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We study two nonlinear extensions of the nonlocal R□−2R gravity theory. We extend this theory in
two different ways suggested by conformal symmetry, either replacing □

−2 with ð−□þ R=6Þ−2, which
is the operator that enters the action for a conformally-coupled scalar field, or replacing □

−2 with the
inverse of the Paneitz operator, which is a four-derivative operator that enters in the effective action
induced by the conformal anomaly. We show that the former modification gives an interesting and viable
cosmological model, with a dark energy equation of state today wDE ≃ −1.01, which very closely mimics
ΛCDM and evolves asymptotically into a de Sitter solution. The model based on the Paneitz operator
seems instead excluded by the comparison with observations. We also review some issues about the
causality of nonlocal theories, and we point out that these nonlocal models can be modified so to nicely
interpolate between Starobinski inflation in the primordial universe and accelerated expansion in the
recent epoch.
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I. INTRODUCTION

Much work has been recently devoted to the study of
infrared (IR) modifications of general relativity (GR), with
the aim of producing viable cosmological models display-
ing self-accelerating solutions even in the absence of a
cosmological constant (see e.g. [1] for a recent review). In
this context, our group has developed a program aiming at
exploring the effect of nonlocal modifications of gravity.
While at the fundamental level quantum field theory is
local, at an effective level nonlocalities are commonly
generated. This can happen both classically, when one
integrates out some degrees of freedom to obtain an
effective action for the remaining degrees of freedom,
and at the quantum level, because of massless or light
particles running into quantum loops. In principle this
could generate nonlocal terms depending, e.g., on the
inverse d’Alembertian□−1. This operator becomes relevant
in the IR, and is therefore potentially relevant in cosmology.
A nonlocal quantum effective action produces nonlocal

equations of motion for the vacuum expectation values of
the quantum fields. The relevant quantities, for cosmologi-
cal applications, are the in-in vacuum expectation values.
The corresponding equations of motion, which are obtained
using the Schwinger-Keldysh formalism, depend on the

inverse d’Alembertian defined with the retarded Green’s
function, and are therefore automatically causal.1

There are two aspects in the problem of developing a
nonlocal IR modification of GR. First, at the purely
phenomenological level, one must identify models which
work well, i.e. have a viable background evolution at the
cosmological level, have well-behaved cosmological per-
turbations, and fit the observations, to the extent that they
can compete with ΛCDM. Second, one must identify the
specific mechanism that produces these nonlocalities from
a fundamental local theory. It is quite natural to begin this
program from the first part. Indeed, it is highly nontrivial to
construct IR modifications of GR that are cosmologically
viable, as has been learned from experience with the DGP
model [2–9], the dRGT theory of massive gravity [10–16],
Hassan-Rosen bigravity [17–27], or nonlocal models of
the Deser-Woodard type [28–31]. Indeed, none of these
attempts has yet produced a viable competitor to ΛCDM.
We can therefore hope that the condition of producing a
cosmologically viable model will be sufficiently restrictive
to select a limited range of nonlocal models. In turn, this
might give precious hints for their derivation from a
fundamental local theory.
The aim of this paper is to explore some possibly well-

motivated nonlinear extensions of the nonlocal models that
have been recently proposed by our group, in order to
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1This point has already been correctly discussed by several
different groups, although there is still some occasionally con-
fusion on it in the literature, and we take this opportunity to
clarify the issue again in the Appendix.
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contribute to charting the territory of possible viable
nonlocal models. The paper is organized as follows. In
Sec. II we put our work into context, giving an overview of
the different possibilities that have been explored to date,
and we will justify our choice of the class of models that
deserve to be further investigated. In Secs. III and IV we
will examine two particularly interesting nonlinear exten-
sions of the simplest viable nonlocal model. We present our
conclusions in Sec. V. We also take this opportunity to
review, in the Appendix, some issues about the causality of
nonlocal theories, that occasionally generate some con-
fusion. We use the Misner, Thorne and Wheeler (MTW)
conventions for the metric, Riemann tensor, etc., so in
particular our signature is ð−;þ;þ;þÞ, and we set
ℏ ¼ c ¼ 1. A prime will denote the derivative with respect
to x≡ log a, where a is the scale factor in FRW.

II. AN OVERVIEW OF NONLOCAL MODELS

The class of nonlocal models that we investigate here are
characterized by the fact that the nonlocal terms are
associated to an explicit mass scale m (and are therefore
different from the nonlocal models studied in [28–31] as
well from those discussed in [32–34]). The original inspira-
tion came from the degravitation idea [35–37], in which
Einstein equations were modified phenomenologically into

�
1 −

m2

□

�
Gμν ¼ 8πGTμν: ð1Þ

However, Eq. (1) has the problem that the energy-
momentum tensor is no longer automatically conserved,
since in curved space the covariant derivative ∇μ does not
commute with the covariant d’Alembertian□, and therefore
does not commutewith□−1 either. One can however observe
that any symmetric tensor Sμν can be decomposed as

Sμν ¼ STμν þ
1

2
ð∇μSν þ∇νSμÞ; ð2Þ

where STμν is the transverse part of the tensor, that satisfies
∇μSTμν ¼ 0. It can beproven that this decomposition is valid in
a generic curved space-time [38,39]. The extraction of the
transverse part of a tensor is itself a nonlocal operation. For
instance in flat space, where∇μ → ∂μ, applying to both sides
of Eq. (2) ∂μ and ∂μ∂ν, it is easy to show that the inversion of
Eq. (2) is

STμν ¼ Sμν −
1

□
ð∂μ∂ρSρν þ ∂ν∂ρSρμÞ þ

1

□
2
∂μ∂ν∂ρ∂σSρσ:

ð3Þ
In a generic curved spacetime there is no such simple formula.
In any case, technically the easiestway to handle thesemodels
is to put them in a local formwith the help of auxiliary fields,
see below. Using the possibility of extracting the transverse
part of a tensor, in [40] it was proposed to modify Eq. (1) into

Gμν −m2ð□−1GμνÞT ¼ 8πGTμν; ð4Þ

so that energy-momentum conservation ∇μTμν ¼ 0 is auto-
matically ensured. In [41,42] it was however found that the
cosmological evolution that follows from this model is
unstable, already at the background level. We will review
below how such instabilities can in principle emerge in these
nonlocal models. In any case, this adds the model (4) to the
long list of IR modifications of GR that did not make it.
The first successful nonlocal model was then proposed in

[41], observing that the instability is specific to the form of
the □−1 operator on a tensor such as Rμν or Gμν, and does
not appear when □−1 is applied to a scalar, such as the
Ricci scalar R. Thus, in [41] it was proposed a model based
on the nonlocal equation

Gμν −
m2

3
ðgμν□−1RÞT ¼ 8πGTμν; ð5Þ

where the factor 1=3 provides a convenient normalization
for the new mass parameter m. This model is quite
interesting phenomenologically. It has no van Dam-
Veltman-Zakharov discontinuity, and smoothly reduces
to GR in the limit m → 0. For m ¼ OðH0Þ, as will be
required by cosmology, it therefore passes without diffi-
culty all solar-system and laboratory constraints [41,43].2

At the cosmological level, its background evolution is
stable during RD and MD and has a self-accelerating
solution, i.e. the nonlocal term behaves as an effective dark
energy density [41,42]. This produces a realistic back-
ground FRW evolution, without the need of introducing a
cosmological constant. Its cosmological perturbations are
well-behaved, both in the scalar [45] and in the tensor
sector [44,46]. The study of the effect of its cosmological
perturbations shows that the predictions of the model are
consistent with CMB, supernovae, Baryon Acoustic
Oscillations (BAO) and structure formation data
[45,47,48]. The cosmological perturbations have then been
implemented in a Boltzmann code in [49]. This allowed us
to perform Bayesian parameter estimation and a detailed
quantitative comparison with ΛCDM, that shows that the
model fits the data at a level which is statistically indis-
tinguishable from ΛCDM.3 Having passed all these tests
the model deserves a name, and we have dubbed it the “RT”

2See also Appendix A of [44] for the clarification of an issue
on the comparison with Lunar Laser Ranging data.

