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The sensitivity of the gravitational-wave detector KAGRA, presently under construction, will be limited
by quantum noise in a large fraction of its spectrum. The most promising technique to increase the detector
sensitivity is the injection of squeezed states of light, where the squeezing angle is dynamically rotated by a
Fabry-Pérot filter cavity. One of the main issues in the filter cavity design and realization is the optical
losses due to the mirror surface imperfections. In this work we present a study of the specifications for the
mirrors to be used in a 300 m filter cavity for the KAGRA detector. A prototype of the cavity will be
constructed at the National Astronomical Observatory of Japan, inside the infrastructure of the former
TAMA interferometer. We also discuss the potential improvement of the KAGRA sensitivity, based on a
model of various realistic sources of losses and their influence on the squeezing amplitude.
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I. INTRODUCTION

Quantum noise is one of the main limiting factors for
second generation gravitational-wave interferometric detec-
tors, such as KAGRA [1], Advanced LIGO [2], and
Advanced Virgo [3]. As pointed out by Caves in 1981
[4], the two manifestations of quantum noise, shot noise and
radiation pressure noise, are created by vacuum fluctuations
entering the interferometer by the antisymmetric (or dark)
port. Caves also proposed the injection of a squeezed
vacuum from the dark port as a strategy to decrease quantum
noise without modifying the interferometer configuration.
In a squeezed vacuum state, the amplitude and phase

uncertainty, equally distributed in an ordinary vacuum, are
modified in order to reduce one at the expense of the other.
If this is a pure state, it can be represented as an ellipse in
the quadrature plane and it is characterized by the ratio of
its axes (squeezing magnitude) and by its orientation
(squeezing angle). Both of these parameters are functions
of the Fourier frequency. If the quadrature with the reduced
uncertainty is aligned in the gravitational-wave signal, the
signal to noise ratio is improved with respect to that
achievable with an ordinary vacuum. Since the optome-
chanical coupling of the laser light with the interferometer
test masses induces a rotation of the squeezing ellipse, the

injection of a frequency-independent squeezed vacuum
(i.e., with constant squeezing angle) mitigates quantum
noise only in the part of the spectrum where the
gravitational-wave signal is aligned with quadrature with
reduced uncertainty. In the case of a phase quadrature
squeezing, the improvement is the same as that achievable
by increasing the laser power.
A broadband quantum noise reduction can be obtained

by injecting a squeezed vacuum with an angle that varies
with frequency, in such a way that the signal and reduced
noise quadrature are always aligned [5]. This frequency-
dependent squeezing can be obtained by reflecting off a
frequency-independent squeezed state by a detuned Fabry-
Pérot filter cavity. The rotation of the squeezing angle has
been experimentally demonstrated in the MHz region [6]
and, more recently, in the kHz region [7].
The injection of frequency-dependent squeezing is

particularly suitable for a future upgrade of KAGRA, since
increasing laser power to reduce shot noise can be difficult
due to the cryogenic temperature of the detector. Moreover,
since thermal noise is low enough to make quantum noise
the dominant contribution in a large part of the spectrum,
the reduction of quantum noise would have a direct and
significant effect on the detector sensitivity.
The achievement of a high level of frequency-dependent

squeezing faces two kinds of difficulties. First, the squeez-
ing angle should undergo a rotation in the frequency region*capocasa@apc.univ‑paris7.fr.
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where quantum noise switches from radiation pressure
noise to shot noise (∼70 Hz for KAGRA). This corre-
sponds to a filter cavity with a very long storage time of
∼2 ms. Moreover, the presence of optical losses in the filter
cavity system decreases the squeezing factor, since losses
are associated with ordinary vacuum fluctuations that
couple with the squeezed states reducing their squeezing
level. For both these reasons, optical losses in the filter
cavity system should be estimated and reduced as much as
possible.
A 300 m prototype of the cavity will be developed at the

National Astronomical Observatory of Japan (NAOJ),
using the former TAMA infrastructure [8]. This is, to
our knowledge, the longest filter cavity prototype under
construction. Previous experiments were made using a 2 m
long cavity [7]. The first goal of this paper is to present the
filter cavity optical design. One of the main issues in the
filter cavity realization is the losses due to the mirror
surface imperfections. In this work we present a study of
the specifications for the mirrors, based on real mirror
maps, used in the Virgo experiment. Moreover, a crucial
point is to compare the squeezing degradation from the
filter cavity optical losses with that originated by other
mechanisms. Thus, we present a complete squeezing
degradation budget for the 300 m cavity, based on the
work by Kwee et al. [9]. We finally discuss the potential
improvement of KAGRA sensitivity using the 300 m filter
cavity, compatible with the KAGRA infrastructure.
The interest of this work goes beyond KAGRA, since a

