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The first detection of a gravitational wave (GW) has been achieved by two detectors of the advanced
LIGO. Routine detections of GW events from various GW sources are expected in the coming decades.
Although the first signal was statistically significant, we expect to see numerous low signal-to-noise ratio
(SNR) events with which we may be able to learn various aspects of the Universe that have yet to be
unveiled. On the other hand, instrumental glitches due to nonstationarity and/or a non-Gaussian tail of
detector noise distribution prevent us from confidently identifying true but low SNR GW signals out of
instrumental noise. Thus, to make the best use of data from GW detectors, it is important to establish a
method to safely distinguish true GW signals from false signals due to instrumental noises. For this
purpose, we urgently need to understand characteristics of detector noises, since the nonstationarity and
non-Gaussianity inherent in detector outputs are known to increase false detections of signals. Focusing on
identifying the non-Gaussian noise components, this paper introduces a new measure for characterizing the
non-Gaussian noise components using the parameter ν which characterizes the weight of tail in a Student-t
distribution. A confidence interval is reported on the extent to which detector noise deviates from
Gaussianity. Our method revealed stationary and transient deterioration of Gaussianity in LIGO S5 data.
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I. INTRODUCTION

During the last decade, the Laser Interferometer
Gravitational-Wave Observatory (LIGO) [1] and Virgo
[2] carried out searches for gravitational waves (GWs),
and their sensitivities were improved [3–5]. At present
these detectors are being upgraded to the advanced LIGO
(aLIGO) [6] and the advanced Virgo (AdVirgo) [7] to
improve their sensitivities. The Japanese gravitational wave
detector, KAGRA [8], is under construction in the Kamioka
mine and has cryogenic mirrors whose benefits in detector
sensitivity have been verified by a prototype detector, CLIO
[9]. The LIGO and Virgo collaborations have set many
upper limits on GW amplitudes or event rates of various
GW sources [5,10–13], and finally, the aLIGO detected one
of the sources, a GW from a binary black hole merger
[14,15] in the first observation run. Most of the search
methods for GWs are optimal for stationary and Gaussian
noise [16]. The sensitivity of interferometric GW detectors
is mainly limited by seismic activity, thermal noise,
radiation pressure noise, and shot noise in low frequencies
above a few tens of hertz. Although these noise components
are assumed to be Gaussian in many earlier theoretical
studies, it is known from the experiences of the GW
searches [17] that detector noise includes nonstationary
and/or non-Gaussian noise components. The non-Gaussian
components and nonstationary ones make the false alarm

rate increase and make it hard to estimate the behavior of
noise such as a noise power spectrum. Because these
components limit performance of all GW searches, we
need to investigate a feature of detector noise for detecting
GWs. Reducing false alarms is important for making good
use of observational time in the target of opportunity
observation for multimessenger astronomy with electro-
magnetic and neutrino telescopes.
In the past observation runs of LIGO and Virgo, much

effort was made to reduce false events by identifying and
eliminating narrow-band transient nonstationary noise
sources [18–23]. Evaluating the nonstationarity of many
auxiliary channels of the GW detectors from the perspec-
tive of GW telescope diagnosis improved accuracy of
estimating the noise power spectrum and background
behavior. The identification and removal of the detector
noise and the noise sources has been done by estimating the
background behavior in accurately [24,25].
Moreover some methods that are robust against contami-

nation by non-Gaussian noise were suggested [26,27] and
showed that the receiver operating characteristic (ROC)
curve of a matched filtering method for a GW from a
compact binary coalescence from the data of the fifth science
run (S5) of LIGO was improved compared with the case of
the Gaussian noise model [28,29]. There are also the works
that assume non-Gaussian noise in a GW burst search [30].
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Although nonstationarity or non-Gaussianity in GW
detector noise were investigated in GW searches and
GW telescope diagnosis, sources of these noises are still
unknown in many cases. The power of discrimination of
nonstationarity and non-Gaussianity must be increased.
When non-Gaussian noises exist in detector noise, char-
acteristics of noise such as a power spectrum and a noise
event rate can be estimated more accurately by evaluating
non-Gaussianity than by regarding all of the deviation from
Gaussian noise as nonstationary noise. It is important for
dealing with the non-Gaussianity of detector noise in
addition to nonstationarity to specify new noise sources.
When a measure for non-Gaussianity insensitive to the

stationarity of noise can be defined, such a measure should
be helpful to distinguish non-Gaussian and nonstation-
ary noise.
In [28], the ROC curve of the matched filtering method

was improved using the Student-t noise model and param-
eter ν of non-Gaussianity. The Student-t distribution and
the parameter ν are defined as

pðxÞ ¼ Γðνþ1
2
Þffiffiffiffiffi

νπ
p

Γðν
2
Þ
�
1þ x2

ν

�
:

In order to use this method in the search for GW signals, we
must statistically characterize the non-Gaussianity of detec-
tor noises. We have to investigate a threshold for distinguish-
ing Gaussian and non-Gaussian noise using ν as a measure.
In this paper, the characterization of non-Gaussian noise
and our measure of non-Gaussianity are described in Sec. II.
In Sec. III, we show the performance of our method at
distinguishing non-Gaussian noise from Gaussian noise and
statistical assessments of possible misidentification. We
demonstrate our method using LIGO data from the fifth
science run obtained from the LIGO Open Science Center
[31,32]. In Sec. IV, we summarize the performance of our
method for finding the degree of non-Gaussianity.

II. NON-GAUSSIAN FEATURE OF DETECTOR
NOISE DISTRIBUTION

A. Gaussian noise model

In this paper, we write the time series and Fourier
transform of detector noise as nðtÞ and ~nðfÞ, respectively.
If the time series is Gaussian, the real part ℜ½ ~nðfÞ� and
imaginary part ℑ½ ~nðfÞ� of ~nðfÞ are Gaussian distributed,

pGðxÞ ¼
1ffiffiffiffiffiffi
2π

p
σ
exp

�
−

x2

2σ2

�
; ð1Þ

where x is either ℜ½ ~nðfÞ� or ℑ½ ~nðfÞ� and σ the standard
deviation of x. An absolute value of ~nðfÞ, j ~nðfÞj, then
follows Rayleigh distribution,

pRðxÞ ¼
x
σ2

exp

�
−

x2

2σ2

�
; ð2Þ

where x is j ~nðfÞj.

B. Student-t noise model

The assumption that the detector noise follows Gaussian
distribution often well describes the noise behavior as a
zeroth order approximation. However, we cannot always
adopt this approximation because there are cases when
non-Gaussianity and nonstationarity dominate in a certain
time or frequency band. In these cases, the false alarm rate
is raised by them.
Figure 1 shows the normalized noise level of LIGO data

[31,32] as a function of frequency. The data used were
taken from the GPS time 842 747 904 to 842 764 288. This
figure shows that the LIGO data are not an ideal Gaussian
noise especially in a low-frequency band. This non-
Gaussianity in low frequency is probably one of the causes
of false alarm events in LIGO S5 observation data [12,23].
Although the non-Gaussian noise is not always dominant,
we can find the non-Gaussianity in a certain time and
frequency region such as Fig. 1. Investigating such non-
Gaussianity may improve the GW search performance
compared with the case that regards the detector noise
as Gaussian and ignores such non-Gaussianity. So inves-
tigating non-Gaussianity enables us to use the detector
signal with poor quality.
The Student-t noise model is known as one of the non-

Gaussian noise models, which is a natural extension of
the Gaussian noise model [33]. In this model ℜ½ ~nðfÞ� and
ℑ½ ~nðfÞ� follow the Student-t distribution,

pSTðxÞ ¼
Γðνþ1
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FIG. 1. This plot shows the 50% (red stars), 90% (green squares),
95% (blue circles), and 99% (pink triangles) quantiles of the
distribution of the LIGOS5 data taken fromGPS time 842 747 904
to 842 764 288. Each quantile was calculated from 218 samples in
every 16 Hz. The dashed line, dashed-dotted line, double-dotted
line, and triple-dotted line represent the 50%, 90%, 95%, and 99%
quantiles expected if the data follow a Gaussian distribution,
respectively. This figure indicates that detector noise deviates from
Gaussian distribution especially in the low-frequency band.
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where x is either ℜ½ ~nðfÞ� or ℑ½ ~nðfÞ�, σs is a scaling
parameter, and ν is a positive value which characterizes
the weight of the tail of the distribution. j ~nðfÞj then follows
the Student-Rayleigh distribution,

pSRðxÞ ¼
x
σ2s

pFð2;νÞ

�
x2

2σ2s

�
; ð4Þ

where x is j ~nðfÞj and pFð2;νÞ is the probability density
function of the F-distribution with the degrees of freedom
ð2; νÞ [34,35]. The relation between the scaling parameter,
σs, and standard deviation of ℜ½ ~nðfÞ� and ℑ½ ~nðfÞ�, σ, is
σ2s ¼ ν−2

