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A loop quantization of the diagonal class A Bianchi models starting from the complex-valued self-dual
connection variables is presented in this paper. The basic operators in the quantum theory correspond to
areas and generalized holonomies of the Ashtekar connection, and the reality conditions are implemented
via the choice of the inner product on the kinematical Hilbert space. The action of the Hamiltonian
constraint operator is given explicitly for the case when the matter content is a massless scalar field (in
which case the scalar field can be used as a relational clock), and it is shown that the big bang and big
crunch singularities are resolved in the sense that singular and nonsingular states decouple under the action
of the Hamiltonian constraint operator.
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I. INTRODUCTION

The introduction of the self-dual connection variables in
general relativity [1,2] raised the possibility of developing a
nonperturbative theory of quantum gravity based on the
quantization techniques of gauge theories [3,4]. However,
there are two major obstacles that arise in the attempt to
perform the canonical quantization of general relativity
based on the complex-valued SLð2;CÞ Ashtekar connec-
tion: (i) the fundamental operators of the theory must
satisfy nontrivial reality conditions, and (ii) the measure for
generalized SLð2;CÞ connections is noncompact, with no
known regulator available.
A major step forward was therefore made possible when

it was shown that the real-valued SUð2Þ Ashtekar-Barbero
connection could be used instead [5], and indeed the use of
these variables has led to significant progress in loop
quantum gravity (LQG), most particularly results showing
that there is a unique cyclic representation of the kinemati-
cal Hilbert space of LQG that is invariant under spatial
diffeomorphisms [6,7] (although see also Refs. [8,9]) as
well as candidate definitions of the Hamiltonian constraint
operator [10–14].
Nonetheless, despite these important results, there are

some drawbacks associated to the Ashtekar-Barbero var-
iables. First, the Ashtekar-Barbero variables require the
introduction of the real-valued Immirzi parameter γ [15], a
parameter that has no classical analog in standard general
relativity but appears in the spectra of operators corre-
sponding to geometric observables [16–21]. (Note that the
self-dual variables are recovered for γ ¼ �i.) Second, the
Hamiltonian constraint becomes more complicated, in that
it contains an additional term of which the presence
necessarily leads to additional quantization ambiguities.
Third, the Ashtekar-Barbero connection is not a true

space-time connection; while it transforms as a connection
under spatial diffeomorphisms, it does not under timelike
diffeomorphisms [22,23].
More recently, it has been shown that a black hole

entropy of S ¼ A=4Gℏ is obtained after performing an
analytic continuation of γ → i [24–27]. This result may
indicate that an Immirzi parameter of γ ¼ i (which is to say,
self-dual variables) captures the correct black hole physics
and that it may be important to set the Immirzi parameter to
γ ¼ i in full LQG as well. There are also a number of
interesting studies on various other aspects of black hole
physics in LQG which lead to similar conclusions [28–31].
These recent results in black hole physics, together with

the drawbacks of the Ashtekar-Barbero connection
described above, suggest that it may be fruitful to re-
examine the two main obstacles to a well-defined canonical
theory of quantum gravity based on the self-dual Ashtekar
variables, namely the reality conditions and the measure
problem. A first step in this direction is to study the
canonical quantization of symmetry-reduced models where
the reality conditions become simpler and where the
measure problem is typically avoided. To date, the canoni-
cal quantization in terms of self-dual variables has been
achieved for two families of symmetry-reduced space-
times: the spherically symmetric and asymptotically flat
vacuum Schwarzschild space-times [32] and the homo-
geneous and isotropic Friedmann-Lemaître-Robertson-
Walker (FLRW) cosmological space-times with a massless
scalar field [33]. (As an aside, note that an alternative
approach to studying quantum cosmology with γ ¼ i is to
quantize in terms of the Ashtekar-Barbero variables and
then analytically continue γ → i [34].) In this paper, I will
consider the canonical quantization in terms of self-dual
variables of diagonal type A Bianchi space-times, which
allow for the presence of anisotropies. The restriction to
type A Bianchi models (which will be defined below in
Sec. II A) is necessary as these are the only ones for which a*wilson‑ewing@aei.mpg.de
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Hamiltonian formulation is known, and I only consider
diagonal models for the sake of simplicity. Note that this is
a large family of space-times; diagonal type A Bianchi
models include Bianchi space-times of type I, type II, type
VIII and type IX.
While this work will extend in as straightforward a

manner as is possible a number of results obtained for the
FLRW space-times in Ref. [33], it shall become clear that
the presence of anisotropies significantly complicates the
form of the reality conditions. For the spatially flat and
closed FLRW space-times (the ones studied in Ref. [33]),
the reality conditions take an especially simple form since
the spin connection does not depend on the densitized
triads. This is no longer the case for the Bianchi space-
times; now the spin connection will depend in a nontrivial
fashion on the densitized triads, and this will make the
implementation of the reality conditions more difficult.
Furthermore, beyond the goal of exploring how the

reality conditions can be imposed in a more general
context, studying the quantum cosmology of the Bianchi
models is also important for an additional reason: the
Belinskii-Khalatnikov-Lifshitz (BKL) conjecture claims
that, as a generic spacelike singularity is approached,
neighboring points decouple in the sense that spacelike
derivatives are negligible compared to timelike derivatives
[35–37]. Then, the dynamics at each point are well
approximated by the ordinary differential equations that
govern the evolution of the homogeneous Bianchi space-
times. Thus, understanding the dynamics of the Bianchi
space-times in regions near where the space-time would
become singular in classical general relativity (i.e., where
quantum gravity effects are expected to become important)
may also give important insights into the dynamics of
generic space-times in regions where general relativity
would predict a spacelike singularity to arise.
Due to the importance of the BKL conjecture, the

Bianchi space-times have already been studied in some
detail in a variety of approaches, in particular in the loop
quantum cosmology based on the Ashtekar-Barbero con-
nection variables (which I shall call “standard LQC” in this
paper). The results of standard LQC for the Bianchi space-
times can be found in the reviews [38–40] and the many
references therein; since the object of this paper is a loop
quantization for the Bianchi space-times using self-dual
variables, many of the techniques developed in, and the
results obtained from, studies of the standard LQC of the
Bianchi models will be very useful here.
The outline of the paper is as follows. There is a brief

review of the Bianchi space-times in general relativity and
in particular a description of their Hamiltonian framework
in terms of the self-dual Ashtekar variables in Sec. II. Then,
the canonical quantization is performed in Sec. III: the
reality conditions are imposed via an appropriate choice of
the inner product for the kinematical Hilbert space in
Sec. III A, the Hamiltonian constraint operator is defined in

Sec. III B, and the resulting self-dual LQC is compared to
standard LQC in Sec. III C. Then, the effective equations
are briefly presented in Sec. IV, and there is a discussion
in Sec. V.

II. BIANCHI SPACE-TIMES

The Bianchi cosmologies are four-dimensional space-
times that are spatially homogeneous and of which the
symmetry group is simply transitive. The Bianchi models
can be classified in terms of their symmetry group, and this
classification is reviewed in Sec. II A. In Sec. II B, a
fiducial cell is introduced in order to regulate integrals
for the case of noncompact spaces, and the discrete parity
symmetries of the Bianchi space-times are also described.
Finally, the Hamiltonian framework for the diagonal class
A Bianchi models in terms of the self-dual variables is
reviewed in Sec. II C. This section only covers the material
that will be directly necessary for the remainder of the
paper; significantly more information concerning the
Bianchi cosmologies is given in, e.g., Refs. [41,42].

A. Classification of the Bianchi models

The Bianchi space-times are spatially homogeneous,
with a three-dimensional isometry group spanning the
spatial surface Σ that can be parametrized by three linearly

independent Killing vectors ξ
∘a
j . A basis of fiducial triads e

∘a
j

can be generated by requiring that their Lie derivative with

respect to the Killing vector fields vanishes, ½e∘j; ξ
∘
k�a ¼ 0.