100 m class filter cavity is also a possible solution for a
medium-term upgrade of Advanced Virgo [10], and 300 m
filter cavities are planned for the third generation detector
Einstein Telescope [11]. The structure of the article is as
follows: in Sec. II we demonstrate the computation of the
filter cavity parameters needed to obtain an optimal rotation
of the squeezing angle for KAGRA. In Sec. III the filter
cavity numerical simulation, with realistic mirror maps, is
presented. In Sec. IV an estimation of the squeezing
degradation, due to cavity losses and other degradation
mechanisms, is obtained. Finally, the expected improve-
ment in KAGRA sensitivity, achievable using frequency-
dependent squeezing, is presented.

II. FILTER CAVITY OPTICAL DESIGN

In the first part of this section we discuss the choice of
finesse and detuning of the filter cavity. In the second part,
we address the problem of the choice of cavity length,
mirror dimension, and radius of curvature (RoC).

A. Length, finesse, and detuning

Filter cavity bandwidth and detuning should be chosen in
order to allow an optimal rotation angle of the squeezed
state to be injected in the interferometer dark port. This
rotation should counteract that which is produced by the

interferometer, keeping the squeezing state aligned with the
signal quadrature at all frequencies. The optimal rotation
angle of the cavity is therefore a function of the interfer-
ometer parameters [12],

θfcðΩÞ ¼ arctanðKðΩÞÞ; ð1Þ

with K being the frequency-dependent optomechanical
coupling, whose dependance from the signal sideband
frequency Ω is given by

KðΩÞ ¼
�
ΩSQL

Ω

�
2 γ2ifo
Ω2 þ γ2ifo

ð2Þ

where γ2ifo is the interferometer bandwidth and ΩSQL is the
frequency at which quantum noise reaches the standard
quantum limit [5], marking the transition between radiation
pressure noise and shot noise. In a dual recycled interfer-
ometer, with a tuned signal-recycling cavity, we have

ΩSQL ¼
�

tsr
1þ rsr

�
8

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Parmω0

mTarm

s
ð3Þ

and

γifo ¼
�
1þ rsr
1 − rsr

�
Tarmc
4Larm

ð4Þ

where tsr and rsr are the signal-recycling mirror amplitude
transmissivity and reflectivity, Parm is the intracavity power,
Tarm is the arm cavity input mirror power transmissivity, ω0

is the angular frequency of the carrier field, and m is the
mirror mass.
For KAGRA, using the parameters shown in Table I, we

have

ΩSQL ¼ 2π × 76.4 Hz ð5Þ

and

γifo ¼ 2π × 382 Hz: ð6Þ

TABLE I. Values and symbols for KAGRA interferometer
parameters.

Parameter Symbol Value

Carrier field frequency ω0 2π × 282 THz
Standard quantum limit frequency ΩSQL 2π × 76.4 Hz
Arm input mirror transmissivity Tarm 0.004
Signal-recycling input transmissivity t2sr 0.1536
Intracavity power Parm 400 kW
Mirror mass m 22.8 kg
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For Ω ≪ γifo Eq. (2) can be simplified and we are in the
region of interest. The required rotation angle then becomes

θfcðΩÞ ¼ arctan

�
ΩSQL

Ω

�
2

: ð7Þ

In order to obtain the above frequency-dependent rota-
tion, the bandwidth γfc and the detuning Δωfc of a lossless
filter cavity should be

γfc ¼
ΩSQLffiffiffi

2
p ; ð8Þ

Δωfc ¼ γfc: ð9Þ

As discussed in [9], in the presence of losses, the
bandwidth and the detuning of the filter cavity become

γfc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

ð2 − ϵÞ ffiffiffiffiffiffiffiffiffiffi
1 − ϵ

p
s

ΩSQLffiffiffi
2

p ; ð10Þ

Δωfc ¼ γfc
ffiffiffiffiffiffiffiffiffiffi
1 − ϵ

p
; ð11Þ

where ϵ is a function of the filter cavity round trip losses
Λ2
rt, the free spectral range fFSR ¼ c=2Lfc, and ΩSQL,

