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Using large scale Monte Carlo calculations in a simple three dimensional lattice fermion model, we
establish the existence of a second order quantum phase transition between a massless fermion phase and a
massive one, both of which have the same symmetries. This shows that fermion masses can arise due to
dynamics without the need for spontaneous symmetry breaking. Universality suggests that this alternate
origin of the fermion mass should be of fundamental interest.
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Origin of mass in the universe is an interesting problem
in fundamental physics [1]. In continuum quantum field
theory fermion masses arise from local fermion bilinear
mass terms that are introduced as parameters in the theory.
If symmetries of the theory prevent such terms, perturba-
tively fermions remain massless. However, these sym-
metries can break spontaneously through the formation
of nonzero fermion bilinear condensates that can make
fermions massive. This mechanism of mass generation is
used in the standard model of particle physics to give
quarks and leptons their masses. Recent progress in the
field of topological insulators suggests the existence of an
alternate mechanism for the origin of fermion mass [2–7].
These studies argue that massless fermions can become
massive even without the formation of fermion bilinear
condensates, at a second order quantum phase transition
where there is no spontaneous symmetry breaking.
Evidence for such a transition has been found using
Monte Carlo calculations on small lattices in complicated
models inspired by the physics of electrons hopping on a
honeycomb lattice [8,9].
If the existence of the above quantum phase transition can

be established firmly in four space-time dimensions, it will
provide a fundamentally new mechanism to understand the
origin of fermion mass in continuum quantum field theory.
The physics of such a transition was proposed long ago as a
way to solve the long standing problem of formulating chiral
lattice gauge theories [10]. Unfortunately, the transition was
never found and the subject was abandoned [11]. The recent
insights from the field of topological insulators suggest that
such transitions are natural and proposals to construct chiral
lattice gauge theories have begun to appear again [12–14].
However, concrete evidence for the transition so far has
mostly been provided using models with a condensed matter
flavor in three space-time dimensions and through
Monte Carlo calculations on small lattices. Given the past
history and controversial nature of the second order tran-
sition it is important to confirm its existence on large lattices
and compute the associated critical exponents. Further, if
universality holds the same transition should also be
observable in three dimensional lattice field theory models
that were studied long ago in the context of high energy

physics. In this work we accomplish both these tasks and
thus bridge the gap between the two communities.
Existence of the second order quantum phase transition

that we establish in this work is also interesting more
broadly. Most phase transitions occur due to a change in
the symmetry properties of the ground state, described by
fluctuations of a local order parameter associated with the
symmetry group. Our transition is different since there is no
change in the symmetry between the two phases. All local
symmetry order parameters vanish in both the phases. Such
exotic transitions between two phases with the same
symmetries are believed to be driven due to a change in
quantum entanglement and topology of the ground state
[15,16]. In certain cases these transitions are accompanied by
fractionalization of the fundamental degrees of freedom and
emergence of gauge fields [17]. Search for these exotic
transitions has become popular lately [18,19]. Unfortunately,
many proposals for such transitions suffer from sign
problems and are constructed in models relevant to con-
densed matter physics. Our work shows that a similar
transition exists in a simple lattice four-fermion model of
interest to high energy physicists. Importantly, the model
does not suffer from sign problems. From the point of view
of topological insulators, our transition is between a semi-
metal and a trivial insulator, very similar to the one proposed
recently in [8,9], but within a much simpler model.
Our model can be motivated from lattice Higgs-Yukawa

