
Massive photon and dark energy

Seyen Kouwn,1,* Phillial Oh,2,† and Chan-Gyung Park3,‡
1Korea Astronomy and Space Science Institute, Daejeon 305-348, Republic of Korea
2Department of Physics, BK21 Physics Research Division, Institute of Basic Science,

Sungkyunkwan University, Suwon 440-746, Korea
3Division of Science Education and Institute of Fusion Science, Chonbuk National University,

Jeonju 561-756, Korea
(Received 27 December 2015; published 29 April 2016)

We investigate the cosmology of massive electrodynamics and explore the possibility whether the
massive photon could provide an explanation of dark energy. The action is given by the scalar-vector-tensor
theory of gravity, which is obtained by nonminimal coupling of the massive Stueckelberg QED with
gravity; its cosmological consequences are studied by paying particular attention to the role of photon
mass. We find that the theory allows for cosmological evolution where the radiation- and matter-dominated
epochs are followed by a long period of virtually constant dark energy that closely mimics a ΛCDMmodel.
We also find that the main source of the current acceleration is provided by the nonvanishing photon mass
governed by the relation Λ ∼m2. A detailed numerical analysis shows that the nonvanishing photon mass
on the order of ∼10−34 eV is consistent with current observations. This magnitude is far less than the most
stringent limit on the photon mass available so far, which is on the order of m ≤ 10−27 eV.
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I. INTRODUCTION

The intriguing discovery of the current accelerating
Universe [1,2] has generated extensive investigations
searching for a foundation that provides theoretical explan-
ations. The simplest lambda cold dark matter (ΛCDM)
model [3], with the cosmological constantΛ as dark energy,
fits very well with observations and is regarded as the most
accepted approach. To be consistent with current observa-
tions, the cosmological constant Λ has to be a very small
number in value, ∼10−120 orders of magnitude smaller than
the Planck scale Mp; this extreme fine-tuning leads to the
cosmological constant problem [4], which has spurred
diverse other attempts in search of the origin of dark energy.
One of the alternativemethods is the quintessencemodel [5],
in which the cosmological constant is a dynamically varying
potential energy of a scalar field. Despite this model’s
simplicity and many attractive features, some problems
remain. For example, it does not resolve the puzzle of
cosmic coincidence, which seems to be a common feature
of decaying cosmological constant (with a few exceptions)
[6]. It also necessitates the introduction of a new scalar field,
whereas the only experimentally verified available scalar
field is the Higgs field.
One of the possible pathways to the cosmological

constant problem may be to suppose that Λ is associated
with another fundamental mass scale. One possible can-
didate is the UV cutoff of quantum field theory, based on

the holographic principle [7] or the electroweak scale [8];
this can provide a natural explanation of the coincidence
problem. Another possibility is that the smallness of Λ is
related to yet another small number in nature; it would be
conceivable, then, that there might exist some relation
connecting them. It could come as a solution of the
equations of motion, or might be a consequence of
fundamental reason that is currently inaccessible. The first
candidate that comes to mind is the mass of the photon,
if it has a mass at all. In this paper, we investigate the
cosmology of massive electrodynamics and explore the
possibility whether a massive photon could provide an
explanation of dark energy.
The photon mass is usually assumed to be exactly zero.

This is based on the Maxwell equations which describe a
massless photon. In addition, a photon mass term in
quantum electrodynamics breaks gauge invariance and
might spoil the renormalizability, which renders the theory
quantum-mechanically inconsistent. However, the consid-
eration of a nonvanishing photon mass [9] has a long
history; theoretically, it is well known that Maxwell’s
theory with Abelian gauge symmetry can be extended to
a gauge-invariant massive theory by means of the
Stueckelberg mechanism [10].1 This theory introduces a
scalar field that compensates the gauge transformation of
the vector field. Such a massive theory preserves the
unitarity and renormalizability of the massless theory.
Moreover, the possible conflict between the massive
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1The photon can also become massive through spontaneous
symmetry breaking via the Higgs mechanism [11], but this idea
will not be pursued in this paper.
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QED and standard model could be avoided [12]. In a
particular gauge where the scalar field is set to zero, the
massive theory reduces to the Proca theory, which describes
electrodynamics of massive vector field [13]. The question
of a photon mass in QED should then be tested exper-
imentally. If there is any deviation from zero, it must be
very small, because Maxwell theory has been verified to an
extreme accuracy. On the other hand, the experimental
constraints on the photon mass have considerably increased
over the past several decades, putting upper bounds on its
mass. So far, the most stringent upper limit is given by
m ≤ 10−27 eV [14]. In all these studies, the photon is
described by a massive Proca theory that does not include
the Stueckelberg field.
There exist many attempts to link the cosmology of

vector fields with the accelerating Universe [15,16], but
direct cosmological consequences of the massive QED in
relation to the dark energy have been considered only
recently [17]. It was shown that the massive QED without
the Stueckelberg field (but with the nonvanishing torsion
components) has the potential to be a possible explanation
of dark energy in terms of the photon mass, where the dark-
energy density (cosmological constant), which is propor-
tional to the photon mass squared, is allowed as a solution
of equations of motion. In this work, we take the full
massive QED including the scalar field and investigate the
cosmology. The theory consists of a massive vector field
and a Stuckelberg scalar field interacting with Einstein
gravity. Also, for general purposes, we include nonminimal
interaction terms in which the vector field interacts with the
scalar curvature and the Ricci tensor.
The action contains a scalar field, which is necessary in

order to endow the photon with mass while preserving the
gauge invariance. Possible cosmological consequences of
this Stueckelberg field were considered previously [18]. Its
role in ordinary massive QED is to cancel the contribution
of the unphysical pole of the vector propagator in the
physical processes; it cannot appear as physical states (see
[19] for a general introduction). This is evident because the
field can be completely gauged away in the unitary gauge.
However, such a decoupling of the Stueckelberg field does
not operate when the gravitational interaction is included.
The gravitational coupling can accommodate nonvanishing
contributions of the Stueckelberg field. For example, in the
massless limit of massive Proca theory, the longitudinal
scalar mode remains coupled to gravitation, even though it
is decoupled from the current [20]. The same reasoning will
apply to the Stueckelberg scalar field with the covariant
massive QED: it will also decouple from the current in the
massless limit, but the gravitational coupling remains.
Therefore, it cannot be neglected in cosmology; effectively,
we are considering a nonminimally interacting scalar-
vector-tensor (SVT) theory of gravity.
It is worth mentioning the gauge invariance of energy-