ϵ ¼ 4

2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
2ΩSQL

fFSRΛ2
rt

�
4

rs : ð12Þ

Given a filter cavity with fixed length and losses, we can
compute the parameter ϵ using Eq. (12). Then, using
Eqs. (10)–(11), we obtain the optimal bandwidth and
detuning. Finally, in order to compute the cavity finesse,
we can write the bandwidth γfc of a Fabry-Pérot cavity
in terms of the losses, length, and input mirror trans-
missivity t2in,

γfc ¼
t2in þ Λ2

rt

2
fFSR: ð13Þ

Inverting the previous equation, we can finally compute
t2in, which determines the cavity finesse.
The length of the filter cavity is set to 300 m, corre-

sponding to the length of the arms of the former TAMA
interferometer. The losses Λ2

rt are set to 80 ppm, a value that
is justified in the following section. For these values, we
found ϵ ¼ 0.111 and γfc ¼ 2π × 57.3. The optimal detun-
ing will be Δωfc ¼ 2π × 54 Hz and t2in ¼ 0.0014, corre-
sponding to a finesse of 4480. We highlight the fact that for
Λ2
rt up to ∼700 ppm, the value of the finesse is almost

independent of the cavity losses.

B. Mirror dimension and RoC

In order to reduce the losses due to the finite size of the
mirrors (clipping losses), we require the size of the beam to
be as small as possible. As shown in [13], this is also the
best way to reduce the effects of large-scale mirror defects.
The confocal configuration (radii of curvature equal to the
cavity length) gives the smallest beam radius on the
mirrors, but this configuration is marginally stable. We
choose radii ∼400 m, reasonably larger than 300 m, to
avoid cavity instability. The exact value of the RoC is
determined using numerical simulations, described in the
next paragraph, in order to minimize the losses.
For a 300 m cavity with two mirrors with a RoC of

400 m, the beam diameter at the waist and on the mirrors is
respectively 0.0162 m and 0.0205 m. Choosing, as it was
done for TAMA, mirrors with a diameter of 0.1 m (roughly
five times bigger that the beam radius) results in completely
negligible clipping losses.
The filter cavity parameters are reported in Table II.

III. MIRROR SURFACE QUALITY
SPECIFICATIONS

The presence of losses in the filter cavity, caused by
mirror defect and mirror finite size, induces squeezing
degradation. In this section we detail the procedure needed
to find the specifications on mirror dimensions and surface
flatness.
Mirror defects, namely deviations of the mirror surface

from a perfect spherical one, are described by the mirror
map, which is a square matrix of n elements with
n ¼ lmir=res, where lmir is the length of the surface
described, and res is the resolution of the map. Each
matrix element, corresponding to a pixel with area res2,
contains a measure of the mirror surface height h (with
respect to a perfect spherical one).
We can associate to each mirror map (or to a part of it)

the root mean square (RMS) of the height, defined as

σRMS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

ðhi − h̄Þ2
s

with h̄ ¼
Xn
i¼1

hi: ð14Þ

TABLE II. Filter cavity parameters.

Parameter Symbol Value

Length L 300 m
Radius of curvature RoC variable
Mirror diameter d 0.1 m
Input mirror transmissivity t2in 0.0014
Finesse F 4480
Beam diameter at waist (RoC 400 m) 0.0162 m
Beam diameter at the mirror (RoC 400 m) 0.0205 m
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Another useful number to quantify surface flatness is the
peak-to-valley value (PV): a measure of the difference
between the highest and lowest point.
Mirror defects can be studied in the spatial frequency

domain by applying a two-dimensional Fourier transform
to the mirror map. The lowest spatial frequency fmin
coincides with the inverse of lmir, while the maximum
spatial frequency fmax is given by 1=ð2 · resÞ. A one-
dimensional power spectral density (PSD) can be associ-
ated with the two-dimensional Fourier transform map [14].
For such a one-dimensional PSD we have the relation

σ2RMS ¼
Z

fmax

fmin

PSDðfÞdf: ð15Þ

The low frequency defects, those which have a spatial
frequency up to 103 m−1, contribute to the so-called mirror
flatness while higher frequency defects are associated with
the so-called mirror roughness. This distinction has no
physical motivation, but it is simply due to different
techniques used to measure spatial defects in the two cases
[15].
The scattering angle for light at normal incidence of

wavelength λ can be written as a function of the frequency
of spatial defect as [16]

θ ¼ λ × f: ð16Þ

This equation means that a defect at spatial frequency f
scatters a fraction of the light at angles θ or larger. As a
consequence, the amount of light reflected back at normal
incidence is reduced by the same amount. This fraction is
given by ð4π × σðfÞ=λÞ2 where σðfÞ is the amplitude of the
defect at spatial frequency f.
For a given cavity length L and mirror diameter d, there

is a maximum scattering angle θlimit above which light is
scattered out of the cavity,

