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We study lepton flavor violating hadron decays of the tau lepton within the simplest little Higgs model.
Namely we consider τ → μðP; V; PPÞ where P and V are short for a pseudoscalar and a vector meson. We
find that, in the most positive scenarios, branching ratios for these processes are predicted to be, at least,
four orders of magnitude smaller than present experimental bounds.

DOI: 10.1103/PhysRevD.93.076008

I. INTRODUCTION

The experimental observation [1] that neutrinos are
massive and oscillate between flavours indicates that lepton
flavor violation (LFV) does take place in the neutral sector.
When neutrino mass terms are included in the standard
model (SM) they induce also one-loop LFV decays of
charged leptons (CLFV) like, for instance, μ → eγ.
However due to the tiny ratio between the neutrino mass
and the electroweak energy scale, Bðμ → eγÞ≲ 10−54
[2–4]. Its present upper bound (at 90% C.L.) is given by
the MEG experiment Bðμþ → eþγÞ ≤ 5.7 × 10−13 [5],
expecting to reach one order of magnitude less in the
current upgrade. Hence the SM predicts unobservable
branching ratios for CLFV decays in the foreseen future.
This setting provides an ideal benchmark for the hunt

of new physics beyond the SM. The experimental obser-
vation of CLFV is the goal of a bunch of excellent
dedicated experiments [6] like, for instance, MEG,
MEGA, SINDRUM and Mu3e in the search of muon
decays, and those looking for muon conversion in the
presence of nuclei, SINDRUM II, Mu2E or COMET/
PRISM. The first generation of B-factories, that stand
for τ factories too like BABAR or Belle, have joined in the
pursuit of CLFV decays coming from the τ lepton [6].
Though they have focused mainly in processes with leptons
(and photons) in the final state, both experiments have also
provided excellent bounds on hadron decays of the tau
lepton, for the first time [7–9], for instance τ → μP,
τ → μV, τ → μPP, where PðVÞ is short for a pseudoscalar
(vector) meson. The study of LFV in decays of the tau
lepton is also one of the main goals of the future

SuperKEKB/Belle II project under construction at KEK
(Japan) [10].
While the theoretical study of LFV tau decays involving

only leptons has a long story (see [11] and references
therein), LFV hadron decays of the tau lepton have only
been slightly surveyed [12]. There are a few studies within
models of supersymmetry (SUSY) [13–16], within the
littlest Higgs model with T-parity [17,18], and with the 331
model [19]. A thorough study of the role of the Higgs
contribution to the decay of τ → μππ has also been carried
out [20]. Here we explore those decays within the simplest
little Higgs (SLH) model [21,22].
Little Higgs (LH) models [23–26] arise from the old idea

of a composite Higgs boson [27,28] where some collective
symmetry breaking, that allows the Higgs mass to become
loop suppressed, has been implemented [29]. As a conse-
quence electroweak symmetry breaking is fulfilled by a
naturally light Higgs sector, and the discovery of the Higgs
boson with a relatively light mass Mh ≃ 125 GeV [30,31]
could substantiate a little Higgs model. General features of
a composite Higgs involve: (i) a scale of compositeness f;
(ii) a hierarchy between the electroweak (Higgs vev v)
and the compositeness scale, i.e. v=f ≪ 1; (iii) a Higgs
potential that is (entirely or in part) radiatively generated.
Different composite Higgs models differ, essentially, on
which and how many pieces in the potential are radiatively
generated [29]. Little Higgs models, in particular, are
characterized generically by a loop-level generated mass
(that accords with its smallness) and a tree-level generated
quartic coupling. Hence some tuning has to be introduced
in order to balance both scales. In addition they contain
new “little” particles, with masses around the scale of
compositeness f ∼ 1 TeV, that cancel one-loop quadrati-
cally divergent contributions to the Higgs mass from
standard model loops. One expects the need of a more
fundamental theory, an ultraviolet completion, at a scale of
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Λf ∼ 4πf ∼ 12 TeV where the description given by the LH
models may become strongly coupled.
Although the little Higgs mechanism can be imple-

mented in different ways giving diverse models, these can
be grouped into two types that share many common
phenomenological features. LH models can be categorized
into two classes depending on the way the standard model
SUð2ÞL group is inserted [21,32]: product group models
where the electroweak group arises from the diagonal
breaking of a product gauge group, as the littlest Higgs
[23], and simple models when the SM SUð2ÞL embedding
happens through the breaking of a simple group, as is the
case of the SLH [21,22]. A common feature to all LH
models is their extended spectrum of gauge bosons and
fermions, playing the latter a crucial role in the imple-
mentation of the collective symmetry breaking and, hence,
in the cancellation of nonwished ultraviolet divergences.
Moreover they become an important asset as possible
signals to discern between different models.
LHC Higgs data have already challenged predictions of