ν σ2. If the variance σ2 of the detector noise is
a priori known, some of the statistical properties of our
estimator of ν can be calculated analytically. Unfortunately,
σ2 is unknown in general and we must estimate σ2 from
detector noises. So we investigate statistical properties of an
estimator of ν with plugging the sample estimate of σ into
the expressions. It is noted that Eqs. (3) and (4) are
Gaussian and Rayleigh distributions in the ν → ∞ limit.
The Rayleigh and Student-Rayleigh distributions with ν of
4, 8, 16, and 64 are shown in Fig. 2. The weight of the tail is
characterized by the parameter ν [36].
It is useful to use ν as a measure which characterizes the

deviation from Gaussianity, because the detector noise is
known to follow a heavy tail distribution and noise events
which belong to the tail of the distribution cause an increase
in false alarm events.
It is not necessary to use ν as the measure for non-

Gaussianity such that the detector noise always follows the
Student-t distribution as long as the detector noise follows a
heavy-tailed distribution. In the next section, the method of
estimating the ν value of realistic detector noise is described.

III. NON-GAUSSIAN NOISE
CHARACTERIZATION

A. Data processing

An algorithm to estimate ν from the detector noise is
shown in Fig. 3. Let us denote the total data length in seconds
byT and the sampling frequency inHz by fs, and the product
of the two by 2M (assuming M to be an integer for
simplicity). The detector output discrete time series nðtkÞ
(k ¼ 1;…; 2M) is divided into N chunks niðtÞ with each
tFFT ¼ T=N seconds. Then time series data of each chunk
niðtÞ is Fourier transformed into ~niðfjÞðj ¼ 1;…;MÞ. We
then estimate the parameter ν for the ith chunk at the coarse
frequency bin α using l samples around the bin. Specifically,
the estimator ν, denoted by ν̂iðfαÞ, is computed from l
samples of ~niðfjÞ (j ¼ α − l=2;…; αþ l=2) using the
method explained below. The frequency resolution of
ν̂iðfαÞ is determined by l such that δF ¼ l=tFFT > 1=T. In
this paper we adopt tFFT ¼ 1 s and δF ¼ 16 Hz.
The p-quantile, Qp, is sought from l-sample data around

the αth bin in the frequency domain. The estimator ν̂ is
defined as

ν̂≡ argmin
ν

jQp −QSRðp; νÞj; ð5Þ

where QSRðp; νÞ is the theoretical quantile function of
Student-Rayleigh distribution,

QSRðp; νÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2σ2sQFð2;νÞðpÞ

q
; ð6Þ

where QFð2;νÞðpÞ is the quantile function of F-distribution
with the degrees of freedom (2, ν) [28,34].
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FIG. 2. This plot shows Rayleigh distribution (black solid line)
and Student-Rayleigh distribution functions with σs ¼ 1 for
various ν. Each color means ν ¼ 4 (blue dashed line), ν ¼ 8
(green dotted line), ν ¼ 16 (pink double-dotted line), and ν ¼ 64
(red triple-dotted line). In the small ν case, the tail of the
distribution is heavy. On the other hand, the Student-Rayleigh
distribution is closer to the Rayleigh distribution for large ν. FIG. 3. The algorithm of estimating ν̂ from the detector noise.
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We search for ν only in the range from 2.1 to 200 in
increments of 0.1 as is shown in Secs. III B and III C.
Formally, we need to take the ν → ∞ limit to recover a
Gaussian distribution from a Student-t distribution. In fact,
however, the real detector noise can be regarded as virtually
Gaussian when ν > 200.

B. Characterization of Gaussian noise

This section shows how ν̂ is used to characterize the non-
Gaussianity of data. The performance of ν̂ to quatify non-
Gaussianity strongly depends on the data length, T, to be
analyzed. We introduce the threshold on ν above which the
data follow a Gaussian distribution, taking into account
dependency on data length.
524,288 sets of simulated Gaussian noise are generated

and analyzed. The length of each data set is 4096 s.
Figure 4 shows the histogram of obtained ν̂. The thick

red region represents the 1% lower tail of the ν̂ distribution.
If we take the 1% (α ¼ 0.01) significance level, the critical
region is ν̂ < να ¼ 91.4. Hence, we can reject the null
hypothesis that the data follow a Gaussian distribution by
99% confidence if we set the threshold να¼0.01 ¼ 91.4,
modulo the error inherited in our Monte Carlo simulations.
When we fix the significance level α, the critical region

depends on the data length T because of the sampling
variance. Figure 5 shows the threshold νth as the function
of data length T. The lower regions of the red solid line
and blue solid line show the critical regions of rejecting
Gaussianity with 99% and 99.9% confidence, respectively.
If the stationarity of data is assumed, the precision of the

estimator ν is improved as the data length increases. Since
the statistical feature of realistic detector noise varies
typically in hours, we need to decide the data length in
which the data can be assured to be stationary.

