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Compact stars consisting of massless quark matter and fermionic dark matter are studied by solving the
Tolman-Oppenheimer-Volkoff equations for two fluids separately. Dark matter is further investigated by
incorporating interfermionic interactions among the dark matter particles. The properties of stars made of
quark matter particles and self-interacting and free dark matter particles are explored by obtaining their
mass-radius relations. The regions of stability for such a compact star are determined, and it is
demonstrated that the maximum stable total mass of such a star decreases approximately linearly with
an increasing dark matter fraction.
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I. INTRODUCTION

A quark star is a hypothetical compact star and consists
of self-bound strange quark matter [1–5]. The existence of
quark stars is controversial, and their equation of state is
also uncertain.
One of the popular models for the equation of state of a

quark star is the so called MIT bag model [6]. The model is
often used for describing cold and massless (strange) quark
matter [7,8]. Standard values for the MIT bag constant
are around B1=4 ¼ 145 MeV as follows from fits to hadron
masses [7], which results in maximum masses of about
2.0 M⊙ at a radius of about 11 km [1,7], which are actually
very close to the ones of realistic neutron star models.
Fermionic or bosonic particles are equally considered for

modelling dark matter in current models. For a study of
compact fermionic stars, we refer to the papers [9–11] and
references therein. Boson stars with self-interactions have
been considered in Ref. [12] and references therein. More
recent work can be found in Ref. [13] and most recently in
Ref. [14] and references therein. Dark matter stars are
modelled in our work as a free or self-interacting fermion
gas at zero temperature. The possible candidates for dark
matter particles are a type of fermion predicted in exten-
sions of the standard model including supersymmetric
particles, the neutralino, the gravitino, and the axino
[15]. In our discussion, we consider dark matter to be
made of fermionic particles with a mass of 100 GeV, the
classical weakly interacting massive particle (WIMP) mass
scale. We assume that the dark matter particles cannot self-
annihilate as in asymmetric dark matter [16,17].
Self-annihilating WIMP dark matter with masses above

a few GeV accreted onto neutron stars may trigger a

conversion of the star into a strange star [18], or the
accreted dark matter may significantly affect the kinemati-
cal properties of the compact star [19]. Constraints on the
properties of dark matter candidates can be obtained from
stars on which asymmetric dark matter can accrete in its
lifetime and collapse into a neutron star [20]. Constraints on
the mass of dark matter candidates can also be obtained by
the possible collapse of compact stars due to dark matter
accretion [21,22]. The cooling process of compact objects
can be affected by the capture of dark matter which can
annihilate the star [23]. Recent studies have been done to
explore compact stars with non-self-annihilating dark
matter to analyze the gravitational effects of dark matter
on the stellar matter under intense conditions [24–27]. In
these studies, masses of dark matter in the GeV range have
been assumed. Studies have also been performed to
investigate the compact objects formed due the admixture
of neutron star matter and dark matter [28] leading to the
possibilities of new stable solutions of compact stars with
planetlike masses. Therefore, it is of great interest to
analyze the effects of dark matter on compact stellar
objects. If quark stars do exist in nature, they can
accumulate dark matter which will lead to various changes
in the mass-radius relations which is studied in this work.
This paper is organized as follows. In Sec. II, we shortly

discuss the two-fluid Tolman Oppenheimer Volkoff (TOV)
equations. In Sec. III, we discuss the equations of state for
both quark matter and fermionic dark matter. We also
discuss the general scaling relations of stellar objects in this
section. In Sec. IV, we present the numerically obtained
results (mass-radius relations) for quark matter stars by
solving the TOV equations. In Sec. V, TOV equations are
solved for dark matter composed of both strongly self-
interacting and free fermions, and their corresponding
mass-radius relations are obtained. Section VI is dedicated
to the numerical solutions of two-fluid TOV equations,
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namely, dark matter and quark matter, which are coupled
together only by gravity. We demonstrate that the maxi-
mum mass of the quark star admixed with dark matter
reduces due to the presence of dark matter and decreases in
a linear fashion in case of strongly self-interacting dark
matter fermions, while for free dark matter, the maximum
mass remains almost unaffected. Finally, in Sec. VII, we
summarize our findings and discuss our results.
Throughout the paper, we use natural units where

c ¼ ℏ ¼ 1, c being the speed of light and ℏ being the
reduced Planck constant.

