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A new computationally efficient method has been introduced to treat self-gravity in Eulerian
hydrodynamical simulations. It is applied simply by modifying the Poisson equation into an inhomo-
geneous wave equation. This roughly corresponds to the weak field limit of the Einstein equations in
general relativity, and as long as the gravitation propagation speed is taken to be larger than the
hydrodynamical characteristic speed, the results agree with solutions for the Poisson equation. The
solutions almost perfectly agree if the domain is taken large enough, or appropriate boundary conditions are
given. Our new method cannot only significantly reduce the computational time compared with existent
methods, but is also fully compatible with massive parallel computation, nested grids, and adaptive mesh
refinement techniques, all of which can accelerate the progress in computational astrophysics and
cosmology.
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I. INTRODUCTION

Recent advances in theoretical astrophysics have mostly
been led by the rapid progress in supercomputing, of the
computers themselves and the numerical techniques. In
particular, hydrodynamical simulations coupled with grav-
ity have proved to be a powerful tool to reveal the dynamics
of many astrophysical and cosmological phenomena such
as supernovae, star formation, relativistic jets, accretion
discs, formation of large scale structure, etc. [1–8]. Most
simulations deal with simplified models, assuming some
symmetry and solving equations with reduced dimensions.
In some fields, however, there are growing rationale that
multidimensional effects can play a key role [9,10], and
some phenomena are essentially multidimensional [11,12],
meaning that numerical simulations also have to be carried
out with full dimensionality. This itself can dramatically
increase the numerical cost while at the same time, there are
some studies where small scale effects can alter the global
behavior [13]. In such cases it is necessary to resolve fine
structures, making the calculation even more costly. Such
computationally expensive calculations have become pos-
sible by making full use of state-of-the-art supercomputers,
with the aid of a combination of efficient numerical
schemes and parallelization technologies. However, com-
putational resources for these large scale simulations are
still limited, and it is often difficult to carry out systematic
studies.
In astrophysical hydrodynamical simulations, it is usu-

ally not the hydrodynamics part that dominates the com-
putational time. Instead, what prevents us from extending
calculations to higher dimensions and higher resolutions, is

the additional physics such as radiative transfer, nuclear
reactions, neutrino transport, self-gravity, etc. In order to
carry out systematic studies in multi-dimensions, it is
mandatory to construct rapid methods to treat these addi-
tional features. These additional effects are included by
solving the governing equations of that feature and cou-
pling it to the hydrodynamic Euler equations, or by
applying approximated models based on feasible assump-
tions. For the case of self-gravity, the additional basic
equation is the Poisson equation:

Δϕ ¼ 4πGρ ð1Þ

where Δ is the Laplace operator, ϕ the Newtonian gravi-
tational potential, G the gravitational constant, and ρ the
mass density. This equation is an elliptic type partial
differential equation (PDE) which can only be solved via
direct matrix inversions or iterative methods or fast Fourier
transform [14–26]. Despite the efforts made in the past
few decades to construct rapid Poisson solvers [14–26], it
still remains a pain in the neck for many astrophysical
hydrodynamic simulations. It becomes most problematic in
multidimensional simulations with Eulerian schemes, and
is sometimes approximated by monopoles even though
the hydrodynamics are multidimensional [3,13,27,28]. The
problem stems from the mathematical character of the
equation itself, where the value on each cell depends on
information from every other cell. This makes it extremely
inefficient for parallelization, due to the huge amount of
communication among memories and slowing down the
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whole calculation. The situation gets increasingly worse as
the size of the simulation increases.
On the other hand, the equation for general relativity is the

