the
amplitudes that are (to first order) given by

hnj0i∘ ≃ −
hnjHintj0i

En
; ð79Þ

where jni for n > 0 are the excited states of H0. Even
though, at any time, j0i∘ is still a pure state, we can define a
density matrix for observation at random times (or averaged
over time)

ρint ¼
X
n

jhnj0i∘j2jnihnj ¼
X
n

jhnjHintj0ij2
E2
n

jnihnj; ð80Þ

which, e.g. for a two-level system, yields a von Neumann
entropy

Squbit ¼ −trðρint ln ρintÞ≃ α½1 − lnðαÞ� þOðα2Þ; ð81Þ
where

α≡ jh1jHintj0ij2
E2
1

; ð82Þ

can be interpreted as the fine-structure constant for the
interaction.
Now, let us apply this result to the ground state of a QFT,

as we turn on gravity. Of course, one may wonder whether
you could start in the global ground state of QFTþ gravity.
However, it is not clear whether such a state even exists,
and even if it does, our evolving Universe is certainly not in
its global ground state. Alternatively, we may consider this
entropy to be the entanglement entropy of the mixed state
of QFT in the (pure) ground state of QFTþ gravity, which
has a similar parametric dependence on α.
Therefore, starting from the QFT ground state, we expect

a minimum (entanglement) entropy of −αG lnðαGÞ for

FIG. 1. The integrations over C∞ and C1 are equivalent.
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every qubit of the QFT, where αG ∼ E2=M2
p is the gravi-

tational fine-structure constant. The minimum number of
qubits in a volume, up to an energy scale Λ, e.g. for a Dirac
field is given by

#¼ 2× 2×Volume×
Z

Λ d3k
ð2πÞ3 ¼

2Λ3

3π2
×Volume; ð83Þ

where the factors of 2 account for spins up and down, as
well as particles and antiparticles. The condition that this
entropy should not exceed the holographic (Bekenstein-
Hawking) entropy implies

SBH ¼ 2πM2
p × Area > S

¼ # × αG½1 − lnðαGÞ�

∼
2Λ5½1þ lnðM2

p=Λ2Þ�
3π2M2

p
× Volume: ð84Þ

For a spherical region of radius R, this yields

R≲ Rmax ∼
3π3M4

p

Λ5½1þ lnðM2
p=Λ2Þ� ; ð85Þ

which, as in previous sections, provides an IR cutoff (or
scale of strong coupling) in terms of the UV cutoff of the
QFT, when gravity is turned on:

ΛIR ∼
π

Rmax
∼
Λ5½1þ lnðM2

p=Λ2Þ�
3π2M4

p
: ð86Þ

Requiring that our observable Universe fits within this IR
cutoff yields

ΛIR < H0 ≃ 9.5 × 10−33 eV

⇒ Λ≲ 2.4 PeV: ð87Þ

While this is not quite as strong as previous bounds, we
should note that it does not use any precision cosmology
data. In fact, one could have obtained this upper limit,
nearly a century ago, upon the discovery of quantum
mechanics and cosmic expansion!

VIII. DISCUSSION

The nonlinearity of general relativity couples modes on
very different scales. Classically, cosmological metric and
matter density perturbations evolve nonlinearly and
become coupled on very different scales, leading to non-
linear structure formation. Quantum mechanically, metric
perturbations on cosmological scales can also be influenced
by short-scale vacuum modes, allowing UV physics to
influence classical geometry in the IR.

A. Summary

At large distances, we saw that stress-energy fluctuations
δTμν are largest from the spatial components and behave
like Poisson noise, being uncorrelated in real space [or,
having a flat spectrum in k-space, as in Eq. (26)]. Using
these fluctuations as a source for metric perturbations, we
found constraints on vacuum stress-energy from measure-
ments of galaxy cluster peculiar velocities [Eq. (37)], which
probe the gravitational potential. Requiring that metric
perturbations remain perturbative on the largest accessible
scales leads to a similar constraint from Eq. (27). These
constraints place bounds on the integrated stress-energy
spectral density,