momentum tensor of the covariant action. If we calculate

the energy-momentum tensor of the covariant action of
the Proca theory, for example, it will contain a gauge-
dependent piece coming from the gauge-fixing term.
However, this term becomes null if we apply the
Lorentz gauge condition [see Eq. (2.6)], and the gauge
invariance of the energy-momentum tensor is intact in
quantum field theory. As far as cosmology is concerned, we
might accept the effective action as a classical one and
attempt to look for time-dependent behavior of the gauge
field with only the temporal component being nonvanish-
ing. This is necessary in order to respect the isotropy and
homogeneity. In general, this will bring in a gauge
dependence of the energy-momentum tensor [16]; however,
this should not imply the inconsistency of the cosmological
approach, but it could be taken as an indication of a
characteristic of the gravitational interaction. It is interest-
ing to note that in the pure electromagnetic case, the gauge-
fixing term with only the temporal component of the gauge
potential induces a vacuum energy or a cosmological
constant whose value depends on the gauge-fixing param-
eter, but this is still harmless to the ordinary QED.
The purpose of this work is to study the cosmology of the

SVT (or Einstein-Proca-Stueckelberg) theory of gravity,
which is obtained by nonminimally coupling massive QED
with gravity, and to compare the results with the observa-
tions, focusing especially on the photon mass. The SVT
theory has several parameters with values that can be
restricted by the observational constraints. A couple of the
parameters are related to the cosmological solution that
yields both decaying and growing modes; they can be fixed
from the beginning by choosing the decaying mode
conditions. These conditions allow cosmological evolution
in which the radiation- and matter-dominated epochs are
entailed by a long period of virtually constant dark energy,
which mimics ΛCDM. The main source of dark energy is
provided by the nonvanishing photon mass during this
period. A detailed numerical analysis shows that the
nonvanishing photon mass on the order of ∼10−34 eV is
consistent with the current observations. This magnitude
is far less than the most stringent limit on the photon
mass available so far, which is on the order of m ≤
10−27 eV [14].
The paper is organized as follows: In Sec. II, we

construct Einstein-Proca-Stueckelberg theory of massive
QED interacting with gravity and write equations of motion
for Friedmann-Robertson-Walker cosmology. In Sec. III,
we analyze the cosmological evolutions in the radiation-,
matter-, and dark-energy-dominated epochs, respectively.
In Sec. IV, observational constraints on our model param-
eters are presented. Section V includes conclusion and
discussions.

II. MODEL

The action we consider is the gauge-fixed massive QED
theory that is nonminimally interacting with the Einstein
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gravity. Keeping terms only up to the second derivative of
the fields brings us to the following:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R
2κ

−
1

4
FμνFμν −

1

2
m2AμAμ

−
1

2ξ
ð∇μAμÞ2 − 1

2
∇μϕ∇μϕ −

1

2
ξm2ϕ2

þ ωAμAμRþ ηAμAνRμν þ
χ

2
ϕ2R

�
; ð2:1Þ

where Fμν ¼ ∂μAν − ∂νAμ, ξ is the gauge-fixing parameter,
and ω, η, and χ are dimensionless parameters describing the
nonminimal interactions.
A couple of comments are in order. The above action

(2.1) in flat space reduces to the massive QED with the
Stueckelberg scalar field in the covariant gauge. This is
the most general second-derivative action that describes
the nonminimal interaction of the Stueckelberg scalar
and massive vector field with the Einstein gravity, and it
belongs to the most simple scalar extension of the vector-
metric theory of gravity [21].
The Einstein equations obtained from action (2.1) by

varying with respect to the metric gμν can be written in the
following way:

1

κ
Gμν ¼ TðφÞ

μν þm2Tðm2Þ þ T
ðFμνÞ
μν −

1

2ξ
TðξÞ
μν þ ωTðωÞ

μν

þ ηTðηÞ
μν þ χ

2
TðχÞ
μν þ Tðm;rÞ

μν ; ð2:2Þ

where Tðm;rÞ
μν is the energy-momentum tensor correspond-

ing to other fields (matter and radiation) and we have
defined

TðφÞ
μν ¼ ∇μφ∇νφþ gμν

�
−
1

2
∇αφ∇αφ − VðφÞ

�
; ð2:3Þ

Tðm2Þ
μν ¼ AμAν þ gμν

�
−
1

2
AαAα

�
; ð2:4Þ

T
ðFμνÞ
μν ¼ Fα

μFνα þ gμν

�
−
1

4
FαβFαβ

�
; ð2:5Þ

TðξÞ
μν ¼ 4Aðμ∇νÞ∇αAα − gμνðð∇αAαÞ2 þ 2Aα∇α∇βAβÞ;

ð2:6Þ

TðωÞ
μν ¼ 2ð∇ðμ∇νÞA2 − AμAνR − AαAαGμν − gμν□A2Þ;

ð2:7Þ

TðηÞ
μν ¼ 2∇α∇ðμAνÞAα − 4AαRαðμAνÞ −□AμAν

þ gμνðAαAβRαβ −∇α∇βAαAβÞ; ð2:8Þ

TðχÞ
μν ¼ 4∇μφ∇νφ − 2φ2Gμν þ 4φ∇ðμ∇νÞφ − 2gμν□φ2;

ð2:9Þ

where □ ¼ ∇μ∇μ, A2 ¼ AμAμ and brackets in a pair of
indices denoting symmetrization with respect to the
corresponding indices. Apart from the Einstein equations,
we can obtain a set of field equations for gauge Aμ and
scalar fields φ by varying the action with respect to the
vector and scalar field; this gives

∇νFμν þ ðm2 − 2ωRÞAμ − 2ηRμ
νAν −

1

ξ
∇μð∇αAαÞ ¼ 0;

ð2:10Þ

□φ − ðξm2 − χRÞφ ¼ 0: ð2:11Þ

In this work we shall study the isotropic and homo-
geneous flat cosmology. Thus, we consider the time-
dependent vector field and scalar field, so that2