θlimit ¼
d
2L

: ð17Þ

Using Eqs. (16)–(17) we can then find a spatial fre-
quency flimit for the mirror defects above which the light is
scattered out of the cavity,

flimit ¼
d

2L × λ
: ð18Þ

From the equation above, the losses due to defects with
spatial frequency above flimit can be estimated as [16]

lossesðf>flimitÞ ¼
�
4π × σ

λ

�
2

ð19Þ

where σ is the RMS for frequencies above flimit. For the
filter cavity we are considering flimit ¼ 157 m−1.

It is important to note that the RMS for frequencies lower
than flimit also contributes to losses. In fact, even if light is
not immediately scattered out of the cavity, it is likely to be
transferred on higher order modes and eventually exit the
cavity. An accurate estimation of the round trip losses has
been done using a numerical simulation of the fields in the
cavity after adding realistic maps to the mirror surfaces.
This allowed us to set specifications for the mirror quality
needed to keep losses below a desired threshold.
The round trip losses in a Fabry-Pérot cavity are

defined as [17]

Λ2
rt ¼

Pin − Pr − Pt

Pcirc
ð20Þ

where Pin is the input power (which is assumed to be a
fundamental mode), and Pcirc, Pt, Pr are the powers
circulating in the cavity, transmitted and reflected, respec-
tively. Since we can only take advantage of the light
reflected on the fundamental mode, the definition of
Eq. (20) has been modified to

Λ2
rt ¼

Pin − P00
r

Pcirc
ð21Þ

where P00
r is the fraction of the reflected power that is on

the fundamental mode.
We used the MATLAB package OSCAR [18] to simulate

the fields and compute the values of Pcirc and P00
r to be used

in Eq. (21).
We ran the simulation using five different mirror maps,

for mirrors used in the Virgo experiment. Four of these
mirrors were produced for the initial Virgo experiment
(2007–2011) with a standard polishing technology. The
fifth belongs to the Advanced Virgo experiment (which will
become operational in 2016) and is obtained with an ion
beam polishing technique. The Virgo maps have a reso-
lution of about 350 μm, while the Advanced Virgo map has
a resolution of 378.4 μm. One example of the Virgo maps
and the Advanced Virgo map are shown in Fig. 1 along
with their relative PSD.
The cavity parameters used in the simulation are those

reported in Table II. The maps were only applied to the end
mirror, while the input mirror has been considered perfect.
We checked that the round trip losses for a cavity where
both the mirrors have defects can be obtained by simply
multiplying the previous result by 2. Results presented here
have already been multiplied by 2.
Each surface has been characterized by its RMS and its

PV over different diameters. The measured values are
reported in Table III. The four mirror of initial Virgo are
referred to as V1, V2, V3, V4, while the mirror of
Advanced Virgo is called ADV. Round trip losses for
the various mirrors have been calculated in terms of the
radius of curvature and are reported in Fig. 2. The loss floor
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for each mirror has also been reported in the last column of
Table III in order to be directly compared with the mirror
flatness. The presence of peaks in the plots of Fig. 2 is due
to power transferred to higher order modes that are partially
resonant along with the fundamental mode for certain
values of the curvature radius.
Maps used in the simulation account for mirror defects

with spatial frequency going from 10 m−1 to 2 × 103 m−1.
This means that losses caused by mirror roughness are not
included in this estimation. A map of the roughness has
been measured for the Advanced Virgo mirror. This map,
obtained by scanning an area of 0.3 mm × 0.3 mm with a
resolution of 1.28 μm, scans frequencies from 3.3 × 103 to
3.9 × 105 m−1. From its RMS, under the assumption that it
is uniform on the surface, we can estimate additional losses
due to roughness, which should be added to those already
measured. The RMS is 0.08 nm, which corresponds to

FIG. 1. Initial Virgo map (top) and Advanced Virgo map (bottom), along with mirror maps (left) and PSD (right).