Figure 4 shows that νth ¼ 91.4 in the case of T ¼ 4096s
with 99% confidence and Fig. 5 shows that the νth increases
with increasing data length T. Therefore, it is enough that ν
is scanned up to 91.4 in the case of T ≤ 4096s with
99% confidence. However we adopt the range for searching
ν as [2.1, 200] throughout this work, because the upper
boundary of the range for searching ν, which is larger than
νth, does not affect the conclusion of this paper.

C. Characterization of non-Gaussian noise

In order to evaluate the degree of non-Gaussianity
quantitatively it is important to investigate the confidence
interval of ν. Our estimator of ν is strongly consistent and
therefore asymptotically unbiased.
The confidence interval of ν is difficult to calculate

because ν̂ is not asymptotic normal and in general, we do
not know the true variance of detector noise. However, the
confidence interval can be approximated in the following
sense [37].
Proposition: ν̂ is strongly consistent.
Proof: We define QSRfngðp; νÞ as p-quantiles of n

samples distributed in a Student-Rayleigh function. By
the strong law of large numbers at a given ν,

Q−1
SRfngðQSRðp;νÞÞ→Q−1

SRðQSRðp;νÞÞ; almost surely: ð7Þ

Since p ¼ Q−1
SRfngðQSRfngðp; νÞÞ ¼ Q−1

SRðQSRðp; νÞÞ,

QSRfngðp; νÞ → QSRðp; νÞ; almost surely; ð8Þ

by the continuous mapping theorem. ν̂ → ν is proved by
applying the continuous mapping theorem again because
Eq. (6) is also the continuous function of ν. ▪
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FIG. 4. The resulting histogram of the estimated ν̂ for 524,288
sets of simulated Gaussian noise data. The data length of the
simulated noise is 4096 s. This figure shows that even for purely
Gaussian noise, ν̂ can be small with a non-negligible probability.
The critical region for rejecting Gaussianity is determined by the
histogram. When data length T ¼ 4096s, νth ¼ 91.4.

data length [s]
0 500 1000 1500 2000 2500 3000 3500 4000

thν

0

10

20

30

40

50

60

70

80

90

100

99% C.L.

99.9% C.L.

FIG. 5. This plot shows the critical regions for rejecting
Gaussianity with significance levels of 1% and 0.1%. In the
lower region of each line, Gaussian noise hypothesis is rejected
with 99% (red) and 99.9% (blue) confidence. For example, when
ν is estimated from 1024 second long data, the hypothesis of
Gaussianity is rejected if ν ≤ 59.0 with 99% confidence.
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Using simulations with a Student-t noise model and
various ν, we can find νlowerðνÞ and νupperðνÞ such that
Pðνlower < ν̂ < νupperÞ ¼ 1 − α. On the other hand, the
confidence interval is ½ν̂lower; ν̂upper�, such that
Pðν̂lower < ν < ν̂upperÞ ¼ 1 − α. Here we propose
ν̂lower≔νlowerðν̂Þ and ν̂upper≔νupperðν̂Þ. Although there is
no rigorous reason why Pðν̂lower < ν < ν̂upperÞ ¼
Pðνlowerðν̂Þ < ν < νupperðν̂ÞÞ equals 1 − α, we use
½νlowerðν̂Þ; νupperðν̂Þ� instead of the confidence interval.
νupper and νlower can be calculated as follows. Figure 6

shows the histogram of the obtained ν̂. The configuration of
this simulation is the same as in the previous Gaussian
simulation (524,288 sets of simulation noise and data
length T ¼ 4096 s). The ν of the simulated Student-t noise
is 25. The thick red region represents 1% upper νupper and
lower νlower tails of ν̂. The corresponding ν are 23.4 and