Aμ ¼ ðfðtÞ; 0; 0; 0Þ; φ ¼ φðtÞ; ð2:12Þ

and the space-time geometry is given by the flat Robertson-
Walker metric,

ds2 ¼ −dt2 þ a2ðdx2 þ dy2 þ dz2Þ: ð2:13Þ

In this metric, the field equations for the vector and scalar
can be rewritten as

f̈ þ 3H _f þ 3 _Hf þ ξf½m2 − 6ðηþ 4ωÞH2 − 6ðηþ 2ωÞ _H�
¼ 0; ð2:14Þ

φ̈þ 3H _φ − 6χð2H2 þ _HÞφþm2ξφ ¼ 0; ð2:15Þ

and the Einstein equations can be rewritten as follows:

3

κ
H2 ¼ ρðrÞ þ ρðmÞ þ ρðdeÞ; ð2:16Þ

−
3

κ
H2 −

2

κ
_H ¼ pðrÞ þ pðmÞ þ pðdeÞ; ð2:17Þ

where H ≡ _a=a is the Hubble parameter and we added the
standard radiation and matter energy densities. ρðdeÞ and
pðdeÞ are the energy density and pressure coming from the

2Note that the configuration (2.12) gives Fμν ¼ 0, and does not
contribute to the photon radiation energy. Also, we assume that
the spatial average of the photon polarization vector ~A is zero, and
that mixing between A0 and ~A in Eqs. (2.6)–(2.8) can be
neglected. The contribution of quadratic terms in ~A is treated
separately and is included as the photon radiation energy in TðrÞ

μν .
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temporal component of the vector (tv) plus scalar (s) fields,
and we interpret ρðdeÞ and pðdeÞ as the dark-energy density
and dark pressure. They are, respectively, given as follows:

ρðdeÞ ¼ ρðtvÞ þ ρðsÞ; pðdeÞ ¼ pðtvÞ þ pðsÞ; ð2:18Þ

where

ρðtvÞ ≡ 1

ξ
ff̈ −

1

2ξ
_f2 þ 1

2
m2f2 þ 6ðηþ 2ωÞHf _f

−
�
9

2ξ
þ 18ω

�
H2f2 −

�
6η −

3

ξ
þ 12ω

�
_Hf2;

ð2:19Þ

ρðsÞ ≡ 1

2
_φ2 þ 1

2
m2ξφ2 − 6χHφ _φ − 3χH2φ2; ð2:20Þ

pðtvÞ ≡
�
−2ηþ 1

ξ
− 4ω

�
ff̈þ

�
−2ηþ 1

2ξ
− 4ω

�
_f2

þ 1

2
m2f2 þ

�
−8ηþ 6

ξ
− 8ω

�
Hf _f

þ
�
−6ηþ 9

2ξ
− 6ω

�
H2f2 þ

�
−4ηþ 3

ξ
− 4ω

�
_Hf2;

ð2:21Þ

pðsÞ ≡ 2χφφ̈þ
�
1

2
þ 2χ

�
_φ2 −

1

2
m2ξφ2 þ 4χHφ _φ

þ 3χH2φ2 þ 2χ _Hφ2: ð2:22Þ

III. COSMOLOGICAL EVOLUTION

In this section we analyze the evolution equations by
assuming that the universe in each stage is dominated by a
barotropic perfect fluid with constant equation-of-state
parameter wi ¼ ρi=piði ¼ m; rÞ and later by ρðdeÞ. Then,
we check our results numerically.

A. Radiation-dominated epoch

In the radiation-dominated epoch, let us assume that the
energy densities of the matter and the dark energy are
negligible,

ρðdeÞ ≪ ρðrÞ; ρðmÞ ≪ ρðrÞ; ð3:1Þ

so that the Hubble parameter H is given by

3

κ
H2 ≃ ρr;0

a4
; ð3:2Þ

where ρr;0 is the present value of the energy density of the
radiation. In such a case, we obtain the field equations,
which can be written as

a2f00 þ 2af0 þ 6ðηξ − 1Þ≃ 0; ð3:3Þ

a2φ00 þ 2aφ0 ≃ 0; ð3:4Þ

where we neglect the mass of the photon with respect to
the Hubble parameter and a prime indicates a derivative
with respect to the scale factor. They have the following
solutions:

fðaÞ ¼ cðrÞ− a−
1
2
−

ffiffiffiffiffiffiffiffiffi
25−24ηξ

p
2 þ cðrÞþ a−

1
2
þ

ffiffiffiffiffiffiffiffiffi
25−24ηξ

p
2 ; ð3:5Þ

φðaÞ ¼ dðrÞ−

a
þ dðrÞþ ; ð3:6Þ

where cðrÞ� and dðrÞ� are integration constants. Here, we
impose the conditions cðrÞ− ¼ 0 and dðrÞ− ¼ 0 in order to
make the solutions nonsingular as a → 0. Inserting the

above solutions into (2.18) and assuming that cðrÞþ and dðrÞþ
are being of order Oð1Þ, we obtain that the conditions (3.1)
yields the restrictions

ηξ≲ 1; χ ≲ 0: ð3:7Þ

Concerning the evolutions of the temporal component of
the gauge field and scalar field, according to (2.18), the
dark energy and pressure are given by

ρðdeÞ ≃ −χ
ðdðrÞþ Þ2κρr;0

a4
; pðdeÞ ≃ −

χ

3

ðdðrÞþ Þ2κρr;0
a4

:

ð3:8Þ

Here, we find that ρðtvÞ and pðtvÞ are much smaller
than those of the scalar field, and so we have neglected
them. This is because the temporal component is
proportional to the scale factor in such a way that its
energy density and pressure scale with an exponent
larger than −4. Thus, the leading behavior of the energy
density and pressure comes from the scalar field. We
can also calculate the equation-of-state parameter, which
results in

wðdeÞ ≡ pðdeÞ

ρðdeÞ
≃ 1

3
: ð3:9Þ

Here, we note that the dark energy scales as radiation.
Therefore, during the radiation-dominated epoch the
fraction of energy density, ρðrÞ=ρðdeÞ, is a constant.