These fiducial triads satisfy the relations

½e∘k; e∘ l�a ¼ Cj
kle

∘a
j ; ð1Þ

while the fiducial cotriads ω
∘ j
a—that are dual to the fiducial

triads—satisfy

dω
∘ j þ 1

2
Cj

klω
∘ k∧ω∘ l ¼ 0; ð2Þ

where the Cj
kl ¼ Cj½kl� are the structure constants of the

Bianchi model.
The Bianchi models can be separated into two groups:

class A where Cj
jk ¼ 0 and class B where the trace of the

structure constants does not vanish. For Bianchi models of
class A, it is possible to choose the fiducial triads in such a
way that the structure constants are entirely determined by
three constants nj [42],

Cj
kl ¼ njϵ

∘j
kl; no sum over j; ð3Þ

with nj ¼ 0;�1. Here, ϵ
∘
jkl is totally antisymmetric with

ϵ
∘
123 ¼ 1. Table I shows the value of the nj for each class A
Bianchi model.
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The standard Hamiltonian treatment fails for class B
Bianchi models [43], and there is no known canonical
framework for these space-times. For this reason, only
Bianchi models that are of class Awill be considered in this
paper. Furthermore, for the sake of simplicity, only diago-
nal models will be considered, in which case the space-time
metric has the form

ds2 ¼ −NðtÞ2dt2 þ
X
j

ajðtÞ2ðω∘ jÞ2; ð4Þ

where NðtÞ is the lapse function and ajðtÞ are the three
directional scale factors. Requiring that the metric has a
diagonal form can always be achieved in the Bianchi
models types VIII and IX via a careful choice for the

ω
∘ j
a. On the other hand, for the other class A Bianchi

models, imposing diagonality does correspond to a mild
loss of generality in the sense that this restriction corre-
sponds to fixing certain constants of motion [44].
Given the line element (4), for diagonal class A Bianchi

models, the physical triads and cotriads are related to the
fiducial ones via

eaj ¼
1

ajðtÞ
e
∘a
j ; ωj

a ¼ ajðtÞω∘ ja; no sum over j; ð5Þ

which define the spatial metric (at some fixed time) by

qab ¼ ωj
aω

j
bδjk; ð6Þ

and therefore the problem of determining the dynamics of a
diagonal class A Bianchi space-time has been reduced to
solving for the time evolution of the three directional scale
factors ajðtÞ.

B. Integrals and parity symmetries

Before presenting the Hamiltonian framework for the
diagonal class A Bianchi models, it is necessary to ensure
that integrals are well defined (which is not automatic in
noncompact homogeneous spaces) and also to understand
how the basic variables change under a parity transforma-
tion so that this discrete symmetry can later be properly
encoded in the quantum theory. I will begin with the
first point.

Depending on the Bianchi model, different topologies
are allowed. While topological and global aspects of the
Bianchi space-times are not the main focus of this paper, it
is important to differentiate between compact and non-
compact spaces. This distinction is necessary since the
Hamiltonian that will be introduced in Sec. II C is in fact
the integral of a Hamiltonian density over the spatial
surface, and integrals evaluated in homogeneous spaces
(where there is no falloff at infinity) that are noncompact
necessarily diverge. On the other hand, if the space is
compact, then the integral is finite.
Therefore, in compact spaces, integrals can be evaluated

over the entire space, while for noncompact spaces, the
integrals must be restricted to a finite region of the space.
This finite region of Σ will be called the fiducial cell and
denoted by V. The fiducial cell acts as an infrared regulator,
and once the quantum theory is defined, this regulator can
be removed by taking the limit of V → Σ. (The classical
theory is independent of the choice of V, but there do exist
some subtle effects in the quantum theory concerning the
amplitude of quantum fluctuations [45]. For this reason, the
regulator must be removed in the quantum theory in order
to recover truly global observables that are not restricted to
a finite subregion of Σ. In the V → Σ limit, the quantum
fluctuations of global observables will be negligible for
sharply peaked states, but effects coming from the under-
lying Planck-scale quantum geometry will remain. It
appears necessary to go beyond the minisuperspace
approximation in order to fully understand the effect of
quantum fluctuations in noncompact homogeneous
space-times.)
It is useful to define the quantities

Vo ¼
Z
V

ffiffiffi
q
∘

q
; lo ¼ ðVoÞ1=3; ð7Þ

corresponding to the volume of the fiducial cell (or the
spatial surface for compact spaces) with respect to the
metric q

∘
ab ¼ ω

∘ j
aω
∘ k
bδjk and its cube root. From now on, in

order to simplify the notation, V will represent the fiducial
cell for noncompact spaces and the entire spatial surface Σ
for compact spaces. Due to homogeneity, the result of any
integral over V with respect to the fiducial metric is

equivalent to multiplying the integrand by Vo=
ffiffiffi
q
∘q
.

Thus, the introduction of the fiducial cell ensures that
integrals are well defined and acts as an infrared regulator
in noncompact spaces.
The second topic of this part is parity transformations. A

parity transformation flips the orientation of one or several
of the physical triads while leaving all fiducial quantities
invariant. While the metric does not depend on the
orientation or the handedness of the triads (and so the
physics is invariant under these parity transformations),
the basic variables of the quantum theory will change under
a parity transformation, and therefore it is important to

TABLE I. The values of nj for class A Bianchi models [42].

Bianchi model n1 n2 n3

Type I 0 0 0
Type II 1 0 0
Type VI0 1 −1 0
Type VII0 1 1 0
Type VIII 1 1 −1
Type IX 1 1 1
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understand them and, ultimately, to include them as a
discrete symmetry in the quantum theory.
Since the sign of the directional scale factors ajðtÞ

encodes the orientation of the triads, the parity trans-
formations act by changing the sign of the relevant direc-
tional scale factor while leaving all of the fiducial structures

like e
∘a
k and ω

∘ j
a invariant. For example, the parity trans-

formation Π1 that sends ea1 → −ea1 acts on the aj as

Π1ða1Þ ¼ −a1; Π1ða2Þ ¼ a2; Π1ða3Þ ¼ a3:

ð8Þ
As already mentioned, the metric (4) is clearly left invariant
under parity transformations. It is useful to define

εj ¼ sgnðajÞ; ð9Þ

and then the εj can be used as a shorthand to denote the
orientation of the triads.
An important point is that the spatial volume 3-form ϵabc

is invariant under such a parity transformation; the integral
of some function over V does not depend on the choice of
the triads (and therefore does not depend on their orienta-
tion either). This is due to the fact that the orientation of the
manifold and the orientation of the triads eai are not the
same thing and may be opposite. Here, the orientation of
the manifold is fixed, while the orientation of the triads is
what is reversed under the action of the parity operators Πj.
Hence, the spatial volume 3-form ϵabc is fixed.
However, since the 3-form in internal indices ϵjkl (not to

be confused with the antisymmetric tensor ϵ
∘
jkl appearing in

the structure constants which is invariant under all trans-
formations) is related to the volume 3-form as

ϵjkl ¼ ϵabceaj e
b
ke

c
l ; ð10Þ

it follows that under a parity transformation ϵjkl does
change sign,

ΠjðϵklmÞ ¼ −ϵklm: ð11Þ

This suggests the definition

ε ¼ ϵ123; ð12Þ
where ε ¼ �1, and so ΠjðεÞ ¼ −ε. Given the transforma-
tion properties of ε under the Πj and using the condition
that the orientation of ϵabc and ϵjkl should agree for right-
handed triads (i.e., when all εj are positive and the
orientation of the triads agrees with that of the manifold),
it follows that

ε ¼ ε1ε2ε3: ð13Þ
Thus, under a parity transformation Πj, the orientation of
that triad is flipped, which corresponds to changing the sign

of εj. From this discussion, it follows that the Ashtekar
connection, the densitized triad, and the spin-connection
(which will all be introduced in the next subsection) all
change sign under a parity transformation. It can be
checked that the reality conditions transform properly
under the action of Πj, and it will also be necessary to
appropriately incorporate the effect of the parity trans-
formations in the quantum theory.

C. Self-dual variables

The complex-valued self-dual variables are the self-dual
Ashtekar connection,

Aj
a ¼ Γj

a þ iKj
a; ð14Þ

which is constructed from the spin-connection Γj
a and the

extrinsic curvature Kj
a ¼ Kabebj , and the conjugate variable

to Aj
a, the densitized triad

Ea
j ¼

ffiffiffi
q

p
eaj ; ð15Þ

which is composed of the determinant q of the spatial
metric and the physical triads eaj defined in (5). Since the
Ashtekar connection is complex valued, in order to recover
(real-valued) general relativity, it is necessary to impose the
two reality conditions

Aj
a þ ðAj

aÞ⋆ ¼ 2Γj
a; Ea

jE
b
kδ

jk > 0: ð16Þ

These are the basic variables that the remainder of the paper
will be based upon. For a more detailed introduction to self-
dual variables, see, e.g., Ref. [46].
For diagonal class A Bianchi models, the Ashtekar

connection and the densitized triads can be parametrized
as [47]

Aj
a ¼ cj

lo
ω
∘ j
a; Ea

j ¼ pj

ffiffiffi
q
∘q

l2
o
e
∘a
j ; no sum over j;