3It should also be appreciated that this model only introduces
one new parameter m, which replaces the cosmological constant
in ΛCDM. By comparison, bigravity replaces the cosmological
constant by a set of 5 parameters βn, n ¼ 0;…; 4 and also
introduces a new Planck mass associated to the second metric,
and viable solutions are searched tuning this parameter space.
Similarly, in the Deser-Woodard model one tunes a whole
function fð□−1RÞ.
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model, where R stands for the Ricci scalar and T for the
extraction of the transverse part.
A closed form for the action corresponding to Eq. (5) is

currently not known. This model is however closely related
to another nonlocal model, subsequently proposed in [50],
and defined by the action

SRR ¼ m2
Pl

2

Z
d4x

ffiffiffiffiffiffi
−g

p �
R − μR

1

□
2
R

�
; ð6Þ

wheremPl is the reduced Planck mass,m2
Pl ¼ 1=ð8πGÞ, and

μ≡m2=6. Indeed, if we compute the equations of motion
from Eq. (6) and we linearize them over Minkowski space,
we find the same equations of motion obtained by
linearizing Eq. (5). However, at the full nonlinear level,
or linearizing over a background different fromMinkowski,
the two models are different. Also the model (6) works very
well, both at the background level [50] and at the level of
perturbations [45]. Again, the perturbations of this model
have been implemented in a Boltzmann code in [49], and
compared to observations using the 2013 Planck data. It
was found that the model fits again well the data, even if not
as well as ΛCDM or the RT model, although at the level of
the analysis of [49] the difference was not statistically very
significant. We will call the model defined by Eq. (6) the
“RR” model. Further work on the RR and RT models has
been presented in [51–59].
Of course, as often happens in model building, there are

in principle infinite choices for the specific form of the
nonlocal model. We have therefore attempted to chart this
large unexplored territory, considering some particularly
natural extensions of these models. At the level of models
defined by the equations of motion using the extraction of
the transverse part, we have seen that the RT model (5),
where ðgμν□−1RÞT enters, is viable, while a model where
appears ð□−1GμνÞT , or equivalently where appears
ð□−1RμνÞT , is not. These models are naturally written
down at the level of equations of motions, but are not
easily written in terms of actions. Turning to models
defined at the level of the action, one can observe that a
basis for the curvature-square terms is provided by R2

μνρσ,
R2
μν and R2. However, for cosmological applications it is

more convenient to trade the Riemann tensor Rμνρσ for the
Weyl tensor Cρσμν. Thus, a natural generalization of the RR
model is given by

S ¼ m2
Pl

2

Z
d4x

ffiffiffiffiffiffi
−g

p �
R − μ1R

1

□
2
R

− μ2Cμνρσ 1

□2
Cμνρσ − μ3Rμν 1

□2
Rμν

�
; ð7Þ

where μ1, μ2 and μ3 are independent parameters with
dimension of squared mass. In [46] is has however been
found that the term Rμν

□
−2Rμν is ruled out since it gives

again instabilities at the background level.4 The Weyl-
square term instead does not contribute to the background
evolution, since the Weyl tensor vanishes in FRW, and it
also has well-behaved scalar perturbations. However, its
tensor perturbations are unstable [46], which again rules
out this term.5

These results show that the condition of obtaining a
viable cosmological model is indeed a powerful require-
ment, which allows us to eliminate most of the possible
choices. In practice, at least within the space of theories that
we have explored, we find that only models constructed
uniquely with the Ricci scalar work. At a finer level of
resolution, using again the Boltzmann code modified for
nonlocal theories, in [44] we have repeated the comparison
with observations using the 2015 Planck data (which were
not yet publicly available when [49] appeared) as well as
with an extended set of BAO and structure formation data.
A Bayesian model comparison betweenΛCDM, the RTand
RR models has then been performed. In this improved
analysis, ΛCDM and the RT models still both fit the data
very well, and are statistically indistinguishable. In contrast
the RR model, while by itself still fits the data at a fully
acceptable level, in a Bayesian model comparison with
ΛCDM or with the RT model is now significantly
disfavored.
In a sense, the RTmodel can be considered as a nonlinear

extension of the RR model, since the two models become
the same when linearized over Minkowski. An action for
the RT model would probably include further nonlinear
terms, such as higher powers of the curvature associated to
higher powers of □−1. Since the data seem to point toward
the importance of these nonlinear terms, it is natural to ask
whether other nonlinear extensions of the RR theory are
cosmologically viable. Once again, it is not possible to
explore the most general form of these extensions.
However, symmetries are often a powerful guide for model
building. In particular, conformal symmetry naturally
appears at high energies, or in the presence of massless
particles. In the physical and mathematical literature, there
are two notable extensions of the □ or of the □2 operator,
related to conformal symmetry. The first is obtained
replacing

4This result is analogous to the one found in [60], where it was
shown that a term Rμν

□
−1Rμν also produces instabilities in the

cosmological evolution. Observe that the latter term is rather of
the Deser-Woodard type, i.e. of the form Rμνfð□−1RμνÞ, with a
dimensionless function f and no explicit mass scale m. However,
in both cases the instability is ultimately due to the form of the
□

−1 operator on the tensor Rμν, as also in the model (4).
5Unless one takes a model for the early Universe that generates

a totally negligible amount of primordial tensor perturbations, so
there are no primordial tensor perturbations that will be amplified
by the subsequent unstable evolution. Within the standard infla-
tionary paradigm, even for models with extremely low values of
the tensor-to-scalar ratio, the Weyl term is ruled out.
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−□ → −□þ 1

6
R: ð8Þ

This is the operator that appears in the action of a
conformally coupled scalar field in D ¼ 4 space-time
dimensions. Another interesting option is to replace
directly □

2 with the Paneitz operator

Δ4 ≡□
2 þ 2Rμν∇μ∇ν −

2

3
R□þ 1

3
gμν∇μR∇ν: ð9Þ

This operator was independently discovered in a math-
ematical context, as well as in physics in the context of
conformal supergravity [61], and there is a large body of
mathematical literature on it. In physics Δ−1

4 appears in
particular in the nonlocal anomaly-induced effective action
in four dimensions (see e.g. [62] for review, and Eq. (A7)
below). Just as the operator (8), Δ4 only depends on the
conformal structure of the space-time.6

The first nonlinear extension of the RR model that we
will consider is then defined by the action

ScRR ¼m2
Pl

2

Z
d4x

ffiffiffiffiffiffi
−g

p �
R− μR

1

ð−□þ 1
6
RÞð−□þ 1

6
RÞR

�
:

ð10Þ

We will call it the “conformal RR” model. The second
model that we will investigate is defined by

