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We provide for the first time the growth index of linear matter fluctuations of the power law fðTÞ ∝
ð−TÞb gravity model. We find that the asymptotic form of this particular fðTÞ model is γ ≈ 6

11−6b, which
obviously extends that of the ΛCDMmodel, γΛ ≈ 6=11. Finally, we generalize the growth index analysis of
fðTÞ gravity in the case where γ is allowed to vary with redshift.
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I. INTRODUCTION

Over the last two decades the statistical analysis of
cosmological data (see Refs. [1,2] and references therein)
supports the idea that the Universe is spatially flat, and from
the overall energy density, only ∼30% consists of matter
(luminous and dark). Despite the enormous progress made
at the theoretical and observational levels, up to now we
know almost nothing about the nature of the remaining
energy (∼70%), and for this reason, it is given the
enigmatic name dark energy (DE). The discovery of the
physical mechanism of dark energy, thought to be driving
the late accelerated expansion of the Universe, is one of the
main targets of theoretical physics and cosmology. In the
literature one can find a plethora of cosmological scenarios
that attempt to explain the accelerated expansion of the
Universe. In general, the cosmological models are mainly
classified in two large groups. The first category is the
so-called scalar field DE models which adhere to general
relativity, proposing however the existence of new fields in
nature (for a review see [3]).
Alternatively, models of modified gravity provide an

elegant mathematical treatment which points out that the
present accelerating epoch appears as a sort of geometric
effect [3]. In this context, the corresponding effective
equation-of-state (EoS) parameter is allowed to take values
in the phantom regime, namely w < −1 (for other possible
explanations see [4] and [5]). This situation has been tested
in Wilkinson microwave anisotropy probe (WMAP) obser-
vations, in combination with other observational data. The
above feature did not completely disappear from the
analysis of the Planck data which indicates that the value
of w can still be in the phantom region, within 1σ
uncertainty [2]. For more details concerning the cosmo-
logical implications of modified gravity, we refer the reader
to the review article of Clifton et al. [6].
Among the large bodyof nonstandardgravity theories, the

so-called fðTÞ gravity has been introduced in the literature
on the basis of the old definition of the so-called teleparallel

equivalent of general relativity (TEGR) [7–9]. In the TEGR
framework one utilizes the corresponding four linearly
independent vierbeins and the curvatureless Weitzenböck
connection instead of the torsionless Levi-Civita of standard
general relativity. Therefore, the properties of the gravita-
tional field are included in the torsion tensor, and after
performing the appropriate contractions, one can obtain the
torsion scalar T [8]. Subsequently, inspired by the notations
of fðRÞ modified gravity, if we allow the Lagrangian of
the modified Einstein-Hilbert action to be a function of T
[10–12], then we provide a natural extension of TEGR,
namely fðTÞ gravity (for a recent review see [13]). Themerit
of fðTÞ gravity with respect to fðRÞ is related to the fact that
the former produces second-order field equations, while the
latter gives rise to fourth-order equations that may lead to
problems, such as the well position and well formulation of
the Cauchy problem [14].
But how can we distinguish modified gravity models

from those of scalar field DE? In order to answer this
question we need to test the models at the perturbation level
(for a recent analysis see [15] and references therein).
Specifically, the idea of utilizing the so-called growth index
γ (first introduced by [16]) of linear matter perturbations as
a gravity tool is not new, and indeed there is a lot of work in
the literature. There are plenty of studies available in which
one can find the theoretical form of the growth index for
various cosmological models, including scalar field DE
[17–22], DGP [21,23–25], Finsler-Randers [26] and
fðRÞ [27,28].
Despite the fact that the fðTÞ models have been inves-

tigated thoroughly at the background level (see Ref. [13]
and references therein), to the best of our knowledge, we
are unaware of any previous analysis concerning the fðTÞ
growth index, and thus, we believe that the present analysis
can be of theoretical interest. In the current article, we wish
to study the growth index of the power law fðTÞ ∝ ð−TÞb
model [10]. The layout of the manuscript is as follows: At
the beginning of Sec. II we describe the main points of the
fðTÞ gravity, and then we focus our analysis on the power
law fðTÞ ∝ ð−TÞb model. In Sec. III we provide the growth*svasil@academyofathens.gr
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index analysis and the corresponding predictions, using
two functional forms of the growth index. Finally, we
summarize our conclusions in Sec. IV.