ð17Þ

and then, for these variables, the symplectic structure of
self-dual general relativity induces the Poisson brackets

fcj; pkg ¼ i · 8πGδjk: ð18Þ

It is helpful to relate the cj and pj to the more familiar
geometrodynamical variables in terms of ajðtÞ and _ajðtÞ,
where the dot denotes differentiation with respect to proper

time. From (5) and
ffiffiffi
q

p ¼ ja1a2a3j
ffiffiffi
q
∘q
, it immediately

follows that the pj are related to the directional scale
factors as, e.g., p1 ¼ ε1ja2a3jl2

o and cyclic permutations
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thereof. Clearly, the sign of pj determines the orientation of
eaj , and changes under the parity transformation Πj.
Relating cj to the geometrodynamical variables requires

two steps. First, the spin-connection components are, e.g.,
[47,48]

Γ1
a ¼ −ϵ1jkebj

�
∂ ½aωb�k þ

1

2
eckω

l
a∂ ½cωb�l

�
¼ ε

2

�
n2

p3

p2

þ n3
p2

p3

− n1
p2p3

p2
1

�
ω
∘ 1
a ≕ Γ1ω

∘ 1
a; ð19Þ

where the shorthand Γj
a ¼ Γjω

∘ j
a (no sum over j) has been

introduced. The other components of the spin connection
can be obtained via cyclic permutations. Importantly, the
spin-connection components are diagonal with respect to

the fiducial cotriads ω
∘ j
a; otherwise, the parametrization of

the Ashtekar connection in (17) would fail. This is a
property of class A Bianchi models that greatly simplifies
the Hamiltonian treatment, as well as the quantization
procedure.
Second, it is easy to check that in general relativity the

extrinsic curvature is given by Kj
a ¼ _ajω

∘ j
a, where there is

no sum over j and the dot denotes a derivative with respect
to the proper time t. (Note, however, that the relation
between the extrinsic curvature and the proper time
derivatives of the directional scale factors is more compli-
cated in LQC, even in the effective theory.) The combi-
nation of these two results shows how each of the cj can be
related to the directional scale factors and their time deriva-
tives in classical general relativity as cj ¼ loðΓj þ i · _ajÞ.
In order to express the spin connection in a simpler way,

it is helpful to introduce

r1 ¼
����p2p3

p1

����; r2 ¼
����p1p3

p2

����; r3 ¼
����p1p2

p3

����; ð20Þ

in order to define

s ¼ njrj: ð21Þ

Then, the spin connection is given by

Γj ¼ 1

2
·
∂s
∂pj

¼ −
i

16πG
fcj; sg: ð22Þ

Writing the spin connection in this way not only leads to a
relatively simple form of the reality conditions in the
classical theory,

cj þ c⋆j ¼ −
ilo

8πG
fcj; sg; p⋆

j ¼ pj; ð23Þ

but will also give some important insight into how the
reality conditions can be imposed in the quantum theory.

The next step is to determine the dynamics of the cj and
pj, which requires the construction of the Hamiltonian
constraint which is composed of the scalar, diffeomor-
phism, and Gauss constraints. It is easy to check that when
the self-dual variables have the form (17) the Gauss and
diffeomorphism constraints are automatically satisfied, and
only the scalar constraint is left,

H ¼
�

Ea
jE

b
k

16πG
ffiffiffi
q

p ϵjklFab
l þ π2ϕ

2
ffiffiffi
q

p
�
≈ 0; ð24Þ

where the ≈0 indicates that the constraint must vanish for
physical solutions. Here, the matter content has been
chosen to be a massless scalar field ϕ, and its conjugate
momentum is denoted by πϕ.
Since the Gauss and diffeomorphism constraints vanish,

the Hamiltonian constraint is simply CH ¼ R
NH, with N

being the lapse. In terms of the cj and pj, CH is

CH ¼ N

8πG
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijp1p2p3j

p ½p1p2ðc1c2 − n3loεc3Þ

þ p2p3ðc2c3 − n1loεc1Þ þ p1p3ðc1c3 − n2loεc2Þ�

þ Np2
ϕ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijp1p2p3j

p ≈ 0; ð25Þ

where πϕ ¼ ffiffiffiffiffiffijqjp
_ϕ ¼ pϕ

ffiffiffi
q
∘q
=Vo. With this definition for

pϕ, the Poisson bracket for the massless scalar field is given
by fϕ; pϕg ¼ 1. Note that all terms ε2 have been set to 1.
The Hamiltonian constraint generates the dynamics of

the Bianchi models; for any observable O,

dO
dT

¼ fO; CHg; ð26Þ

where T is the time variable related to proper time via
NdT ¼ dt. For example, taking N ¼ 1,

_p1 ¼
−ip1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijp1p2p3j

p �
p2c2 þ p3c3 − lon1ε

p2p3

p1

�
ð27Þ

(recall that the dot denotes d=dt). Clearly, the time
derivatives of the other pj can be obtained via cyclic
permutations, and time derivatives of other observables of
interest can be obtained by the same procedure.
Finally, generalized holonomies play an important role in

the quantum theory. In the previous treatment of the
self-dual LQC of FLRW space-times [33], a family of
“generalized holonomies” parametrized by α ∈ C were
introduced,

h ¼ P exp

�Z
edge

αAa

�
; ð28Þ
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with Aa≔Aj
aσj=2i, where the σj are the Pauli matrices;

standard holonomies are recovered for α ¼ 1. This exten-
sion was necessary since it was impossible to define
operators corresponding to standard holonomies in the
kinematical Hilbert space of self-dual LQC for FLRW
space-times. Rather, only generalized holonomies with α
completely imaginary were well defined. This will turn out
to be the case for Bianchi models as well, as shall be shown
in Sec. III A.
At this point, it is worth pointing out two properties that

generalized holonomies have in common with standard
holonomies. First, generalized holonomies are elements of
SLð2;CÞ. The definition (28) has a simple form due to the
representation of the self-dual slð2;CÞ connection Aj

a

being a three-dimensional complex vector space, and thus
it is clear that if Aa ∈ slð2;CÞ, so is αAa for α ∈ C. (Note
that defining generalized holonomies for other Lie algebras
may not be as straightforward.) Second, the composition
and inversion rules for generalized holonomies are the same
as for standard holonomies. These properties hold gener-
ally, and not just for homogeneous space-times. Note,
however, that generalized holonomies do not transform in
the same way as standard holonomies under gauge
transformations.
Of course, the actual form of the generalized holonomies

will simplify in Bianchi space-times. Due to their spatial
homogeneity, it is sufficient to calculate the generalized
holonomies that are tangent to the fiducial triads. A
generalized holonomy of the Ashtekar connection tangent
to e

∘a
j and of length μ

∘
lo with respect to the fiducial metric is

hjðμ∘Þ ¼ exp

�Z
μ
∘
lo

0

Aj
ae
∘a
jασj=2i

�
¼ cosh

�
αμ
∘
cj

2i

�
Iþ sinh

�
αμ
∘
cj

2i

�
σj; ð29Þ

where there is no sum over j in either of the lines. Since the
only dependence on cj in these expressions is in the
hyperbolic trigonometric functions, it will be sufficient
to define operators corresponding to exponentials of

αμ
∘
cj=2i in order to represent generalized holonomies in

the quantum theory.
An important relation for the quantum theory is

cj ¼ lim
μ
∘
→0

i
Tr½hjðμ∘Þσj�

αμ
∘ ; no sum over j; ð30Þ

which shows that the phase space variable cj can easily

recovered from the holonomies hjðμ∘Þ. This will allow for
the definition of a nonlocal connection operator in terms of

a generalized holonomy hjðμ∘Þ of an appropriate (Planck-
sized) length, as shall be explained in Sec. III B.

III. QUANTUM THEORY

Using the function sðpjÞ determined by the Bianchi
model structure constants in (21), it is possible to proceed
with the canonical loop quantization of all diagonal class A
Bianchi models in one go. This section is split in three
parts: in the first, the kinematical Hilbert space is defined,
and the reality conditions of the fundamental operators of
the theory are imposed through the choice of the inner
product; in the second, the Hamiltonian constraint operator
is constructed, and some of its properties are studied; and in
the third, the resulting theory of self-dual LQC is compared
to standard LQC.