II. TWO FLUID TOLMANN-OPPENHEIMER-
VOLKOFF EQUATIONS

Since our aim is to see the properties of a quark star
admixed with dark matter, we need the TOV equations for
two fluids admixed with each other. There will be a
hydrostatic equilibrium condition for each of the two
fluids, and the fact that there is only gravitational inter-
action between them will be encoded in the metric
describing the system. The two-fluid TOV equations that
we use here are [26,28]

dp1

dr
¼ −
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×
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dM1

dr
¼ 4πr2ρ1ðrÞ ð3Þ

dM2

dr
¼ 4πr2ρ2ðrÞ ð4Þ

MðrÞ ¼ M1ðrÞ þM2ðrÞ: ð5Þ

Here, MðrÞ represents the total mass at radius r; p1, p2,
ρ1, and ρ2 are the pressures and densities of the fluids 1 and
2, respectively. We could separate out the hydrostatic
equilibrium condition for the two fluids into Eqs. (1)
and (2) because the interaction acts only through gravity
and nothing else. The gravitational interaction is taken into
account becauseMðrÞ is the total mass of both the fluids at
radius r which means that each fluid attracts the other
gravitationally. The equations for the conservation of mass

of the two fluids remain the same as that for individual
fluids.
For solving the two-fluid TOVequations, we need proper

boundary conditions. M1ð0Þ and M2ð0Þ must be equal to
zero at r ¼ 0. Central pressures for the two fluids are
calculated from the central densities given as the initial
condition using the respective equations of state of the
two fluids. Then, the two-fluid TOV equations are solved
together simultaneously, and we obtain either R1 or R2 as
the radius of the complete star depending on which fluid
ends up having a larger radius. The radius of the individual
fluids occurs at those points where the individual pressures
drop down to zero.

III. EQUATIONS OF STATE FOR QUARK
MATTER AND FOR FREE AND

SELF-INTERACTING
DARK MATTER

The equations of state (EOS) for quark matter are
discussed using the MIT bag model. The EOS for free
dark matter particles along with strongly self-interacting
dark matter particles is briefly described using statistical
mechanics of free and self-interacting fermions. Scaling
relations for quark stars and dark matter stars is also
discussed.

A. Equation of state for quark matter

The MIT Bag equation of state [7,8] is taken as the
equation of state for quark matter in our work. In this
model, the quarks are assumed to be made of free fermions
constrained within a bag with a vacuum pressure that keeps
the particles within the bag. The MIT bag equation of
state is

p ¼ 1

3
ðϵ − 4BÞ: ð6Þ

Here, p denotes the pressure, ϵ denotes the energy density,
and B is the bag constant of which the standard accepted
values are around B1=4 ¼ 145 MeV or B1=4 ¼ 200 MeV
[7]. Note that the equation of state for a cold gas of
interacting massless quarks within perturbative quantum
chromodynamics can be approximated by a similar form of
the equation of state as the MIT bag model [29].

B. Equation of state for free and self-interacting
dark matter fermions

In our work, we assume dark matter to be made of
fermions with a mass of 100 GeV. We consider cold dark
matter so that the temperature of dark matter is much
smaller than the mass of the dark matter particles.
Furthermore, the temperature usually seen for compact
stars is in the range of 106 K which corresponds to about
the 100 eV mass scale. This scale is much smaller than the
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mass of dark matter considered in our investigation. The
range of Fermi energies of dark matter used in our
calculations is not much smaller than the mass of dark
matter particles, so temperature effects can be safely
ignored. The equation of state for a gas of free fermions
can be calculated via explicit expressions for energy
density (ϵ) and pressure (p) [30],