B. Matter-dominated epoch

In the matter-dominated epoch, we assume that the
energy densities of the radiation and dark energy are
negligible,
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ρðdeÞ ≪ ρðmÞ; ρðrÞ ≪ ρðmÞ; ð3:10Þ

so that the Hubble parameter H is given by

3

κ
H2 ≃ ρm;0

a3
; ð3:11Þ

where ρm;0 is the present value of the energy density of the
matter. In such a case, the evolution equations can be
written as

a2f00 þ 5

2
af0 þ

�
3ηξ − 6ξω −

9

2

�
f ≃ 0; ð3:12Þ

a2φ00ðaÞ þ 5

2
aφ0ðaÞ≃ 0; ð3:13Þ

and they have the following solutions:

fðaÞ≃ cðmÞ
− a−

β
4
−3
4 þ cðmÞ

þ a
β
4
−3
4; ð3:14Þ

φðaÞ≃ dðmÞ
−

a3=2
þ dðmÞ

þ : ð3:15Þ

Here cðmÞ
� and dðmÞ

� are integration constants from the
viewpoints of the differential equations, but they should
satisfy the continuity of the evolution coming from the
radiation-dominated epoch. β is defined by

β≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−48ηξþ 96ξωþ 81

p
: ð3:16Þ

We see that the solutions of the temporal component
of the gauge field have two different types of evolution
depending on whether β is real or imaginary. So, if the
term −48ηξþ 96ξωþ 81 inside the square root is a
positive real number, the corresponding solution of the
gauge field will evolve as a power law given by growing
(β > 3) or decaying (β < 3) modes. On the other hand,
if the term inside the square root is negative, the
gauge field will oscillate with an amplitude proportional
to a−3=4,

fðaÞ≃ ðcðmÞ
− þ cðmÞ

þ Þ cos ðImðβÞ
4

ln aÞ
a3=4

; ð3:17Þ

where c1 ¼ c2 for real values of the fðaÞ. Another
possibility remaining is when we have β ¼ 3. Then, the
corresponding solution will converge to a constant
during the matter-domination epoch,

fðaÞ≃ cðmÞ
−

a3=2
þ cðmÞ

þ : ð3:18Þ

Concerning the evolutions of temporal component
of the massive photon field and scalar field, according

to (2.18), the dark energy and pressure are given
by3

ρðdeÞ ≃m2ξ

2

�
dðmÞ
− þ dðmÞ

þ
a3=2

�2

; ð3:19Þ

pðdeÞ≃ −
m2ξ

2

�
dðmÞ
− þ dðmÞ

þ
a3=2

�2

; ð3:20Þ

and we can also calculate the equation of state param-
eter as

wðdeÞ ≡ pðdeÞ

ρðdeÞ
≃ −1: ð3:21Þ

Therefore, we note that as the universe expands, we
have ρðdeÞ → ðdðmÞ

− Þ2m2ξ=2 and pðdeÞ → −ðdðmÞ
− Þ2m2ξ=2

with wðdeÞ → −1, so that the scalar component of the
massive photon field furnishes the main source of dark
energy in this epoch.

C. Dark-energy-dominated epoch

In this section we shall study the case in which the late-
time Universe becomes dominated by dark energy,

ρðrÞ ≪ ρðdeÞ; ρðmÞ ≪ ρðdeÞ; ð3:22Þ

so that the Friedmann equations are given by

3

κ
H2 ≃ ρðdeÞ; ð3:23Þ

−
3

κ
H2 −

2

κ
_H ≃ pðdeÞ: ð3:24Þ

For the subsequent analysis, it will be convenient to
introduce the following ansatz for the dark-energy density4:

ρðdeÞ ≃ ρðdeÞ�
an

; ð3:25Þ

where n is a constant number that will be determined by the
dynamical equations. The Hubble parameter H is given by

3We consider only decaying modes for the temporal vector
component evolution. Their contributions to energy density and
pressure can then be neglected again because they remain
substantially smaller than the scalar contributions during the
radiation-dominated epoch, which is followed by the decaying-
mode contribution of Eq. (3.14).

4It turns out that the evolution equations (3.23) and (3.24)
admit a series solution in terms of inverse power of the scale
factor a. Since the higher-order terms decay rapidly with the
expansion of the Universe, we only consider the leading behavior,
which is sufficient for our purpose and which is supported by
numerical analysis.
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3

κ
H2 ≃ ρðdeÞ�

an
; ð3:26Þ

where ρðdeÞ� =an� is the dark-energy density when its domi-
nance (3.22) takes place, i.e., a ¼ a�. In such a case, the
corresponding field equations are given by

a2f00 þ
�
4 −

n
2

�
af0 þWðfÞf ≃ 0; ð3:27Þ

a2φ00 þ
�
4 −

n
2

�
aφ0 þWðφÞφ≃ 0; ð3:28Þ

with WðfÞ and WðφÞ defined by

WðfÞ ≡ 3m2ξ

κρðdeÞ�
an − 6ξðηþ 4ωÞ þ n

�
3ηξþ 6ωξ −

3

2

�
;

ð3:29Þ

WðφÞ ≡ 3m2ξ

κρðdeÞ�
an þ 3ðn − 4Þχ: ð3:30Þ

For the nonzero positive values, n > 0, the values of WðfÞ

and WðφÞ are dominated by the an term, so we can use the

approximation with W ≡ 3m2ξ

κρðdeÞ�
,

WðfÞ ≃Wan; WðφÞ ≃Wan: ð3:31Þ

The corresponding solutions are given by

f ≃ 1

a3=2

�
cðvÞ− cos

�
2

ffiffiffiffiffi
W

p

n
an=2 −

3π

2n

�

þ cðvÞþ sin
�
2

ffiffiffiffiffi
W

p

n
an=2 þ 3π

2n

��
; ð3:32Þ

φ≃ 1

a3=2

�
dðvÞ− cos

�
2

ffiffiffiffiffi
W

p

n
an=2 −

3π

2n

�

þ dðvÞþ sin

�
2

ffiffiffiffiffi
W

p

n
an=2 þ 3π

2n

��
; ð3:33Þ

where cðvÞ� and dðvÞ� are integration constants. Here, we note
that when we insert the above solutions into (2.18),
Eq. (3.22) forces n ¼ 3, and thus the corresponding
energy density and pressure of the massive vector field
are given by