A. Kinematical Hilbert space

The kinematical Hilbert space H is given by the tensor
product of the kinematical Hilbert space of the gravitational
sector Hg and of the matter sector Hm,

H ¼ Hg ⊗ Hm: ð31Þ

For Hg, the second reality condition in (23) suggests that
it may be convenient to use jp1; p2; p3i as a basis for the
gravitational sector of the kinematical Hilbert space, with
pj ∈ R due to the reality condition. For now, it shall be
assumed that any single basis vector of this type is
normalizable; this shall be shown to be the case below.
By definition, the p̂j operators act by multiplication on

this basis, for example,

p̂1j~pi ¼ p1j~pi; ð32Þ

where j~pi is shorthand for jp1; p2; p3i. The other family of
fundamental operators in the gravitational sector corre-
sponds to generalized holonomies of Aj

a along paths

tangential to e
∘a
j of length μ

∘
, which following (29) can be

entirely expressed in terms of the shift operators

deμc1 jp1; p2; p3i ¼ jp1 þ 8πGℏμ; p2; p3i; ð33Þ

where μ ¼ αμ
∘
=2i. Clearly, since the states j~pi ∈ Hg only

for pj ∈ R, it follows that μ ∈ R is a necessary condition

for this shift operator to be well defined on Hg. Since μ
∘
is

real valued by definition, it follows that α must be purely
imaginary, and this shows that it is the same family of
generalized holonomies that is well defined for the self-
dual LQC of the FLRW space-times and of the Bianchi
models. In neither case are the standard holonomy oper-
ators well defined in self-dual LQC, and only operators
corresponding to generalized holonomies with a purely
imaginary α exist in their respective kinematical Hilbert
spaces. This suggests that, when working with the self-dual
connection variables, holonomies are not appropriate
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operators in the quantum theory; instead, one should work
with generalized holonomies with imaginary α.
Finally, the last fundamental operator to be defined is the

inverse triad operator. The starting point of the definition of
Hg was assuming the states j~pi to be normalizable basis
vectors (again, this will be shown to be the case below).
Then, since j0; 0; 0i is an element of Hg, the operator
ðp̂jÞ−1 is not well defined on Hg, and for this reason, it is
necessary to define an alternative inverse triad operator.
This can be done by adapting one of the Thiemann
identities [10] to the symmetry-reduced phase space of
LQC, but there is considerable freedom in this choice (see,
e.g., Ref. [49] for a discussion concerning the quantization
ambiguities related to the choice of the inverse triad
operator in standard LQC; the same ambiguities arise in
self-dual LQC). In this paper, I shall define the inverse triad
operators to be of the form

c1
p1

j~pi ¼
�
0 for p1 ¼ 0
1
p1
j~pi otherwise ð34Þ

(and analogous definitions for the inverse triad operators
corresponding to p2 and p3) for two reasons. First, for any
other known choice of the inverse triad operator, the
operator depends on global quantities and, for noncompact
spaces, on the choice of the fiducial cell. While this is
especially problematic for the case of noncompact spaces
since any dependence of physical quantities on the fiducial
is unphysical, this dependence in noncompact spaces
vanishes in the limit of V → Σ. However, once this limit
has been taken, the resulting form of the inverse triad
operator is necessarily (34). (Note that, while other choices
of inverse triad operators are possible for compact spaces, it
is simplest to take the same inverse triad operator for
compact and noncompact spaces.) Second, this choice of
inverse triad operator is particularly convenient since the
product of p̂j with its “inverse” (34) is the identity
everywhere, except for the basis vectors where pj ¼ 0

which are annihilated by the two operators.
Following the same philosophy, the r̂j operators are

defined following (32) and (34), for example,

r̂1j~pi ¼
8<: 0 if any pj ¼ 0;��� p2p3

p1

���j~pi otherwise:
ð35Þ

With these three types of operators defined, the next step
is to define the inner product in such a way that the reality
conditions (23) are properly implemented in the quantum
theory. The reality conditions, in terms of the operators
defined above, become

ðp̂jÞ† ¼ p̂j ð36Þ

and

ðdeμcjÞ† ∼ e−μðcjþlo½cj;s�=8πGℏÞ: ð37Þ

Note that the Poisson bracket in (23) has been replaced by a
commutator via f·; ·g → ½·; ·�=iℏ, and recall also from the
discussion above that μ ∈ R and therefore μ̄ ¼ μ. The ∼ in
(37) indicates that the operator on the right-hand side
remains to be precisely defined; among other ambiguities, it
is necessary to choose a particular factor ordering.
However, no matter the factor ordering, due to the non-
commutativity of the basic operators, it will only be
possible to impose the reality conditions up to leading
order with quantum corrections of the order of ℏ
unavoidable.
The qualitative form of the second reality condition and

the Baker-Campbell-Hausdorff equation (to leading order)
suggest that the operator equation corresponding to the
reality condition (23) could be written as

ðdeμcjÞ† ¼ de−slo=8πGℏ de−μcj deslo=8πGℏ : ð38Þ

While in principle it would be possible to include the higher
order terms in the Baker-Campbell-Hausdorff equation,
there is no need for this since there already exist operator-
ordering ambiguities in the definition of this operator
equation in any case, and the reality condition as written
in (38) is already sufficient in order to recover the classical
relation (23) for states that have support on pj much greater
than the l2

Pl.
Further support for this choice is given by the form this

reality condition has in the quantum theory for the closed
FLRW space-time [33],

ðceμcÞ† ¼ de−3jpjlo=8πGℏ de−μc de3jpjlo=8πGℏ :

The closed FLRW space-time is obtained by starting from
the Bianchi IX model and imposing isotropy. In that case,
the structure constants are n1 ¼ n2 ¼ n3 ¼ 1, and all of the
directional variables are taken to be equal, p ¼ pj; c ¼ cj.
It is clear that for the closed FLRW cosmology, s ¼ 3jpj.
Then, it is easy to see that replacing 3jpj by s in the reality
condition for FLRW space-times also gives precisely (38).
In order to determine the appropriate inner product, it is

again helpful to consider the self-dual LQC of closed
FLRW space-times, where the inner product is

hkjpi ¼ e3lojpj=8πGℏδk;p;

which suggests that the inner product for the anisotropic
space-times in self-dual LQC should be

h~kj~pi ¼ esð~pÞlo=8πGℏδk1;p1
δk2;p2

δk3;p3
; ð39Þ

where ŝj~pi ¼ sð~pÞj~pi, with r̂j being defined in (35), and δ
denotes the Kronecker delta. With this inner product, all
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kets j~pi with pj ∈ R are normalizable, and this verifies the
assumption made at the beginning of this section.
Given this inner product, any normalized state in the

Hilbert space has the form

ψðpÞ ¼
X
~p∈R3

C~pj~pi; ð40Þ

with
P

~pe
sð~pÞlo=8πGℏjC~pj2 ¼ 1.

It is a straightforward task to show that with the inner
product (39) the reality conditions encoded in the operator
equations (36) and (38) hold. First, the reality condition
(36) is clearly satisfied by imposing that Hg is spanned by
the basis kets j~pi with pj ∈ R. Second, using the definition
of the inner product, it follows that (38) is also satisfied,

h~kj de−slo=8πGℏ de−μcj deslo=8πGℏ j~pi ¼ eðΔsÞlo=8πGℏh~kj~p−i
¼ esð~pÞlo=8πGℏδ3~k;~p−

¼ esð~pÞlo=8πGℏδ3~kþ;~p

¼ h~kjðdeμcjÞ†j~pi; ð41Þ

where j~p−i¼ de−μcj j~pi;j~kþi¼deμcj j~ki, andΔs¼sð~pÞ−sð~p−Þ.
To show that (38) correctly captures the classical reality

condition (23), in the relation

eðΔsÞlo=8πGℏh~kj de−μcj j~pi ¼ h~kjðdeμcjÞ†j~pi ð42Þ
coming from the first and fourth lines of (41), the Δs term
can be Taylor expanded for pj much greater than the Planck
area. For example, for the shift operator with internal index
j ¼ 1, j~p−i ¼ jp1 − 8πGℏμ; p2; p3i, and assuming that
p1 ≫ 8πGℏμ and p2; p3 > 0,

Δs¼ n1
�
p2p3

p1

−
p2p3

p1 − 8πGℏμ

�
þ 8πGℏμ

�
n2

p3

p2

þn3
p2

p3

�
≈ 8πGℏμ

�
−n1

p2p3

p2
1

þn2
p3

p2

þn3
p2

p3

�
; ð43Þ

where terms of the order 8πGℏμp2p3=p3
1 and smaller have

been dropped, and the result is clearly the spin-connection
component Γ1 given in (19) multiplied by 16πGℏμ. (It is
easy to check that the correct result is also obtained if any
number of the pj are negative, so long as jp1j ≫ 8πGℏμ.)
The same calculation clearly holds for j ¼ 2 and j ¼ 3 and
thus up to terms of the order of Gℏ=pj which are negligible
in the semiclassical limit,

e2loμΓ
jh~kj de−μcj j~pi ≈ h~kjðdeμcjÞ†j~pi: ð44Þ

This shows that the operator equation (38) does indeed
provide an appropriate form of the reality condition (23) for
the quantum theory.