ϵ ¼ 1

π2

Z
kF

0

k2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

f þ k2
q

dk

¼ m4
f

8π2

h
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ffiffiffiffiffiffiffiffiffiffiffiffiffi
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− sinh−1ðzÞ

i
ð7Þ
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3π2
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24π2

h
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ffiffiffiffiffiffiffiffiffiffiffiffiffi
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þ 3sinh−1ðzÞ

i
; ð8Þ

where z ¼ kF=mf is the dimensionless Fermi momentum.
Similarly, the interactions between the fermions are

modelled by considering the simplest two-body inter-
actions. Self-repulsions between the fermions constituting
the dark matter star are modelled by considering the
interaction energy density to be proportional to n2

[12,31,32] to the lowest order approximation, where n is
the number density of fermions. The resulting equation of
state has been calculated in Ref. [31],
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where z ¼ kF=mf is again the dimensionless Fermi
momentum and y is the dimensionless interaction strength
parameter. The strength parameter y ¼ mf=mI is defined as
the ratio between the fermion mass mf and the interaction
mass scale mI [31]. For strong interactions, the typical
interaction mass scale is mI ∼ 100 MeV (typical scale of
interactions by chiral effective models of QCD given by
the pion decay constant). For weak interactions, mI ∼
300 GeV (mediated by W and Z bosons). Accordingly,
WIMP dark matter candidates in the mass range of
100 GeV [33] can have weak self-interactions with
y ∼ 0.1, or they may be strongly self-interacting with
y ∼ 103 where the strong interaction scale corresponds to
ΛQCD ≃ 100 MeV. In our discussion, we focus on two

situations, one for free fermionic dark matter with y ¼ 0
and the other for strongly self-interacting dark matter
with y ¼ 103.

C. Scaling relations for quark matter and
dark matter

We generally scale dimensional quantities to dimension-
less ones in order to represent any arbitrary mass configu-
ration of a star in a single graph. From Eq. (6), it is clear that
if we scale the energy density and pressure values by 1=4B
the EOS reduces to a dimensionless form [1,7], and the
corresponding total mass and radius of the star would then
be scaled by 1=

ffiffiffiffiffiffi
4B

p
. Similarly, for the dark matter

fermionic particles, it is a natural choice to scale the
pressure and energy density by 1=m4

f, which will again
make the equations dimensionless. The scaling relations for
quark matter are ϵ0quark¼ ϵquark=ð4BÞ, p0

quark ¼ pquark=ð4BÞ,
M0

quark ¼ Mquark=ð2
ffiffiffiffi
B

p Þ, and R0
quark ¼ Rquark=ð2

ffiffiffiffi
B

p Þ. The
corresponding relations for fermions are ϵ0f ¼ ϵf=m4

f,
p0
f ¼ pf=m4

f, M0
f ¼ Mf=a, and R0

f ¼ Rf=b where a ¼
M3

p=m2
f and b ¼ Mp=m2

f where Mp is the Planck mass
(G ¼ M−2

p ). For detailed derivations of the scaling rela-
tions, we refer to Ref. [12].

IV. SOLVING TOV EQUATIONS FOR
QUARK MATTER STAR

Numerical solutions of the mass-radius relations of
quark stars can be found in the literature [34]. In our
nomenclature, Mquark and Rquark represent the mass and
radius of the quark star, respectively. The curve is shown in
Fig. 1 for two different bag values.
Up to a certain point, the mass increases with the radius,

reaching a maximum value of mass at a certain value of the
radius, after which the mass starts decreasing, and the star
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FIG. 1. Mass (Mquark) vs radius (Rquark) curve for quark stars for
two different bag values.
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starts becoming unstable from this point. The maximum
stable mass for B1=4 ¼ 145 MeV is about 2.01 M⊙, and the
corresponding radius is around 11 km, while B1=4 ¼
200 MeV gives a maximum mass of about 1.06 M⊙ with
a radius of 5.8 km. Quark stars are incompressible stars and
form a self-bound system [2,5].