the LH models [33,34] and it was soon pointed out the
existence of a possible stress with the first measurements of
diphoton decays of the Higgs boson. However later
measurements of this process [35,36] have eased the
tension.
In the next section we collect, for completeness, the

characteristics, properties and features, of the SLH model.
In Sec. III we proceed to the explain the calculation of the
LFV hadron tau decays τ → μP, τ → μV, τ → μPP in the
SLH model. We will also detail the procedure of hadro-
nization. The results and their discussion will be postponed
to Sec. IV. Finally the conclusions of our work are given
in Sec. V.

II. THE SIMPLEST LITTLE HIGGS MODEL

The SLH model [21,22,32] is constructed by embedding
the electroweak SM gauge group SUð2ÞL ⊗ Uð1ÞY into a
SUð3Þ ⊗ Uð1ÞX gauge group. The collective symmetry
breaking procedure is realized through two complex scalar
fields Φ1;2, which are triplets under SUð3Þ:

LΦ ¼ ðDμΦ1Þ†DμΦ1 þ ðDμΦ2Þ†DμΦ2: ð1Þ

Their initial scalar potential has a ½SUð3Þ ⊗ Uð1Þ�2 global
symmetry that breaks spontaneously to ½SUð2Þ ⊗ Uð1Þ�2,
with corresponding vacuum expectation values given by
f1;2 ∼Oð1 TeVÞ and yielding five Nambu-Goldstone
bosons from each scalar. Meanwhile the diagonal subgroup
of the ½SUð3Þ ⊗ Uð1Þ�2, i.e. SUð3ÞL ⊗ Uð1ÞX, that has
been gauged, breaks down to SUð2ÞL ⊗ Uð1ÞY via the
hΦ1;2i vacuum condensates. Here the hypercharge group
Uð1ÞY is identified with the unbroken linear combination of
theUð1Þ and the eighth generator of SUð3Þ. Notice that this

model has no custodial symmetry [37,38] (see below in this
section).
The scalar multiplets are given by a nonlinear sigma

model. They include the SM Higgs as well as new
Goldstone bosons:

Φ1 ¼ exp

�
i
Θ0

f

�
exp

�
itβ

Θ
f

�0B@
0

0

fcβ

1
CA;

Φ2 ¼ exp

�
i
Θ0

f

�
exp

�
− i
tβ

Θ
f

�0B@
0

0

fsβ

1
CA: ð2Þ

Here tβ ≡ tan β ¼ f1=f2, sβ ≡ sin β, cβ ¼ cos β and f2 ¼
f21 þ f22. In Eq. (2), Θ0 and Θ carry the Goldstone bosons.
The term exp ðiΘ0=fÞ can be rotated away through a
SUð3Þ ⊗ Uð1ÞX gauge transformation (unitary gauge) and

Θ ¼
�
02×2 h

h† 0

�
þ ηffiffiffi

2
p 13×3; ð3Þ

that includes the complex Higgs doublet h≡ ðh0; h−ÞT and
the scalar singlet η. Upon electroweak symmetry breaking
we will have

h ¼ exp

�
i
v
χjτj

�� 1ffiffi
2

p ðvþHÞ
0

�
; ð4Þ

being H the SM Higgs and hh0i ¼ v=
ffiffiffi
2

p ≃ 0.174 TeV.
Hence, in the unitary gauge, the three χj degrees of freedom
can be gauged away. They provide the longitudinal
components of the SM gauge bosons. The scalar singlet
η plays no role in the following (see however Ref. [32]).
Let us now consider the fermion sector. The SM doublets

of leptons and quarks have to be expanded into SUð3Þ
left-handed triplets where new fermions also appear and
the corresponding SUð3Þ singlet right-handed fermions are
also added:

(i) Leptons. There is a new heavy neutrino Nk but there
is no right-handed light neutrino. As a consequence
light neutrinos have no mass:

L−1=3
k ¼ ðνk;lk; iNkÞTL; l−1

kR; N0
kR; ð5Þ

with k ¼ 1, 2, 3 the family number, and the super-
script indicates the Uð1ÞX hypercharge yx.