The last operators that remain to be defined onHg are the
parity operators corresponding to the discrete symmetries
(8), which act as, for example,

Π̂1jp1; p2; p3i ¼ j − p1; p2; p3i: ð45Þ

It is also convenient to define the ε̂j operators as a
shorthand for the operators corresponding to sgnðpjÞ,

ε̂j ¼ dsgnðpjÞ: ð46Þ

Since the orientation of the triads does not affect the
classical theory, the wave functions ψð~pÞ are required to
be invariant under parity transformations, i.e.,

Π̂jψð~pÞ ¼ ψð~pÞ; ð47Þ

for all j. This completes the definition of the kinematical
Hilbert space for the gravitational sector.
To recap, the kinematical Hilbert spaceHg is spanned by

the basis vectors j~pi with ~p ∈ R3, and the fundamental
operators are the p̂j which act by multiplication, the shift
operators (33), and the inverse triad operators (34). Then,
the classical reality conditions are translated into the
operator equations (36) and (38), and these operator
equations hold for the inner product (39). Furthermore,
wave functions are required to be invariant under the parity
transformations (47).
Finally, the kinematical Hilbert space Hm corresponding

to the scalar field sector is the standard space of square-
integrable functions χðϕÞ with respect to the Lebesgue
measure dϕ, and the fundamental operators are

ϕ̂χðϕÞ ¼ ϕχðϕÞ; π̂ϕχðϕÞ ¼ −iℏ
dχðϕÞ
dϕ

: ð48Þ

B. Hamiltonian constraint operator

In order to define the operator corresponding to the
Hamiltonian constraint (25) for some choice of the lapse
function, it is necessary to define an operator corresponding
to the phase space variables cj; while operators corre-
sponding to πϕ and the pj (as well as inverse powers of
them) are defined in the previous section, no operator
corresponding directly to cj was introduced.
This is no accident as there is in fact no operator that

directly corresponds to cj in the quantum theory; it can
readily be checked that the action of the shift operator (33)
is not continuous with respect to the parameter μ and
therefore infinitesimal shifts are not well defined. (This is
because the kinematical inner product depends on
Kronecker delta functions which are not continuous in
their arguments.) Instead, it is necessary to express cj in
terms of small but finite shift operators. This follows from
the definition of the kinematical Hilbert space which was
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constructed following the techniques of loop quantum
gravity and is analogous to the fact that (generalized)
holonomies of the connection are the fundamental oper-
ators of the theory, not the connection itself.
Furthermore, the requirement that the cj variables must

be represented in the quantum theory by holonomies of
finite length can be understood to capture the Planck-scale
discreteness of loop quantum gravity; given the discrete
spectrum of geometrical observables in loop quantum
gravity, it does not make sense to calculate the parallel
transport of the connection along a path that is shorter than
the Planck length. Therefore, it is appropriate to define the
nonlocal operator corresponding to the cj phase space
variables using holonomies along the edges of a minimum
physical length determined by quantum gravity.1 This
minimum length lm is expected to be of the order of the
Planck length, although in order to obtain a specific value,
it would be necessary to derive (self-dual) LQC from (self-
dual) LQG. (In the standard LQC of the FLRW and the
Bianchi I space-times, it is the field strength that is
expressed in terms of holonomies, and it is assumed that
the area of the loop encircled by the holonomy is the
smallest nonvanishing eigenvalue of the area operator in
LQG [52–54]. This suggests that taking lm to be the square
root of the minimal nonzero eigenvalue of the area operator
in self-dual LQG [55] would be a reasonable choice, but
since a specific choice is not necessary in any case here, I
will leave lm free.)
Following this reasoning, the nonlocal connection oper-

ator ĉj is obtained via the relation (30), with the difference
that, instead of taking the limit of the path-length to vanish,
it is set equal to the minimal physical length lm.
It is important to note that this minimal length is of

course measured with respect to the physical metric qab and

not with respect to the fiducial metric q
∘
ab. Since the

holonomies hjðμ∘ jÞ defined in (29) have a length of μ
∘
jlo

with respect to q
∘
ab, their physical length with respect to qab

is jajjμ∘ jlo (no sum over j). Thus, requiring that the
physical path length of the holonomy be lm (and recall
also the relations between the scale factors and the pj, e.g.,
p1 ¼ sgnða1Þja2a3jl2

o) gives

lm ¼ jajjμ∘ jlo ⇒ μ
∘
j ¼ lm ·

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi����pkpl

pj

����
s

; ð49Þ

where there is no sum over j and it is understood that in the
second equation k and l are the two indices different from j;

for example, μ
∘
1 ¼ lm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijp2p3=p1j
p

. This procedure gives a

value of μ
∘
which corresponds to the standard “improved

dynamics” loop quantization procedure of the Bianchi
models [50,51,54].
The resulting nonlocal ĉj operator (ignoring factor-

ordering ambiguities for now and dropping the hats on
operators in order to avoid unnecessary clutter in the
notation) is

ĉj ¼
eλm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jpj=pkplj

p
cj − e−λm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jpj=pkplj

p
cj

2λm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijpj=pkplj

p ; ð50Þ

where λm ¼ αlm=2i, and again there is no sum over any of
the internal indices, and it is understood that k ≠ l are the
two indices different from j.
Note, however, that the operator

N�
j ¼ e�λm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jpj=pkplj

p
cj ð51Þ

(where as above there is no sum over j and k and l are
understood to be different from j and each other) is not one
of the simple shift operators defined in (33) since the
exponent includes pj terms, and therefore it is not immedi-
ately obvious how it acts on a given state. The action of this
operator can be understood by introducing the variables

bj ¼
ffiffiffiffiffiffiffiffi
jpjj

q
cj; no sum over j; ð52Þ

ϑj ¼ sgnðpjÞ
ffiffiffiffiffiffiffiffi
jpjj

q
; no sum over j; ð53Þ

V ¼ ϑ1ϑ2ϑ3: ð54Þ

Since the Poisson bracket of the variables ðbj; ϑkÞ is given
by fbj; ϑkg ¼ i · 4πGδjk, the operator N�

j can be under-
stood to act as a shift operator where the wave function is
shifted in the ϑj argument by an amount which depends on
ϑk and ϑl. For example,

N�
1 jϑ1; ϑ2; ϑ3i ¼ jϑ1 � 4πGλm · jϑ2ϑ3j−1; ϑ2; ϑ3i: ð55Þ

Again, this is analogous to the improved dynamics pre-
scription for Bianchi models in standard LQC [50,51,54].

Here, the basis j~ϑi is simply a relabeling of j~pi,

jϑ1;ϑ2;ϑ3i~ϑ¼jsgnðϑ1Þϑ21;sgnðϑ2Þϑ22;sgnðϑ3Þϑ23i~p; ð56Þ

where the subscript denotes the label of the basis states.

1There are two reasons for defining a nonlocal connection
operator rather than a nonlocal field strength operator for the self-
dual LQC of Bianchi space-times: (i) for generalized holonomies
with a purely imaginary α, the relation between the field strength
Fab

k and the matrix elements Fab
A
B is much more complicated

than for the connection [33], and (ii) even in standard LQC, for
Bianchi models with nonvanishing spatial curvature, the field
strength is not an almost-periodic function of the connection, and
therefore it is not known how to represent it as an operator in the
quantum theory [50,51].

ANISOTROPIC LOOP QUANTUM COSMOLOGY WITH SELF- … PHYSICAL REVIEW D 93, 083502 (2016)

083502-9



This completes the definition of the nonlocal connection
operator ĉj (up to factor-ordering choices), and with this it
is now possible to construct and study the Hamiltonian
constraint operator.
In order to do this, it is necessary to choose a lapse and a

specific factor ordering for the Hamiltonian constraint
operator and then determine its action. The Hamiltonian
constraint operator contains a number of terms, which can
be grouped in the following fashion:

ĈH ¼ Ĉð12Þ þ Ĉð23Þ þ Ĉð13Þ þ lonjĈ
n
j −

ℏ2

2
∂2
ϕ: ð57Þ

Taking the lapse N ¼ jVj, which is known to simplify the
form of the constraint [54] and choosing a factor ordering
motivated by previous studies of the Bianchi models in
standard LQC [54,56], the various terms have a relatively
simple form. For example,

Ĉð12Þ ¼
ffiffiffiffiffiffijVjp

64πGλ2m
½ðN þ

1 −N −
1 ÞjVjðN þ

2 −N −
2 Þ

þ ðN þ
2 −N −

2 ÞjVjðN þ
1 −N −

1 Þ�
ffiffiffiffiffiffi
jVj

p
; ð58Þ

and

Ĉnj ¼ −
jϑkϑlj3
16πGλm

·
1ffiffiffiffiffiffiffijϑjj

p · ðN þ
j −N −

j Þ ·
1ffiffiffiffiffiffiffijϑjj

p ; ð59Þ

where it is understood that there is no sum over j and that k
and l are both different from j and each other in the
definition of Ĉnj . The shift operatorsN �

j appearing here are
defined as

N �
j ¼ 1

2
ðεjN�

j þN�
j εjÞ; no sum over j: ð60Þ

This factor ordering, first suggested in Ref. [56], is
convenient since it annihilates any eigenket jϑ1; ϑ2; ϑ3i
of which the volume V would change sign when acted upon
byN �

j . Thus, the octants of positive and negative ϑj are not
mixed under the action of N �

j . This property will simplify
the analysis of the action of the Hamiltonian constraint
operator below.
Then, defining the operator

