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We critically assess recent claims suggesting that upper limits on the time variation of the fine-structure
constant tightly constrain the coupling of a dark energy scalar field to the electromagnetic sector, and,
indirectly, the violation of the weak equivalence principle. We show that such constraints depend crucially
on the assumed priors, even if the dark energy was described by a dynamical scalar field with a constant
equation-of-state parameter w linearly coupled to the electromagnetic sector through a dimensionless
coupling ζ. We find that, although local atomic clock tests, as well as other terrestrial, astrophysical and

cosmological data, put stringent bounds on jζj ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijwþ 1jp
, the time variation of the fine-structure constant

cannot be used to set or to improve upper limits on jζj or jwþ 1j without specifying priors, consistent with
but not favored by current data, which disfavor low values of jwþ 1j or jζj, respectively. We briefly discuss
how this might change with a new generation of high-resolution ultrastable spectrographs, such as
ESPRESSO and ELT-HIRES, in combination with forthcoming missions to map the geometry of the
Universe, such as Euclid, or to test the equivalence principle, such as MICROSCOPE or STEP.
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I. INTRODUCTION

Almost two decades have passed since the first evidence
for a late-time acceleration of the expansion of the Universe
based on type Ia supernova observations [1,2]. Since then,
more precise cosmological data have confirmed these first
results and provided overwhelming evidence for such an
acceleration [3–7]. Most cosmological observations are
remarkably consistent with a six parameter spatially flat
ΛCDM model where the late-time dynamics of the
Universe is dominated by a cosmological constant Λ
accounting for nearly 70% of the total energy density of
the Universe.
Despite its successes on the observational side, the

ΛCDM model is faced with yet unsolved fundamental
challenges, in particular, regarding the small magnitude of
Λ and the coincidence of the era where it becomes
dynamically relevant with the present epoch (see, e.g.,
[8]). On the other hand, an inflationary epoch is also
believed to have occurred in the very early Universe at
much higher energy densities. Dynamical scalar fields,
such as the standard model Higgs field, naturally arise in
particle physics models (including string theory) and may
play a relevant cosmological role both at early and present
times. Hence, a dynamical scalar field violating the strong
energy condition offers a better motivated alternative to the
cosmological constant Λ in the attempt to explain the

current acceleration of the universe [9–13]. On the other
hand, it is reasonable to expect that such a field could
couple to other fields, possibly leading to measurable
variations of nature’s fundamental couplings [14–27].
One such coupling is the fine-structure constant whose

dynamics over a wide redshift range is severely constrained
using cosmological, astrophysical and terrestrial data, as
well as local laboratory experiments (see [28] for a recent
review). Despite a few positive claims for the detection of a
spacetime variation of the fine-structure constant [29–31],
there is presently no unambiguous evidence for such a
variation. Moreover, low redshift laboratory experiments
[32] (see also [33] for a recent review of atomic clock
constraints on the variation of fundamental couplings) and
the Oklo natural nuclear reactor [34,35] provide stringent
limits on the time variation of α.
In [36–38] it has been suggested that upper limits on the

time variation of the fine-structure constant tightly con-
strain the coupling of a dark energy scalar field to the
electromagnetic sector, and, indirectly, the violation of the
weak equivalence principle. Furthermore, it has also been
suggested that such limits, in combination with standard
methods, could be used to improve the constraints on the
equation of state of dark energy. In this paper we demon-
strate that such constraints rely on the specification of
priors consistent with but not favored by current data. We
further show that, even in the case of an idealized model
where the dark energy is described by a dynamical scalar
field with a constant equation-of-state parameter w linearly*pedro.avelino@astro.up.pt

PHYSICAL REVIEW D 93, 083501 (2016)

2470-0010=2016=93(8)=083501(7) 083501-1 © 2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.93.083501
http://dx.doi.org/10.1103/PhysRevD.93.083501
http://dx.doi.org/10.1103/PhysRevD.93.083501
http://dx.doi.org/10.1103/PhysRevD.93.083501


coupled to the electromagnetic sector through a dimension-
less coupling ζ, when such priors are relaxed only the
combination jζj ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijwþ 1jp

is tightly constrained by current
upper limits on the time variation of the fine-structure
constant.
Throughout this paper we use units with ℏ ¼ c ¼

8πG ¼ 1 and a metric signature ðþ;−;−;−Þ.