Einstein field equations. When formulated as an initial value
problem, the Einstein equations indicate that the evolution of
gravitational fields are governed by a hyperbolic equation as
long as it initially satisfies the Hamiltonian and momentum
constraints [29,30]. This implies that gravity is essentially
hyperbolic, and its evolution only depends on its local
neighborhood. In this paper we propose a new method to
circumvent the problems in Newtonian gravity, by incorpo-
rating the hyperbolicity of general relativity into the Poisson
equation. Our new method can significantly reduce the
computational cost of self-gravitational calculations.
Instead of the Poisson equation (1), we choose to solve

an inhomogeneous wave equation

�
−

1

c2g

∂2

∂t2 þ Δ
�
ϕ ¼ 4πGρ ð2Þ

where we define cg as the propagation speed of gravitation.
This equation was motivated from the essentially hyper-
bolic nature of gravity in general relativity. It roughly
corresponds to the weak field limit of the Einstein equa-
tions. The Newtonian limit is achieved by assuming an
infinite cg, which is the cause of the difficulties, but here we
just assume it is large, and not take the limit. Similar to
electromagnetic fields, this equation will introduce causal-
ity, and the solution will therefore be somewhat like a
retarded potential [31]. In this way, Eq. (2) can easily be
parallelized since it is a hyperbolic PDE and only requires
communication of memories between neighboring cells.
Our approach seems similar to the method introduced by
Black and Bodenheimer [18], Krebs and Hillebrandt [20]
where they convert the Poisson equation into a parabolic
equation. However, the nature of a parabolic PDE and
hyperbolic PDE is totally different, thus introducing differ-
ent advantages and disadvantages to the method.
One important parameter that needs to be set is the value

for the gravitation propagation speed cg. A large enough cg
will give us an equivalent solution to the Poisson equation,
which is desired from the Newtonian point of view, but the
computational time will be large due to the strict Courant-
Friedrichs-Lewy condition. If we take a lower value for cg,
the computation will speed up, but the solution will deviate
from that of the Poisson equation because the time
derivative becomes comparable with the other terms.
Thus the value for cg should be chosen carefully for each
simulation according to the required accuracy and the
computational resources available. Yet we show later in
this paper that cg can be taken relatively small without
affecting the solution, and can dramatically improve the
numerical efficiency of self-gravity. This paper is organized
as follows: in Sec. II, we will explain the numerical setups
and methods used for our test calculations of our new

method, the results will be shown in Sec. III and we will
discuss the errors in Sec. IV. The conclusion will be given
in Sec. V.

II. NUMERICAL PROCEDURE

We performed several calculations to demonstrate the
efficiency of our new method. First, we checked how well
our new method maintains the equilibrium of a polytrope
sphere in two-dimensions (2D) and three-dimensions (3D).
Second, we simulate the head-on collision of equal mass
polytropes in 2D. We use a hydrodynamical code which
solves the ideal magnetohydrodynamic equations with the
finite volume method, using the HLLD-type approximate
Riemann solver [32]. Since magnetic fields are ignored in
our calculations, it is equivalent to using the HLLC scheme.
Cylindrical coordinates are used for 2D simulations assum-
ing axisymmetry whereas 3D simulations are carried out
in Cartesian coordinates. An ideal gas equation of state
with an adiabatic index γ ¼ 5=3 is used for all calculations.
An outgoing boundary condition is used for the outer
boundaries.
For self-gravity we solve two different equations; Eq. (2)

and the Poisson equation, for comparison. An iterative
method called the MICCG method [14,19] is used to solve
the Poisson equation, with boundary values given by
multipole expansion. Equation (2) is solved by simple
discretization with the aid of the cartoon mesh method [33]
to simplify the cylindrical geometry in the 2D tests. Robin
boundary conditions are applied for the outer boundary
[34]. As for the value of cg, we normalize it by the
characteristic velocity