models in the limit where bosons are heavy and can be
integrated out yielding a four-fermion interaction [20–23].
The four-fermion model can also be constructed directly by
naively discretizing on a cubic space-time lattice, a single
continuum four component massless Dirac field theory
with a simple four-fermion interaction obtained by multi-
plying the four Dirac components with each other. Since
the interaction binds four fermion fields together into a
local singlet at each space-time lattice site, a massive
fermion phase (a trivial insulator) emerges at strong
couplings where no symmetries are spontaneously broken.
This phase has the same lattice symmetries as the massless
fermion phase at weak couplings (a semimetal). Earlier
studies found that the two phases were separated by a
more conventional spontaneously broken phase, shown as
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scenario A in Fig. 1, both in three [24] and four space-time
dimensions [22]. Some mean field theory calculations
predicted a direct first order transition [25,26]. Absence
of a direct second order transition was taken as evidence
that the massive fermion phase was simply a lattice artifact.
However, we find clear evidence for a direct second order
transition between the two phases in three space-time
dimensions. This is shown as scenario B in Fig. 1.
Large lattice calculations are essential to confirm the

transition given that it separates two phases with the same
symmetries and does not fall under the usual Landau-
Ginzburg paradigm. Unfortunately, fermion algorithms are
known to scale poorly with system size, especially near a
critical point. Recently we discovered that in the fermion
bag approach [27,28], with sufficient memory, the infor-
mation necessary to perform all updates can be stored.
Using this idea we can perform fast updates within large
regions of space-time and update a 603 lattice within about
five hours on a single CPU core and a memory of about
8 GB. Such large scale calculations are unprecedented
and help us establish the nature of the phase transition
firmly and compute its properties. Some other technical
details of our work on small lattices have already appeared
earlier in [29] and have been verified recently in [30]. But
the broad ramifications of our work across fields have so far
remained unappreciated.
Ourmodel contains four flavors ofmassless reduced lattice

staggered fermions on a cubical space-time lattice with an
onsite four-fermion interaction. Each lattice fermion flavor
describes a single four-component Dirac fermion in the
continuum due to fermion doubling [31–33]. The model
can be obtained from a Higgs-Yukawa model in the limit
where theHiggs field hopping term vanishes [22,23].We also
believe that our model has a Hamiltonian formulation very
similar to the honeycomb lattice models studied recently,
but with much simpler interactions [8,9]. We use four-
component Grassmann valued fields, ψx;i, i ¼ 1, 2, 3, 4,

on each lattice site x to describe the fermion fields. Then, the
Euclidean action of our model is given by:

S ¼ 1

2

X4

i¼1

X

x;y

ψx;iMx;yψy;i −U
X

x

ψx;1ψx;2ψx;3ψx;4 ð1Þ

where M is the well-known massless staggered fermion
matrix given by

Mx;y ¼
X

α̂¼1;2;3

ηx;α̂
2

½δx;yþα̂ − δx;y−α̂�; ð2Þ

where ηx;α̂ are phases that introduce a π-flux through all
plaquettes. In our work we study cubical lattices of equal size
L in each direction with antiperiodic boundary conditions.
Observables are defined as usual through the Grassmann
integral

hOi ¼ 1

Z

Z �Y

i;x

½dψx;i�
�
O e−S: ð3Þ

where Z is the partition function.
The action given in Eq. (1) is symmetric under the usual

space-time lattice transformations and an internal SUð4Þ
flavor transformations [29]. Using weak coupling and
strong coupling perturbation theory, it is easy to argue
that all lattice symmetries remain unbroken at both weak
and strong couplings. Thus, the essential question is
whether there is a single transition between the two phases
or is there an intermediate phase where some of the lattice
symmetries are broken. Previous studies in four space-time
dimensions do seem to find such an intermediate phase.
Here we present clear evidence from large lattices for a
single second order transition between the two phases in
three space-time dimensions and estimate the critical
exponents at the transition.
We perform calculations using the fermion bag approach