II. DARK ENERGY AND VARYING COUPLINGS

Here we assume that the late-time acceleration of the
Universe is due to a dynamical dark energy scalar field ϕ
nonminimally coupled to the electromagnetic field. A
particularly interesting class of dark energy models may
be defined by the action

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
L; ð1Þ

where g is the determinant of the metric tensor,

L ¼ Lϕ þ LϕF þ Lother; ð2Þ

Lϕ ¼ �X − VðϕÞ; ð3Þ

X ¼ � 1

2
∂μϕ∂μϕ; ð4Þ

VðϕÞ is the scalar field potential,

LϕF ¼ −
1

4
BFðϕÞFμνFμν; ð5Þ

BFðϕÞ is a gauge kinetic function, Fμν are the components
of the electromagnetic field tensor, and Lother is the
Lagrangian density of the other fields. In this class of
models the fine-structure constant is given by

αðϕÞ ¼ α0
BFðϕÞ

; ð6Þ

where the subscript “0” denotes the present time
[BFðϕ0Þ ¼ 1 today].

A. Time variation of the fine-structure constant

In the family of models described by Eqs. (1)–(5) the
evolution of ϕ induced solely by its coupling to electro-
magnetically interacting matter is so small, given weak
equivalence principle constraints (see [28] and references
therein), that the resulting time variation of α can be
neglected. Hence, we assume that the dynamics of ϕ is
fully driven by the scalar field potential VðϕÞ (and damped
by the expansion). On the other hand, since the sound speed
of the scalar field ϕ equals the speed of light, the spatial
variations of the scalar field ϕ are small and their

contribution to the variation of α may also be neglected
in this context.
Consider a flat homogeneous and isotropic Friedmann-

Robertson-Walker universe whose dynamics obeys the
Friedmann equation given by

H2 ¼ ρ

3
¼ ρϕ þ ρ½ϕFþother�

3
; ð7Þ

where ρϕ is the dark energy density (associated with Lϕ),
ρ½ϕFþother� is the energy density associated with the remain-

ing Lagrangian components (LϕF and Lother), H ¼ _R=R is
the Hubble parameter, R is the scale factor, and a dot
represents a derivative with respect to the physical time t.
Taking into account that the energy density and pressure

associated with the scalar field ϕ are given, respectively, by

ρϕ ¼ � _ϕ2=2þ VðϕÞ; pϕ ¼ � _ϕ2=2 − VðϕÞ; ð8Þ

one obtains

w≡ pϕ

ρϕ
¼ −1� ϕ02H2

ρϕ
¼ −1� ϕ02

3Ωϕ
; ð9Þ

where Ωϕ ¼ ρϕ=ρ and a prime represents a derivative with

respect to lnR ( _ϕ ¼ ϕ0H).
If the gauge kinetic function BF is a linear function of ϕ

with jBFðϕÞ − 1j ≪ 1, then

_α

α
¼ ζ _ϕ; ð10Þ

where ζ is a constant. In the following we only consider
the solution with _ϕ > 0, so that the sign of _α is the same as
that of ζ. Note, however, that this assumption may be
relaxed since both Lϕ and LϕF are invariant under the
transformation ϕ → −ϕ, VðϕÞ → Vð−ϕÞ, ζ → −ζ.
Equations (9) and (10) imply that

1

H
_α

α
¼ ζ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ΩϕðzÞj1þ wj

q
: ð11Þ

1. Constant w models

The time evolution of the energy density associated with
the dark energy scalar field ϕ obeys the equation

_ρϕ þ 3Hð1þ wÞ ¼ 0: ð12Þ

In this paper, for simplicity, we consider a constant
equation-of-state parameter w smaller than unity (see
[39,40] for a discussion of constant w models)—relaxing
this assumption would only strengthen our conclusions.
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Then, from Eqs. (8), (9) and (12), it is possible to
show that

_ϕ ¼
�
2V

j1þ wj
1 − w

�
1=2

; ð13Þ

with

V ¼ V0R−3ð1þwÞ; ð14Þ

where the scale factor at the present time is normalized to
unity (R0 ¼ 1). Together with Eq. (10) this implies that

_α

α
¼ ζ _ϕ ∝ ð1þ zÞ3ð1þwÞ=2 ð15Þ

has a very slow evolution with the redshift z (1þ z ¼ 1=R)
for values of w close to −1 consistent with the current
observations.