cg ¼ kgðcs þ jvjÞ ð3Þ

where cs is the sound speed, v is velocity, and kg is an
arbitrary parameter that should be larger than unity. The
time step condition for the wave equation will become kg
times stricter than for the hydrodynamical part. Although
the gravity and hydrodynamical equations should essen-
tially be solved simultaneously, here we choose to solve
them on separate timelines. In this way, the wave equation
will be solved kg times during one hydrodynamical time
step, and will reduce the computational cost. Owing to the
fact that the wave equation only depends on the density
distribution, and since the density distribution does not
significantly change during one time step, this will give
sufficient accuracy. It should also be noted that the Courant
number used to decide the time steps for the gravity and
hydrodynamical parts do not necessarily need to coincide.
If we take larger Courant numbers for the gravity part than
the hydrodynamics, the computational cost can be reduced
even more. In this paper we simply take both Courant
numbers to be 0.3, but the results did not change even for
larger Courant numbers such as 0.9.
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For the first test calculation, we place a polytrope sphere
with a polytropic index N ¼ 3 at the center of the 2D
cylindrical grid. The sphere has a mass and radius of
ðM;RÞ ¼ ð8M⊙; 3.75R⊙Þ. The computational domain is
taken approximately twice the stellar radius in both radial
and longitudinal directions, and divided into ðNr × NzÞ ¼
ð210 × 280Þ cells. A dilute atmosphere is placed around the
star, with a mass negligible compared to the stellar mass.
We simply wait for several dynamical times to see whether
the star stays in mechanical equilibrium. Two simulations
are carried out for comparison, one by solving the Poisson
equation throughout (P model), and one by solving Eq. (2)
with kg ¼ 5 (H model). The initial condition is given by
solving the Poisson equation in both cases.
As a demonstration of 3D capabilities, we place the same

polytrope sphere at the origin of a three-dimensional
Cartesian grid. Plane symmetry is assumed for all three
directions, which will leave us with an eighth of the star.
The computational domain is taken ∼1.5 times the stellar
radius in each direction, and divided into ðNx × Ny × Nz ¼
1403Þ cells. The resolution of the grid is equivalent to the
first test calculation. To make it a 3D specific problem, we
add random density perturbations with an amplitude of
< 1%. This will induce some stellar oscillation modes but
overall, the star should stay in a stable state. Since we use a
relatively large number of cells, it is extremely difficult to
solve the Poisson equation. In fact, it was impossible on our
workstation to solve in a realistic time scale, so we
interpolate from the exact solution as an initial condition
for the gravitational potential instead.
To test a more dynamically evolving case, we place

another identical polytrope sphere 4.2 × 1011 cm away
from the center of the region in the longitudinal direction
on a 2D cylindrical grid. We assume equatorial symmetry,
which mirrors the star on the opposite side. Since we do not
give any orbital motions, the two stars will simply fall into
each other by the gravitational force of each other, causing
a head-on collision. Like in the first test, we carry out the
simulation with the two different types of self-gravity for
comparison, and call them the P and H models.

III. RESULTS

Figure 1 shows the density distribution of the initial
condition on the left side, and ∼5 dynamical times later on
the right side for the H model. Both panels show almost
identical distributions, indicating that hydrostatic equilib-
rium of the star is well resolved with this grid. The degree
of equilibrium can be checked in Fig. 2, which shows the
evolution of central density and the degree of satisfaction of
the virial theorem (VC) defined as

VC ¼ W þ 3ðγ − 1ÞU
jWj ð4Þ

where U and W are the internal and gravitational energies
integrated over the bound zones (zones with negative total

energy). The initial condition for the polytrope sphere is
given simply by interpolation from the exact solution. So as
soon as the simulation starts, the star tries to adjust to its
equilibrium condition on the discretized grid. This leads to
a slow decrease in the central density, but the decline rate
is extremely slow and it is safe to assume that the star is
resolved properly on this grid, with both methods. There is
a roughly dynamical time scale oscillation in the value of
VC in both P and Hmodels. But the amplitude is very small
and does not grow, which indicates that the star satisfies the
virial equilibrium condition throughout the simulation. The
computational time was ∼5 times shorter for the H model
than the P model.
Similar results were obtained for the 3D star case,

depicted in Fig. 3. The black lines show the nonperturbed
star case, which is simply an extention of the H model
calculation to 3D and in different coordinates. It is
remarkable that the star remains in virial equilibrium even
in 3D, at a degree of ∼0.05%. The red lines show the
evolution of the same star with ∼1% random density
perturbations. There is no notable difference in the

FIG. 1. Density plot for the stationary star test. Left panel:
initial condition, Right panel: 5 × 104 s later.