SΔ4
¼ m2

Pl

2

Z
d4x

ffiffiffiffiffiffi
−g

p �
R − μR

1

Δ4

R

�
: ð11Þ

In both cases, μ≡m2=6. If the model (10) should work,
this could give a hint that the fundamental theory behind the
effective nonlocal model involves a conformally-coupled
scalar field. The model (11) would rather point toward
a role of the anomaly-induced effective action in the
derivation of the nonlocal theory, possibly along the lines
recently discussed in [63].
To assess whether a model is cosmologically viable we

will study its cosmology at the background level, verifying
if it has a stable self-accelerating background solution. If
this is the case, one should then in principle study its
cosmological perturbations, implement them in a
Boltzmann code, perform parameter estimation of the
model, and finally compare with the data. The latter part
is of course very laborious. However, an approximate but
much simpler criterion for the viability of the model is
given by its prediction for the equation of state (EOS) of
dark energy (DE). Dynamical DE models are often

investigated using the so-called wCDM model, in which
the EOS parameter is taken to be a constant in time, with a
value w which, rather than being fixed to −1 as in ΛCDM,
is taken as a new fitting parameter. Actually, once a
dynamical DE is considered, there is no reason a priori
why w should be constant in time, and a more general
phenomenological parametrization is obtained in the so-
called (w0, wa) model, where near the recent epoch wðaÞ is
written, as a function of the scale factor a, as

wðaÞ ¼ w0 þ ð1 − aÞwa: ð12Þ

Of course, both in wCDM and in the (w0, wa) para-
metrization no DE perturbations are included, so these
parametrizations do not exactly capture all features of a
specific dynamical model, such as the RR and RT nonlocal
models or of their generalizations. Indeed, these specific
nonlocal models also have a given structure of cosmologi-
cal perturbations, which differs ΛCDM, and which also
affect the parameter estimation in these models. Thus, to
perform a quantitative Bayesian comparison between the
performance of a nonlocal model with that of ΛCDM, there
is no alternative to the full analysis, as done for the RT and
RR models in [44,49]. However, to have a first estimate of
whether a model is viable, we can just compare the value of
wðaÞ obtained from the nonlocal model with the limits on
w0 or on (w0, wa) obtained comparing wCDM or the (w0,
wa) model to the data, which has been done in the 2015
Planck dark energy paper [64]. Indeed, experience with the
RT and RR model shows that this criterion gives quite
reasonable results. In particular, for the RTmodel, one finds
[41] w0 ≃ −1.04, wa ≃ −0.02,7 while for the RR model
w0 ≃ −1.14, wa ¼ 0.08 [50]. This suggests that the RT
model produces deviations, with respect to ΛCDM, of
order of a few percent, while the RR model should produce
larger deviations. Indeed, in the full Boltzmann code
analysis we found for instance that, in structure formation,
the RT model shows deviation from ΛCDM at the level of
about 2%, while the RR model shows deviations that,
depending on the observable, can be up to 8% [44,49].
Similarly, when performing parameter estimation from
CMB, SNe and BAO, the results for the RT model are
quite close to that of ΛCDM, while the RR model shows
larger departures from ΛCDM. For instance, the best-fit
values for H0 from Planck 2015 temperature and polari-
zation data, plus the set of BAO and SNa data considered in

6The Paneitz operator was also considered in the context of the
Deser-Woodard class of nonlocal models in [28], where it was
considered the possibility of adding to the Ricci scalar in the
action a term RΔ−1

4 R2 which, on dimensional ground, does not
require the introduction of a mass scale.

7Of course the result depends on the value chosen for the
matter density fraction ΩM, which in [41] was fixed to the best-fit
value obtained by Planck from ΛCDM. In the full analysis
including cosmological perturbations, ΩM is eventually deter-
mined by the Bayesian parameter estimation. However, w0 has a
weak dependence on the precise value ofΩM, which also does not
change much between ΛCDM and the nonlocal model. Then, the
full analysis confirms this value of w0, at the level Δw0 ¼ 0.01.
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[44] are H0 ¼ 67.67 for ΛCDM, H0 ¼ 68.76 for the RT
model and H0 ¼ 70.44 for the RR model.
In [44], performing the Bayesian comparison between

the model, we found that the RR model, which has
w0 ≃ −1.14, is disfavored, while the RT model, with a
value w0 ≃ −1.04 closer to the ΛCDM value w ¼ −1, is
fully consistent with the observations, and fits the data in a
way that is statistically equivalent to ΛCDM. These results
are fully consistent with those obtained in the 2015 Planck
dark energy paper [64] for the generic wCDM or (w0, wa)
parametrizations. This gives us a first guidance into the
typical values that of w0 that a nonlocal model should have,
to be consistent with the observation. Of course, for a
model that passes this first test, in the end a full analysis
will be necessary, especially if we want to compare its
performances to that of ΛCDM.

III. THE CONFORMAL RR MODEL

We first consider the model defined by

SξRR ¼m2
Pl

2

Z
d4x

ffiffiffiffiffiffi
−g

p �
R− μR

1

ð−□þ ξRÞð−□þ ξRÞR
�
:

ð13Þ
Writing the action in terms of a generic value of ξ can be
useful at the mathematical level, to investigate the depend-
ence on ξ. However, physically, beside ξ ¼ 0 there is only
one special value, which is the conformal case ξ ¼ 1=6. To
compare with the observational data we will only be
interested in the case ξ ¼ 1=6, which gives a sharp and
physically-motivated prediction. Furthermore, if we keep ξ
as a free parameter and consider ξ ≠ 1=6, we are no longer
protected by conformal symmetry, and nothing forbids to
add to −□ also a mass term, which would lead to a second
extra free parameter. In this sense, the model (13) with
ξ ¼ 1=6 is privileged even with respect to the RR model,
which has ξ ¼ 0, or the RT model. The model (13), which
is a natural extension of the model (6), was already studied
in [56], closely following the analysis of the RT and RR
models in [41,50]. Since however the most interesting case
ξ ¼ 1=6 was not specifically investigated in [56], we will
repeat below part of this analysis, and the relevant numeri-
cal integration, and we will work out the prediction for the
DE equation of state in this case.
Following a technique introduced in [65] in the context of

the Deser-Woodard model, and already used in [41,50], we
write the action in a local form introducing two Lagrange
multipliers λ1 and λ2 and two auxiliary scalar fields S, U, as

SξRR ¼ m2
Pl

2

Z
d4x

ffiffiffiffiffiffi
−g

p fRð1 − μSÞ

þ λ1½ð−□þ ξRÞU − R� þ λ2½ð−□þ ξRÞS −U�g:
ð14Þ

The variation with respect to the Lagrange multipliers
enforces the equations

ð−□þ ξRÞU ¼ R; ð15Þ

ð−□þ ξRÞS ¼ U; ð16Þ

so in particular

S ¼ 1

ð−□þ ξRÞU ¼ 1

ð−□þ ξRÞð−□þ ξRÞR: ð17Þ

The variations with respect to S and U give λ1 ¼ μS and
λ2 ¼ μU. The equations of motions obtained performing the
variation with respect to the metric give (adding also the
matter action)

Gμν ¼ μKμν þ 8πGTμν; ð18Þ

where

Kμν ¼ 2ðS− ξUSÞGμν − 2∇μ∂νSþ 2gμν□ðS− ξUSÞ
þ gμν∂ρS∂ρU − ð1=2ÞgμνU2 − ð∂μS∂νUþ ∂νS∂μUÞ;

ð19Þ

in agreement with [56]. For ξ ¼ 0, Eqs. (15), (16) and (19)
reduce to that given in [50].