[27] where the problem is converted into a statistical
mechanics of monomer configurations ½n�, defined through
a binary lattice field nx ¼ 0, 1 which denotes the absence or
presence of a monomer at the site x respectively. Figure 2
shows an illustration of a monomer configuration on a two
dimensional lattice. Each monomer represents a four-
fermion interaction and free fermions hop on sites that
do not contain monomers. The fermion bag approach also
gives a very intuitive picture of the underlying physics: At
small couplings the monomer density is small and fermions
are essentially free, while at strong couplings the lattice is
filled with monomers with very few empty sites for free
fermions to hop making them massive. Details of our
computational approach, including algorithms that we use
can be found in [29].
In our earlier work we presented evidence for a

single continuous phase transition between the massless
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FIG. 1. Two possible scenarios for the phase diagram of lattice
models that show the origin of a fermion mass without sponta-
neous symmetry breaking. The massless and the massive fermion
phases have the same symmetries. Previous studies in four space-
time dimensions found results consistent with scenario A, while
our work in three space-time dimensions is consistent with
scenario B with a second order quantum critical point at Uc.
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and the massive phases up to lattice sizes of L ¼ 28.
The main result is summarized in Fig. 3 where we plot
the monomer density ρm ¼ U

P
xhψx;1ψx;2ψx;3ψx;4i=L3

and one of the fermion bilinear susceptibilities χ1 ¼P
xhψ0;1ψ0;2ψx;1ψx;2i, as a function of U for various

values of L. The behavior of these observables is consistent
with a single phase transition around U ≈ 1. Most impor-
tantly, the bilinear susceptibility never increases like L3

showing the absence of any local fermion bilinear con-
densate for all values of U. Recently it was also confirmed
that other discrete lattice symmetries, like the shift sym-
metry, also remain unbroken for all values of U [30].
We now have results from much larger lattices (up to

L ¼ 60) that further confirm a single second order
transition. We can also roughly estimate the critical
exponents if we assume the absence of corrections to
scaling on lattices above L ¼ 36. Here we focus on the
two independent bosonic correlation functions C1ð0;xÞ¼
hψ0;1ψ0;2ψx;1ψx;2i and C2ð0;xÞ¼ hψ0;1ψ0;2ψx;3ψx;4i where
x is varied along the time direction. Near the critical point
both these correlation functions are comparable to each

FIG. 2. An example of a monomer configuration ½n� showing
free fermion bags on a two dimensional lattice. The filled circles
represent monomers and the connected regions without mono-
mers form free fermion bags.

FIG. 3. Plots of ρm and χ1 as a function of U for various values
of L. The susceptibility shows a peak and the average monomer
density shows a sharp rise at the phase boundary (U ∼ 1).
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FIG. 4. Plot of R1 as a function of L for various values ofU near
the critical region. The solid lines are fits to the form 1=L1þη

where η values are given in Table I, except at U ¼ 1.03 where the
solid line has the form expð−0.07LÞ suggesting the fermions are
already massive.

FIG. 5. Plots of R1 as a function of U for various lattice sizes
showing peaks. The values of the peaks R1;p and their locations
U1;p are also marked. These are determined by approximating the
function to be a quadratic near the maximum.

TABLE I. Fit results obtained by fitting both R1 and R2 to the
form 1=L1þη for various values of U. For small U we approach
η ≈ 3 consistent with the free theory, while in the critical region
0.93 < U < 0.96 we again find good fits with a different η.

U η χ2=DOF U η χ2=DOF

0.000 3 � � � 0.850 2.34(4) 2.5
0.920 1.64(5) 4.6 0.930 1.44(3) 1.9
0.940 1.22(2) 1.0 0.945 1.00(2) 0.7
0.950 0.77(2) 1.1 0.960 0.63(5) 6.4
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other, while C2ð0; xÞ vanishes atU ¼ 0. For the purpose of
comparing different lattice sizes, we extract the correla-
tion ratios R1 ¼ C1ð0; L2 − 1Þ=C1ð0; 1Þ and R2 ¼
C2ð0; L2Þ=C2ð0; 0Þ as a function of L. For large L, these
ratios are expected to scale as 1=L4 in the massless phase,
as 1=L1þη at the critical point and as expð−mLÞ in the
massive phase. Here η is one of the standard critical
exponents. Our data is consistent with this behavior for
L ≥ 32. In Table I we show the combined fit results of
our data to the form 1=L1þη near the critical region. As an
illustration of the goodness of our fits, in Fig. 4 we plot R1