(ii) Quarks. Contrarily to SUð2ÞL, SUð3ÞL triplets are
not free from the triangle anomaly. This does not
affect the SM and a possible ultraviolet completion
could fix the problem; however we prefer to keep the
SLH model free of anomalies. A solution arises by
treating asymmetrically the first two families from
the third one [39]: while the latter is put into the 3
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SUð3Þ representation, the first two generations of
quarks are put into 3̄ representations. This is called
the anomaly-free embedding scheme for the three
families:

Q0
1¼ðd;−u;iDÞTL; d−1=3R ; u2=3R ; D−1=3

R ;

Q0
2¼ðs;−c;iSÞTL; s−1=3R ; c2=3R ; S−1=3R ;

Q1=3
3 ¼ðt;b;iTÞTL; b−1=3R ; t2=3R ; T2=3

R ; ð6Þ

where, again, the superscripts indicate the value of
yx. A heavy fermion, namely D, S and T, has been
added to each family.

The covariant derivative in Eq. (1) is given by:

Dμ ¼ ∂μ − igAμ þ igxyxBx
μ; ð7Þ

where gx ¼ gtW=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − t2W=3

p
being tW ≡ tan θW and θW

the SM weak angle. In Eq. (7) g is the SM SUð2ÞL coupling
and yx the Uð1ÞX hypercharge (yx ¼ −1=3 for both Φi
scalar fields). Observe that as the SM sector is embedded
naturally into the larger group, the corresponding gauge
couplings of the latter are given altogether by the known
SM parameters.
The SUð3Þ gauge bosons read:

Aμ ¼ A3
μ
λ3

2
þ A8

μ
λ8

2
þ 1ffiffiffi

2
p

0
B@

0 Wþ Y0

W− 0 W0−

Y0† W0þ 0

1
CA

μ

; ð8Þ

where λi are the Gell-Mann matrices. The new “little”
gauge bosons are given by a complex SUð2ÞL doublet
ðY0

μ;Wμ
0−Þ and a Z0

μ boson that arises as a linear combi-
nation of A8

μ and Bx
μ. The masses of the new gauge bosons

arise from the spontaneous symmetry breaking of the
underlying ½SUð3Þ ⊗ Uð1Þ�2 global symmetry and are,
accordingly, proportional to the high scale f. For instance:

MW’ ≃ gfffiffiffi
2

p
�
1 − v2

4f2

�
;

MZ’ ¼ gf

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3 − t2W

s �
1 − 3 − t2W

c2W

v2

16f2

�
: ð9Þ

The quadratic couplings of the Higgs with one heavy and
one SM gauge boson induce, after the electroweak sym-
metry breaking, a mixing between them. In the SLH model
this only affects to the definition of the Z and Z0 bosons:
Z0 → Z0 þ δZZ, Z → Z − δZZ0 where, at leading order in
the v=f expansion:

δZ ¼ 1 − t2W
8cW

ffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − t2W

q v2

f2
: ð10Þ

The pure gauge and gauge-lepton Lagrangians are
given by:

LV þ Lψ ¼ − 1

2
TrðGμνGμνÞ þ ψ̄kiDψk; ð11Þ

where Gμν ¼ ði=gÞ½Dμ; Dν� and ψk ¼ fLk;lkR; NkRg, the
covariant derivative Dμ being given in Eq. (7). The gauge-
quark sector is more complicated because of the anomaly-
free embedding structure. It reads:

Lq ¼ Q̄kiDkQk þ q̄uRiDuquR þ q̄dRiDdqdR

þ T̄RiDuTR þ D̄RiDdDR þ S̄RiDdSR; ð12Þ

with qu ¼ fu; c; tg, qd ¼ fd; s; bg and, remembering that
the triplets of the two first families are in the antifunda-
mental representation:

Df1;2gμ ¼ ∂μ þ igA�
μ;

D3μ ¼ ∂μ − igAμ þ
i
3
gxBx

μ;

Du
μ ¼ ∂μ þ i

2

3
gxBx

μ;

Dd
μ ¼ ∂μ − i

3
gxBx

μ; ð13Þ

where Aμ is given in Eq. (8).
The Yukawa sector of the SLH model collects the

structure of flavour of the theory. The lepton masses are
generated by:

LY ¼ iλkNN̄kRΦ
†
2Lkþ i

λkll
Λ
l̄kRεmnpΦm

1 Φ
n
2L

p
l þH:c:; ð14Þ

where m, n, p are SUð3Þ indices, and k, l are generation
indices. Notice that λN has been taken diagonal. However
λl does not need to be aligned. Upon diagonalization
of the latter, the redefined fields of the light leptons
ψkL ¼ Vkj

l ψ jL, for ψ ¼ fν;lg, get a definite mass. By
expanding Eq. (14) one also observes a mixing term
between heavy and light neutrinos. We separate them by
rotating the left-handed sector only and, up to Oðv2=f2Þ,
the physical states for the neutrinos are