A. Cosmological equations

We now specialize to a FRW metric. The computation is
a straightforward generalization of that performed in [50].
We parametrize the time evolution using the variable x, we
denote df=dx ¼ f0 and we introduce the notations

VðxÞ ¼ H2
0SðxÞ; γ ¼ m2

9H2
0

; ð20Þ

as well as hðxÞ ¼ HðxÞ=H0, ζðxÞ ¼ h0ðxÞ=hðxÞ and
ΩðxÞ ¼ ρðxÞ=ρ0, where ρ0 ¼ 3H2

0=ð8πGÞ is the critical
density. We write

ΩðxÞ ¼ ΩMe−3x þΩRe−4x; ð21Þ

where ΩM and ΩR are the density fractions of matter and
radiation today, respectively. From the (00) component of
Eq. (19) we get the Friedmann equation which, in these
dimensionless variables, reads

h2ðxÞ ¼ ΩðxÞþ ðγ=4ÞU2

1þ γ½−3ðV − ξUVÞ0− 3ðV − ξUVÞþ ð1=2ÞV 0U0� ;

ð22Þ

while Eqs. (15) and (16) become
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U00 þ ð3þ ζÞU0 þ 6ξð2þ ζÞU ¼ 6ð2þ ζÞ; ð23Þ

V 00 þ ð3þ ζÞV 0 þ 6ξð2þ ζÞV ¼ h−2U: ð24Þ

This form is the most convenient for the numerical
integration. For studying the stability of the system and
for identifying the effective dark energy, it is however
convenient to trade V for W ¼ H2S ¼ h2V. Then the
Friedmann equation becomes

h2ðxÞ ¼ ΩðxÞ þ γY; ð25Þ
where

Y ¼ 1

2
W0ð6 − U0 − 6ξUÞ

þWð3 − 6ζ þ ζU0 − 3ξU0 þ 6ξζUÞ þ 1

4
U2 − 3ξUV:

ð26Þ
Equation (25) shows that there is an effective dark energy
term, with ρDE ¼ ρ0γY, so the DE density fraction is

ΩDEðxÞ ¼ γY: ð27Þ
Equation (16) becomes

W00 þ 3ð1 − ζÞW0 − 2½ζ0 þ 3ζ − ζ2 − 3ξð2þ ζÞ�W ¼ U:

ð28Þ
The fundamental equations for the variables hðxÞ,UðxÞ and
WðxÞ are Eqs. (25), (26), (23) and (28).

B. Stability of the background solution

An important aspect for the viability of a cosmological
model is the stability of the background solution. A full
analysis of the stability requires the study of linear
cosmological perturbations, and we will report on it in a
future work. However, already at the background level that
we are considering in this paper, a stringent test is possible
[41,42,50]. Indeed, the auxiliary fields U and W obey the
inhomogeneous differential equations (23) and (28). The
general solution will be a superposition of a particular
solution of the inhomogeneous equation and the most
general solution of the associated homogeneous equations.
The latter can be easily obtained analytically whenever we
are deep in a given era, so that ζðxÞ becomes approximately
a constant ζ0. In particular ζ0 ¼ f−2;−3=2; 0g in radiation
domination (RD), matter domination (MD) and de Sitter
(dS), respectively. Then the solutions of the homogeneous
equations associated to Eqs. (23) and (28) have the general
form Uhom ¼ eα�x and Whom ¼ eβ�x. If at least one among
the four coefficients α�, β� is positive, either in RD or in
MD, there will be at least one growing mode. Of course, at
the background level, one can in principle choose initial

conditions such that Uhom ¼ Whom ¼ 0. However this is a
fine-tuning, and any spatially-homogeneous perturbation
δUðtÞ; δWðtÞ will move the system away from this point.
Then, for a generic perturbation the growing mode will
unavoidably be excited, and the background solution will
be destabilized. In other words, if the homogenous equa-
tions for U and W have growing modes, we automatically
know that, when we will study linear cosmological per-
turbations, the variables δUðk; tÞ and δWðk; tÞ will show
instability already in the spatially-homogeneous limit
k → 0. The absence of growing modes for the homo-
geneous solutions is therefore a necessary (but certainly in
general not sufficient) condition for the stability at the level
of linear cosmological perturbations, and the homogeneous
solutions must be stable both in RD and in MD.8

It is indeed this stability criterion that ruled out the model
(4), while the RR and RT models passed this test
[41,42,50]. For the model (13), specializing directly to
the physically interesting case ξ ¼ 1=6, the homogeneous
equation for U, with ζ ¼ ζ0 constant, reads

U00 þ ð3þ ζ0ÞU þ ð2þ ζ0ÞU ¼ 0: ð29Þ

The corresponding solutions are U ¼ eα�x with αþ ¼ −1
and α− ¼ −ð2þ ζ0Þ, which are never positive in RD, MD
or de Sitter. Similarly, the solutions of the homogeneous
equation for W are W ¼ eβ�x with βþ ¼ −1þ 2ζ0 and
β− ¼ −2þ ζ0, which again are both negative, in all three
eras. Therefore, there is no instability in the background
evolution, as also observed in [56].

C. Solution for the background evolution

For the numerical integration we use Eqs. (22)–(24). As
in [45], we observe that in eqs. (23) and (24) appears
ζ ¼ h0=h. However, h0 can be computed explicitly taking
the derivative of Eq. (22). The resulting expression contains
V 00 and U00, which can be eliminated using again Eqs. (23)
and (24). The result is given by

ζ ¼ h−2Ω0 þ 3γZ
2½1 − 3γVð1 − 6ξÞð1 − ξUÞ� : ð30Þ

8In principle stability in the dS era is not mandatory because
one might imagine that, at the large energy scales corresponding
to primordial inflation, the nonlocal models are modified. Indeed,
one could imagine that effective actions such as (6) might be valid
only in the low energy limit, and could be modified at the large
energies corresponding to inflationary scales. We will give an
interesting example of this sort in Eq. (69) below. In the
numerical solution of the equations, we always start the integra-
tion deep in RD. However, if the model is already stable even in
de Sitter, this is certainly a positive feature. Observe that the RT
model is only stable in RD and MD [41,42], while the RR model
is stable in dS, RD and MD [50]. We will find below that also the
model (13) with ξ ¼ 1=6 is stable in all three eras, see also [56]
for ξ generic.
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where

Z ¼ h−2U þ U0V 0 − 4V 0

− ξð24V − 4UV 0 − 4U0V þ 2U0V 0 þ h−2U2Þ
þ 24ξ2UV: ð31Þ

The value of γ is tuned so to obtain the desired value of
ΩM (i.e., choosing a value of ΩM and tuning γ requiring
that the solution of the numerical integration satisfies
hðx ¼ 0Þ ¼ 1, which follows from the definition hðxÞ ¼
HðxÞ=H0). Setting ΩM ¼ 0.313 we get γ ≃ 0.081 and
therefore

m≃ 0.85H0: ð32Þ
Finally, from Eqs. (63) and (27), the DE fraction is obtained
by ΩDEðxÞ ¼ h2ðxÞ − ΩðxÞ. From this we can then get the
DE equation of state parameter wDE, defined as usual by

ρ0DE þ 3ð1þ wDEÞρDE ¼ 0: ð33Þ

(recall that the prime is the derivative with respect to x), so

wDE ¼ −1 −
ρ0DE
3ρDE

¼ −1 −
Ω0

DE

3ΩDE
: ð34Þ

The results of the numerical integration are shown in Figs. 1
and 2. We see from Fig. 1 that, asymptotically, the Hubble
parameter and the DE density go to a constant. The model

therefore goes asymptotically to de Sitter, just as ΛCDM, as
also observed in [56]. This result is easily understood
analytically. Rewriting Eqs. (22)–(24) in terms of cosmic
time t and of the Hubble parameter HðtÞ ¼ _a=a, we get