B. Constraints on the time variation
of the fine-structure constant

In this paper, for simplicity, we focus on the atomic
clock constraint on the present variation of α with time of
Rosenband et al. [32],

_α

α

����
z¼0

¼ ð−1.6� 2.3Þ × 10−17 yr−1; ð16Þ

which is currently the strongest laboratory constraint on α
alone. Equation (15) implies that, for a constant w, this
local laboratory constraint on the value of α is significantly
more constraining than most other astrophysical and
cosmological constraints (in particular, than the astrophysi-
cal constraints on the variation of α considered in [36–38]).
The constraint given in Eq. (16) may be rewritten in a

dimensionless form as

1

H0

_α

α

����
z¼0

¼ ð−2.3� 3.3Þ × 10−7; ð17Þ

taking into account that H0 ¼ 100 h km s−1 Mpc−1, with
h ¼ 0.678 [7], and neglecting the small uncertainty on the
current value of the Hubble parameter H0. Assuming a
value of Ωϕ0 ¼ 0.692 consistent with the Planck 2015
results [7] and neglecting the relatively small error bar
associated with Ωϕ0, one finally finds [using Eq. (11)
evaluated at the present time] that

x ¼ ζ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j1þ wj

p
¼ ð−1.6� 2.3Þ × 10−7: ð18Þ

Equation (18) implies that a nontrivial lower limit on the
value of j1þ wj (j1þ wj ≥ j1þ wjmin > 0), if it existed,
could be used to obtain an upper bound on the value of jζj,

jζj ≤ 3.9ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij1þ wjmin

p × 10−7: ð19Þ

Analogously, Eq. (18) combined with a nontrivial lower
limit on jζj would imply an upper bound on the value of
j1þ wj associated with constraints on the time evolution of
α. Nevertheless, there is currently no unambiguous obser-
vational evidence favoring a nontrivial lower limit on either
jwþ 1j or jζj. As we demonstrate in the following section
this precludes the use of constraints on the time variation of
α to set realistic upper bounds on jζj or jwþ 1j.
Alternatively, as recognized in [15,41], a nontrivial lower

bound on the value of jxj together with an upper bound on
the value of jwþ 1j could be used to obtain a nontrivial
lower bound on jζj. However, presently there is also no
unambiguous nontrivial lower bound on the value of jxj
and, consequently, no nontrivial lower bound on jζj from
varying α constraints.
Although in [36–38] cosmological constraints on jwþ 1j

from type Ia supernova data were considered, here we
simplify the analysis and account for standard constraints
on the value of jwþ 1j by incorporating them in the jwþ 1j
prior (except if stated otherwise, we conservatively assume
that jwþ 1j ≤ 0.1 [7]).

III. ROLE OF PRIORS

We label the random variables associated with the
parameters θ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij1þ wjp

≥ 0, ζ, and x ¼ θζ by Θ, Z,
and X ¼ ΘZ, respectively. We investigate the impact of the
prior on the random variable Θ on the estimation of jZj,
assuming, for simplicity, that Θ and X are independent
random variables. This means that the prior on Θ is the
same as the posterior, since, in this case, the probability
density function for the variable Θ is not altered by a
measurement of X. This assumption allows us to derive
analytical expressions for the probability density function
of jZj for various priors of Θ, but does not otherwise affect
our main results.
Given that Θ and X are assumed to be independent,

the cumulative distribution function of the random variable
jZj ¼ jXj=Θ is given by