II. BACKGROUND EXPANSION
IN f ðTÞ COSMOLOGY

Let us briefly present the basic cosmological properties
of fðTÞ gravity. The overall action of fðTÞ gravity is
given by

I ¼ 1

16πGN

Z
d4xe½T þ fðTÞ þ Lm þ Lr�; ð1Þ

where the radiation and matter Lagrangians are associated
with perfect fluids with pressures Pr, Pm and densities ρr,
ρm, respectively. Notice that e ¼ detðeAμ Þ and eAðxμÞ are the
vierbein fields. Within this framework, the gravitational
field is described by the torsion tensor [8,9] which produces
the torsion scalar T. A similar situation holds in the case of
the Riemann tensor which provides the Ricci scalar in
standard general relativity.
Considering a spatially flat Friedmann-Robertson-

Walker (FRW) metric

ds2 ¼ dt2 − a2ðtÞδijdxidxj; ð2Þ

the vierbien form becomes

eAμ ¼ diagð1; a; a; aÞ; ð3Þ

where aðtÞ is the scale factor of the Universe. Now, if we
vary the action (1) with respect to the vierbeins, then we
obtain the modified Einstein equations

e−1∂μðeeρASρμνÞ½1þ fT � þ eρASρ
μν∂μðTÞfTT

− ½1þ fT �eλATρ
μλSρνμ þ

1

4
eνA½T þ fðTÞ�

¼ 4πGeρA T
em

ρ

ν
; ð4Þ

where fT ¼∂f=∂T, fTT ¼ ∂2f=∂T2, and T
em

ρ

ν
corresponds

to the standard energy-momentum tensor.
Substituting Eq. (3) into the field equations (4) we derive

the Friedmann equations

H2 ¼ 8πGN

3
ðρm þ ρrÞ − f

6
þ TfT

3
; ð5Þ

_H ¼ − 4πGNðρm þ Pm þ ρr þ PrÞ
1þ fT þ 2TfTT

: ð6Þ

In the above set of equations, an overdot denotes a
derivative with respect to time and H ≡ _a=a is the
Hubble parameter, given as a function of torsion T through
the following equation:

T ¼ −6H2: ð7Þ

This implies

E2ðaÞ≡H2ðaÞ
H2

0

¼ TðaÞ
T0

; ð8Þ

where H0 is the Hubble constant and T0 ≡−6H2
0.

If we look at the first Friedmann equation (5) then we
realize that it is possible to obtain an effective dark energy
component. Indeed, it has been shown in Ref. [12] that the
effective dark energy density and pressure are given by

ρDE ≡ 3

8πGN

�
− f
6
þ TfT

3

�
; ð9Þ

PDE ≡ 1

16πGN

�
f − fTT þ 2T2fTT
1þ fT þ 2TfTT

�
; ð10Þ

where the corresponding effective EoS parameter is

w ¼ PDE

ρDE
¼ −1 − 1

3

d lnT
d ln a

fT þ 2TfTT
½ðf=TÞ − 2fT �

: ð11Þ

Combining Eqs. (7) and (8) we derive the logarithmic
derivative of T with respect to d ln a,

d lnT
d ln a

¼ 2T0EðaÞ
d lnE
d ln a

: ð12Þ

Following standard lines, namely ρm ¼ ρm0a−3 and
ρr ¼ ρr0a−4, Eq. (5) is written as