H2 ¼m2

9

�
3H∂tðS− ξUSÞþ 3H2ðS− ξUSÞ− 1

2
_S _Uþ1

4
U2

�

þ 8πG
3

ρ; ð35Þ

Ü þ 3H _U þ 12ξ2H2U ¼ 12H2; ð36Þ

S̈þ 3H _Sþ 12ξ2H2S ¼ U; ð37Þ

where _f ≡ ∂f=∂t. We now consider the asymptotic regime
where DE dominates (see the top-right panel of Fig. 1), so
the term ð8πG=3Þρ on the right-hand side of Eq. (35) is
negligible compared to the effective DE term, and in this
limit we look for a solution with H constant. In this case,
for ξ ≠ 0, the solution of Eq. (36) is

U ¼ 1

ξ
þ u1ec1Ht þ u2ec2Ht; ð38Þ

where 2c1;2 ¼ −3� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 − 48ξ

p
. The real part of c1 and c2 is

always negative, for all positive values of ξ. In particular,
for ξ ¼ 1=6 we have c1 ¼ −1 and c2 ¼ −2. Therefore
the solutions of the homogeneous equation decay
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FIG. 1. Top left panel: the dark energy density ρDEðxÞ=ρ0. Top right panel: the energy fractions of radiation (dot-dashed), matter
(dashed) and dark energy (solid line). Bottom panel: the Hubble parameter hðxÞ.
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exponentially in time and, asymptotically, U → 1=ξ.
Similarly, S → 1=ð2ξH2Þ, plus the same exponentially
decaying solutions. Plugging these constant values for U
and S in Eq. (35) and neglecting the term proportional to ρ
we see that H ¼ constant is indeed a solution, and we find

H ¼ m
6ξ

: ð39Þ

In particular, for ξ ¼ 1=6, asymptotically H ¼ m, and
therefore h ¼ 3γ1=2. This perfectly agrees with the asymp-
totic value of h that we find from the numerical integration,
shown in the bottom panel of Fig. 1. Observe that the case
ξ ≠ 0 is quite different from the RR model, which corre-
sponds to ξ ¼ 0 and therefore does not have this solution.
Indeed, in the RR model hðxÞ grows indefinitely, even in
the DE dominated era, see Fig. 1 of Ref. [50].
Alternatively, we can understand the emergence of a de

Sitter solution directly from the action, observing that in a
regime of constant (and nonvanishing) R, the operator
ð−□þ ξRÞ−1 acting on R reduces to ðξRÞ−1. Then the
nonlocal term in the action (13) reduces to a cosmological
constant Λ ¼ m2=ð12ξ2Þ, leading to a de Sitter era with
H2 ¼ ð1=3ÞΛ, in agreement with Eq. (39).
The DE equation of state is shown in Fig. 2, and we see

that it is on the phantom side, as for the RR and RT models.
This is a consequence of Eq. (33), together with the fact that
in these three models the DE density vanishes in RD and
then grows monotonically, so ρ0DE > 0 and ρDE > 0, which
implies 1þ wDE < 0. Among the three plots in Fig. 2, the
one against x shows wDE on the largest time interval. The

matter-radiation equilibrium is around x≃ −8.1, so this
plot displays the whole MD era, the present DE dominated
era and is extended into the future, x > 0. The plot as a
function of redshift z focus on the more recent past epoch
0 ≤ z≲ 10. This is still a range broader than that on which
such a DE can play a relevant role (observe that, going
backward in time, this DE decreases, rather than being a
constant as in ΛCDM, so in the past it becomes even more
and more irrelevant than a cosmological constant). Note
that z ¼ 10 corresponds to x≃ −2.4. Observing that the
vertical scale has been expanded, we see that the depend-
ence of wDE on z in this epoch is very mild, and wDE is very
close to −1. Indeed, wDEðz ¼ 0Þ≃ −1.012. The bottom
panel in Fig. 2 shows that, in the recent epoch, the standard
linear fit (12) is appropriate. Fitting our numerical result to
Eq. (12) for −1 < x < 0, we get

w0 ≃ −1.012; wa ¼ −0.005: ð40Þ
Actually, Fig. 2 shows that a fit linear in z is appropriate on
a broader range, so we also perform a fit of the form

wðzÞ ¼ w0 þ wzz: ð41Þ

In this case, the fit is excellent in the whole range 0 < z <
10 (which corresponds to −2.4 < x < 0), and we get

w0 ≃ −1.012; wz ¼ −0.002: ð42Þ

Since also the perturbations in the dark energy sector are
proportional to 1þ wDE, we expect that this model
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FIG. 2. The EOS parameter of dark energy, wDE, as a function of x ¼ ln a (top left), of redshift z (top right) and of scale factor a
(bottom).

CUSIN, FOFFA, MAGGIORE, and MANCARELLA PHYSICAL REVIEW D 93, 083008 (2016)

083008-8



produces deviations from ΛCDM at the level of about 1%,
which are not detectable with present observations. A more
detailed quantitative analysis will require the computation
of the cosmological perturbations and their implementa-
tions in a Boltzmann code, as performed in [44,45,49] for
the RR and RT nonlocal model. We hope to report on this in
the future. However, from the discussion at the end of
Sec. II, it is clear that the model is consistent with
observations, and we expect that its predictions will be
intermediate between that of ΛCDM and that of the
RT model.

IV. NONLOCAL ACTION WITH THE
PANEITZ OPERATOR

We next consider the action (11). The operator Δ4 has a
number of interesting mathematical properties. In particu-
lar, if two metrics gμν and ḡμν are related by a conformal
factor, gμν ¼ eϕḡμν, then

ffiffiffiffiffiffi
−g

p
Δ4 ¼

ffiffiffiffiffiffi
−ḡ

p
Δ̄4: ð43Þ

In this sense, it is the analogous of the Laplacian in two
dimensions, and indeed it also appears in the four-dimen-
sional quantum effective action for the conformal anomaly.
We rewrite SΔ4

introducing an auxiliary field S and a
Lagrange multiplier ξ,

SΔ4
¼ m2

Pl

2

Z
d4x

ffiffiffiffiffiffi
−g

p ½R − μRS − ξðΔ4S − RÞ�: ð44Þ

The variation with respect to ξ enforces

Δ4S ¼ R; ð45Þ

i.e. S ¼ Δ−1
4 R. In covariant form, the equations of

motions are

Gαβ

�
1 − μSþ ξ −

2

3
ð∇ρξÞ∇ρS

�
þ gαβ

�
□ξ − μ□S −

4

3
Rρσð∇σξÞ∇ρS

−
1

6
ð∇ρ□ξÞ∇ρS −

1

6
ð∇ρξÞ∇ρ

□Sþ 1

2
ð□ξÞ□S −

1

3
ð∇ρ∇σξÞ∇ρ∇σS

�

þ∇α∇β

�
μS − ξ − ξ□S −

1

3
ð∇ρξÞ∇ρS

�
−
2

3
Rð∇ðαξÞ∇βÞS − ξð∇ρRαβÞ∇ρS

þ 2ð∇ρξÞRρðα∇βÞSþ 2ð∇ðαξÞRβÞρ∇ρS −□ξ∇α∇βSþ 2ð∇ρ∇ðαξÞ∇βÞ∇ρS

þ ξ∇α∇β□Sþ ξð∇ðαRβÞρÞ∇ρS − ξð∇λRλðαβÞρÞ∇ρS − 2ð∇λξÞRλðαβÞρ∇ρSþ 2ð∇ðαξÞ∇βÞ□S

¼ 8πGTαβ: ð46Þ

As always, the Friedmann equation is then obtained from
the (00) component of this equation. This covariant result is
the necessary starting point when performing perturbation
theory. Because of the large number of terms in Eq. (46),
for obtaining the equations determining the background
evolution, the fastest route is actually to work directly in
FRW. Given the conformal properties of the Δ4 operator, to
derive the cosmological equations it is convenient to use
conformal time, so ds2 ¼ a2ð−dη2 þ dx2Þ. We also use the
notationH ¼ ∂ηa=a. We will write explicitly the derivative
with respect to η, reserving again the prime for d=dx, with
x ¼ ln a. Equation (43) allows us to compute immediately
the expression of Δ4 on a FRW metric. Using conformal
time, gμν ¼ a2ðηÞημν. Then Eq. (43) shows that, on a scalar
S, a4Δ4 ¼ ∂4

η i.e.