FjZjðjζjÞ≡ PðjZj ≤ jζjÞ

¼
Z

∞

0

�Z
θjζj

0

fjXjðjxjÞfΘðθÞdjxj
�
dθ; ð20Þ

so the corresponding probability density function is

fjZjðjζjÞ ¼
dFjZjðjζjÞ

djζj ¼
Z

∞

0

θfjXjðθjζjÞfΘðθÞdθ: ð21Þ

We consider a probability density function for the
random variable jXj,
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fjXjðjxjÞ ¼
1ffiffiffiffiffiffi
2π

p
σ

�
exp

�
−
ðjxj − μÞ2

2σ2

�

þ exp

�
−
ðjxj þ μÞ2

2σ2

��
; ð22Þ

consistent with the atomic clock constraint on the
present variation of α with time of Rosenband et al. [32]
discussed in the previous section (μ ¼ −1.6 × 10−7

and σ ¼ 2.3 × 10−7).

A. Uniform prior

Let us start by assuming that the probability density
function of the variable Θ is uniform in the interval ½0; b�
and vanishes outside it, so that

fΘðθÞ ¼
1

b
; 0 ≤ θ ≤ b; ð23Þ

where b≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijwþ 1jp
max.

In this case, the probability density function of the
variable jZj may be computed analytically, using
Eqs. (20) and (21), and it is given by

fjZjðjζjÞ ¼ fþjZjðjζjÞ þ f−jZjðjζjÞ; ð24Þ

where

f�jZjðjζjÞ ¼
1ffiffiffiffiffiffi

8π
p

bjζj2
�
2σ

�
exp

�
−

μ2

2σ2

�

− exp

�
−
ðμ� bjζjÞ2

2σ2

��

þ
ffiffiffiffiffiffi
2π

p
μ

�
erf

�
μffiffiffi
2

p
σ

�
− erf

�
μ� bjζjffiffiffi

2
p

σ

���
;

ð25Þ

and the error function is defined by

erfðyÞ≡ 2ffiffiffi
π

p
Z

y

0

e−u
2

du: ð26Þ

Figure 1 shows fjZj, given by Eqs. (24) and (25) with

μ ¼ −1.6 × 10−7, σ ¼ 2.3 × 10−7 and b≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijwþ 1jp
max ¼

10−1=2, as a function of jζj (red solid line). The vertical
dotted line is defined by ζb ≡ σ=b. The probability density
function fjZj is nearly constant for jζj < ζb and decays
roughly proportionally to ζ−2 for jζj > ζb. Figure 2 shows
the value of ζ� such that FjZjðζ�Þ≡ PðjZj ≤ ζ�Þ ¼ χ
[calculated using Eqs. (24) and (25) with μ ¼
−1.6 × 10−7, σ ¼ 2.3 × 10−7] as a function of b≡ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijwþ 1jp

max, for χ ¼ 0.99 (red solid line), χ ¼ 0.95 (blue
dashed line) and χ ¼ 0.68 (black dot-dashed line). Figure 2
shows that a weaker prior onΘ leads to stronger constraints

on jZj. This is directly associated with the choice of a
uniform prior for the variable Θ in the interval ½0; b� which
disfavors very small values of jζj, especially if b is large.
Also note that, due to the heavy tail of fjZj, the constraints
on jZj degrade very rapidly as one increases the confidence
level χ. For b≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijwþ 1jp

max ¼ 10−1=2 and χ ¼ 0.68 one
obtains ζ� ¼ 2.3 × 10−6, which is in reasonable agreement
with the results obtained in [36–38] considering a flat prior
for the equation-of-state parameter of the dark energy.

B. Logarithmic prior

Let us now consider the case of a uniform probability
density function of the variable lnΘ for θ in the interval
½a; b�, with 0 < a < b. The corresponding probability
density function of the variable Θ is

FIG. 1. The red solid line represents the probability density
function fjZjðjζjÞ given by Eqs. (24) and (25) with μ ¼
−1.6 × 10−7, σ ¼ 2.3 × 10−7 and b≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijwþ 1jp

max ¼ 10−1=2.
The vertical dotted line is defined by ζb ≡ σ=b. fjZj is nearly
constant for jζj < ζb and decays roughly proportionally to ζ−2

for jζj > ζb.