as a function of L along with the fits. Based on this we
estimate that the critical point is somewhere in the region
0.930 < U < 0.96. For U ≥ 0.96 a single power law no
longer fits the data well, but an exponential fit begins to
work well. For example, a fit to the form R1 ∼
expð−0.07LÞ at U ¼ 1.03 is shown in Fig. 4.
In order to locate Uc accurately, we analyzed a different

scaling region of U where R1, R2 show a peak. In Fig. 5 we
plot the behavior of the correlation ratio R1 as a function of
the coupling U for different lattices sizes [34]. We have
computed the maximum values R1;pðLÞ, R2;pðLÞ and their
locations U1;pðLÞ, U2;p in the range 24 ≤ L ≤ 44. From
scaling theory, we expect Ra;p ¼ ba=L1þη and Ua;p ¼
Uc þ da=Lν. We find that R1;p fits well to this expected
form for 24 ≤ L ≤ 44, while R2;p does not. However if we
keep only the data from the largest lattices for both R1;p and
R2;p we can again perform combined fits to the expected
scaling form without the need for corrections to scaling.
Interestingly, allowing a scaling correction only for R2;p
allows us to fit the entire data set. Two of these fits are
shown in the left plot of Fig. 6. Using these fits and
including various systematic errors we estimate η ¼

1.05ð5Þ. Combining this result with that of Table I, we
constrain Uc ¼ 0.943ð2Þ. Using this result along with our
data for Ua;p and its expected scaling form we can again
perform combined fits to obtain ν. One such fit is shown in
the right plot of Fig. 6. Using these fits we estimate
ν ¼ 1.30ð7Þ. In Fig. 7 we verify if our large lattice data
falls on a single universal scaling function when we fix
Uc ¼ 0.943, η ¼ 1.05 and ν ¼ 1.30. The fact that the data
falls on a single curve gives us confidence that this is indeed
the case. However, we must note that if we allow for scaling
corrections to be present in our fits we cannot rule out
Uc ¼ 0.945, η ¼ 1.0 and ν ¼ 1.0 as expected from large N
four-fermion models [35]. The universal scaling with these
exponents is shown in the inset of Fig. 7.
To summarize, we have established the existence of a

three dimensional exotic second order phase transition
between a massless and a massive fermion phase, both
of which have the same lattice symmetries. Such a
transition implies that fermion mass generation can be a
dynamical phenomenon not necessarily driven by sponta-
neous symmetry breaking. Such transitions may also exist
in four space-time dimensions.

The material presented here is based upon work sup-
ported by the U.S. Department of Energy, Office of
Science, Nuclear Physics program under Award No. DE-
FG02-05ER41368. An important part of the computations
performed in this research was done using resources
provided by the Open Science Grid [36,37], which is
supported by the National Science Foundation and the U.S.
Department of Energy’s Office of Science.
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FIG. 6. Plots of R1;p and R2p as a function of L (left figure) and
U1;p and U2;p as a function of L. The solid lines represent fits to
the form Ra;p ¼ ba=L1þη and Ua;p ¼ Uc þ da=Lν with Uc ¼
0.943 fixed. The dashed line is a fit including correction to
scaling of the form R2;p ¼ b2=L1þη þ c2=L1þηþω, where ω ≈ 1.

FIG. 7. Evidence for universal scaling in our large lattice data
with Uc ¼ 0.943, η ¼ 1.08, and ν ¼ 1.30. Our data may also be
consistent with Uc ¼ 0.945, η ¼ 1, and ν ¼ 1 expected from
large N analysis (shown in the inset), but only after including
corrections to scaling.
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