Δ4S ¼ 1

a4
∂4S
∂η4 : ð47Þ

To compute the equations of motion in FRW we however
need to keep also the lapse function, considering a metric of
the form

gμν ¼ a2ðηÞð−N2ðηÞ; 1; 1; 1Þ: ð48Þ

The explicit computations shows that on this metric

Δ4S ¼ 1

a4N4
½∂4

ηS − 6∂ηn∂3
ηS − 4∂2

ηn∂2
ηS − ∂3

ηn∂ηS�;
ð49Þ

where ∂ηn≡ ð∂ηNÞ=N, i.e. n ¼ logN. In the above ex-
pression we have neglected all terms that contains products
of more than one derivative of n, e.g ð∂ηnÞ2, ∂ηn∂2

ηn, etc.
Indeed, to derive the Friedmann equation we must take the
variation of the action with respect to the lapse function N
and then set N ¼ 1, so ∂ηn ¼ 0. Then, all terms with
products of more than one derivative of n give zero in the
variation. In the limit N ¼ 1 this expression correctly
reduces to eq. (47). This result can also be derived more
elegantly defining a new conformal time ~η from Ndη ¼ d~η.
Then ds2 ¼ a2ð−d~η2 þ dx2Þ is again conformal, and there-
fore a4Δ4 ¼ ∂4=∂ ~η4. Since ∂=∂ ~η ¼ ðdη=d~ηÞ∂=∂η ¼
ð1=NÞ∂=∂η, we get
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a4Δ4S ¼
�
1

N
∂
∂η

�
4

S: ð50Þ

Computing the derivatives and retaining only terms with at
most one derivative ofN gives backEq. (49). This alsomakes
it clear why all terms involvingH “miraculously” cancel in a
brute-force computation of Eq. (49) from Eq. (9).9

Restricting to time-dependent fields in the metric (48),
the action (11) becomes

SΔ4
¼ m2

Pl

2

Z
dηd3xL; ð51Þ

where

L¼ 6a2

N

�
∂ηHþH2 −H

∂ηN

N

�
ð1− μSþ ξÞ

−
ξ

N3
ð∂4

ηS− 6∂ηn∂3
ηS− 4∂2

ηn∂2
ηS− ∂3

ηn∂ηSÞ: ð52Þ

The variation with respect to ξ, at N ¼ 1, gives
Δ4S ¼ R, i.e.

∂4
ηS ¼ 6a2ð∂ηHþH2Þ; ð53Þ

while the variation with respect to S, again at N ¼ 1,
gives10

ξ ¼ −μS: ð54Þ
The variation with respect to N, at N ¼ 1, can be obtained
setting directly ξ ¼ −μS in Eq. (52), i.e. using as a
Lagrangian

L ¼ 6a2

N

�
∂ηHþH2 −H

∂ηN

N

�
ð1 − 2μSÞ

þ μS
N3

ð∂4
ηS − 6∂ηn∂3

ηS − 4∂2
ηn∂2

ηS − ∂3
ηn∂ηSÞ: ð55Þ

The variation with respect to N gives (adding also the
matter action)

δL
δN

− ∂η

�
δL

δ∂ηN

�
þ ∂2

η

�
δL

δ∂2
ηN

�
− ∂3

η

�
δL

δ∂3
ηN

�

¼ 2

m2
Pl

δLmatter

δN
: ð56Þ

where, after the variation, we set N ¼ 1. This gives the
modified Friedmann equation,

ð1 − 2μSÞa2H2 þ μ

6
½2∂ηS∂3

ηS − ð∂2
ηSÞ2 − 12a2H∂ηS�

¼ 8πG
3

a4ρ: ð57Þ

We have checked that this result agrees with that obtained
directly from the (00) component of the covariant equation
of motion (46). We now introduce

U ¼ 1

a2
∂2
ηS; ð58Þ

and, in Eq. (57), we express ∂2
ηS and ∂3

ηS in terms of U and
∂ηU. After defining, as in Sec. III, VðxÞ ¼ H2

0SðxÞ,
γ ¼ m2=ð9H2

0Þ, hðxÞ ¼ HðxÞ=H0 and ζðxÞ ¼ h0ðxÞ=hðxÞ,
Eq. (57) reads

h2ðxÞ ¼ ΩðxÞ þ ðγ=4ÞU2

1þ γ½−3V 0 − 3V þ ð1=2ÞV 0ðU0 þ 2UÞ� ; ð59Þ

In terms of these dimensionless variables the equation
∂2
ηS ¼ a2U, which follows from Eq. (58), reads

V 00 þ ð1þ ζÞV 0 ¼ h−2U; ð60Þ
while Eq. (53), expressed in terms of U, reads

U00 þ ð5þ ζÞU0 þ ð6þ 2ζÞU ¼ 6ð2þ ζÞ: ð61Þ
Equations. (59)–(61) are the fundamental equations for
studying the background cosmology. Again, it is also useful
to rewrite the equations trading V for W ¼ h2V. Then
Eq. (59) becomes

h2ðxÞ ¼ ΩðxÞ þ γY; ð62Þ
where

Y ¼ 1

2
W0ð6−U0 − 2UÞ þWð3− 6ζþ ζU0 þ 2ζUÞ þ 1

4
U2;

ð63Þ

quite similar to Eqs. (31) and (33) of [50] (or (3.2) and (3.5)
of [45]), except that U0 is replaced by U0 þ 2U. We see that
γY plays the role of the effective dark energy fraction,
ΩDEðxÞ ¼ γY, as in Eq. (27). Equation (60) is replaced by

W00 þ ð1 − 3ζÞW0 þ 2ðζ2 − ζ − ζ0ÞW ¼ U: ð64Þ
In this case the fundamental equations are Eqs. (61)–(64).
The solutions of the homogeneous equation

U00 þ ð5þ ζ0ÞU0 þ ð6þ 2ζ0ÞU ¼ 0 ð65Þ
are U ¼ eαþx and U ¼ eα−x with αþ ¼ −2 and
α− ¼ −ð3þ ζ0Þ, which are both negative in all three eras,

9For instance, the term ∂ηS in Eq. (49), beside being multiplied
by ∂3

ηn, in the intermediate steps of the computation is also
multiplied by terms H2, H∂ηH, H2∂ηn and ∂ηH∂ηn, and
similarly for the terms ∂2

ηS and ∂3
ηS.

10Notes that this is not true on a generic background. In FRW,
with N ¼ 1, in the term proportional to ξ in Eq. (52) only ξ∂4

ηS,
survives, which can be trivially integrated by parts to give S∂4

ηξ.
However, in a general background ξΔ4S does not integrate by
parts to SΔ4ξ.
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and indeed whenever ζ0 > −3, which is always the case in
the early Universe, where ζ0 ≥ −2 because of the contri-
bution of radiation. These solutions induce inhomogeneous
solutions of Eq. (64) with the same behavior. Furthermore,
there are solutions for W corresponding to the homo-
geneous solution of Eq. (64) with ζ ¼ ζ0,

W00 þ ð1 − 3ζ0ÞW0 þ 2ðζ20 − ζ0ÞW ¼ 0: ð66Þ

These are given byW ¼ eβþx andW ¼ eβ−x with βþ ¼ 2ζ0
and β− ¼ −1þ ζ0. Again, β− is negative in all three eras,
while βþ is negative in RD and MD and vanishes,
corresponding to a constant solution, in dS. Thus, there
is no growing mode and the cosmological evolution is
stable.