FIG. 2. The value of ζ� such that FjZjðζ�Þ≡ PðjZj ≤ ζ�Þ ¼ χ
[calculated using Eqs. (24) and (25) with μ ¼ −1.6 × 10−7,
σ ¼ 2.3 × 10−7] as a function of b≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijwþ 1jp

max, for χ ¼
0.99 (red solid line), χ ¼ 0.95 (blue dashed line) and χ ¼ 0.68
(black dot-dashed line).
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fΘðθÞ ¼
�
ln
b
a

�
−1 1

θ
; a ≤ θ ≤ b; ð27Þ

and it is equal to zero outside the interval ½a; b�. In this case,
the probability density function of the variable jZjmay also
be computed analytically, using Eqs. (20) and (21), and it is
given by

fjZjðjζjÞ¼
�
ln
b
a

�
−1 1

2jζj
�
erf

�
μþbjζjffiffiffi

2
p

σ

�

−erf
�
μ−bjζjffiffiffi

2
p

σ

�
−erf

�
μþajζjffiffiffi

2
p

σ

�
þerf

�
μ−ajζjffiffiffi

2
p

σ

��
:

ð28Þ

Figure 3 shows fjZj, given by Eq. (28) with

μ ¼ −1.6 × 10−7, σ ¼ 2.3 × 10−7, a≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijwþ 1jp
min ¼

10−3 and b≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijwþ 1jp
max ¼ 10−1=2, as a function of jζj

(red solid line). The vertical dotted lines are defined by
ζb ≡ σ=b and ζa ≡ σ=a (left and right dotted lines,
respectively). The probability density function is nearly
constant for jζj < ζb and decays roughly proportionally to
ζ−1 for ζb < jζj < ζa (and much faster than that for
jζj > ζa). Figure 4 shows the value of ζ� such that
FjZjðζ�Þ≡ PðjZj ≤ jζ�jÞ ¼ χ [calculated using Eq. (28)
with μ ¼ −1.6 × 10−7, σ ¼ 2.3 × 10−7 and b≡ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijwþ 1jp

max ¼ 10−1=2], as a function of a, for χ ¼ 0.99
(red solid line), χ ¼ 0.95 (blue dashed line) and χ ¼ 0.68
(black dot-dashed line). Figure 2 shows that the lower
the value of a, the weaker the constraints on jZj become.
For a≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijwþ 1jp

min ¼ 10−2 and χ ¼ 0.68 one obtains
ζ� ¼ 6.0 × 10−6, in reasonable agreement with the
results obtained in [38] using a logarithmic prior for the

equation-of-state parameter of the dark energy. However, in
the a≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijwþ 1jp

min → 0 limit the logarithmic prior favors
values of jwþ 1j extremely close to zero, which is the
reason why, in this limit, the constraints on jZj become
extremely weak. Again, note the rapid degradation of the
constraints on jZj with the increase of the confidence
level χ.

C. Power-law prior

A more general class of probability density functions,
which includes uniform probability density functions for
the variable Θ as a particular subclass and uniform
probability density functions for the variable lnΘ as a
special limit for β → −1, is given by

fΘðθÞ ¼
β þ 1

b

�
θ

b

�
β

; θ ≤ b; ð29Þ

with fΘðθÞ ¼ 0 for θ > b (here, β > −1). Taking the
probability density function for the variable X given in
Eq. (22), but nowassumingμ ¼ 0,fjZjðjζjÞmaybecomputed
analytically using Eqs. (20) and (21). The result is

fjZjðjζjÞ ¼
bðβ þ 1Þffiffiffiffiffiffi

2π
p

σ

�
b2ζ2

2σ2

�−β=2−1

×
�
Γ
�
β

2
þ 1

�
− Γ

�
β

2
þ 1;

b2ζ2

2σ2

��
; ð30Þ

where

ΓðyÞ≡
Z

∞

0

uy−1e−udu ð31Þ

is the Gamma function and Γðy; zÞ is the upper incomplete
Gamma function defined by

FIG. 3. The red solid line represents the probability density
function fjZjðjζjÞ given by Eq. (28) with μ ¼ −1.6 × 10−7,
σ¼2.3×10−7, a≡ ffiffiffiffiffiffiffiffiffiffiffiffiffijwþ1jp

min¼10−3 and b≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijwþ 1jp
max ¼

10−1=2. The vertical dotted lines are defined by ζb ≡ σ=b and
ζa ≡ σ=a (left and right dotted lines, respectively). fjZjðjζjÞ is
nearly constant for jζj < ζb and decays roughly proportionally to
ζ−1 for ζb < jζj < ζa (and much faster than that for jζj > ζa).