Θ ¼ −2½Ĉð12Þ þ Ĉð23Þ þ Ĉð13Þ þ lonjĈ
n
j � ð61Þ

and requiring that the Hamiltonian constraint operator (57)
annihilates states Ψðϑ1; ϑ2; ϑ3;ϕÞ in the physical Hilbert
space give

−ℏ2∂2
ϕΨ ¼ ΘΨ: ð62Þ

SinceΘ acts only on the gravitational sector, the scalar field
can be used as a relational clock, and Θ can be treated as a

true Hamiltonian (assuming that it is self-adjoint). The
positive frequency solutions, namely the solutions to

−iℏ∂ϕΨ ¼
ffiffiffiffi
Θ

p
Ψ; ð63Þ

constitute the physical Hilbert space.
At this point, it can be checked that all singular states

(i.e., states that correspond to the classical big bang or big
crunch singularity of V ¼ 0) are annihilated by Θ.
Denoting singular states as jϑ1; ϑ2; ϑ3ising,

Θjϑ1; ϑ2; ϑ3ising ¼ 0; ð64Þ

and therefore all singular states are stationary with respect
to the relational time ϕ.
An important property of Θ is that singular states

decouple from nonsingular states under its action. First,
singular states remain singular, as seen in (64). Second, any
nonsingular state that would be shifted to a singular state
with V ¼ 0 is annihilated by a prefactor of V to some power
(recall that inverse power operators of ϑj are defined such
that they annihilate states where ϑj vanishes). Thus, if one
constructs an initial state ΨnsðϕoÞ that only has support on
nonsingular states, ΨnsðϕÞ will continue to be nonsingular
for all ϕ.
The next step is to study in further detail the action of Θ

on nonsingular states. This task is simplified by the fact
that, given the definition of N �

j in (60), it follows that the
octants of positive and negative ϑj are not mixed under the
action ofΘ. Therefore, it is possible to study the action ofΘ
on one octant at a time. A further simplification arises from
the parity properties of Θ. Recall the parity transformations
(47) (which act on the ϑj variables as, e.g.,Π1jϑ1; ϑ2; ϑ3i ¼
j − ϑ1; ϑ2; ϑ3i) under the action of which the wave function
is required to remain invariant. It is easy to check that

ΠjN �
k Πj ¼

�
N �

k if j ≠ k;
−N∓

k if j ¼ k;
no sum over j; ð65Þ

from which it immediately follows that

ΠjΘΠj ¼ Θ; no sum over j: ð66Þ

Therefore, due to the invariance of Θ under parity trans-
formations, it is convenient to first determine the action of
Θ on the positive octant where ϑj > 0. Then, it is easy to
determine the action of Θ in the other octants by exploiting
the fact that it is invariant under parity transformations.
When acting on the positive octant, the action simplifies

considerably and is given below. The action of the CðjkÞ
terms combine in a relatively simple form, and so the action
of Θ can be written in the following form,
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ΘΨ ¼ −
ffiffiffiffi
V

p

32πGλ2m
½Vþ ffiffiffiffiffiffiffiffiffi

Vþþp
Ψþþ þ θV−−V−

ffiffiffiffiffiffiffiffiffi
V−−

p
Ψ−−

−
ffiffiffiffi
V

p
ðVþΨ−þ þ θV−V−Ψþ−Þ� þ lonjΘn

jΨ; ð67Þ

where θx is the Heaviside function which vanishes for
x ≤ 0 and is 1 elsewhere, and

V� ¼ V � 2πGℏλm; V�� ¼ V � 4πGℏλm: ð68Þ
The shifted wave functions are defined as

Ψþþðϑ1; ϑ2; ϑ3Þ ¼
X
j≠k

Nþ
j N

þ
k Ψðϑ1; ϑ2; ϑ3Þ; ð69Þ

Ψ−−ðϑ1; ϑ2; ϑ3Þ ¼
X
j≠k

N−
j N

−
kΨðϑ1; ϑ2; ϑ3Þ; ð70Þ

Ψþ−ðϑ1; ϑ2; ϑ3Þ ¼
X
j≠k

Nþ
j N

−
kΨðϑ1; ϑ2; ϑ3Þ; ð71Þ

Ψ−þðϑ1; ϑ2; ϑ3Þ ¼
X
j≠k

N−
j N

þ
k Ψðϑ1; ϑ2; ϑ3Þ: ð72Þ

Note that, since N�
j and N�

k do not commute for j ≠ k,
each Ψ�� contains six terms, and each of them has the
form, e.g.,

Nþ
1 N

þ
2 Ψðϑ1; ϑ2; ϑ3Þ ¼ Ψ

�
ϑ1 ·

V−−

V− ; ϑ2 ·
V−

V
; ϑ3

�
ð73Þ

or

Nþ
1 N

−
2Ψðϑ1; ϑ2; ϑ3Þ ¼ Ψ

�
ϑ1 ·

V
Vþ ; ϑ2 ·

Vþ

V
;ϑ3

�
: ð74Þ

Importantly, Ψþþ;Ψþ−;Ψ−þ, and Ψ−− are all eigenvectors
of V̂ with eigenvalues Vþþ; V; V, and V−−, respectively.
Finally, the operators Θn

j act as, for example,

Θn
1Ψðϑ1; ϑ2; ϑ3Þ ¼

V7=2

8πGλmϑ41

�
1ffiffiffiffiffiffiffi
Vþp Ψ

�
ϑ1 ·

Vþ

V
; ϑ2; ϑ3

�
−

θV−ffiffiffiffiffiffi
V−

p Ψ

�
ϑ1 ·

V−

V
; ϑ2; ϑ3

��
: ð75Þ

The actions ofΘn
2 andΘn

3 are given by permutations of (75).
(It is understood that the numerical prefactor θV−=

ffiffiffiffiffiffi
V−

p
is

zero for V− ¼ 0.)
As already mentioned, the actions of Θ in the different

octants are related in a trivial fashion due to the invariance
of Θ under parity transformations.
Note that, as pointed out in Ref. [54], the explicit form of

the action of the Hamiltonian constraint operator can be
simplified by using V as a quantum number (which is

shifted by a constant factor) rather than one of the ϑj (which
are rescaled by a prefactor that depends on V), which
should be kept in mind for more detailed analytical or
numerical investigations of the quantum dynamics.
This completes the explicit definition of the Hamiltonian

constraint operator in self-dual LQC for diagonal type A
Bianchi models. One of its main properties, already
mentioned above, is that the singularity is resolved in
the sense that nonsingular and singular states decouple
under its action.
Another interesting property of the Hamiltonian con-

straint operator is that, when the spatial curvature is
nonvanishing, Θ has a different form in self-dual LQC
than in standard LQC. However, in the case of the Bianchi
type I space-time that has zero spatial curvature, the
Hamiltonian constraints of self-dual and standard LQC
are in fact identical (with the replacement γ

ffiffiffiffi
Δ

p
→ λm from

Ref. [54]). Thus, in the absence of spatial curvature,
standard and self-dual LQC give the same result, and
therefore all of the results obtained in Ref. [54] for standard
LQC of Bianchi type I space-times also hold in self-dual
LQC. In particular, there exists a projection map from the
self-dual LQC for the Bianchi I space-time to the self-dual
LQC for the isotropic flat FLRW space-time which gives
the correct Hamiltonian constraint operator, showing that in
this restricted setting the symmetry reduction from the
Bianchi type I space-time to the flat FLRW space-time (i.e.,
the imposition of isotropy) commutes with the loop
quantization, whether one uses self-dual variables or the
Ashtekar-Barbero variables.