E2ðaÞ ¼ Ωm0a−3 þ Ωr0a−4 þ ΩF0yðaÞ ð13Þ

where

ΩF0 ¼ 1 −Ωm0 −Ωr0 ð14Þ

and Ωi0 ¼ 8πGρi0
3H2

0

. Obviously, fðTÞ gravity affects the

cosmic evolution via the function yðzÞ (scaled to unity at
the present time), which depends on the choice of fðTÞ as
well as on the usual cosmological parameters ðΩm0;Ωr0Þ,
and it is written as

yðaÞ ¼ 1

T0ΩF0
ðf − 2TfTÞ: ð15Þ

A. Power law model

In this work we restrict our analysis to the power-law
model of Bengochea and Ferraro [11], with

fðTÞ ¼ αð−TÞb; ð16Þ
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where

α ¼ ð6H2
0Þ1−b

ΩF0

2b − 1
: ð17Þ

Inserting the above equations into Eqs. (11) and (15), we
obtain

yða; bÞ ¼ E2bða; bÞ ð18Þ

and

w ¼ −1 − 2b
3

d lnE
d ln a

¼ −1þ 2b
3
ð1þ zÞ d lnE

dz
; ð19Þ

where for the latter equality we have used a ¼ 1=ð1þ zÞ.
In this case the normalized Hubble function (13) is given by

E2ða; bÞ ¼ Ωm0a−3 þΩr0a−4 þΩF0E2bða; bÞ: ð20Þ

Clearly, for b ¼ 0 the current fðTÞ model boils down to
ΛCDM cosmology,1 namely T þ fðTÞ ¼ T − 2Λ (where
Λ ¼ 3ΩF0H2

0, ΩF0 ¼ ΩΛ0), and thus we have

E2ða; 0Þ ¼ Ωm0a−3 þΩr0a−4 þΩF0 ≡ E2
ΛðaÞ: ð21Þ

Notice that in order to obtain an accelerating expansion
which is consistent with the cosmological data, one needs
b ≪ 1 [12,30]. Within this framework, we can now follow
the work of Nesseris et al. [30], in which they have shown
that at the background level all the observationally viable
fðTÞ parametrizations can be expressed as perturbations
deviating to ΛCDM cosmology. In particular, following the
notations of [30] for the power law fðTÞmodel, we perform
a Taylor expansion of E2ða; bÞ around b ¼ 0,

E2ða; bÞ ¼ E2ða; 0Þ þ dE2ða; bÞ
db

����
b¼0

bþ � � �

or

E2ða; bÞ ¼ E2
ΛðaÞ þ ΩF0

dyða; bÞ
db

����
b¼0

bþ � � � ; ð22Þ

where for the latter equality we have used Eq. (15). Now
based on Eq. (18) we obtain

dyða; bÞ
db

¼ 2Eða; bÞ2b
�

b
Eða; bÞ

dEða; bÞ
db

þ ln ½Eða; bÞ�
�
;

ð23Þ

and evaluating the above equation for b ¼ 0 we find

dyða; bÞ
db

����
b¼0

¼ 2 ln ½Eða; 0Þ� ¼ ln ½E2
ΛðaÞ�: ð24Þ

Therefore, inserting Eq. (24) into Eq. (22) we provide the
approximate normalized Hubble parameter for the current
fðTÞ model (see [30])

E2ða; bÞ≃ E2
ΛðaÞ þΩF0 ln ½E2

ΛðaÞ�b: ð25Þ

Implementing an overall likelihood analysis involving
the latest cosmological data (Supernovae Type Ia (SNIa)
[31], baryon acoustic oscillations (BAO) [32,33] and
Planck cosmic microwave background (CMB) shift param-
eter [34]) and the appropriate Akaike information criterion
[35], we can place constraints on the cosmological param-
eters ðΩm0; bÞ. Specifically, we find that the likelihood
function peaks at Ωm0 ¼ 0.286� 0.012, b ¼ −0.081�
0.117 with χ2minðΩm0; bÞ≃ 563.6 (AIC ¼ 567.6), resulting
in a reduced value of ∼0.96.2 In order to visualize the
solution space in Fig. 1 we plot the 1σ, 2σ and 3σ
confidence contours in the ðΩm0; bÞ plane. At this point
we need to mention that the uncertainty of the b parameter
is quite large (see also [30]), as indicated in the relevant
contour figure. Our statistical results are in agreement,