R
dμρ2ðμÞ= ffiffiffi

μ
p

, given explicitly in terms of
the stress-energy tensor in Appendix A. We can interpret
this as an upper bound on an energy cutoff beyond which
quantum field theory, or quantum gravity, is strongly
coupled. For the Poisson stress-energy correlator, given
in Eq. (44), which resembles the stress correlators of a
massive scalar quantum field theory in the IR, we found
even stronger constraints on the UV scale through the ISW
contribution to the CMB [Eq. (60)].
The proximity of our upper bound of 24 TeV–1 PeV to

the electroweak scale suggests a connection to a possible
resolution to the Higgs hierarchy problem, which inde-
pendently requires new physics close to the TeV scale. In
particular, the CnC problem points to a gravitational
resolution to the hierarchy problem such as (supersym-
metric) large extra dimensions with low-scale quantum
gravity (e.g., Refs. [23,24]). The other possibility is a
transition to strongly coupled nonperturbative dynamics,
such as technicolor [25], or theories with emergent Lorentz
symmetry [26]. We thus predict that future advances in
collider technology and cosmological observations will
sandwich, and eventually discover new TeV-scale physics.

B. Directions for future work

Several extensions of our work are possible. A complete
account of the influence of the vacuum would include
backreaction: matter will move on geodesics now modified
by the vacuum-influenced geometry, leading to a different
matter stress-energy which will in turn affect the geometry.
We leave a full self-consistent analysis to future work. In
particular, the influence of the vacuum on geometry and
matter geodesics on the scales of gravitationally bound
systems would be worth investigating.
While we have focused on the impact of vacuum stress-

energy on infrared cosmological modes, we have not
considered the effect of modes in the super-Hubble regime
k ≪ H. In this regime the leading effect of metric pertur-
bations is a shift to the locally observed spatial curvature
[27]. Our results here suggest that metric fluctuations
become large in the IR, Δ2

ϕ ∼ 1=k, possibly leading to
the breakdown of FRW as a background spacetime on very
large scales. Given a UV scale which sets the amplitude of
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vacuum stress-energy, Einstein’s equations determine an IR
scale at which metric fluctuations sourced by vacuum
stress-energy become large. It would be interesting to seek
a nonperturbative understanding of the influence of vacuum
stress-energy in the k → 0 limit, and the consequential
effect on the background geometry in Hubble-sized
volumes.
In particular, the IR divergences encountered here may

be well behaved in de Sitter (dS) or anti–de Sitter (AdS)
space, with the curvature radius controlling the IR behavior,
and a unique vacuum fixed by the symmetry of the
spacetime, making curved-space QFT calculations pos-
sible. It would be interesting to carry out the same exercise
of finding vacuum stress-energy correlators, and their effect
on fluctuations in the geometry, in (A)dS, with an exact
computation valid on super-curvature scales. The strong
coupling on large scales may be dual to a confinement in
the boundary QFT.
We have also refrained from discussing the conversion of

quantum fluctuations of the metric (superpositions of
different gravitational field configurations) into smooth,
classical perturbations. In order for this to take place, a
mechanism of decoherence is needed to effectively measure
the spacetime geometry. We expect that an environment of
particles with some characteristic energy will be sensitive
to metric fluctuations up to frequencies of the same order,
and will select out a classical configuration for metric
perturbations with lower frequencies. Energies in the
primordial universe, during a reheating or hot big bang
era, will reach a maximum before redshifting, and will thus
be most sensitive to vacuum stress-energy during this
epoch. It would be interesting to apply our results in this
context, which would require a better understanding of
stress-energy as a source for metric perturbations on super-
Hubble modes, as noted above.