FIG. 2. Evolution of the central density (Upper panel) and
degree of satisfaction of the virial theorem (VC, lower panel) in
the 2D static star simulations. Density is normalized by the initial
central density, and VC is defined in Eq. (4). Red lines: H model,
Black lines: P model.
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evolution of the central density, only declining ∼2% after
∼5 dynamical times. The fluctuation around virial equi-
librium is larger than the nonperturbed model, but does not
grow in time, staying in a stably oscillating state at the same
time scale as the 2D test.
Figure 4 shows the density distribution of the head-on

collision simulations with the two different methods at two

different times. The upper halves of each panel are results
for the P model, and the lower halves are for the H model.
It can be seen that the two stars fall into each other, causing
a head-on collision, forming a shock at the interface. The
stars then merge to become a single star, but a part of
the envelope is blown away by the shock. Although the
evolution is delayed by ∼15% in the H model, the overall
behavior of the dynamics between the two models are quite
similar. This already indicates that our new method can at
least be used for qualitative studies. Moreover, the total
computational time of the H model was ∼30 times shorter
than the P model, implying that our new method is most
efficient for dynamically evolving gravitational fields. This
is because when the gravitational potential is moving, the
MICCG method needs more iterations than stationary
situations to converge to its solution.

IV. DISCUSSIONS

Here we are not interested in the physics of the test
calculations carried out, but in the difference between the
two methods. Our aim was to produce an efficient method
to treat self-gravity, that reproduces the same results as with
previous methods which solve the Poisson equation. In this
section we quantitatively evaluate the differences between
the solution obtained in our simulations by the new method
and the solution of the Poisson equation. We focus on the
head-on collision simulation, since it had the largest
difference and because we are more interested in applying
our new method to dynamically evolving systems.
One of the main causes of the difference between the two

methods is the boundary condition. For the Poisson solver,
we use Dirichlet boundary conditions with values given by
multipole expansion, which obtains the exact solution for
the Poisson equation for the given density distribution. On
the other hand, the boundary condition used in the new
method is a Robin boundary, which is equivalent to
assuming monopole gravity. Since the higher order terms
are non-negligible in the current situation, this boundary
condition is inappropriate.
We carry out several additional simulations to quantify

the effects of the boundary condition, and seek how to
improve the results. The parameters used in our extra
simulations are listed in Table I. Equation (2) is used for
self-gravity in all models. Model aR05 corresponds to the
H model explained above. Three different modifications are
made to single out the effects of the boundary condition. In
the first approach, we apply the Dirichlet boundary con-
dition by multipole expansion as in the P model (aD05).
This will directly remove the boundary error, although
the calculation becomes heavy and is inappropriate for
practical use. Our second approach is to widen the
computational domain without changing the resolution
(aR05-cR05), which will weaken the multipole effects at
the boundary. Finally, we also change the value of kg to a

FIG. 3. Evolution of the central density (Upper panel) and
degree of satisfaction of the virial theorem (VC, lower panel) in
the 3D simulations. Density is normalized by the initial central
density, and VC is defined in Eq. (4). Red lines: perturbed model,
Black lines: nonperturbed model.

FIG. 4. Snapshots of the density distribution for the head-on
collision simulations. Upper halves of each panel; P model, lower
halves; H model. The time elapsed are written on the left corners,
and white line at the center shows the coordinate axis.
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larger value (aR20-cR20), which should bring our equation
closer to the Poisson equation.
We define the relative “error” as

δ ~ϕðrÞ≔ϕHðrÞ − ϕPðrÞ
ϕPðrÞ

ð5Þ

ϕH is the gravitational potential calculated with our new
method, and ϕP is the solution for the Poisson equation at
the given density distribution. Hence the average relative
error is

hδ ~ϕi ¼
�R

Vðδ ~ϕÞ2dVR
V dV

�1
2

ð6Þ

where the integrals are taken over the entire region.
Figure 5 shows the time evolution of the average relative

error in each model. All lines fluctuate around a certain
value, indicating that the error does not pile up in most
cases. The maximum error was ∼10% even in our “worst”
model (aR05, aR20). This is the cause of the ∼15% delay in
the collision time. The error was reduced most when the