FIG. 2. Round trip losses as a function of the radius of
curvature. Peaks correspond to values of RoC for which the
cavity is quasidegenerate.
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0.89 ppm of additional losses for a single reflection. For the
initial Virgo mirrors, the specification on the roughness
RMS was 0.1 nm, which corresponds to 1.4 ppm of
additional losses for a single reflection. In both cases the
losses are dominated by flatness defects. The roughness
map for Advanced Virgo and the relative PSD are shown in
Fig. 3. The measurement of the light scattered at angles
larger than a few degrees gives losses of the order of 5 ppm.
These include both the losses due to the roughness
discussed above and those due to point defects. The
corresponding additional round trip losses are about
10 ppm. We remark that, even including all these effects,
a difference still exists between the measured losses in
Advanced LIGO and simulation results. Losses due to
scattering at angles between mrad and a few degrees are
being investigated as a possible cause of these differences
[19]. These hypothetical losses are not included in
this paper.
The conclusions of this study are, for this filter cavity

(length 300 m, mirror diameter 10 cm, and RoC ∼ 400 m),
the following:

(i) An Advanced Virgo-class mirror will produce floor
losses < 10 ppm and a Virgo-class mirror will
produce losses ∼40 − 80 ppm. In order to determine

the final specifications on the mirror flatness, the
squeezing degradation given by the cavity losses has
to be compared to the other degradation mecha-
nisms. This analysis is performed in the next section.

(ii) The accidental degeneracy can amplify the losses by
more than an order of magnitude. The simulation
gives the safe regions, where the losses are at the
floor level.

(iii) The precise RoC value should be chosen in some of
the floor loss regions. A precision on the RoC of
∼1% is necessary to guarantee the RoC to be in these
regions.

A. Mirror dimensions

Choosing the best mirror dimension is not as straightfor-
ward as it may seem to be. The scattering mechanisms
described in the previous paragraph show that bigger
mirrors have lower levels of losses. In fact, we see from
Eq. (18) that by increasing the mirror diameter d, the
minimum spatial frequency flimit of defects which scatter
light out of the cavity is higher. Consequently, the RMS for
frequencies above flimit in Eq. (19) is reduced and so too are
the losses. However, this is not the only effect to be taken

TABLE III. RMS and PV (over different diameters) and the round trip loss floor for each mirror map. The values indicated for the
losses correspond to the floor of Fig. 4.

Diameter Diameter Diameter Diameter
0.10 m 0.05 m 0.02 m 0.01 m

RMS PV RMS PV RMS PV RMS PV Losses
Mirror (nm) (nm) (nm) (nm) (nm) (nm) (nm) (nm) (ppm)

V1 2.617 15.95 1.424 9.46 0.687 6.04 0.558 5.38 57.8
V2 1.875 15.64 1.234 8.56 0.682 6.29 0.812 5.92 80.6
V3 2.499 15.34 1.360 10.51 0.754 4.31 0.430 3.31 39.8
V4 1.752 45.61 0.984 12.12 0.509 4.46 0.531 4.46 42.6
ADV 0.319 2.99 0.274 2.09 0.192 1.18 0.142 0.97 5.6

FIG. 3. Roughness maps for the Advanced Virgo configuration, mirror map (left), and PSD (right).
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into account. We have already observed that for certain
values of the curvature radius, the cavity can be degenerate.
This means that the separation between the resonance
frequency of the fundamental mode and that of a higher
order mode is small enough to make it partially resonant.
Some power of the fundamental mode is then transferred to
this higher order mode, and losses in the fundamental mode
are remarkably increased. Critical RoC values are high-
lighted by simulation and correspond to the peak observed
in Fig. 2. Mirror dimensions also have a strong impact on
the appearance of such peaks. In Fig. 4, round trip losses for
a Virgo mirror (V3) are shown as a function of the RoC
for different values of the mirror diameter. We see that for
bigger diameters more peaks are observed, i.e., there are
more RoC values that make the cavity degenerated. This
number is reduced for smaller mirrors. This effect can be
possibly explained by considering the intensity profile of
higher order modes. In fact, the power of the higher mode is
spread on a bigger surface than the fundamental mode.
Generally, the width of a mode increases with its order, and
then a reduction of the mirror dimension prevents wider
modes from resonating. This explanation is confirmed by the
fact that a gradual reduction of mirror dimension first
eliminates resonances of the modes with higher n. Using
a smaller mirror reduces the number of peaks, while
increasing the floor loss level according to the mechanism
explained at the beginning of the paragraph. Therefore,
mirror dimensions should be chosen in order to strike the
best balance between low floor losses and the presence of a
safe zone for the RoC reasonably far from degeneracies.
Using smaller mirrors allowed us to relax accuracy require-
ments on the RoC value. We can see from Fig. 4 that a mirror
diameter of 0.075 m allows us to pick a RoC, for example, of
420, for which losses remain basically constant in a range of
∼20 m. Therefore, the required precision on the RoC is
∼5%. For such a mirror dimension the contribution of
clipping losses to cavity losses is still negligible. An initial
value for the mirror dimension has been set to 0.1 m. This
was the diameter of the former TAMA mirrors and it allows

the reuse of part of the suspension system already developed
for TAMA. If needed, diaphragms can be placed in front of
the mirror to reduce their diameter according to what we
have observed.