V. SOLVING TOV EQUATION NUMERICALLY
FOR FREE AND STRONGLY SELF-INTERACTING

DARK MATTER PARTICLES

A. Solutions for free fermionic dark matter

We first consider dark matter made of free fermionic
particles with 100 GeV mass. Single fluid TOV equations
are solved taking (7) and (8) as the equation of state. Mdark
and Rdark represents the mass and radius of the dark matter
star composed of free fermions, respectively. The resulting
mass-radius curve is plotted in Fig. 2.
From the graph, we see that the mass at first increases

with a decrease in radius for increasing central energy
density values, reaches a maximum, and then starts
decreasing. Stellar configurations to the right side of the
maximum mass are stable, whereas those on the left side
are unstable. The maximum stable mass for the dark matter
star made of free fermions comes out to be 6.27 × 10−5 M⊙
with a radius of 0.81 m.

B. Solutions for strongly self-interacting
dark matter

The TOVequations are solved for strongly self-interacting
dark matter particles (y ¼ 103) of mass 100 GeV. The
equations of state used are (9) and (10). Mint and Rint

represent the mass and radius of the dark matter star
composed of strongly self-interacting fermions, respectively.
The resulting mass-radius curve is plotted in Fig. 3.
For strong self-interaction, the mass and radius are much

larger compared to free fermions, and the maximum mass
and the minimum radius are about 1000 times larger. From
the curve, it is observed that for very low central densities
of dark matter particles, i.e., the tail of the graph, the rate of
increase of the mass with the decreasing radius is much
higher compared to the free dark matter particle case
discussed in the previous subsection. The maximum mass
and the minimum radius for the self-interacting dark matter
star turn out to be 2.67 × 10−2 M⊙ and 0.189 km, respec-
tively, larger than for the noninteracting case due to
repulsive forces between the dark matter particles.

VI. SOLUTION OF TOV EQUATION
FOR AN ADMIXTURE OF QUARK MATTER

AND DARK MATTER

The nomenclature used is Mquark and Rquark for the mass
and radius of quark matter,Mdark and Rdark for the mass and
radius of the star composed of free dark matter particles,
and Mint and Rint for a strongly self-interacting dark matter
star. ϵ0;quark, ϵ0;dark, and ϵ0;intdark represent the central energy
densities of quark matter, dark matter made of free
fermions, and dark matter made of strongly self-interacting
fermions, respectively.

A. Solution for combination of quark matter
and free dark matter particles

The two-fluid TOV equations (1), (2), (3), and (4) are
solved for a mixture of quark matter with the MIT bag
model by taking the bag value to be B1=4 ¼ 145 MeV and
dark matter composed of free fermionic particles of mass
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100 GeV. We start with initial central energy densities for
the two components and compute the corresponding central
pressures using the EOS for the respective fluids [Eq. (6)
for quark matter and (7) and (8) for dark matter].
Mass (Mquark) vs the central energy density of quark

matter (ϵ0;quark) is plotted for three different values of the
central density of dark matter (ϵ0;dark), each kept constant at
a time (see Fig. 4). From the plot, it is clear that as the
central density of dark matter is increased in the mixture the
maximum mass of the quark matter still reaches 2.005 M⊙,
but now at higher central densities (ϵ0;quark) of quark matter.
This behavior can be explained via the fact that as (ϵ0;dark)
increases then, within the stable branch of dark matter, the
allowed mass of dark matter inside the quark star also
increases, which contributes to a greater gravitational pull,
so a much higher central quark energy density (ϵ0;quark) is
needed to support the maximum possible mass against the
greater gravitational pull. The maximum stable mass of the
quark component (Mmax;quark) is almost the same as a pure
quark star (2.01 M⊙) because the maximum possible value
of the dark matter mass is 6.27 × 10−5 M⊙ (Sec. VA),
which is much less than 2.01 M⊙, to cause a notable
reduction in the quark matter mass. Figure 5 shows the plot
for the radius (Rquark) vs the central energy density (ϵ0;quark)
of quark matter for different values of ϵ0;dark. The figure
shows that the maximum stable radius of the quark matter is
independent of the amount of free fermionic dark matter
present in the admixed star.
After observing that the maximum possible mass of