FIG. 1. The overall (SNIa=BAO=CMBshift) likelihood contours
for Δχ2 ¼ χ2 − χ2min equal to 1σ (2.32), 2σ (6.18) and 3σ (11.83)
confidence levels, in the ðΩm0; bÞ plane. The solid square
corresponds to the best-fit fðTÞ ∝ ð−TÞb modified gravity
model, namely ðΩm0; bÞ ¼ ð0.286;−0.08Þ. The solid point shows
the best-fit solution for the concordance ΛCDM model.

1Notice that for b ¼ 1=2 it reduces to the Dvali, Gabadadze
and Porrati (DGP) ones [29].

2The total χ2 function is given by χ2 ¼ χ2SNIa þ χ2BAO þ χ2CMB.
For Gaussian errors, the Akaike information criterion (AIC) [35]
is given by AIC ¼ χ2t;min þ 2k, where k provides the number of
free parameters.
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within 1σ errors, with those of Nesseris et al. [30], who
used a combined analysis of SNIa [31], BAO [32,33] and
WMAP9 CMB shift parameters [36], and they found
ðΩm0; bÞ ¼ ð0.274� 0.008;−0.017� 0.083Þ.
For the concordance Λ cosmology (b ¼ 0) we find

Ωm0 ¼ 0.289� 0.012, χ2minðΩm0Þ≃564.6 (AIC ¼ 566.6).
Since the difference jΔAICj ¼ jAICΛ − AICfðTÞj < 2

points to the fact that the power law fðTÞ and ΛCDM
models respectively fit the cosmological data equally well.

III. LINEAR GROWTH IN f ðTÞ COSMOLOGY

In this section we present the linear matter fluctuations of
fðTÞ gravity in the matter dominated era (for details see
Ref. [37]). Therefore, for the rest of the paper we neglect
the radiation term from the cosmological expressions
appearing in Sec. II. Based on standard treatment, the
differential equation that describes the evolution of matter
perturbations at the subhorizon scales takes on the form

δ̈m þ 2νH _δm − 4πGμρmδm ¼ 0: ð26Þ

In the framework of modified gravity models the quantity
μ ¼ Geff=GN depends on the scale factor, while for those
dark energy models which are inside general relativity, Geff
reduces to Newton’s constant as it should and thus μ ¼ 1.
We refer the reader to Refs. [20,21,27,38–41] for full
details of the calculation. One can show that δm ∝ DðtÞ
where DðtÞ is the linear growth factor scaled to unity at the
present epoch. Obviously, any modification to the gravity
theory and to the Friedmann equation is reflected in the
quantities ν and μ≡Geff=GN . As an example, in the
framework of scalar field dark energy models which adhere
to general relativity, one has ν ¼ μ ¼ 1. Moreover, for the
concordance Λ cosmology, one can solve (26) analytically
in order to obtain the growth factor [16]

DΛðaÞ ¼
5Ωm0EΛðaÞ

2

Z
a

0

du
uE3

ΛðuÞ
; ð27Þ

where

EΛðaÞ ¼ ðΩm0a−3 þ ΩΛ0Þ1=2 ð28Þ

in the matter dominated era and ΩΛ0 ¼ 1 −Ωm0.
On the other hand, for nonstandard gravity models we

have ν ¼ 1 and μ ≠ 1, and for the fðTÞ gravity the quantity
μ takes the following form [42,43]:

μ ¼ 1

1þ fT
: ð29Þ

Inserting Eq. (16) into Eq. (29) we obtain

μðaÞ ¼ 1

1þ bΩF0

ð1−2bÞE2ð1−bÞ
ð30Þ

or

μðaÞ≃ 1 − ΩF0

E2
ΛðaÞ

bþ � � � ð31Þ

where, as in Sec. II, for the latter expression we have
utilized a Taylor expansion around b ¼ 0.
In order to simplify the numerical calculations we

provide the growth rate of clustering introduced by [16]

fðaÞ ¼ d ln δm
d ln a

≃ Ωγ
mðaÞ; ð32Þ

based on which we can write the growth factor

DðaÞ ¼ exp

�Z
a

1

ΩmðxÞγðxÞ
x

dx

�
; ð33Þ

with

ΩmðaÞ ¼
Ωm0a−3
E2ðaÞ ð34Þ

and from which we define

dΩm

da
¼ −3ΩmðaÞ

a

�
1þ 2

3

d lnE
d ln a

�
: ð35Þ

Theparameter γ is the so-called growth indexwhich can be
used to distinguish between general relativity and modified
gravity on cosmological scales (see Introduction). In this
context, utilizing the first equality of (32) one can write
Eq. (26) as follows:

a
df
da

þ
�
2νþ d lnE

d ln a

�
f þ f2 ¼ 3μΩm

2
: ð36Þ

Now differentiating Eq. (20) and utilizing Eq. (34) we find
that

d lnE
d ln a

¼ − 3

2

ΩmðaÞ
½1 − bE2ðb−1ÞΩF0�

: ð37Þ

For b ≪ 1 the latter equation is well approximated by

d lnE
d lna

≃− 3

2
ΩmðaÞ

�
1þ ΩF0b

E2
ΛðaÞ

þ � � �
�

ð38Þ

Regarding the form of the growth index we consider the
following two situations.

A. Constant growth index

The simplest choice is to use the asymptotic value of the
growth index, namely γ∞. Recently, Steigerwald et al. [41]
proposed a general mathematical treatment which provides
γ∞ analytically [see Eq. (8) in [41] and the discussion in
[44]] for a large family of DE models. Based on the work of
Steigerwald et al. [41] the asymptotic value of the growth
index is given analytically by
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γ∞ ¼ 3ðM0 þM1Þ − 2ðH1 þ N1Þ
2þ 2X1 þ 3M0

ð39Þ

where the relevant quantities are

M0 ¼ μjω¼0; M1 ¼
dμ
dω

����
ω¼0

ð40Þ

and

N1 ¼
dν
dω

����
ω¼0

; H1 ¼ −X1

2
¼ dðd lnE=d ln aÞ

dω

����
ω¼0

:

ð41Þ

We would like to point out that Steigerwald et al. [41]
derived the basic cosmological functions in terms of the
variable ω ¼ lnΩmðaÞ, which implies that at z ≫ 1 we
have ΩmðaÞ → 1 [or ω → 0].3 For the fðTÞ gravity the
coefficient N1 is strictly equal to zero since ν ¼ 1. Then,
based on Eqs. (25), (31), (34), (35) and (38), we find after
some algebra (for more details see the Appendix)

fM0;M1; H1; X1g≃
�
1; b;− 3ð1 − bÞ

2
; 3ð1 − bÞ

�
;

and thus we calculate, for the first time (to the best of our
knowledge), the asymptotic value of the growth index

γ∞ ≃ 6

11 − b
≈

6

11

�
1þ 6

11
b

�
: ð42Þ

Obviously, for b ¼ 0 we recover the ΛCDM value 6=11, as
we should. On the other hand, utilizing the aforementioned
best-fit value b ¼ −0.081 and the corresponding 1σ b-
uncertainty σb ¼ 0.117, we find that γ∞ lies in the interval
[0.492, 0.556] (see upper panel of Fig. 2). In the lower
panel of Fig. 2 we show the relative deviation of the fðTÞ
growth index with respect to γΛ ≈ 6=11. The relative
difference can reach ∼ − 9% when we approach the
aforesaid theoretical lower 1σ bound of b≃−0.2. For
the best-fit value b ¼ −0.081 we have γ ¼ 0.5223, which
gives a ∼ − 4% difference from 6=11. We also see that for
positive values of b the asymptotic value of the growth
index becomes greater than 6=11, while the opposite holds
for negative values of b.