B. Simple round trip simulation

A complete simulation of the cavity has been used to
compute fields in our system and then to evaluate round trip
losses, according to Eq. (21). This simulation allows us to
take into account the effect of higher order mode resonance.
In this case, light does not exit the cavity but is partially
transferred to a higher order mode. This effect is observable
by comparing the round trip losses on the fundamental
mode with those in all modes (i.e., the total amount of light
exiting the cavity). Coinciding with resonance, the curves
relative to the two cases show a discrepancy accounting for
the light that is still in the cavity but not on the fundamental
mode. On the other hand, when the cavity is not degenerate,
the total amount of light exiting the cavity coincides with
the light lost on the fundamental mode. This quantity
corresponds to the floor loss level reported in Table IV and
has been compared with that obtained by simply computing
the power escaping the mirror aperture after a single round
trip [reflection from a mirror with real map, propagation for
300 m, then reflection again from a perfect mirror (as in the
simulated cavity) and propagating again for 300 m]. In
practice, we measure the lost power after a cavity round trip
of the beam. The comparison between losses obtained with
the complete simulation and those found with the simple
round trip is shown in Table IV for different mirrors maps
and for different values of the diameter and shows a good
agreement. Even if the second method is less accurate and
cannot be used in the case of degeneracy, it is much faster
and can be employed to obtain a rough estimation of the
floor level of the round trip losses in the cavity. A plot of the
light power exiting cavity after the first reflection is shown
in Fig. 5.

FIG. 4. Round trip losses as a function of RoC for different
values of the mirror diameter. Peaks that correspond to cavity
degeneracies are reduced for smaller mirrors while the floor of
round trip losses increases.

TABLE IV. Comparison between round trip losses (RTL)
obtained with the complete simulation and those found with
simple round method for different mirrors maps and for different
value of the diameter. Results of the quick simulation have been
multiplied by two as in the previous case.

Mirror Diameter
RTL—full
simulation

RTL—quick
simulation

V1 10 cm 57.8 ppm 57.6 ppm
V2 10 cm 80.6 ppm 79.4 ppm
V4 10 cm 42.6 ppm 40.4 ppm
ADV 10 cm 5.6 ppm 5.6 ppm
V3 10 cm 39.8 ppm 38.8 ppm
V3 7.5 cm 50.4 ppm 50.0 ppm
V3 6.0 cm 62.4 ppm 62.0 ppm
V3 5.0 cm 168.6 ppm 165.4 ppm
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IV. SQUEEZING DEGRADATION AND
DECOHERENCE ESTIMATION

The quantum noise in an interferometer, normalized with
respect to shot noise, can be simply expressed as

NðΩÞ ¼ 1þ K2ðΩÞ ð22Þ

where K is the optomechanical coupling defined in Eq. (2).
In an ideal system, the injection of a frequency-

dependent squeezed vacuum from the interferometer dark
port reduces the quantum noise to

NðΩÞ ¼ e−2σð1þ K2ðΩÞÞ ð23Þ

where σ is connected with the squeezing magnitude usually
expressed in decibel by σdB ¼ −20σ × log10 e.
In a real setup, two factors prevent this optimal noise

reduction: first, optical losses decrease the squeezing level,
introducing a nonsqueezed vacuum; second, fluctuations of
the squeezing angle preclude an optimal rotation of the
squeezed state.
In [9] a detailed analysis of several of these mechanisms

has been applied to a 16 m filter cavity, with round trip
losses of 1 ppm=m, which is considered a possible short-
term solution for Advanced LIGO [20]. The same analysis
is performed here for the 300 m filter cavity, with round trip
losses of 80 ppm, corresponding to a conservative estimate
for Virgo-class quality mirrors. To ease the comparisons
between the two cases, the numerical values for other
sources of squeezing degradation are exactly the same of
[9], as reported in Table V.
Figure 6 represents the squeezing degradation budget for

the 300 m filter cavity. It shows the ratio between the

quantum noise of a dual recycled Fabry-Pérot Michelson
interferometer without squeezing (for instance, initial
KAGRA) and the quantum noise in the presence of
frequency-dependent-squeezing. An initial realistic squeez-
ing level of 9 dB has been considered and the various
degradation mechanisms have been taken into account
separately and combined (black curve). In this analysis,
as for [9], the contribution of the interferometer losses has
been neglected. The squeezing degradation mechanisms
considered are explained as follows (for a detailed descrip-
tion see [9]).