quark matter is hardly reduced in the presence of free
fermionic dark matter particles of various central densities,
it is essential to determine which configurations of the
admixed star are stable. The plots for the profile of dark
matter component are obtained by keeping ϵ0;quark fixed and
slowly varying ϵ0;dark (Fig. 6 and 7). It is seen that the dark
matter masses and radii are the same for varying ϵ0;quark,

which is expected since dark matter is more compact than
quark matter and is not affected much by the presence of
quarks.
Figures 4, 5, 6, and 7 allow us to analyze the stability of

the entire configuration. Since we realize from Figs. 6 and 7
that ϵ0;dark, for which dark matter mass hits a maximum, is
the same for all ϵ0;quark, we at first mark those points where
the quark matter becomes unstable, i.e., hits the maximum
mass by doing the plots done in Figs. 4 and 5 for different
ϵ0;dark. As we slowly increase ϵ0;dark, the dark matter content
inside the admixed star keeps on increasing, and the radius
of the dark matter keeps on decreasing. After a sufficiently
large ϵ0;dark, the dark matter mass content hits a maximum,
after which the dark matter mass decreases with a further
increase in ϵ0;dark. This is then the unstable branch for the
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dark matter. After this critical value of ϵ0;dark, no dark
matter configurations are stable, and hence quark matter
and dark matter cannot exist together since the dark matter
would collapse into a black hole. Hence, we expect that up
to a certain value of ϵ0;dark the quark matter stable mass
increases to reach 2.005 M⊙ for sufficiently high ϵ0;quark,
and after a critical ϵ0;dark, dark matter itself becomes
unstable, which leads to an instability of the admixture
of the dark matter and quark matter.
Next, we study the configurations in the ϵ0;quark-ϵ0;dark

plane. At first, ϵ0;dark is kept fixed, and ϵ0;quark is slowly
increased. The stable boundary is marked in the contour
plot (Fig. 8) by marking the maximum stable quark matter

mass for increasing ϵ0;dark, which is the line inclined at an
angle in the contour plot. The sequence continues up to the
point where the dark matter mass reaches its maxima.
Above this value of ϵ0;dark, all configurations become
unstable since dark matter itself becomes unstable. This
leads to the boundary line that is almost parallel to the x
axis. For a quark star admixed with dark matter made of
free gas of fermionic particles, the maximum possible mass
of the stable configuration is approximately Mtotal ∼
2.01 M⊙ with a dark matter content of around
0.63 × 10−4 M⊙, which has a small radius of about
0.80 m while the quark matter extends much farther to a
radius of around 11 km.

B. Solution for combination of quark matter and
strongly self-interacting dark matter

The two-fluid TOVequations [Eqs. (1), (2), (3), and (4)]
are solved for massive dark matter fermions taken to be
strongly self-interacting using the model discussed in
Sec. III B. The interaction strength y is taken to be 103.
The presence of self-interaction causes the maximum stable
mass of a dark star to be increased from about 10−4 M⊙ for
the free fermionic case to about 10−2 M⊙ for the strongly
self-interacting case (Secs. VA and V B).
The plot for the mass of the quark component (Mquark) vs

the central energy density ϵ0;quark of the quark component
for different values of ϵ0;intdark (Fig. 9) reveals that the
maximum stable mass of the quark matter decreases with
increasing central energy density of dark matter (ϵ0;intdark)
within the stable branch of dark matter, though the
decrease is very moderate. The maximum stable mass
of the quark component at ϵ0;intdark ¼ 105 MeV=fm3

is 1.995 M⊙, and this mass reduces to 1.937 M⊙ at
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maximum stable quark mass (Mquark;max) is reduced and is now
attained at a higher ϵ0;quark.
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ϵ0;intdark ¼ 2 × 106 MeV=fm3. It is also observed that the
maximum quark mass (Mquark;max) is attained at a much
higher value of ϵ0;quark, the reason being the same as
described in the free fermion case. The corresponding plot
for the radius of the quark component vs ϵ0;quark for two
different ϵ0;intdark is shown in Fig. 10, which shows that the
maximum radius of quark component also decreases with
an increase in ϵ0;intdark.
Keeping ϵ0;quark constant and obtaining Mint vs ϵ0;intdark