C. Relation to standard LQC

Now that the kinematical Hilbert space and the
Hamiltonian constraint operators for anisotropic self-dual
LQC have been constructed, it is possible to compare the
resulting theory with standard anisotropic LQC. As shall be
shown here, while the kinematical Hilbert spaces are
isomorphic, the physical Hilbert spaces are different when
the spatial curvature is nonzero. This is the same result that
was found for the self-dual LQC of the FLRW space-
times [33].
In order to compare these two theories, recall that in

standard LQC the Ashtekar-Barbero connection and the
densitized triads are parametrized as

~Aj
a ¼

~cj
lo

ω
∘ j
a; ~Ea

j ¼ ~pj

ffiffiffi
q
∘q

l2
o
e
∘a
j ; no sum over j; ð76Þ

where I have placed tildes on the variables of standard LQC
in order to differentiate them from the variables of self-dual
LQC. Since ~Aj

a ¼ Γj
a þ γKj

a, the relation between these
variables is given by
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~cj ¼ −iγcj þ ð1þ iγÞloΓj; ~pj ¼ pj: ð77Þ

A convenient basis for the standard LQC kinematical
Hilbert space of the Bianchi models is given by eigenstates
of the operators corresponding ~pj, the inner product of
which is given by

h ~p1; ~p2; ~p3j~k1; ~k2; ~k3i ¼ δ ~p1;~k1
δ ~p2;~k2

δ ~p3;~k3
; ð78Þ

and the other family of basic operators on the kinematical
Hilbert space are those corresponding to complex expo-
nentials of cj which act as shift operators, for example,

eiμc1 j ~p1; ~p2; ~p3i ¼ j ~p1 þ 8πGℏγ; ~p2; ~p3i: ð79Þ

Then, the relation (77) and the Baker-Campbell-
Hausdorff equation (to leading order) together suggest
relating the operators corresponding to holonomies in
standard LQC and generalized holonomies2 (with com-
plex-valued α) in self-dual LQC via

eiμ~cj ¼ eði−γÞslo=16πGℏγeμγcje−ði−γÞslo=16πGℏγ: ð80Þ

If one then also requires that the basis states of standard
LQC and self-dual LQC be related by

jp1; p2; p3i ¼ eði−γÞslo=16πGℏγj ~p1; ~p2; ~p3i; ð81Þ

the result is exactly the kinematical Hilbert space defined in
Sec. III A, with the same basic operators. This map
provides a simple way to translate between the kinematical
Hilbert spaces of standard and self-dual LQC, which are
clearly isomorphic.
On the other hand, the Hamiltonian constraint operators

in standard and self-dual LQC are different. This can be
seen by taking the Hamiltonian constraint operator of
standard LQC for, e.g., the Bianchi IX space-time given
in Ref. [51] and there replacing the standard LQC operators
~V ¼ V, ~ϑj ¼ ϑj, and

~N �
j ¼ eði−γÞslo=16πGℏγN �

j e
−ði−γÞslo=16πGℏγ ð82Þ

by their counterparts in self-dual LQC. The resulting
Hamiltonian constraint operator is very similar to the
self-dual LQC Hamiltonian constraint operator (61),
although with two important differences (beyond the
factor-ordering ambiguities which in any case arise in both
standard and self-dual LQC). First, the shift operators in the
self-dual CH do not preserve the norm of the states they act

upon. This is different from the Hamiltonian constraint
operator coming from standard LQC, where the N �

j

operators are now sandwiched between exponential oper-
ators, as seen in (82), which ensure that the norm is
preserved in that case. Second, there appear additional
terms in the standard LQC Hamiltonian constraint operator
coming from the ð1þ γ2ÞEa

jE
b
kϵ

jk
lΩab

l=
ffiffiffi
q

p
term (with

Ωab
l ¼ 2∂ ½aΓl

b� þ ϵjk
lΓj

aΓk
b corresponding to the spatial

curvature) that arises when the Hamiltonian constraint is
expressed in terms of the Ashtekar-Barbero variables. Due
to these two differences, the Hamiltonian constraints of
standard and self-dual LQC are not equivalent, and the two
theories have different physical Hilbert spaces. This is
exactly analogous to what happens for FLRW space-
times [33].
The main difference between the Hamiltonian constraint

operators of the two theories for anisotropic space-times
concerns the definition of the nonlocal connection operator
and whether this basic operator should correspond to the
self-dual connection or the Ashtekar-Barbero connection;
this is an ambiguity in the definition of the field strength
operator. Another ambiguity of the same type arises for the
loop quantization of the closed FLRW space-time, where it
is possible to directly define a nonlocal field strength
operator or instead first define a nonlocal connection
operator and use this operator to define the field strength
operator. An interesting result is that, while there do exist
some quantitative differences between the dynamics result-
ing from the different definitions of the field strength
operator, the qualitative behavior is not affected by this
ambiguity [49,57,58]. Based on this result, it appears
possible that this other type of field strength quantization
ambiguity—namely, whether the nonlocal connection oper-
ator corresponds to the self-dual connection or the
Ashtekar-Barbero connection—will not significantly affect
the qualitative predictions of anisotropic LQC.
This is reasonable since, despite the differences between

their Hamiltonian constraint operators, there are important
similarities between standard LQC and self-dual LQC.
Most obviously, the Hamiltonian constraint equation has
the form of a difference equation, and the big bang and big
crunch singularities of the classical theory are resolved in
the sense that the zero-volume states decouple from the
nonsingular states under the action of the Hamiltonian
constraint operator.
Some further evidence in this direction is offered by the

following. In the limit of vanishing spatial curvature, the
resulting space-time is the Bianchi type I model. For this
model, all of the nj ¼ 0 and hence s ¼ 0, and as pointed
out above in Sec. III B, the self-dual and standard LQC
Hamiltonian constraints are in this case equal. Therefore,
the predictions of self-dual and standard LQC will agree in
regimes where the spatial curvature can be neglected.
Nonetheless, numerical simulations are likely necessary

2This relation between standard holonomies of the Ashtekar-
Barbero connection and generalized holonomies (with imaginary
α) of the self-dual connection provides a further motivation to
introduce generalized holonomies when working with self-dual
variables.
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in order to quantify the differences between the quantum
dynamics of standard and self-dual LQC, especially in the
Planck regime.
The main open question at this point is to understand the

full quantum dynamics, first for semiclassical states and
then for more widely spread states (as has been done in
standard LQC for isotropic space-times in Refs. [52,59,60]
and [61–63], respectively). However, this is a very difficult
problem for the Bianchi space-times due to the complexity
of the difference equation coming from the Hamiltonian
constraint operator and particularly of the form that the
shifts in the ϑj variables takes. Indeed, there do not yet exist
any studies of the quantum dynamics of semiclassical states
in standard LQC for the Bianchi type I space-time (for
the improved dynamics prescription given in Ref. [54]), the
simplest of the Bianchi models. Nonetheless, despite the
difficulty of studying the full quantum dynamics of even
semiclassical states, important insights can be obtained by
studying the effective equations.

IV. EFFECTIVE THEORY

The effective theory is obtained by treating the
Hamiltonian constraint operator (57) as a classical con-
straint on the original phase space, which is then called the
effective Hamiltonian constraint [52,64], and the effective
equations are simply given by the Poisson brackets of the
observable O of interest with the effective Hamiltonian
constraint, dO=dT ¼ fO; CeffH g.
The effective equations have already been found to be

very useful in standard LQC where they are in good
agreement with the full quantum dynamics of a large class
of semiclassical states. Indeed, in the isotropic space-times
in standard LQC where the full quantum dynamics of
semiclassical states have been studied analytically and
numerically, the effective dynamics provide an excellent
approximation to the evolution (with respect to a relational
clock) of expectation values for semiclassical states that (i)
are sharply peaked in both conjugate variables and
(ii) where the total volume of the space-time remains much
larger than the Planck volume l3

Pl [52,53,62,65–67]. While
the reliability of the effective equations may appear
surprising at first, it can be understood to arise due to
the fact that the variables of interest in quantum comsology
(the total volume V, the total momentum of the scalar field
πϕ, etc.) are global observables and correspond to heavy
degrees of freedom so long as V ≫ l3

Pl. Therefore, quan-
tum fluctuations do not become important (assuming they
are initially small), and the effective equations can be
trusted even at the bounce point where quantum gravity
effects are strongest [45].
Thus, the effective equations are also expected to provide

a good approximation to the quantum dynamics of sharply
peaked states in anisotropic self-dual LQC so long as all ϑj
remain much larger than lPl. Following the procedure
outlined above, the effective Hamiltonian constraint—for
all diagonal type A Bianchi models in self-dual LQC—is

CeffH ¼ NV
8πGλ2m

�
sinh

b1
ϑ2ϑ3

sinh
b2
ϑ1ϑ3

−
lon1λmV

ϑ41
sinh

b1
ϑ2ϑ3

þ sinh
b1
ϑ2ϑ3

sinh
b3
ϑ1ϑ2

−
lon2λmV

ϑ42
sinh

b2
ϑ1ϑ3

þ sinh
b2
ϑ1ϑ3

sinh
b3
ϑ1ϑ2

−
lon3λmV

ϑ43
sinh

b3
ϑ1ϑ2

�
þ Np2

ϕ

2V
≈ 0: ð83Þ

Here, the lapse N has been left free, and CeffH is given for
ϑj > 0 (in the effective theory, just as in the classical
theory, it is possible to work in just one octant).
Now, the effective equations can be calculated in a

straightforward fashion. For example,

_ϑ1
ϑ1

¼ −
iN
2λ2m

�
sinh

b2
ϑ1ϑ3

þ sinh
b3
ϑ1ϑ2

�
cosh

b1
ϑ2ϑ3

−
ilon1NV
2λmϑ

4
1

cosh
b1
ϑ2ϑ3

; ð84Þ

with the effective equations for _ϑ2 and _ϑ3 being given by
the appropriate permutations.
These can be related to the directional Hubble rates,

which are given by, e.g.,

H1 ¼
_a1
a1

¼
_ϑ2
ϑ2

þ
_ϑ3
ϑ3

−
_ϑ1
ϑ1

; ð85Þ

and the mean Hubble rate is given by

H ¼ _a
a
¼ 1

3
ðH1 þH2 þH3Þ; ð86Þ

where a ¼ ða1a2a3Þ1=3.
In some cases in standard LQC, it has been possible to

bound the directional Hubble rates in the effective theory
(and hence bound the expansion and the shear also)
[68,69]. These bounds then provide evidence that all strong
singularities are resolved in these space-times in standard
LQC [70]. What can be said regarding the effective theory
of self-dual LQC?
As already mentioned in Sec. III B, for the spatially flat