48.8, respectively. We performed the same simulations
using simulated Student-t noise changing ν from 8 to 50.
Figure 7 shows νlower and νupper as the function of ν̂. In
Fig. 7, the red solid line and the blue dashed line represent
the lower ðνlowerÞ and upper ðνupperÞ boundaries of the 98%
and 99.8% confidence regions, respectively. The confi-
dence interval is in between νlower and νupper. When ν̂ ¼ 25,
the 98% confidence interval is 15.45 ≤ ν ≤ 27.29. The
confidence interval rapidly spreads for large ν. This
deterioration of the confidence interval comes from the
fact that the shape of the Student-Rayleigh distribution is
more sensitive to the change of ν in the case of small ν than
the case of large ν.
Figure 8 shows the dependence of the confidence

interval on the data length T. The upper and lower red
lines represent νupper and νlower in the case of Student-t noise
with a ν of 25 as a function of T. The confidence interval
of ν̂ gets monotonically narrower. When T ¼ 2048, 4096,
the 98% confidence intervals are 14.52 ≤ ν ≤ 29.91 and
15.45 ≤ ν ≤ 27.29, respectively.

D. Demonstration of our method using LIGO data

We applied our method to LIGO GW strain data from the
fifth science run obtained from the LIGO Open Science
Center [31,32]. Figure 9 shows the time evolution of the
observed ν̂ at each frequency. The GPS time of the data is
from 842 747 904 to 842 760 192; the resolution of time δt
and frequency δF are 128 s and 16 Hz, respectively. This
result is obtained by the data length T ¼ 1024 s with
overlapped time T lap ¼ 896 s.
The ν̂ in the frequency band 30–60 Hz is ∼15. The

confidence interval is 9.3 ≤ ν̂ ≤ 15.4. This non-
Gaussianity continues for the whole 16384 seconds
when we analyzed the data. The ν̂ in the frequency band
100–1 kHz and the time 8000–9000 s is ∼50.
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FIG. 6. The result of estimated ν for 524,288 sets of simulated
Student-t noise in the case of ν ¼ 25. Estimated ν fluctuate, and
the 1% confidence upper (νupper) and lower (νlower) boundaries are
νupper ¼ 48.8 and νlower ¼ 23.4.
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interval of ν when the estimation time is 4096 s. For small ν
values, resolution of ν is good. For example, when we obtain
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FIG. 9. This plot shows the estimated ν̂ for the real LIGO S5
data as a function of time. The GPS time of the data is from 842
747 904 to 842 760 192; the resolution of time δt and frequency
δF are 128 s and 16 Hz, respectively. This result is obtained by
the data length T ¼ 1024 s with overlapped time T lap ¼ 896 s.
The purple region means that the Gaussianity of noise is bad and
there are many non-Gaussian regions, especially in the low-
frequency band.

Entries  16384
Mean    1.354
RMS    0.8665

noise level normalized by standard deviation[/rHz]
0 1 2 3 4 5 6 7 8 9 10

O
cc

ur
re

nc
es

 o
f e

ac
h 

no
is

e 
le

ve
l

1

10

210

310
Entries  16384
Mean    1.354
RMS    0.8665

FIG. 10. This plot shows the distributions of the LIGO detector
noise in the time-frequency region where time from
GPS ¼ 842 747 904, t; frequency, f; and their widths, dt, df,
are (t ¼ 6144, f ¼ 128, dt ¼ 128 s, df ¼ 16 Hz) for the red
histogram and (t ¼ 1024, f ¼ 32, dt ¼ 128 s, df ¼ 16 Hz) for
the blue one. The entry of each histogram is 16384.
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FIG. 11. These plots show the time evolution of the observed ν̂ at each frequency. The GPS times of the top left, top right, bottom left,
and bottom right panels are 841 449 472, 842 489 856, 864 575 488, and 870 838 272, respectively. Other parameters are the same as the
ones in Fig. 9. The bottom right panel shows the bad quality data which do not belong to CAT4 in the literature of the LIGO and Virgo
collaborations [17]. The other panels show good quality data which belong to CAT4.
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Data in the regions where we can detect small ν̂ in the
spectrogram Fig. 9 are regarded as non-Gaussian by our
method (see Fig. 5). This feature is consistent with the
quantile plot in Fig. 1. Figure 9 provides us with the
temporal evolution of the non-Gaussianity of data. So we
can distinguish stationary non-Gaussianity and transient
non-Gaussianity.
Deterioration of Gaussianity due to noise transience,

which appears around 8000 s, from the 100-to-kHz band is
detected. In this region, ν is from 40 to 60 and non-
Gaussianity continues for about 300 seconds. From Fig. 5,
the assumption that detector noise in this time-frequency
region is Gaussian can be rejected with 99% confidence
(local probability).
These results show that the detector noise can be