ρðdeÞ ≃m2ξ=2
a3

�
ðdðvÞ− Þ2 þ ðdðvÞþ Þ2 − ðcðvÞ− Þ2 þ ðcðvÞþ Þ2

ξ

�
;

ð3:34Þ

pðdeÞ ≃m2ξ=2
a3

�
pþ sin

�
4

3
a3=2

ffiffiffiffiffi
W

p �

þ p− cos

�
4

3
a3=2

ffiffiffiffiffi
W

p ��
; ð3:35Þ

where pþ and p− are the amplitudes given by

pþ ≡ 2cðvÞ− cðvÞþ

�
4ηþ 8ω −

1

ξ

�
− 2dðvÞ− dðvÞþ ; ð3:36Þ

p− ≡ ððcðvÞ− Þ2 − ðcðvÞþ Þ2Þ
�
−4η − 8ωþ 1

ξ

�

þ ðdðvÞ− Þ2 − ðdðvÞþ Þ2: ð3:37Þ

Note that if (3.34) is exactly correct then the corresponding
pressure should be zero. But it shows only the leading
behavior in the expansion. If, for example, we calculate the
next order, ρðdeÞ will be augmented by an oscillating term
whose magnitude decays as power of ∼1=a9=2, as was

FIG. 1. Evolution of f̂ (left) and φ̂ (right) as a function of logarithmic scale factor N ¼ ln aðtÞ. In both panels, we have used η̂ ¼ 0.9,

ω̂ ¼ −0.35, χ ¼ 10−7, and m̂ ¼ 10−3. We have also set the initial values φ̂i ¼ 8 and f̂i ≃ a
ð1þ

ffiffiffiffiffiffiffiffiffiffiffi
25−24η̂

p
Þ=2

i ≃ 2 × 10−4 at the initial epoch
ln ai ¼ −20.
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mentioned before. Then, the equation-of-state parameter
for the dark energy is given by

ωðdeÞ ¼ pðdeÞ

ρde
≃ pþ sin ð4

ffiffiffiffi
W

p
3

a3=2Þ þ p− cos ð4
ffiffiffiffi
W

p
3

a3=2Þ
ðdðvÞ− Þ2 þ ðdðvÞþ Þ2 − ðcðvÞ− Þ2þðcðvÞþ Þ2

ξ

:

ð3:38Þ

We note that the equation-of-state parameter has oscil-
lation terms which gives zero average value. Thus, the
corresponding energy density should be proportional to
1=a3, which is consistent with energy density equa-
tion (3.34). In Fig. 1, we plot behaviors of f and φ
based on numerical solutions to confirm our analytically
approximated solution. Figure 2 shows that the dark-
energy density decreases as a−4 during the early

radiation-dominated epoch, remains almost constant dur-
ing the matter-dominated epoch, and then it decreases
again as a−3 in the dark-energy-dominated era.

IV. OBSERVATIONAL CONSTRAINTS

In this section we will confront our model with the
latest cosmological data and study whether it can be
distinguished from the ΛCDM model. For this purpose,
we use recent observational data such as type Ia
supernovae (SN), baryon acoustic oscillation (BAO)
based on large-scale structure of galaxies, cosmic micro-
wave background (CMB) radiation, and Hubble param-
eters [HðzÞ]. For numerical analysis, it is convenient to
rewrite Eqs. (2.14)–(2.16) in terms of N ≡ ln a as
follows:

Ĥ2 ¼ 1

6
m̂2φ̂2 −

1

6
m̂2f̂2

þ Ĥ2

3

�
f̂2
�
6η̂ −

9

2
þ 6ω̂

�
− 3χφ̂2 þ 1

2
ðφ̂02 − f̂02Þ þ f̂f̂0ð6η̂ − 3þ 12ω̂Þ − 6χφ̂φ̂0

�

þ Ωrh2e−4N þΩmh2e−3N; ð4:1Þ

where a prime indicates a derivative with respect to N, and

Ĥ2f̂00 þ ðĤĤ0 þ 3Ĥ2Þf̂0 þ ½m̂2 − 3ĤĤ0ð−1þ 2η̂þ 4ω̂Þ − 6Ĥ2ðη̂þ 4ω̂Þ�f̂ ¼ 0;

Ĥ2φ̂00 þ ðĤĤ0 þ 3Ĥ2Þφ̂0 þ ðm̂2 − 6χĤĤ0 − 12χĤ2Þφ̂ ¼ 0; ð4:2Þ

where we have eliminated the second-order derivative in (4.1) by using the field equations, and have introduced
dimensionless quantities,

Ĥ2 ≡H2h2

H2
0

; Ωr ≡ κρr;0
3H2

0

; Ωm ≡ κρm;0

3H2
0

; m̂2 ≡m2ξh2

H2
0

;

f̂ ≡ κf
ξ
; φ̂≡ κφ; η̂ ¼ ηξ; ω̂ ¼ ωξ: ð4:3Þ

FIG. 2. (Left) Evolution of energy density of the vector field (red), radiation (blue), and matter (green curve). (Right) Evolution of the
equation-of-state parameter. The same model parameters have been used as in Fig. 1.
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Here, H0 is the present value of the Hubble parameter,
usually expressed as H0 ¼ 100h km s−1Mpc−1, and Ωr
and Ωm are the current density parameters of radiation and
matter, respectively. The radiation density includes the
contribution of relativistic neutrinos as well as that of
photons, with the collective density parameter

Ωrh2 ¼ Ωγh2ð1þ 0.2271NeffÞ; ð4:4Þ

where Neff ¼ 3.04 is the effective number of neutrino
species, and Ωγ is the photon density parameter with
values of Ωr ¼ 2.470 37 × 10−5h−2 for the present
CMB temperature T0 ¼ 2.725 K (WMAP9) and Ωr ¼
2.472 18 × 10−5h−2 for T0 ¼ 2.7255 K (PLANCK). No-
tice that, in this analysis, we shall choose the decaying
mode for the vector field f̂ during the matter era, which
satisfies a condition

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−48η̂þ 96ω̂þ 81

p
< 3 in (3.16). In

such a case, the contribution of the temporal component is
negligible relative to the scalar field, and the decaying-
mode condition gives almost the same probability in the
parameter constraints for η̂ and ω̂. Thus, we choose η̂ ¼ 0.9
and ω̂ ¼ −0.35 as fixed values during our analysis.5