We now integrate Eqs. (59)–(61) numerically. As before,
we need to compute explicitly ζ in terms of U, V, U0 and
V 0. This gives

ζ ¼ 1

2ð1 − 3γVÞ fh
−2Ω0

þ γ½h−2Uð3 − UÞ þ V 0ð2U0 þ 4U − 6Þ�g: ð67Þ

Then Eqs. (60) and (61) become a closed system for U, V
that can be integrated, and the solution can then be simply
plug into Eq. (59) to get hðxÞ. Fixing ΩM ¼ 0.313245 we
get γ ¼ 0.318267. The result of the numerical integration
for the functions ρDEðxÞ and hðxÞ is shown in Fig. 3, while
wDE is shown in Fig. 4.
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FIG. 3. Left: the dark energy density ρDEðxÞ=ρ0. Right: hðxÞ.
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The value of wDEðxÞ today is wDEð0Þ≃ −1.34. For a
long range of red-shifts wDE is very close to −1 (e.g., at
z ¼ 6, wDE ≃ −1.006), i.e. ρDE is a approximately constant
during MD, as we also see from Fig. 3. Then wDE drops
toward more phantom values when the DE starts to
dominate, leading to a fast growth of ρDEðxÞ and hðxÞ.
To assess whether this prediction for wDEðzÞ is consistent

with cosmological observations, a full analysis of the
cosmological perturbations, as well as the corresponding
parameter estimation in the RΔ−1

4 R model, is in principle
necessary. However, the bottom panel of Fig. 4 shows that,
at least at the level of background evolution, near the
present epoch a linear fit of the form (12) is appropriate.
Fitting our results to Eq. (12) we get

w0 ≃ −1.31; wa ¼ 0.49: ð68Þ
Comparing the values in Eq. (68) with Fig. 4 of the 2015
Planck dark energy paper [64], or comparing directly our
Fig. 4 (upper-right panel) for wðzÞ with Fig. 5 of [64] we
see that, if one combines Planck CMB data with BAO, SNe
and H0 measurements, the predictions of the Δ4 model are
excluded at more than 95% C.L. (and possibly, extrapo-
lating from the contours of the figures in [64], at about
99% C.L.). Thus, unless the inclusion of cosmological
perturbations changes substantially the picture, the Δ4

model is basically excluded by the data.

V. CONCLUSIONS AND FURTHER DIRECTIONS

In this paper we have continued our exploration of the
landscape of possible viable nonlocal IR modifications of
GR. From our previous works, we have been led to focus
on terms in the action in which a nonlocal operator is
sandwiched between two Ricci scalars. The simplest
option, the RR model (6) where R□−2R appears in the
action, by itself fits well the data. However, once we use the
most recent 2015 Planck data, it is significantly disfavored
compared to ΛCDM and to the RT nonlocal model (5)[44].
In contrast, the RT model and ΛCDM fit the data equally
well. Since the RT model is in a sense a nonlinear extension

of the RR model, we were led to examine other possible
forms of such nonlinear extensions. Of course in principle
there is an infinity of choices, as often happens in model
building. Symmetries are however a powerful guiding
principle in model building, and we have then chosen to
explore two possibilities that might be indications of an
underlying conformal symmetry. We have found that the
first model, defined by the action (13), works very well,
while a model constructed with the Paneitz operator,
Eq. (11), seems ruled out.
The model (13) seems indeed to enjoy several positive

features, even compared to the other nonlocal model that
works well, i.e. the RT model. Indeed, it is defined in terms
of a relatively simple action. As we have discussed, its
cosmological evolution is stable both in an early de Sitter
inflationary era, as well as in the subsequent RD and MD
epochs, while the RT model is only stable in RD and MD,
and must therefore be eventually embedded in some high-
energy modification at the inflationary scale. The specific
form of the nonlocal term is protected by conformal
symmetry, which gives a motivation for discarding the
possibility of adding also a mass term, −□ → −□þm2,
which is otherwise in principle possible for the RR and RT
models. At the level of comparison with the data, a more
detailed study of its cosmological perturbations is neces-
sary to make a quantitative assessment, and a Bayesian
comparison with ΛCDM. However, from the background
evolution, we see that the deviations of this model from
ΛCDM are very tiny, at the level of about 1%. We expect
that, once the full apparatus of computing the cosmological
perturbations and implementing them in a modified
Boltzmann code is developed, its predictions will be
intermediate between those of ΛCDM and those of the
RT model, and possibly near the limit of resolution of
future missions such as Euclid.
It is also interesting to observe that nonlocal models

featuring R2 terms in the action, which can explain DE in
the recent epoch, can be naturally connected with
Starobinski inflation at high energies. For instance, one
could generalize Eq. (10) into

Sconf ¼
m2

Pl

2

Z
d4x

ffiffiffiffiffiffi
−g

p �
Rþ 1

6M2
S
R
�
1 −

Λ4
S

ð−□þ 1
6
RÞð−□þ 1

6
RÞ

�
R
�
; ð69Þ

where MS ≃ 1013 GeV is the mass scale of the Starobinski
model and Λ4

S ¼ 6M2
Sμ ¼ M2

Sm
2, so ΛS ¼ ðMSmÞ1=2. We

found in Eq. (32) that, setting ΩM ¼ 0.313, we get m≃
0.85H0 (of course, the precise numerical coefficient de-
pends on the value of ΩM, that should eventually be
obtained by performing parameter estimation of the
model). Then, numerically, ΛS ¼ Oð10−6Þ eV. Similar
interpolations could be done for the RR model and (directly
at the level of equations of motions) for the RT model.

At sufficiently high energies or curvatures we have
RðΛ4

S=□
2ÞR ≪ R2.11 In this regime the nonlocal term is

much smaller than the local one, and we recover the
Starobinski model. This means that, at energies E ∼MS,
we have the standard Starobinski inflationary phase. After

11Of course, the actual numerical estimate must take into
account that the□−1 operator actually depends on the whole past
history of the system.
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reheating, when the energy and curvature drop below the
scaleMS, the local R2 term becomes negligible with respect
to the Einstein-Hilbert term. Finally, in the recent epoch,
say z < 10, the nonlocal term gradually starts to become
important, and the evolution is the one obtained from the
nonlocal model (13). Thus, an effective action such as (69)
nicely interpolates between inflation in the primordial
Universe and accelerated expansion in the recent epoch.
It would be interesting to understand if such a model could
reflect a renormalization-group flow in a gravity theory
with R2 term, as tentatively discussed in [63].
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APPENDIX: CAUSALITY IN NONLOCAL
THEORIES

The discussion of causality in nonlocal theories involves
some subtle point. Even if these issues have already been
correctly discussed several times in the literature, see e.g.
[28,29,34,52,60,66], we find it useful to summarize again
here the issue, in order to clarify some confusion which
occasionally resurfaces.
The crucial, and possibly confusing, point is that an

effective nonlocal theory must be treated differently from a
fundamental field theory. For instance, if we consider a
nonlocal action and we take naively its variation in the
standard way, we unavoidably obtain acausal equations of
motion. The simplest example, discussed in [52], is given
by a nonlocal term in the action of a scalar field, of the formR
dxϕ□−1ϕ, where ϕ is some scalar field, and □−1 is

defined with respect to some Green’s function Gðx; x0Þ.
Taking the variation with respect to ϕðxÞ we get