C. Renormalization

Here, we argue that the standard renormalization of UV
divergences in QFT does not affect the UV-IR coupling that
we have discussed in this paper.
The renormalization program in QFT (e.g., see Ref. [18])

accounts for the fact that the bare coupling constants that
appear in the action are not directly observable. As such,
the dependence on the UV cutoff that appears in radiative
(or loop) quantum corrections to scattering amplitudes or
propagators can be absorbed in a renormalization of the
bare coupling constants of the theory.
The radiative corrections to the graviton propagator, at

one-loop order, are shown in Fig. 2. Diagram A is the
counterterm associated with the renormalization of the bare
cosmological constant and Planck mass. Diagrams D and E
are standard one-loop corrections to general relativity (GR),
which e.g., lead to higher-order corrections to the
Newtonian potential (e.g., Ref. [28]). Diagram C has
the same exact structure as A, and thus can be absorbed

into the renormalization of the Planck mass and cosmo-
logical constant (up to naturalness considerations).
Diagram B is exactly what we have computed in Sec. VI,

and is the only nontrivial one-loop correction to the
connected part of the metric two-point correlation function,
due its interaction with a massive field. Furthermore, we
saw that it is finite, and thus does not require renormaliza-
tion. Another way to see this is to note that tree-level
counterterms renormalize the one-loop radiative correc-
tions. However, in GR, scalar and vector modes are not
dynamical, and thus their propagator vanishes at tree level.
Therefore, the contribution of Diagram B to scalar and
vector two-point correlation functions, which we have
focused on in this paper, cannot be renormalized by GR
local counterterms (or otherwise require introducing non-
local terms into the GR action).

D. UV-IR coupling in gravity, electromagnetism,
and chromodynamics

Our study of the effect of stress-energy sources on the
gravitational potential can be compared to the analogous
case in QED, where charge and current density Jμ source
the vector potential Aμ in Maxwell’s equation. The con-
servation law ∂μJμ ¼ 0 again constrains the two-point
source correlator to have a tensor structure hJμJνi ∝ ημν −
kμkν=k2 in momentum space, suppressing charge density
fluctuations in the IR. Current fluctuations may have a flat
Poisson spectrum, hJiðkÞJjð−kÞi ∝ δij, which acts as a
source to the wave equation for the vector potential Ai in the
Coulomb gauge (∂iAi ¼ 0). This is analogous to what
happens to the tensor modes in GR, which also respond to
their source through a hyperbolic wave equation. In either
case, in contrast to scalar and vector modes that satisfy
an elliptic equation, the response is an integral over the
4-volume of the past light cone, rather than a spatial
3-hypersurface. This leads to additional cancellations
due to fast oscillations in time and transverse (traceless)
conditions, bringing down the degree of divergence from
Λ5=k to k4 logðΛÞ for tensor modes, or k2 logðΛÞ for a

X

A B C

D E

FIG. 2. One-loop radiative corrections to the graviton propa-
gator, in QFTþ GR. The solid and dotted lines denote matter and
graviton propagators respectively.
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vector potential. While the latter is already included in the
standard treatments of divergences in QED (e.g., Ref. [18]),
the CnC problem indicates a richer structure of IR
divergence in massless spin-2 interacting theories, which
has been so far overlooked. The infrared divergences of
scalar and vector metric perturbations studied here are also
different from infrared divergences due to soft gravitons in
Feynman diagrams. The second is a dynamical effect
which, like IR divergences in QED, is consistent with
finite cross sections and observable rates [18,29], while the
first is a nondynamical consequence of the constraint
equations, which cannot be treated in the same way.
A closer analogy to the CnC problem might be the

confinement in QCD. As in the case of the CnC problem,
the quantum fluctuations of the gluon field around its free
vacuum blow up at an IR scale of ΛQCD. Below this scale,
the gluon field becomes strongly coupled, and an effective
weakly coupled description is only possible in terms of
different degrees of freedom (i.e. hadrons). In the case of
gravity, this may suggest a nongeometric description on
very large scales. However, we caution that this analogy
must not be pushed too far, as the QCD IR divergence is
still logarithmic, and not a power law as in the CnC (or CC)
problem.