B. Varying growth index

The second possibility is to consider that γ evolves with
redshift. Therefore, in this scenario we need to generalize
the original Polarski and Gannouji [45] method for the

fðTÞ gravity. Specifically, upon substituting fðaÞ ¼
ΩmðaÞγðaÞ into Eq. (36) and using Eq. (35), we are led to

a lnðΩmÞ
dγ
da

þ Ωγ
m − 3

�
γ − 1

2

��
1þ 2

3

d lnE
d ln a

�

þ 1

2
¼ 3

2
μΩ1−γ

m : ð43Þ

Writing the above equation at the present time (a ¼ 1) we
simply have

− γ0ð1Þ lnðΩm0Þ þ Ωγð1Þ
m0 − 3

�
γð1Þ − 1

2

��
1þ 2

3

d lnE
d ln a

�
a¼1

þ 1

2
¼ 3

2
μ0Ω

1−γð1Þ
m0 ; ð44Þ

where a prime denotes a derivative with respect to the scale
factor and

μ0 ¼ μð1Þ≃ 1 −ΩF0b;

d lnE
d ln a

����
a¼1

≃− 3

2
Ωm0ð1þ ΩF0bÞ:

For the latter two expressions we have used Eqs. (31)
and (38).
In this work we consider the most popular γðaÞ para-

metrization that has appeared in the literature (see [45–49]),
which is a Taylor expansion around aðzÞ ¼ 1,

γðaÞ ¼ γ0 þ γ1ð1 − aÞ; ð45Þ

FIG. 2. Upper panel: We show the asymptotic value of the
growth index as a function of b (solid line). The dashed curve
corresponds to γΛ ≈ 6=11. Lower panel: We plot the relative
difference ½1 − γ=γΛ�% versus b.

3For Λ cosmology (b ¼ 0) Eq. (38) becomes
d lnEΛ
d ln a ¼ − 3ΩðΛÞ

m ðaÞ
2

, where ΩðΛÞ
m ðaÞ ¼ Ωm0a−3

E2
ΛðaÞ

. Of course at large

redshifts z ≫ 1 we have ΩðΛÞ
m ðaÞ → 1 and thus d lnEΛ

d ln a → − 3
2
.
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with the asymptotic value becoming γ∞ ≃ γ0 þ γ1 where
we have set γ0 ¼ γð1Þ.
Utilizing Eqs. (44) and (45), and the above notations, we

can easily obtain γ1 in terms of γ0:

γ1 ¼
Ωγ0

m0 − 3ðγ0 − 1
2
Þ½1−Ωm0ð1þΩF0bÞ�− 3

2
μ0Ω

1−γ0
m0 þ 1

2

lnΩm0

:

ð46Þ
As expected, for theΛ cosmology (b ¼ 0) the above formula
reduces to its standard expression [45–49]. Lastly, inserting
γ0 ¼ γ∞ − γ1 into Eq. (46) and utilizing γ∞ ≈ 6

11−6b, we
can derive the constants γ0;1 as a function ðΩm0; bÞ. For
example, if we use the fitting values ðΩm0; bÞ ¼ ð0.286;
−0.081Þ, then we estimate ðγ0; γ1Þ≃ ð0.541;−0.019Þ,
while for the concordance Λ cosmological model with
ðΩm0; bÞ ¼ ð0.289; 0Þ, we find ðγ0; γ1Þ≃ ð0.557;−0.011Þ.
In order to check the variants of the fðTÞ ∝ ð−TÞb model

from the ΛCDM case at the perturbation level, we present
in Fig. 3 a comparison of the evolution of the growth index
γðzÞ (upper panel) and the evolution of the μðzÞ≡
GeffðzÞ=GN (lower panel). The solid and the dashed curves
correspond to fðTÞ and ΛCDM models, respectively. Also,
the thin-line error bars correspond to 1σ b-uncertainties
which affect the growth index and μ via Eqs. (31) and (46).
As expected, at large redshifts fðTÞ tends to general
relativity, namely μ → 1, while as we approach the present

epoch μ starts to deviate from unity. Of course, due to large
1σ b-uncertainties we cannot exclude the value b ¼ 0
which corresponds to the concordance Λ cosmology.
Therefore, in order to test possible departures from general
relativity we need to place tight constraints on the b
parameter and thus on γ. Hopefully, using the next
generation of surveys (like Euclid—see discussion in
[50]) we expect to be able to constrain the b parameter.