Therefore, the background dynamics is completely deter-
mined by a set of parameters ðm̂; χ; φ̂i;ΩmÞ. However, to
confront our model with real observational data, we need
an additional parameter of baryon density (Ωb); lastly,
our model also has five free parameters θ ¼ ðlog10m̂;
−log10ð−χÞ; log10φ̂i;Ωbh2;Ωmh2Þ. It should be empha-
sized that the Hubble constant (H0) is no longer a free
parameter because it is derived from the integration of
field equations for a given set of parameters chosen.
The free parameters are taken in the following priors:
log10m̂ ¼ ½−3; 3�, − log10ð−χÞ ¼ ½1; 7�, log10φ̂i ¼ ½−3; 3�,
Ωbh2 ¼ ½0.015; 0.030�, and Ωmh2 ¼ ½0.11; 0.15�. In addi-
tion, as mentioned above, we fixed the parameters as η̂ ¼
0.9 and ω̂ ¼ −0.35 for the analysis. To obtain the like-
lihood distributions for model parameters, we use the
Markov chain Monte Carlo (MCMC) method based on
the Metropolis-Hastings algorithm to randomly explore the
parameter space that is favored by observational data [24].
The method needs to make decisions for accepting or
rejecting a randomly chosen chain element via the prob-
ability function PðθjDÞ ∝ expð−χ2=2Þ, where D denotes
the data, and χ2 ¼ χ2HðzÞ þ χ2SN þ χ2BAO þ χ2CMB is the sum
of individual chi-squares for HðzÞ, SN, BAO, and CMB
data (defined below). During the MCMC analysis, we use a
simple diagnostic to test the convergence of MCMC chain:
the means estimated from the first (after the burn-in

process) and the last 10% of the chain are approximately
equal to each other if the chain has converged (see
Appendix B of Ref. [25]).

A. Hubble parameters

In our analysis, we use 29 observational data points
of Hubble parameters over a redshift range of 0.07 ≤
z ≤ 2.34, which include 23 data points obtained from the
differential age approach [26] and 6 derived from the BAO
measurements [27]. The chi-square is defined as

χ2HðzÞ ¼
X29
i¼1

½HthðziÞ −HobsðziÞ�2
σ2HðziÞ

; ð4:5Þ

where HthðziÞ and HobsðziÞ are theory-predicted and
observed values of the Hubble parameter at redshift zi,
respectively, and σH denotes the measurement error of the
observed data point.

B. Type Ia supernovae

The type Ia supernovae provide tight constraints on
the energy content of the late-time Universe. We use the
Union 2.1 compilation [28] that includes 580 SN over a
redshift range 0.015 ≤ z ≤ 1.414. In our analysis, we apply
the chi-square that has been marginalized over the zero-
point uncertainty due to absolute magnitude and Hubble
constant [29],

χ2SN ¼ c1 − c22=c3; ð4:6Þ

where

c1 ¼
X580
i¼1

�
μthðziÞ − μobsðziÞ

σi

�
2

;

c2 ¼
X580
i¼1

μðziÞth − μobsðziÞ
σ2i

; c3 ¼
X580
i¼1

1

σ2i
; ð4:7Þ

where μobsðziÞ and σi denote the observed distance modulus
and its measurement error of SN at redshift zi. The
theoretical distance modulus μth is defined as

μthðzÞ ¼ 5 log½ð1þ zÞrðzÞ�; ð4:8Þ

where rðzÞ is the comoving distance at redshift z,

rðzÞ ¼ c
H0

ffiffiffiffiffiffi
Ωk

p sin

� ffiffiffiffiffiffi
Ωk

p Z
z

0

H0

Hðz0Þ dz
0
�
; ð4:9Þ

with c the speed of light and Ωk the current density
parameter of spatial curvature (Ωk ¼ 0 in our analysis).

5There are strong constraints from local gravity experiments
which, among others, imply a small value for the ω parameter.
In our case, f2ω ≪ 1 and the parametrized Post-Newtonian γ
parameter [22] is very close to unity, which does not cause
enough change of the gravitational constant to be incompatible
with the observation, that is, jγ − 1j < 2 × 10−5 [23].
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C. Baryon acoustic oscillations

We use an effective distance measure related to the BAO
scale [30],

DVðzÞ≡
�
r2ðzÞ cz

HðzÞ
�1

3

; ð4:10Þ

and a fitting formula for the redshift of drag epoch
(zd) [31],

zd ¼
1291ðΩmh2Þ0.251

1þ 0.659ðΩmh2Þ0.828
½1þ b1ðΩbh2Þb2 �; ð4:11Þ

where

b1 ¼ 0.313ðΩmh2Þ−0.419½1þ 0.607ðΩmh2Þ0.674�;
b2 ¼ 0.238ðΩmh2Þ0.223: ð4:12Þ

As the BAO parameter, we use six numbers of
rsðzdÞ=DVðzÞ extracted from the Six-Degree-Field
Galaxy Survey [32], the Sloan Digital Sky Survey Data
Release 7 and 9 [33], and the WiggleZ Dark Energy Survey
[34], where rsðzÞ is the comoving sound horizon size.
These BAO data points were used in the WMAP nine-year
analysis [35]. Since the sound speed of baryon fluid
coupled with photons (γ) is given as

c2s ¼
_p
_ρ
¼

1
3
_ργ

_ργ þ _ρb
¼ 1

3½1þ ð3Ωb=4ΩγÞa�
; ð4:13Þ

the comoving sound horizon size before the last scattering
becomes

rsðzÞ¼
Z

t

0

csdt0=a¼
1ffiffiffi
3

p
Z

1=ð1þzÞ

0

da

a2HðaÞ½1þð3Ωb=4ΩγÞa�12
:

ð4:14Þ

The BAO measurements provide the following distance
ratios [35]:

hrsðzdÞ=DVð0.1Þi ¼ 0.336;

hDVð0.35Þ=rsðzdÞi ¼ 8.88; ð4:15Þ

hDVð0.57Þ=rsðzdÞi ¼ 13.67;

hrsðzdÞ=DVð0.44Þi ¼ 0.0916; ð4:16Þ

hrsðzdÞ=DVð0.60Þi ¼ 0.0726;

hrsðzdÞ=DVð0.73Þi ¼ 0.0592: ð4:17Þ

The inverse of the covariance matrix between measurement
errors is

C−1
BAO ¼

0
BBBBBBBBB@

4444.4 0 0 0 0 0

0 34.602 0 0 0 0

0 0 20.661157 0 0 0

0 0 0 24532.1 −25137.7 12099.1

0 0 0 −25137.7 134598.4 −64783.9
0 0 0 12099.1 −64783.9 128837.6

1
CCCCCCCCCA
: ð4:18Þ

The chi-square is given as

χ2BAO ¼ XTC−1
BAOX; ð4:19Þ

where

X ¼

0
BBBBBBBBB@

rsðzdÞ=DVð0.1Þ − 0.336

DVð0.35Þ=rsðzdÞ − 8.88

DVð0.57Þ=rsðzdÞ − 13.67

rsðzdÞ=DVð0.44Þ − 0.0916

rsðzdÞ=DVð0.60Þ − 0.0726

rsðzdÞ=DVð0.73Þ − 0.0592

1
CCCCCCCCCA
: ð4:20Þ

D. Cosmic microwave background radiation

As the CMB data, we use the CMB distance priors based
on WMAP nine-year data [35] and Planck data [36] for
testing our model. The first distance measure is the acoustic
scale lA defined as

lA ¼ π
rðz�Þ
rsðz�Þ

: ð4:21Þ

The decoupling epoch z� can be calculated from the fitting
function [37],

z� ¼ 1048½1þ 0.00124ðΩbh2Þ−0.738�½1þ g1ðΩmh2Þg2 �;
ð4:22Þ
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where

g1 ¼
0.0783ðΩbh2Þ−0.238
1þ 39.5ðΩbh2Þ0.763

; g2 ¼
0.560

1þ 21.1ðΩbh2Þ1.81
:

ð4:23Þ

The second distance measure is the shift parameter Rwhich
is given by

Rðz�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩmH2

0

p
c

rðz�Þ: ð4:24Þ

Recently, Shafer and Huterer [38] derived distance priors
from theWMAP and Planck data and provided mean values
and covariance matrix of the parameter combination
ðla; R; z�Þ as an efficient summary of CMB information
on dark energy. Hereafter, we use these data sets to
constrain our model parameters.

1. WMAP nine-year data

According to WMAP nine-year observations (WMAP9)
[35], the mean values for the three parameters ðlA; R; z�Þ are
given as [38]

hlAðz�Þi ¼ 301.98; hRðz�Þi ¼ 1.7302;

hz�i ¼ 1089.09; ð4:25Þ

with their inverse covariance matrix

C−1
WMAP9 ¼

0
B@

3.13365 15.1332 −1.43915
15.1332 13343.7 −223.16
−1.43915 −223.16 5.44598

1
CA:

ð4:26Þ

The chi-square is given as

χ2WMAP9 ¼ XTC−1
WMAP9X; ð4:27Þ

where

X ¼

0
B@

lAðz�Þ − 301.98

Rðz�Þ − 1.7302

z� − 1089.09

1
CA: ð4:28Þ

2. Planck data

According to Planck observations (PLANCK) [36],
the mean values for the three parameters ðlA; R; z�Þ are
given as [38]

hlAðz�Þi ¼ 301.65; hRðz�Þi ¼ 1.7499;

hz�i ¼ 1090.41: ð4:29Þ

Their inverse covariance matrix is

C−1
Planck ¼

0
B@

42.7223 −419.678 −0.765895
−419.678 57394.2 −762.352
−0.765895 −762.352 14.6999

1
CA:

ð4:30Þ

The chi-square is given as

χ2Planck ¼ XTC−1
PlanckX; ð4:31Þ

where

X ¼

0
B@

lAðz�Þ − 301.65

Rðz�Þ − 1.7499

z� − 1090.41

1
CA: ð4:32Þ

E. Results

We explore the allowed ranges of our dark-energy
model parameters using the recent observational data by
applying the MCMC parameter estimation method. In the

TABLE I. Summary of parameter constraints.

Massive photon model ΛCDM model

HðzÞ þ SNþ BAO
þWMAP9

HðzÞ þ SNþ BAO
þPLANCK

HðzÞ þ SNþ BAO
þWMAP9

HðzÞ þ SNþ BAO
þPLANCK

H0 69.57þ0.84
−0.85 69.21þ0.71

−0.66 69.57þ0.83
−0.80 69.32þ0.67

−0.69
log10 m̂ −0.8089þ0.3718

−0.5758 −0.8400þ0.3200
−0.5393 � � � � � �

− log10ð−χÞ >4.1ð2σÞ >4.3ð2σÞ � � � � � �
Ωmh2 0.1409þ0.0024

−0.0024 0.1448þ0.0016
−0.0014 0.1410þ0.0022

−0.0024 0.1446þ0.0014
−0.0015

Ωbh2 0.0240þ0.0005
−0.0004 0.0239þ0.0003

−0.0003 0.0239þ0.0004
−0.0004 0.0239þ0.0003

−0.0003
log10 φ̂i 0.9586þ0.5751

−0.3620 0.9898þ0.5364
−0.3161 � � � � � �

ΩΛh2 � � � � � � 0.3433þ0.0120
−0.0118 0.3355þ0.0105

−0.0105
χ2min 588.391 590.804 588.366 590.724
χ2ν 0.961 42 0.965 36 0.958 25 0.962 09
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calculation, we use log10 m̂, − log10ð−χÞ, Ωmh2, Ωbh2, and
log10 φ̂i as free parameters. The results are shown in Table I
for a summary of parameter constraints with mean and 1σ
confidence limits and in Fig. 3 for marginalized one-
dimensional likelihood distributions of individual param-
eters. We can see that the result obtained with Planck data
gives tighter constraints on model parameters. The best-fit
locations in the parameter space are