Bianchi type I space-time (where the spin connection Γj
a

vanishes), standard LQC and self-dual LQC give the same
resulting quantum theory, and hence also the same effective
dynamics. Therefore, the results already found by studying
the effective equations of the Bianchi I model in standard
LQC also hold for self-dual LQC. In particular, the
expansion and shear both have an upper bound around
the Planck scale [68], and Kasner transitions of the type
found in Ref. [71] will occur at the bounce.
Concerning the dynamics of Bianchi space-times with

nonvanishing spatial curvature in the effective theory
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coming from self-dual LQC, it is likely that numerical
simulations like the ones recently performed in standard
LQC for the Bianchi II and Bianchi IX space-times [72,73]
will be necessary in order to understand the self-dual LQC
dynamics of these space-times in all regimes. Nonetheless,
it is known from general relativity that as a big bang or big
crunch singularity is approached in the Bianchi models
with a massless scalar field (the case considered here) in a
fashion where the _aj all have the same sign (i.e., in general
relativity, this would lead to what is called an isotropic or
“pointlike” singularity in the terminology of Ref. [74]), the
space-times become asymptotically velocity-term domi-
nated (AVTD) in which case the spatial curvature is
negligible [37]. When the spatial curvature becomes
negligible, then the Hamiltonian constraint is essentially
that of the Bianchi I space-time, and all of the results
obtained for Bianchi I, described in the paragraph above,
hold for AVTD Bianchi space-times also.
On the other hand, if some of the _ϑj have different signs

as the singularity is approached (which would give, e.g., a
cigarlike or a pancakelike singularity in general relativity),
then a Bianchi space-time with nonvanishing curvature will
not be of the AVTD type, and one cannot rely on results
coming from the study of the Bianchi I space-time. While
considerably more work is needed in order to study the
dynamics of non-AVTD Bianchi space-times, this case is
particularly interesting as it is here that the chaotic mix-
master behavior of the Bianchi IX space-time arises in
general relativity. In particular, it would be interesting to
check in detail whether the chaotic behavior found clas-
sically persists in the effective theory. While there are
indications that the chaotic behavior may disappear when
quantum gravity effects are included [75,76], this question
lies outside of the scope of this paper and is left for
future work.

V. DISCUSSION

A loop quantization of the diagonal type A Bianchi
space-times in terms of the self-dual connection variables
has been presented in this paper. The reality conditions
were imposed through the choice of the inner product in the
kinematical Hilbert space, and then the improved dynamics
Hamiltonian constraint operator was constructed using a
nonlocal connection operator (as is also done in standard
LQC for anisotropic space-times with nonvanishing spatial
curvature). A more detailed study of the dynamics of
semiclassical states is left for future work. Note that, while
using self-dual variables simplifies the form of the
Hamiltonian constraint operator since the second term (that
appears when using Ashtekar-Barbero variables) with the
prefactor ð1þ γ2Þ vanishes for γ ¼ i, this happens at the
cost of an inner product that has a more complicated form.
At this point, it is not clear whether calculations in the
quantum theory are easier with a simple inner product and a

more complicated Hamiltonian constraint operator, or
vice versa.
The key step in this construction was imposing the

reality conditions. This was done in two parts: first, the
reality conditions were expressed in terms of the funda-
mental operators of the theory, with the relation (23)
simplifying the task, and second, the results of the study
of the closed FLRW space-time in terms of self-dual
variables motivated an ansatz for the form of the inner
product which was then shown to correctly implement the
reality conditions. The fact that this could be done in a
relatively simple fashion for all diagonal type A Bianchi
models raises the hope that this may also be possible in
more general settings.
Another important point, already noticed in the study of

the self-dual LQC of FLRW space-times, is the necessity of
introducing a family of generalized holonomies parame-
trized by α ∈ C. It turns out that it is only when α is purely
imaginary that the generalized holonomies are well defined
in self-dual LQC—standard holonomies of Aj

a (for which
α ¼ 1) are not well defined in the kinematical Hilbert
space. Essentially, the generalized holonomies of
interest (i.e., the ones that become fundamental operators
in self-dual LQC) correspond to objects of the type
h ∼ P exp

R
iAa.

The reason that operators of this type are the ones that are
well defined in the quantum theory can be understood in the
following manner. Generalized holonomies of the complex-
valued Ashtekar connection cannot be self-adjoint, no
matter the choice of α. Then, speaking loosely, the question
becomes whether one prefers the extrinsic curvature part to
be self-adjoint or the spin-connection part to be self-adjoint.
Recalling that the holonomy of the real-valued Ashtekar-
Barbero connection is a self-adjoint operator in standard
LQC, and since it is the extrinsic curvature which is
canonically conjugate to the densitized triad, this suggests
choosing the extrinsic curvature part of the generalized
holonomy to be self-adjoint, and this corresponds to a
purely imaginary α. From a more technical perspective, this
issue is settled by the fact that for the shift operator to be
well defined in the kinematical Hilbert space of self-dual
LQC, the shift must be real valued, and this requirement
also constrains α to be purely imaginary.
An important question now is what can be learned from

this process and applied to full LQG. First, these results
offer the hope that it may be possible to properly implement
the reality conditions, and in particular some of the
techniques developed here may prove to be useful more
generally in imposing the reality conditions. Second, the
necessity of using generalized holonomies of the form h ∼
P exp

R
iAa in self-dual LQC suggests that this type of

generalized holonomies may play an important role in self-
dual LQG as well. Note, however, that an important
property of standard holonomies is that under gauge
transformations they behave in a very simple fashion.

EDWARD WILSON-EWING PHYSICAL REVIEW D 93, 083502 (2016)

083502-14



One difficulty in using generalized holonomies in full
quantum gravity (where there are no natural gauge fixings
available as in quantum cosmology minisuperspaces) is that
they behave in a significantly more complicated fashion
under gauge transformations. Clearly, this is a difficulty
that must be addressed in order to define a version of self-
dual LQG based on generalized holonomies. The important
problem of whether it is possible to construct a well-defined
version of self-dual LQG based on generalized holonomies
is left for future work.
Note that another important open problem that must be

addressed in order to properly define self-dual LQG is to
have a well-defined measure on the space of generalized
connections. The measure problem is avoided in self-dual
LQC due to the symmetry reduction that is performed
before quantization, and therefore there are no direct
lessons to be learned from self-dual LQC regarding this
last open problem.
Nonetheless, there are some hints that a careful imple-

mentation of the reality conditions may be important for the
solution of the measure problem in self-dual LQG. A naive
choice for the inner product in self-dual LQC motivated by
the inner product of standard LQC, before any consider-
ation of the reality conditions, might be of the form

hψ1jψ2i ¼ lim
L→∞

1

2L

Z
L

−L

Z
L

−L
dxdyψ1ðcÞψ2ðcÞ; ð87Þ

where x ¼ ReðcÞ and y ¼ ImðcÞ. (Here, for the sake of
simplicity, I have considered the isotropic case where the
gravitational configuration space is one dimensional; how-
ever, this naive inner product can directly be generalized for
the diagonal type A Bianchi models.) This inner product,
however, is pathological as it gives a divergent norm for the
eigenkets jpi ∼ epc. Thus, in a (naive) sense, there is a
“measure problem” in self-dual LQC also. However, once
the reality conditions are taken into account, then the
resulting inner product is sufficiently different from (87) in
that it gives a finite norm for the eigenkets jpi and has the
main qualitative properties expected of a LQC inner
product (see Ref. [33] for details). It is possible that a
similar result could be found in LQG; the problems of the
reality conditions and of the noncompact measure of the
generalized connection may not be disconnected. Rather,
this argument suggests that it could be productive to work
on both problems simultaneously and that the solution of
one problem may perhaps simultaneously provide a sol-
ution to the other.
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