IV. CONCLUSIONS

We studied the power-law fðTÞ ∝ ð−TÞb model at the
linear perturbation level. Applying the technique of
Steigerward et al. [41] in the framework of the current
fðTÞ model, we derive (for the first time) the asymptotic
value of the growth index of matter perturbations, namely
γ ≈ 6

11−6b. Evidently, for b ¼ 0 the latter formula reduces to
that of the usual ΛCDM model, γΛ ≈ 6

11
. It is interesting to

mention that Nesseris et al. [30] proved that the power-law
fðTÞ model can be seen as a perturbation around ΛCDM at
the expansion level. Here we extended the latter work, by
writing the asymptotic value of the fðTÞ growth index as a
perturbation around that ofΛCDM,namely γ ≈ 6

11
ð1þ 6

11
bÞ.

Finally, we generalized the analysis in the regime where
the growth index is allowed to vary with redshift, and we
found that an accurate determination of b is needed in order
to test the range of validity of the fðTÞ ∝ ð−TÞb modified
gravity model.
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APPENDIX: BASIC COEFFICIENTS

Here we provide some calculations concerning the coef-
ficientsM0,M1,H1 andX1 which appear in Eq. (39). As we
have alreadydiscussed inSec. II A, these quantities are given
in terms of the variableω ¼ lnΩm which means that as long
as a → 0 (z ≫ 1) we have Ωm → 1 (or ω → 0) and thus
E2ðaÞ ≫ 1. Therefore, from Eq. (31) we simply find

M0 ¼ μjω¼0 ≃ 1:

Now, M1 is defined as

M1 ¼
dμ
dω

����
ω¼0

¼ Ωm
dμ
dΩm

����
Ωm¼1

:

Using Eqs. (28), (31), (34), and (35) we obtain, after some
calculations,

ΩmðaÞ
dμ
dΩm

≃ΩmðaÞ
bΩF0

E2
ΛðaÞΩΛðaÞ

¼ ΩmðaÞ
bΩF0

ΩΛ0
:

FIG. 3. In the upper panel we show the growth index as a
function of redshift for the fðTÞ ∝ ð−TÞb gravity model (solid
line). In the lower panel we plot the evolution of the μðzÞ≡
Geff=GN [see Eq. (31)]. Notice, that the thin-line error bars
correspond to 1σb-uncertainties which affect the growth index
and μ via Eqs. (46) and (31). For comparison, the dashed line
corresponds to the traditional ΛCDM model.
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Notice that for the latter equality we use the well-known
formula E2

ΛðaÞΩΛðaÞ ¼ ΩΛ0. Under these conditions M1

becomes

M1 ≃ bΩF0

ΩΛ0
≃ b;

where we have set ΩF0 ¼ ΩΛ0 [see the corresponding
discussion before Eq. (21)].
Finally, the coefficient H1 (or X1) is given by

H1 ¼ −X1

2
¼ dðd lnE=d ln aÞ

dω

����
ω¼0

¼ Ωm
dðd lnE=d ln aÞ

dΩm

����
Ωm¼1

:

Again, utilizing Eqs. (28), (31), (34), (35) and (38)
we find

Ωm
dðd lnE=d ln aÞ

dΩm

≃− 3Ωm

2

�
1þ bΩF0

E2
ΛðaÞ

þ 2bΩF0

3E2
ΛðaÞΩΛðaÞ

d lnEΛ

d ln a

�
:

Therefore, in the context of the aforementioned
limitations (Ωm → 1), H1 (and thus X1) takes the
form

H1 ¼ −X1

2
≃− 3

2
ð1 − bÞ:
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