δ

δϕðxÞ
Z

dx0ϕðx0Þð□−1ϕÞðx0Þ

¼ δ

δϕðxÞ
Z

dx0dx00ϕðx0ÞGðx0; x00Þϕðx00Þ

¼
Z

dx0½Gðx; x0Þ þ Gðx0; xÞ�ϕðx0Þ: ðA1Þ

We see that the variation of the action automatically
symmetrizes the Green’s function. It is therefore impossible
to obtain in this way a retarded Green’s function in the
equations of motion, since Gretðx; x0Þ is not symmetric
under x↔ x0; rather Gretðx0; xÞ ¼ Gadvðx; x0Þ. So, even if
we start from a retarded Green’s function in the action, we
get a combination of retarded and advanced Green’s

function in the equation of motion. The same unavoidably
happens if we formally take the variation of a nonlocal
gravity action such as that of the RR model [41,52,67]. This
is indeed one of the reasons why the action of a funda-
mental field theory must be local.
However quantum effective actions can, and in fact

almost unavoidably are, nonlocal. Indeed, a nonlocal
quantum effective action just describes, in coordinate
space, the running of coupling constants that is more
commonly described in momentum space. For instance,
at one-loop level the running of the electric charge in QED
can be described in coordinate space by the one-loop
quantum effective action [68] (see also [69])

Seff ¼ −
1

4

Z
d4xFμν

1

e2ð□ÞF
μν; ðA2Þ

where

1

e2ð□Þ ¼
1

e2ðμÞ − β0 log

�
−□
μ2

�
: ðA3Þ

Here μ is the renormalization scale, eðμÞ is the renormal-
ized charge at the scale μ and, for a single massless fermion,
β0 ¼ 1=ð12π2Þ. The logarithm of the d’Alembertian can be
defined for instance from

log

�
−□
μ2

�
¼

Z
∞

0

dm2

�
1

m2 þ μ2
−

1

m2 −□

�
: ðA4Þ

Another particularly famous example of nonlocal quantum
effective action is the Polyakov action in D ¼ 2 space-time
dimensions,

SP ¼ −
N
96π

Z
d2x

ffiffiffiffiffiffi
−g

p
R
1

□
R: ðA5Þ

The Polyakov action is the quantum effective action
obtained by integrating out the massless matter fields in
2-dimensional gravity coupled to matter, and can also be
obtained integrating the conformal (or trace) anomaly. In
D ¼ 2 the conformal anomaly takes the form (see e.g. [70])

hTμ
μi ¼ N

24π
R; ðA6Þ

where N ¼ NS þ NF is the total number of massless scalar
and Dirac fermion fields.12 The energy-momentum tensor
obtained by taking the variation of SP has indeed a trace
equal to the right-hand side of Eq. (A6). Thus, Eq. (A5) can
be added to the classical Einstein-Hilbert action (which in
D ¼ 2 is just a topological invariant), to provide an

12The coefficient N in front of SP becomes N − 25 if one also
takes into account the metric fluctuations themselves, beside the
fluctuations due to matter fields.
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effective action which takes into account the quantum
effects due to loops of massless particles.
Similarly, in D ¼ 4, starting from gravity coupled to

conformally-coupled massless matter fields and integrating
the conformal anomaly, one obtains the nonlocal anomaly-
induced effective action (see e.g. [62,70,71] for pedagogi-
cal introductions)

Sanom ¼ −
1

8

Z
d4x

ffiffiffiffiffiffi
−g

p �
E −

2

3
□R

�
Δ−1

4

×

�
b0
�
E −

2

3
□R

�
− 2bC2

�
; ðA7Þ

where E is the Gauss-Bonnet term, C2 ¼ CμνρσCμνρσ is the
square of the Weyl tensor, Δ4 is the Paneitz operator (9),
and the coefficients b, b0 depend on the number of scalar,
vector and tensor massless fields integrated out. Again, the
corresponding energy-momentum tensor reproduces the
conformal anomaly. More generally, the nonlocal form
of the loop corrections in gravity can be computed with
standard Feynman diagram or heat-kernel techniques, and
in the UV this gives rise to terms such as R logð−□ÞR and
Rμν logð−□ÞRμν in the one-loop effective action [72–78].
Of course, if one would naively take the variation of

these nonlocal actions for deriving the corresponding
Euler-Lagrange equations, one would find again acausal
equations of motions, with symmetrized Green’s function.
However, it is obvious that this cannot be a sign of a
genuine physical acausality, since these nonlocal effective
actions are just a way to express, with an action that can be
used at tree level, the result of a one-loop quantum
computation in fundamental theories, like QED or gravity
with massless matter fields, which are local and causal. The
resolution of this apparent paradox is that the equations of
motion derived from the quantum effective action are no
longer equation for the classical fields involved, say a
classical field ϕ or the classical metric gμν. Rather, they are
the equations of motion obeyed by the vacuum expectation
values of the corresponding operators, h0jϕ̂j0i or h0jĝμνj0i.
However, now we must specify whether we consider the in-
in or the in-out expectation values, i.e. h0injϕ̂j0ini
or h0outjϕ̂j0ini.
The classical equations for the in-out expectation values

correspond to a diagrammatic expansion of the usual
Feynman path integral. Then one finds that the in-out
expectation values indeed obey nonlocal and acausal
equations of motion, where the nonlocal operators, such

as□−1, are defined with the Feynman Green’s function. Of
course, there is nothing wrong with it. The in-out matrix
elements are not observable quantities, but just auxiliary
objects which enter in intermediate steps in the computa-
tion of scattering amplitudes. Furthermore, even if an
operator such as ϕ̂ or ĝμν is Hermitian, its in-out matrix
element are complex. In particular, this makes it impossible
to interpret h0outjĝμνj0ini as an effective metric. The in-out
matrix elements do not have to obey causal equations (and
indeed the Feynman propagator, which is acausal, enters
everywhere in quantum field theory computations). In
contrast, the in-in matrix elements are the semiclassical
quantities that are in principle observables (and are real, if
the corresponding operators are Hermitian). The equations
of motion for the in-in expectation values correspond to a
diagrammatic expansion of the Schwinger-Keldysh path
integral, which automatically provides nonlocal but causal
equations [79,80], involving only the retarded propagator.
Thus, nonlocal actions such as (6) or (10), interpreted as

quantum effective actions, correspond to causal theories,
exactly as, for instance, the one-loop effective action for
QED (A2) or the Polyakov action (A5).
Nonlocal but causal equations can also emerge from a

purely classical averaging procedure, when one separates
the dynamics of a system into a long-wavelength and a
short-wavelength part. Here the mechanism ensuring cau-
sality is even simpler. Suppose that a system has a degree of
freedom ϕ that we wish to eliminate, coupled to a set of
degrees of freedoms, that we denote collectively as Ψ, that
we wish to retain. Classically, ϕ could satisfy an equation,
say, of the form □ϕ ¼ jðΨÞ. This equation is then solved
as ϕ ¼ □

−1
ret jðΨÞ, where the retarded propagator is selected

by causality, as always in such classical computations. This
solutions is then reinjected in the equations for the
remaining degrees of freedom Ψ, which were coupled to
ϕ, e.g. □Ψ ¼ fðϕÞ. As a consequence, Ψ now satisfies
nonlocal but causal equations. An example of this form, in
the context of cosmological perturbation theory, is dis-
cussed in [81]. If this is the mechanism behind nonlocal
equations such as (5), then again the causality of the
equations is automatically assured. In this case actions such
as (6) or (13) can be interpreted simply as convenient tools
for generating nonlocal equations of motions that are
automatically covariant. However, in this case the funda-
mental quantity would be the equation of motion, rather
than the action, in which □

−1 is then taken to be the
retarded propagator.
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