and Rint vs ϵ0;intdark gives the profile for dark matter present
in the admixture (Figs. 11 and 12). It is evident from
Figs. 11 and 12 that the dark matter mass and radius profile

do not change much with increasing ϵ0;quark since dark
matter is much more compact than quark matter, and its
particles are also much more massive to be significantly
affected by quark matter particles. Figures 9, 10, 11, and 12
allow us to determine the stability of the quark matter star
admixed with self-interacting dark matter. The first two
plots showing the dependence of the mass and radius of the
quark matter vs ϵ0;quark tell us up to which point the quark
star configuration would remain stable by noting the point
of maxima of the mass and the radius. The next two plots,
Figs. 11 and 12, allow us to determine up to which point the
dark matter remains stable for varying ϵ0;quark. It is evident
from the graphs that the dark matter parameter profile is
almost independent of ϵ0;quark. So, the ϵ0;intdark at which the
dark matter becomes unstable is the same for all ϵ0;quark.
The contour plot showing the dependence of the total

mass of the entire star (Mtotal) on the dimensionless central
energy densities of the two fluids (Fig. 13) reflects the
decrease in the maximum stable total mass with an increase
in ϵ0;intdark.
The region of stability is marked in the contour diagram.

The shape of the boundary is similar to the free case
discussed before. The upper branch of the boundary line is
an indicator of the ϵ0;intdark, after which the dark matter
component becomes unstable for a given ϵ0;quark. As a quick
check, in the contour diagram, the plot converges to the
appropriate mass limit for low ϵ0;intdark. For low ϵ0;intdark say,
105 MeV=fm3, the maximum stable mass is ∼2.0 M⊙ at a
radius of about 11 km showing the convergence to the pure
quark star limit.
Figure 14 shows the maximum stable total mass vs the

fraction of dark matter which is fitted by a linear fit. The
slope of the fit comes out to be about −3.62.
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FIG. 10. Plot for the radius of the quark component (Rquark) vs
the quark central density ϵ0;quark for different dark matter central
densities (ϵ0;intdark).
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FIG. 11. Plot for the mass of the dark component (Mint) vs the
dark central density ϵ0;intdark of different quark matter central
densities (ϵ0;quark). It is visible that the dark matter mass profile is
not altered very much with changing ϵ0;quark.
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FIG. 12. Plot for the radius of the dark component (Rint) vs the
dark central density ϵ0;intdark for different quark matter central
densities (ϵ0;quark).
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The reason for the decrease of the maximum total mass
with increasing dark matter content is the increased
gravitational force due to extra dark matter content which
causes an earlier collapse of the star. Using the linear fit in
Fig. 14, the equation for the dependence of the maximum
total stable mass of the admixed star on the dark matter
fraction present is given as

Mtot;max

M⊙
¼ 2.004 − 3.62

Mint

Mtot;max
ð11Þ

or

Mtot;max

M⊙
¼ 2.004 − 3.62f; ð12Þ

where f is the fraction of self-interacting dark matter in the
admixed star at the maximum stable total mass. This linear
plot gives the maximum stable total mass of the star for a
given fraction of dark matter. The linear relation between
the maximum possible stable mass and the dark matter
content implies that the rate of decrease of the maximum
mass is a constant and hence the decrease is slower as
compared to other possible kinds of fall like an exponential
fall, which would have led to a much steeper fall of the
maximummass with an increasing dark matter fraction. So,
the maximum mass decreases slowly with increasing dark
matter content. Since the equations have been numerically
solved using two-fluid TOV equations including gravita-
tional interaction between the constituents and with a full
general relativistic treatment, the linear relation obtained is
quite robust. However, since only gravitational interaction
has been included and all other possible interactions
between the particles have been ignored, some deviations
from this linear relation are expected depending on the
nature of those interactions. For masses above the maxi-
mum stable dark matter and quark matter masses, the linear
relation will no longer hold. The linear relation is strictly
valid only for the range of parameters that we investigated.
We cannot predict beforehand a linear relation of this form
for any arbitrary set of parameters. The maximum allowed
strongly self-interacting dark matter content is about
2.64 × 10−2 M⊙ at a maximum total stable mass of about
1.95 M⊙, which gives a maximum limit on the possible
dark matter fraction fmax ≃ 0.014. Since the maximum
mass falls slowly with increasing dark matter, observing
drastic changes in the maximum total quark star masses (if
they exist) is not expected. Also, since the maximum
possible dark matter fraction is very small (∼1.4%), it
would be difficult to detect dark matter in quark stars in the
2.0 M⊙ mass range. Radio timing observations of the
pulsar J0348þ 0432 and phase-resolved optical spectros-
copy of its white-dwarf companion lead to a precise pulsar
mass measurement of 2.01� 0.04 M⊙, which is by far
the highest yet measured with this precision [35,36]. The
maximum stable dark admixed quark star mass (1.95 M⊙)
falls slightly lower than the error limit of the highest
measured pulsar mass.