E. The CnC problem, CC problem,
and effective field theory

We emphasize that the cosmological nonconstant prob-
lem as described here is complementary to, but distinct
from, the cosmological constant problem. In both cases, a
deeper understanding of UV physics is needed to explain
the absence of any influence on geometry from the vacuum
at high energies. However, different sign contributions to

TðVÞ
μν both contribute positively to the two-point function, so

vacuum-sourced fluctuations in geometry cannot cancel
due to different sign contributions.
One may wonder why we could not just integrate out

heavy fields in the IR, as is commonly done to find an
effective field theory (EFT). Then, the lore is that UV
physics will only renormalize the cosmological and
Newton’s constants, and otherwise has no observable
consequence for low-energy observables. In contrast, we
have clearly demonstrated that the CnC problem has
distinct consequences for cosmological observations that
cannot be mimicked by a change in the cosmological or
Newton’s constants.
To understand this better, we can look at the path-integral

description of (low-energy) QFTþ gravity:

Z
DgDφ × Diff−1½g;φ�

× exp

�
i
Z

d4x
ffiffiffiffiffiffi
−g

p fR½g� þ Lm½φ; g�g
�
: ð88Þ

Here, Diff−1½g;φ� is the measure of the path integral that
effectively mods out the gauge degrees of freedom, in
particular diffeomorphisms, in a relativistic theory. What is
often called the gravitational EFT is given by integrating
out the heavy matter fields, but ignoring the measure:

expðiSeff;naive½g�Þ≡ expðiSGR½g�Þ

×
Z

Dφ exp

�
i
Z

d4x
ffiffiffiffiffiffi
−g

p
Lm½φ; g�

�
;

ð89Þ

which can be computed using, e.g., the heat kernel method
as an expansion in powers of curvature invariants and their
gradients (e.g., Ref. [30]). However, in general

Diff−1½g; 0� expðiSeff;naive½g�Þ

≠ expðiSGR½g�Þ ×
Z

Dφ × Diff−1½g;φ�

× exp

�
i
Z

d4x
ffiffiffiffiffiffi
−g

p
Lm½φ; g�

�
: ð90Þ

Therefore, the standard definition of EFT misses the path-
integral measure that is necessary for a sensible gravita-
tional theory. Admittedly, the nonperturbative measure of
the gravitational path integral is unknown (although there is
numerical evidence that a Lorentz-violating preferred
foliation might be necessary to yield physical results,
e.g., Ref. [31]). At the perturbative level we know that
the role of the measure, along with the constraint equations,
is to freeze out the nondynamical degrees of freedom, i.e.
scalar and vector metric perturbations, in terms of matter
degrees of freedom. Therefore, in this admittedly non-
covariant description, it is not possible to integrate out
matter without integrating out part of the metric, which
consequently leads to either a noncovariant or nonlocal
effective action. In fact, this is exactly what we did in this in
paper! Even though well-defined covariant measures exist
in simpler gauge theories (such as Yang-Mills theory), to
our knowledge, one does not exist for quantum gravity.
From the point of view of canonical quantization, our

result shows the nonlocal structure of the kinematic phase
space (or Hilbert space) of QFTþ gravity, imposed by
elliptic GR constraint equations. At an intuitive level, this is
similar to the Heisenberg uncertainty principle for momen-
tum/position. However, in QFTþ gravity the uncertainty is
between the definition of the vacuum state (or QFTþ
gravity observables) in the UV and the IR.
In a broader context, the applicability of EFT in quantum

gravity is already limited, due to the old cosmological
constant problem, which suggests extreme fine-tuning of
UV physics to explain our observable Universe on large
scales. On a more a theoretical ground, one may consider
the firewall paradox [32,33] in the evaporation of black
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holes as another piece of evidence that local EFT in
quantum gravity can fail even at very low energies, e.g.,
at the horizons of large black holes. Indeed, the nonlocality
introduced by imposing the GR constraint equations on the
Hilbert space of quantum gravity, as discussed above, has
been proposed as a possible resolution to the firewall
paradox [34].
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APPENDIX A: KÄLLÉN-LEHMANN SPECTRAL
DENSITIES FOR STRESS-ENERGY

In this appendix we describe the tensor structures for
stress-energy in the Källén-Lehmann spectral representa-
tion, and give the spectral densities ρ0;2 in terms of sums
over states in Hilbert space.
Given the general form of Eq. (22), we can extract ρ0 or