A. Filter cavity losses

The optical losses in the filter cavity spoil the squeezing
in two ways: first, they corrupt squeezing with antisqueez-
ing, mixing the two squeezing quadratures. Secondly, they
mix standard vacuum with squeezed vacuum. For a 16 m
cavity, the filter cavity losses represent the main contribu-
tion to squeezing degradation up to 100–200 Hz. Since this
effect depends on the round trip losses per meter [21], it is
considerably reduced in a 300 m cavity with round trip
losses of 80 ppm, and at low frequencies becomes
comparable with that of the mode mismatching. For this
reason it is not useful to further reduce filter cavity losses

FIG. 5. Amplitude of the field scattered out of the cavity by
high spatial frequency defects. The field is observed after being
reflected from a mirror with a real map and then propagated
for 300 m.

TABLE V. Parameters used in the estimation of squeezing
degradation.

Parameter Symbol Value

Filter cavity losses Λ2
rt 80 ppm

Injection losses Λ2
inj 5%

Readout losses Λ2
ro 5%

Mode-mismatch squeezer-filter cavity Λ2
mmFC 2%

Mode-mismatch squeezer-local oscillator Λ2
mmLO 5%

Filter cavity length noise (RMS) δLfc 0.3 pm
Injected squeezing σ2dB 9 dB

FIG. 6. Squeezing degradation budget. Quantum noise relative
to coherent vacuum in the signal quadrature for an ideal system
(blue curve) is compared with that obtained taking into account
degradation mechanisms (one by one).
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by increasing the mirror quality (for example, using
Advanced Virgo-class mirrors), unless mode matching is
substantially improved.

B. Injection and readout losses

Injection losses, Λ2
inj (caused by scattering, absorption,

and imperfections in the optics), and readout losses, Λ2
ro

(from the interferometer to the readout, including the
photodetector quantum efficiency), cause a squeezing
degradation by mixing ordinary vacuum with squeezed
vacuum. Being independent of the cavity length, their
impact does not change with a longer cavity. This mecha-
nism is the dominating source above 100–200 Hz, assum-
ing a loss value of 5% both for injection and readout losses.
In this region, quantum noise is by far the limiting noise: a
reduction in injection/readout losses leads to a consistent
improvement of the detector sensitivity.

C. Mode mismatching

Following the analysis shown in [9], a squeezing
degradation is also determined by an imperfect mode
matching between the squeezed field and the cavity mode
(Λ2

mmFC), and between the cavity mode and the local
oscillator (Λ2

mmLO). This mismatching allows part of the
field to bypass the cavity without experiencing frequency
rotation, and is also a source of losses.
The magnitude of the mode mismatching can be easily

measured. Nevertheless, the amplitude of the squeezing
degradation depends of an arbitrary phase that is difficult to
quantify. For this reason, in Fig. 2 we have shown the worst
case scenario.
As in the case of injection and readout losses, this effect

does not depend on the filter cavity length and, for a 300 m
filter cavity with a RTL of about 80 ppm, it is comparable
with the degradation due to filter cavity losses. The
estimation is done assuming a mismatch of 2% between
the squeezed injected field and filter cavity modes and a
mismatch of 5% between the injected field and local
oscillator.

D. Frequency-dependent phase noise

A length noise of the filter cavity (possibly caused by
seismic noise or control noise) δL results in a shift of the
optimal detuning δΔωfc given by

δΔωfc ¼
ω0

L
δL: ð24Þ

This compromises an optimal squeezing quadrature
rotation, limiting the achievable noise reduction. In a
300 m cavity, assuming a δL (RMS) of about 0.3 pm, this
effect becomes completely negligible with respect to other
mechanisms.