ðlog10m̂;−log10ð−χÞ;Ωmh2;Ωbh2; log10φ̂iÞ
¼ ð−1.314; 6.964; 0.141; 0.024; 1.47Þ; ð4:33Þ

with a minimum chi-square of χ2min ¼ 588.391 for the
HðzÞ þ SNþ BAOþWMAP9, and

ðlog10m̂;−log10ð−χÞ;Ωmh2;Ωbh2; log10φ̂iÞ
¼ ð−1.270; 6.908; 0.145; 0.024; 1.42Þ; ð4:34Þ

with χ2min ¼ 590.804 for HðzÞ þ SNþ BAOþ PLANCK.
The behaviors of Hubble parameter and SN distance
modulus as a function of redshift are shown in Fig. 4. In
Fig. 5, we also present the marginalized likelihood dis-
tributions for ðH0; log10 m̂Þ and ðlog10 φ̂i; log10 m̂Þ, which
shows that the value of Hubble constant does not depend on
the variation of photon mass while the initial value of φ̂
decreases as the photon mass increases.
To assess the goodness of fit of our massive photon

model, in Table I we present the parameter constraints for
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FIG. 4. (Left) Observed Hubble parameters versus redshift (grey and black dots with error bars; see text). (Right) The Hubble diagram
for Union 2.1 compilation of SN type Ia. In both figures, the red curve represents the best-fit prediction of our model constrained with
HðzÞ, SN, BAO, and CMB data sets.
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FIG. 3. Marginalized one-dimensional probability distributions of Hubble constant (H0) and five model parameters [log10 m̂,
− log10ð−χÞ, Ωmh2, Ωbh2, log10 φ̂i], favored by the current observations: HðzÞ þ SNþ BAOþ PLANCK (blue) and HðzÞ þ SNþ
BAOþWMAP9 (red histograms), respectively.
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the ΛCDM model and list the value of the minimum
reduced chi-square (χ2ν) for each case. The minimum
reduced chi-square is defined as χ2ν ¼ χ2min=ν, where ν ¼
N − n − 1 is the number of degrees of freedom andN and n
are the numbers of data points and free model parameters,
respectively. In our analysis, N ¼ 618, and n ¼ 5 for our
massive photon model and n ¼ 3 for the ΛCDM model.
Although the simple ΛCDM model gives a slightly better
fit to the observational data with the smaller values of χ2min
and χ2ν, we judge that our massive photon model fits the
data reasonably well in the sense that the reduced chi-
square is very close to unity.
We note that for our model to be compatible with

observations the photon should have nonzero mass with
log10 m̂ ≈ −1, which corresponds to the photon mass
m ≈ 10−34 eV. Such a value is consistent with current
experimental upper bound on the photon mass m ≤
10−15 eV from the measurements of Earth’s magnetic field
[39], Pioneer-10 data of the Jupiter magnetic field [40], and
m ≤ 10−27 eV from the Galactic magnetic fields [41].

V. CONCLUSION

In this paper, we investigated the cosmological impli-
cations of the massive Stueckelberg QED nonminimally
coupled to the Einstein gravity, paying special attention to
the possible role of the massive photon in relation to dark
energy. We found that the theory allows a long period of
current accelerating phase that closely mimics ΛCDM in
which the acceleration of Universe is due to the non-
vanishing photon mass governed by the relation Λ ∼m2. A
detailed numerical analysis in comparison with various data
predicts the nonvanishing photon mass being on the order
of ∼10−34 eV, which is consistent with the other upper
limits available so far.
The cosmological evolution of the nonminimal SVT

gravity theory exhibits a couple of interesting properties.
The left panel of Fig. 2 shows that the dark-energy density

of (2.18) has the same scaling behavior with the radiation
energy density in the radiation-dominated epoch. In addi-
tion, during the intermediate state between the radiation
and the constant dark-energy epoch, the behavior of dark-
energy density mimics the pressureless matter; this can be
seen clearly from the equation-of-state graph of Fig. 2.
Then, this constant dark-energy-dominant era lasts for a
long period of time (Fig. 2), in which the current accel-
eration of Universe takes place. During this period, the
dark-energy density is practically given by an intriguing
relation ρðdeÞ ∼m2M2

p.
We note that the scalar field stays almost constant

(Fig. 1) before a relaxation to its natural value of zero
begins to occur during the matter-dominated epoch. The
analysis in Sec. III C shows that the Stueckelberg scalar
field will ultimately relax to zero after going through a
period of oscillations. Both the energy density and pressure
decay as 1=a3 during the oscillations, but the pressure (and
the temporal component) also oscillates in harmony with
the scalar fields. Therefore, the analysis predicts a gradual
deviation from ΛCDM in the future, and that the Universe
will see the return of the matter-dominated epoch (not the
pressureless dust, but the remnants of the scalar-temporal
field component oscillations).
We also compared the massive photon model with the

observational data of SN type Ia, Hubble parameter, BAO,
and CMB measurements. According to MCMC methods,
we obtained the best-fit values of the parameters (shown in
Table I) by fixing the value of η̂ to 0.9 and ω̂ to −0.35. It
may be important to mention here that these fixed values of
parameters η̂ and ω̂ correspond to the decay mode during
the matter-dominated epoch. Presumably, different values
will not alter the numerical results much as long as these
parameters are chosen to satisfy the decay condition (3.16),
β < 3. We found that m ∼ 10−34 eV is allowed by the
HðzÞ þ SNþ BAOþ CMB data set for the massive
Stueckelberg QED nonminimally coupled to the Einstein
gravity. This is consistent with the most stringent upper
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FIG. 5. Marginalized likelihood distributions for ðH0; log10m̂Þ (left) and ðlog10 φ̂i; log10 m̂Þ (right) with 68.3% and 95.4% confidence
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bounds on the photon mass listed by the Particle Data
Group [14]. In addition, this result can give a highly precise
estimation for the mass of the photon. We also found that
the ΛCDM model is still compatible with our massive
photon model.
We conclude with a final comment on ρðdeÞj0 ∼ ΛM2

p∼
m2M2

p. It would be certainly impossible to perform any
experiment to establish the exact vanishing of the photon
mass, but the ultimate upper limit on the photon rest mass,
m, can be estimated by using the uncertainty principle to be
m ≈ ℏ=ðΔtÞc2 ≅ 10−34 eV for the current age of the uni-
verse. Our analysis with the observational data shows that
this value is in agreement with the prediction of massive
QED. It is also interesting to note that the relation Λ ∼m2

provides a vacuum energy density Λ4
c ∼ ΛM2

p with IR

cutoff L ∼m−1, in accordance with the holographic con-
straint [7].
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