ρ2 by contracting respectively with

Sμναβ0 ≡ 1

9
gμνgαβ; ðA1Þ

Sμναβ2 ≡ 1

5

�
1

2
gμαgνβ þ 1

2
gμβgνα −

1

3
gμνgαβ

�
; ðA2Þ

since

Sμναβ0

�
1

2
PμαPνβ þ

1

2
PμβPνα −

1

3
PμνPαβ

�
¼ 0; ðA3Þ

and

Sμναβ2 PμνPαβ ¼ 0: ðA4Þ

Consequently, transforming Eq. (22) to momentum space,
we find

Sμναβ0 hTμνðkÞTαβðk0Þic;s
¼ ð2πÞ4δ4ðkþ k0Þ2πρ0ð−k24Þ; ðA5Þ

and from the second contraction,

Sμναβ2 hTμνðkÞTαβðk0Þic;s ¼ ð2πÞ4δ4ðkþ k0Þ2πρ2ð−k24Þ:
ðA6Þ

The spectral densities can be expressed in terms of a
complete set of states,

1 ¼ j0ih0j þ
X
n

Z
d4p
ð2πÞ4 2πδðp

2 þM2
nÞΘðp0Þjp; nihp; nj:

ðA7Þ

Here, p is the total three-momentum for a given state jp; ni,
and M2

n ≡ E2
n − p2 is its invariant mass-squared, with

the sum including continuous parameters such as
relative momenta of particles. Inserting this sum between
the operators in hT̂μνðxÞT̂αβðyÞis, and transforming to
Fourier space as in Eqs. (A5)–(A6), we identify the spectral
density as

ρ0ðμÞ ¼
1

2

X
n

δðμ −M2
nÞ½Sμναβ0 h0jTμνð0Þjk; ni

× hk; njTαβð0Þj0i þ c:c:�; ðA8Þ

with ρ2 defined similarly with Sμναβ2 . Only multiparticle
states contribute to the sum over intermediate states. The
contribution from the vacuum cancels when the discon-
nected part of the correlation function hTμνihTαβi is
subtracted off, and h0jTμνj1particlei ¼ 0 because Tμν is
quadratic in field operators and will only act on h0j to create
states with two or more quanta.

APPENDIX B: AN OBSERVATIONAL LIMIT ON
A PLATEAU OF THE CMB ANISOTROPY

ANGULAR POWER SPECTRUM

In Sec. V C, we showed that the ISW effect, caused by
the metric perturbations that are sourced by vacuum
fluctuations add a plateau to the power spectrum of
CMB anisotropies Δ2

l ¼ lðlþ1ÞCl
2π . Here, we derive an

approximate upper limit on this plateau from current
CMB observations.
Given that ΛCDM predictions (due to Silk damping) as

well as measurements of Δ2
l are dropping rapidly at high

l’s, the strictest bounds on a putative plateau would come
from measurements at the highest l’s. The best current
measurements are provided by the South Pole Telescope
(SPT), at the highest l’s (≲ 3000) [35]. In order to estimate
an upper limit on the size of an ISW plateau, we note that
missing an additional term in the model causes a systematic
increase in the χ2, given by
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hχ2observedi≳ χ2 þ ½ðΔ2
l ÞISW�2

X
l

1

σ2l
; ðB1Þ

where the inequality is due to other potential systematic
errors (further increasing χ2), while σl is the SPT meas-
urement error for Δ2

l in each l bin. χ2 in Eq. (B1) is a
random number which follows the χ2 distribution:

Pðχ2Þdχ2 ¼ χn−2 exp ð−χ2=2Þdχ2
2n=2Γðn=2Þ ; ðB2Þ

n≡ ½#of l − bins� − ½#of fitted parameters�: ðB3Þ

Note that we are also ignoring potential degeneracies
between the ISW plateau and other cosmological param-
eters that are already fitted for.
For the ΛCDM model best fit to SPT data

χ2observed ¼ 45.9, which uses 47 l bins and nine fitted
parameters. Using the errors provided in Table 2 of
Ref. [35], we can plug this into Eq. (B1), and then integrate
the χ2 distribution to find

ðΔ2
l ÞISW < 2.2 μK2; ðB4Þ

at the 95% confidence level.
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