Dirichlet boundary condition was applied (aD05; red
dashed line), where the error does not exceed ∼0.1%
throughout the calculation, and the delay time also became
negligible. This is a surprisingly good agreement, and
proves that the difference of our method to previous ones
only arises from the boundaries. Our hypothesis is further
verified by the other simulations with larger computational
regions. The relative error is roughly inverse proportional to
the number of zones, from ∼10% in 5.88 × 104 zones to
∼0.003% in 1.92 × 106 zones. The wider the region, the
smaller the errors. This is because the relative contribution
of the boundary to the computational domain is smaller for
wider regions, and also the multipole effects are weakened
at the boundary. Another fact to be noted is that the error
does not strongly depend on the value of kg used in the
simulation. The average error simply fluctuates around a
value determined only by the domain size, at a frequency
proportional to ∼cg=Lwhere L is the size of the domain. In
fact, even if we take kg ¼ 2, the overall behavior is
indistinguishable with other models as long as we take a
large enough region. At the most turbulent and messy
situations like after the collision (t≳ 20000 s), the errors
rise higher in the lower kg models because they cannot react
fast enough to rapidly evolving systems.
The reason for the oscillations in the errors can be

understood by decomposing the gravitational potential into
two parts ϕ ¼ ϕP þ ϕE. Here we assume that ϕP is the
solution for the Poisson equation (ΔϕP ¼ 4πGρ), and ϕE is
the deviation from it. If we plug this in to Eq. (2) and use
the Poisson equation, we are left with

�
−

1

c2g

∂2

∂t2 þ Δ
�
ϕE ¼ 1

c2g

∂2

∂t2 ϕP: ð7Þ

This is the equation which describes the creation and
propagation of the error ϕE. If the initial condition satisfies
the Poisson equation, i.e. ϕEðt ¼ 0Þ ¼ 0, the only errors are
generated by the source term on the right-hand side and the
boundary conditions. Besides the boundary, the source of
the error is apparently the second time derivative of the
gravitational potential, which is determined by the motion
of the density distribution. This is why the error rose at the
later times in Fig. 5 where it was turbulent and messy. Due
to the fact that this is a wave equation, any errors that are
generated will propagate away out of the boundaries. The
creation and propagation of errors is what causes the small
oscillations of the errors in all of our test calculations. The
amplitude of the errors are determined by the magnitude of
this source term, which can be estimated by combining the
Poisson equation, continuity equation and equation of
motion. By taking the time derivative of the Poisson
equation and using the continuity equation, one can get

∂
∂tΔϕP ¼ −4πG∇ · ðρvÞ ð8Þ

TABLE I. Model descriptions.

Model rmax
a (cm) zmax

a (cm) Nr
b Nz

b b.c.c kg

aD05 6.3 × 1011 8.4 × 1011 210 280 Dirichlet 5
aR05 6.3 × 1011 8.4 × 1011 210 280 Robin 5
bR05 1.8 × 1012 2.4 × 1012 600 800 Robin 5
cR05 3.6 × 1012 4.8 × 1012 1200 1600 Robin 5
aR20 6.3 × 1011 8.4 × 1011 210 280 Robin 20
bR20 1.8 × 1012 2.4 × 1012 600 800 Robin 20
cR20 3.6 × 1012 4.8 × 1012 1200 1600 Robin 20

aSize of the computational domain in each direction.
bNumber of zones in each direction.
cBoundary conditions. Dirichlet boundaries are applied by

multipole expansion.

FIG. 5. Time evolution of the average relative error for each
model. Colors of the lines denote the domain size as described in
Table I. Dashed line: aD05 model. Solid lines: kg ¼ 5 models,
dotted lines: kg ¼ 20 models.
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and then

∂
∂t∇ϕP ¼ −4πGρv: ð9Þ

Similarly by taking the time derivative again and using the
equation of motion, one can obtain something like

∂2

∂t2 ∇ϕP ¼ 4πGððρv ·∇Þvþ∇pþ ρ∇ϕPÞ ð10Þ

depending on the physics included. From this equation, it
can easily be estimated that

∂2

∂t2 ϕP ∼OðGρðc2s þ v2ÞÞ: ð11Þ

So if we normalize Eq. (7) by the original Eq. (2), we can
say that the relative amplitude of the error is roughly