FIG. 4. The value of ζ� such that FjZjðζ�Þ≡ PðjZj ≤ ζ�Þ ¼ χ
[calculated using Eq. (28) with μ ¼ −1.6 × 10−7, σ ¼ 2.3 × 10−7

and b≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijwþ 1jp
max ¼ 10−1=2], as a function of a≡ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijwþ 1jp

min, for χ ¼ 0.99 (red solid line), χ ¼ 0.95 (blue dashed
line) and χ ¼ 0.68 (black dot-dashed line).
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Γðy; zÞ≡
Z

∞

z
uy−1e−udu: ð32Þ

Thevalue ofμ implied byEq. (18) is less than one sigma away
from zero. Consequently, the error committed in assuming
that μ ¼ 0 is relatively small, thus justifying the use of this
approximation in order to obtain the analytical result for
fjZjðjζjÞ given by Eq. (30).
Figure 5 shows the value of ζ� such that FjZjðζ�Þ≡

PðjZj ≤ ζ�Þ ¼ χ [calculated using Eq. (30) with
σ ¼ 2.3 × 10−7 and b≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijwþ 1jp

max ¼ 10−1=2], as a func-
tion of β, for χ ¼ 0.99 (red solid line), χ ¼ 0.95 (blue
dashed line) and χ ¼ 0.68 (black dot-dashed line). It shows
that for values of β sufficiently close to −1 the constraints
on jZj become extremely weak. Notice that the 68%, 95%
and 99% constraints on jZj may span several orders of
magnitude, in particular, for β close to −1.

IV. CONCLUSIONS

In this paper we critically assessed recent claims sug-
gesting that upper limits on the time variation of α could be
used to tightly constrain the dynamics of a dark energy
scalar field (in particular, its coupling to the electromag-
netic sector). We demonstrated that such constraints depend

crucially on the assumed priors, even in the context of an
idealized model where the dark energy is described by a
dynamical scalar field with a constant equation-of-state
parameter linearly coupled to the electromagnetic field. We
have shown that, although local atomic clock tests, as well
as other terrestrial, astrophysical and cosmological data, put
stringent bounds on jζj ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijwþ 1jp

, the current upper limits
on the time variation of α cannot be used to set or to
improve upper limits on jζj or jwþ 1j without specifying
priors, consistent with but not favored by current data,
which disfavor low values of jwþ 1j or jζj, respectively.
This situation could be improved if there was (i) a

nontrivial lower bound on the value of jxj or (ii) a nontrivial
lower bound on the value of jwþ 1j or jζj. Although
(i) may, in principle, be accomplished with a new gen-
eration of high-resolution ultrastable spectrographs, such as
ESPRESSO and ELT-HIRES, and (ii) may, in principle, be
achieved respectively by forthcoming missions to map the
geometry of the Universe, such as Euclid, or to test the
equivalence principle, such as MICROSCOPE or STEP,
there is a priori no guarantee that these missions will make
a detection rather than significantly improving current
bounds. In the latter case the analysis reported in the
present paper will remain pertinent, despite the improved
constraints. As demonstrated in [23,26,27], even in the
more optimistic case of a significant detection, the depend-
ence of dark energy constraints from the time variation of α
on crucial assumptions, including (i) that general relativity
provides an accurate description of gravity on cosmological
scales, (ii) that dark energy may be described by a
dynamical scalar field obeying Eqs. (1)–(5), and (iii) that
the coupling between the dark energy scalar field and the
electromagnetic field is linear, should not be neglected.
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