distinguished from Gaussian noise quantitatively. In addi-
tion to this we succeeded at extracting the degree of non-
Gaussianity in the time evolution and frequency band.
Figure 10 shows the distribution of the LIGO detector

noise in the time-frequency region where the frequency, the
time elapsed from the GPS time ¼ 842 747 904, and the
widths of their blue and red histograms are (f ¼ 32 Hz,
t ¼ 1024 s, df ¼ 16 Hz, dt ¼ 128 s) and (f ¼ 128 Hz,
t ¼ 6144 s, df ¼ 16 Hz, dt ¼ 128 s), respectively. The
estimated ν̂ of the former region is ∼200, which can be
regarded as Gaussian. That of the latter region is ∼15
during the entire time in the figure. The latter region is not
Gaussian distributed nor Gaussian with strong outliers
caused by glitches. This region seems to originate from
noise sources that are stationary and non-Gaussian distrib-
uted with heavy tails.
Figure 11 shows the time evolution of the observed ν̂ at

each frequency in GPS times different from Fig. 9. The
GPS times of the first samples of those data sets are 841
449 472, 842 489 856, 864 575 488, and 870 838 272 with
16384 s of data. Other parameters are the same as the ones
in Fig. 9. We have arbitrarily selected those four periods of
data except for the selection conditions where those periods
(1) do not contain any gap (i.e., no loss of samples) for
18,000 seconds; (2) include no hardware injection; and
(3) satisfy CAT1 in the literature of the LIGO and Virgo
collaborations [17]. Moreover, we demand that (4) those
periods almost satisfy the CAT3=4 conditions except for
the one starting at the GPS time 870 838 272, for which we
intended to study the effect of CAT4. Note that we demand
that condition (1) exclude possible edge effects and use
only the middle 16,384 s of data. The deterioration of
Gaussianity in the low-frequency band can be revealed in
all figures. The bottom right panel shows the observed ν̂ of
the bad quality data where data do not belong to CAT4.
The Gaussianity of this data can be rejected in almost all
frequencies and time with 99% confidence. These figures
suggest that the domination of non-Gaussianity appears in
the LIGO S5 data even though the data are categorized as
CAT4, which represents a good enough quality for science.

IV. CONCLUSION

We proposed a method to characterize the non-
Gaussianity of GW detector noise. Namely, we introduced
Student-Rayleigh distribution to characterize possible non-
Gaussianity of data. Here, the degrees of freedom ν of the
distribution are found to be useful to quantify the degree of
non-Gaussianity. We used ν as a characteristic parameter
that represents the weight of the tail of detector noise. We
calculated the confidence interval of ν and the threshold
below which the Gaussian hypothesis is rejected. We
characterized non-Gaussianity quantitatively in realistic
detector noise.
The existence of a non-Gaussian noise component in

realistic detector noise was also clarified by our method
with a threshold and confidence interval. The threshold for
rejecting Gaussian noise was evaluated by changing vari-
ous data lengths T. In the case of T ¼ 4096 s and ν̂ ¼ 25,
the 99% confidence interval is 15.45 < ν < 27.29.
In this work, we showed the detection method for non-

Gaussian noise using ν and the accuracy of ν. This method
revealed continuous and transient non-Gaussian compo-
nents in the LIGO data by estimating the degree of non-
Gaussianity of the detector noise every 16 Hz and 1024 s.
The degree of non-Gaussianity is related to the origin of

the noise source. The characteristics of non-Gaussianity,
such as power, frequency, and/or time evolution, are also
different among noises of different origins, as shown in the
spectrogram Fig. 9. The robustness of outliers derived from
the nonstationary noise of our method can be adjusted by
changing the quantile and p. The method using quantiles is
more robust for outliers than the one using the entire noise
distribution, such as χ2-fitting.
Our method can be used for revealing a stationary feature

of the detector noise. So ν can provide different information
about the noise status than that provided by the methods for
nonstationary noise. When all deviations from Gaussianity
are regarded as nonstationarity, it is difficult to identify
mechanisms that cause stationary but non-Gaussian noises.
Our method and methods for investigating transient noise
are complementary to each other for evaluating conditions
of the detector noise because our method can investigate
stationary non-Gaussianity of detector noise. Regarding
the search for GWs, we provide a method to estimate
accurate ν that will directly lead to the improvement of the
GW search.
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