����ϕE

ϕ

���� ∼O
�
c2s þ v2

c2g

�
: ð12Þ

Provided that cg is taken larger than the characteristic
velocity, or when there is not so much accelerating motion,
the right-hand side on Eq. (7) can be assumed to be
sufficiently small.
From the above results, we conclude that our new

method can be safely used even for dynamically evolving
systems provided that cg is chosen large enough and the
outer boundary condition is given appropriately. Robin
boundaries seem to be appropriate for any kind of appli-
cation due to the fact that gravitational forces can be well
approximated by monopoles at large distances from the
source. It is also numerically efficient since it only requires
information of the neighboring cell. The only problem is
that the boundary should be taken far enough from the
source to reduce the errors sufficiently. Larger regions lead
to larger computational cost, weakening the advantage of
the new method. One possible workaround is to take a
wider region only for the gravitational potential, and
solving Eq. (2) on an extended grid exceeding the region
for hydrodynamics. If the density near the hydro bounda-
ries are low enough, or in other words, the total mass inside
the region is conserved, it will be possible to approximate
that the extended regions are close to vacuum, and calculate
the wave equation without the source term. The cost for the
wave equation is cheap, thus we can extend the region
relatively easily without increasing the total cost. Periodic
boundaries are also suitable for this method whenever
appropriate. In such cases, the average density of the
computational region should be subtracted from the source
term of Eq. (2).
Figure 6 shows the computational time it took until the

stars come in contact (∼15000 s) for each method.
Calculations were carried out on a 172.8 Gflops machine

with OpenMP parallelization on 8 threads. It can be seen
that the computational time for the gravity part (dashed
lines) can be dramatically reduced compared to previous
methods, and the benefit becomes more prominent as the
scale of the calculation increases. Since our test simulation
was dominated by the gravity part with previous methods,
the new method improved the overall performance directly.
Almost 90% of the computational time was spent on the
gravity part using the Poisson solver, whereas the fraction is
∼1% with the new method. This is a remarkable improve-
ment, since it is not so common with existing solvers that
the time spent on the gravity solver is negligible compared
to the hydrodynamics. For other cases where the computa-
tional time is dominated by other implementations, the
improvement in the gravity part may not be so critical, e.g.
in core collapse simulations which implement detailed
microphysics, the fraction of time used for computing
gravity is typically below ∼10%, so the reduction of the
total time will be at most ∼10%. The computational time
for the gravity part with this method scales linearly to the
number of cells, which is much better than previous
methods which usually scale as OðN2Þ or OðN logNÞ.
Multigrid methods are supposed to scale as OðNÞ too, but
the absolute number of operations are obviously much
smaller with the new method and much more simpler. Our
method will suit even more on even larger scale simulations
parallelized by MPI. In these cases the communication
between memories are sometimes the bottleneck, but our
new method will not be restricted by this since it does
not require intensive communication. It should also be
compatible for adaptive mesh refinement or nested grid
techniques, and in this way, the outer boundary can be
taken far enough without significantly increasing the
computational cost.

FIG. 6. Computational time until the stars contact for different
methods. Square plots: R05 models, Triangle plots: R20 models,
Circle plots: same calculation with Poisson solver. Solid lines:
total computational time, Dashed lines: time for the gravity part
only.
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V. CONCLUSION

A new method has been introduced to treat self-gravity
in Eulerian hydrodynamical simulations, by modifying the
Poisson equation into an inhomogeneous wave equation.
As long as the gravitation propagation speed is taken to be
larger than the hydrodynamical characteristic speed, the
results agree with solutions for the Poisson equation
depending on the boundary condition. If the errors from
the boundary are removed in some manner, by applying
Dirichlet boundaries or placing the boundary far away, the
solution almost perfectly satisfies the Poisson equation.
The computational time of the gravity part was reduced by
an order of magnitude, and it should become more
prominent for larger scale simulations. It is also fully
compatible for numerical techniques such as paralleliza-
tion, nested grids, adaptive mesh refinement, extending its
superiority over existent methods.
The sole parameter that needs to be set is cg, the

gravitational propagation speed. This should ideally be
taken as the speed of light, but our test simulations suggest

that it can be taken to fairly small values as long as it
exceeds the characteristic velocity of the hydrodynamics.
Considering the computational time it is good that we can
take it fairly small, but the effects on the errors should be
clarified in future studies.
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