V. IMPROVEMENT IN KAGRA SENSITIVITY

This estimation of the achievable level of frequency-
dependent squeezing using a 300 m filter cavity can be used
to quantify the related improvement in KAGRA sensitivity.
In Fig. 7 the quantum noise for KAGRA, without squeez-
ing, is compared with the quantum noise obtained using
9 dB of frequency-dependent squeezed light, when all
degradation mechanisms previously described are taken
into account. We considered both the case of a filter cavity
with round trip losses of 80 ppm and that of a perfect filter
cavity. The comparison shows that no major improvements
can be obtained by reducing round trip losses under the
level of ∼80 ppm since their effect becomes comparable
with that of other degradation mechanisms.
Figure 8 shows the improvement in KAGRA sensitivity

using 9 dB frequency-dependent squeezing, considering a

FIG. 7. Quantum noise for KAGRA without squeezing, com-
pared with the quantum noise using 9 dB frequency-dependent
squeezing, both in the ideal system and when all the degradation
mechanisms are taken into account. We remark that quantum
noise without squeezing is relative to official KAGRA sensitivity
using a configuration with a homodyne detection angle of 121.8°,
while quantum noise in the presence of squeezing uses a standard
homodyne angle of 90°.

FIG. 8. Improvement in KAGRA sensitivity using 9 dB
frequency-dependent squeezing, considering lossy cavity and
other degradation mechanisms.
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filter cavity with round trip losses of 80 ppm and other
degradation mechanisms. We remark that the use of
squeezing allows us to reach a sensitivity beyond the
standard quantum limit around 70 Hz. In Fig. 9 the
quantum noise of a realistic lossy system is shown along
with other KAGRA noise sources. We observe how a
reduction in only the quantum noise results in an improve-
ment in almost the whole KAGRA observation bandwidth.
We also make the following remarks:
(i) In the frequency region below 100 Hz, thermal noise

is close to quantum noise and there is little to be
gained from a further significant reduction in quan-
tum noise (obtainable by improving mismatching
and injection/readout losses, and decreasing losses
in the filter cavity).

(ii) In the frequency region above 100 Hz, which is
dominated by quantum noise, there is much more
room for improvements. However, a reduction of the
filter cavity optical losses would not provide a
higher squeezing level, since in this region the
squeezing degradation is mainly caused by injection
and readout losses.

This suggests that a further reduction of the filter cavity
losses would not be necessary, while a major benefit can be
obtained by protecting squeezing from losses due to
injection, detection, and mismatching.

VI. SUMMARY

We have presented the optical design of a 300 m filter
cavity used for the KAGRA experiment. The cavity will be
tested at the National Astronomical Observatory of Japan,
inside the TAMA infrastructure. First, given KAGRA param-
eters,wehave found thedetuningand finessevalues needed to
produce an optimal rotation of the squeezing angle. In order to
find the surface quality needed for the filter cavity, we have
computed the round trip losses using a numerical simulation
with realisticmirrormaps. The test benchmaps used are those
of Virgo and Advanced Virgo.
An analysis of the squeezing deterioration mechanism

shows that for a round trip loss value of 80 ppm, correspond-
ing to a conservative estimate for Virgo-class mirrors, the
squeezing degradation due to the filter cavity is comparable
or lower than contributions from the cavity mismatching and
injection/detection losses. Moreover, frequency-dependent
phase noise becomes completely negligible.
We then computed the improvements in KAGRA sensi-

tivity with a 9 dB frequency-dependent squeezing and
realistic loss mechanisms. We found a sensitivity improve-
ment in almost the full KAGRA signal bandwidth, with a
factor ∼2 at high frequency. As already mentioned, the
interferometer internal losses have been neglected in this
analysis. In order to have a more precise estimation of the
sensitivity improvement achievable using frequency-
dependent squeezing, the contribution of these losses
should be estimated.
We have also shown that, without an improvement in

other noise sources, a further reduction of the filter cavity
losses does not lead to a considerable improvement in the
detector sensitivity.
The results of this work can be easily extended to any

gravitational-wave interferometric detector planning the use
of a 100 m class filter cavity, and in particular for a medium
term upgrade of Advanced Virgo and for Einstein Telescope.

ACKNOWLEDGMENTS

We thank Lisa Barsotti, John Miller, and Matteo Tacca
for useful discussions and Edward Porter for carefully
editing the paper. This work was supported by the JSPS
Grant-in-Aid for Scientific Research, the JSPS Core-to-
Core Program, A. Advanced Research Networks, and the
European Commission under the Framework Program 7
(FP7) “People,” project ELiTES (Grant Agreement
No. 295153). E. C. is supported by the European
Gravitational Observatory.

FIG. 9. The quantum noise in the presence of 9 dB squeezing
and lossy system (filter cavity RTL 80 ppm) is compared with the
other noise sources. Note that below 100 Hz, the contribution
from thermal noise would prevent an improvement in the total
sensitivity even in the case of a further reduction of quantum
noise.
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