VII. SUMMARY AND DISCUSSIONS

Pure quark matter is studied by using the MIT bag model
[8]. A dark matter star is studied by considering the dark
matter to be made up of fermionic particles of mass
100 GeV [16,17] with the assumption that these particles

10 20 30 40 50 60 70 80 90 100 110 120 130

0.0000001

0.0000002

0.0000003

0.0000004

D
im

e
n

s
io

n
le

s
s
 C

e
n

tr
a

l E
n

e
rg

y
 D

e
n

s
ity

 o
f 
D

a
rk

 m
a

tt
e

r

Dimensionless Central energy density of Quark matter 0.01000
0.01500
0.02000
0.1394
0.2587
0.5075
0.7562
1.005
1.254
1.502
1.751
1.876
1.938
1.946
1.955
1.957
1.961
1.969
1.977
1.981
1.983
1.984
1.988
1.992
2.000
2.010

A B

A: Stable region , B: Unstable region

FIG. 13. Contour plot with [ϵ0;quark
4B , ϵ0;intdarkm4

f
, Mtotal (in M⊙)] as the

x, y, and z axes, respectively. The region marked as A represents
the stable region for the formation of a quark star admixed with
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density of quark matter cannot be zero according to the equation
of state (6).
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do not self-annihilate. The maximum stable mass of the
dark matter star composed of strongly self-interacting
particles is about 2.7 × 10−2 M⊙ at a radius of about
0.19 km, while for free fermions, the mass is about
6.0 × 10−5 M⊙ at a radius of around 1 m.
The complete dimensional two-fluid TOV equations are

solved to study the behavior of quark matter admixed with
dark matter. First, the equations are solved for a mixture of
quark matter and free dark matter. The maximum stable
mass of the admixed star is almost the same as that for a
pure quark star for an increasing dark matter fraction within
the star. As the content of dark matter is gradually increased
in the admixed star, the dark matter reaches its maximum
stable configuration, after which no admixed star configu-
ration remains stable since the dark matter component
collapses to form a black hole. For a quark star admixed
with dark matter made of free gas of particles, the
maximum possible mass of the stable configuration is
approximatelyMtotal ∼ 2.01 M⊙ with a dark matter content
of around 0.63 × 10−4 M⊙. A reduction in the maximum
stable total mass is noted in case of a quark star admixed
with a dark matter star composed of strongly self-
interacting fermions. The decrease is from 2.01 M⊙ for

zero dark matter content inside the star to about 1.95 M⊙
for the maximum allowed mass of strongly self-interacting
dark matter in the star. The maximum dark matter content is
around 2.64 × 10−2 M⊙ at a maximum stable total mass of
about 1.95 M⊙. The maximum stable total mass in case of
strongly self-interacting dark matter is seen to reduce
linearly with an increasing dark matter fraction in the star.
The maximum accretion rate of dark matter by the quark
star can be estimated to be about Mint;max

τ ∼ 2.03 × 10−12 M⊙
per year, where τ ∼ 1.3 × 1010 years is the estimate for the
age of the Universe and Mint;max is the maximum possible
self-interacting dark matter content in the quark star. If the
accretion rate is higher than this, the quark star will
collapse.
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