�
νi

Ni

�
L

→

 
1 − δ2ν

2
−δν

δν 1 − δ2ν
2

!�
Vij
l νj

Ni

�
L

; ð15Þ

where

δν ¼ − 1ffiffiffi
2

p
tβ

v
f
: ð16Þ

The heavy neutrino masses are given by mNi
¼ fsβλiN.
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Yukawa quark couplings are rather involved due to the
mixing between the heavy “little” quarks and the SM ones
(we refer the reader to Ref. [32] for a detailed account). As
in this article we are only interested in lepton flavor
violating processes we will assume, in the following, no
flavor mixing in the quark sector. Accordingly the heavy-
light mixing will stay within each family. The proper
redefinition of the physical (massive) and left-handed fields
is given by: PL → PL þ δppL and pL → pL − δpPL for
P ¼ fT;D; Sg and p ¼ ft; d; sg quarks. The mixing
parameters δp are at least Oðv=fÞ (their complete expres-
sions are given in Ref. [32]), whilemP are, naturally,OðfÞ.
As it was pointed out before the SLH model has no

custodial symmetry, i.e. there cannot be a SUð2ÞL ⊗
SUð2ÞR embedded into the SUð2ÞL ⊗ Uð1ÞY to which
the SUð3ÞL ⊗ Uð1ÞX breaks spontaneously. However the
ρ≡M2

W=c
2
W=M

2
Z ≃ 1 (or equivalently the T oblique

parameter) only gets corrections at Oðv2=f2Þ and the
breaking of the symmetry is very small. It is worthwhile
to build a little Higgs model preserving custodial symmetry
and generating a collective Higgs quartic coupling free
of quadratic divergences [40]. A solution has been put
forward in Ref. [41].

III. LEPTON FLAVOR VIOLATING HADRON
DECAYS OF THE TAU LEPTON

The study of LFV in the SLH model has been carried out
previously in Ref. [42] where μ → eγ, μ → eeē and μ − e
conversion in nuclei where considered. Here we intend to
apply the model for the study of LFV tau decays into
hadrons, namely τ → μP, τ → μV, τ → μPPwhere P (V) is
short for a pseudoscalar (vector) meson, that are of interest
for Belle II and future flavor factories.
The procedure goes as follows. We have two different

scales in the model: the vacuum expectation value of the
SM Higgs, v, and the vacuum expectation value of the
triplets under SUð3Þ, f. Evidently we expect v ≪ f and in
the limit f → ∞ the effects of LFV should reduce to the
negligible ones of the SM (commented in the Introduction).
Therefore we organize the calculation of the LFV ampli-
tudes of the widths as an expansion in v=f and we keep just
the leading Oðv2=f2Þ result. Our goal is to determine the
amplitudes of the τ → μqq̄ where q ¼ u, d, s quarks and,
afterwards, proceed to hadronize the corresponding quark
bilinears. For this latter step we will employ the tools given
by chiral symmetry.

A. τ → μqq̄

LFV decays in the SLH model arise at one-loop level
and they are driven by the presence of the “little” heavy
neutrinos Ni in connivance with the rotation of light
lepton fields Vij

l . There are two generic topologies partici-
pating in this amplitude: (i) penguin-like diagrams, namely
τ → μfγ; Z; Z0g, followed by fγ; Z; Z0g → qq̄ and (ii) box

diagrams. The calculation is obviously finite at this leading
order. In principle there should be also a penguin-like
contribution with a Higgs boson, i.e. τ → μH. However
the coupling of the Higgs to the light quarks, H → qq̄, has
an intrinsic suppression due to the mass of the quarks and,
therefore, we do not take this into account. In fact we will
assume that light quarks are massless along all our calcu-
lation, and we will also neglect the muon mass. It has to be
mentioned, however, that in Ref. [20] it was pointed out that
a one-loop Higgs generated gluon operator does not suffer of
the light-quark mass suppression and could give a sizeable
contribution. This would be independent of the LFV model
employed. Although we are interested in the signatures
specific to the SLH model and we do not include that gluon
contribution in this article, we think that this would require a
separate analysis following up on our work here.
Hence the full amplitude will be given by the sum of all

contributions:

T ¼ T γ þ T Z þ T Z0 þ T B: ð17Þ
We will use the unitary gauge. As it is well known, the

number of Feynman diagrams is much reduced in this
gauge because the only fields participating in the dynamics
are the physical ones. The price to pay is that the
cancellation of divergences becomes rather intricate.
While in the ’t Hooft-Feynman gauge, for instance, penguin
and box diagrams are separately finite, in the unitary gauge
they are not and the physical result is postponed until the
final addition of all contributions.
Along the calculation we do a consistent expansion on

the squared transfer momenta, i.e. Q2 ¼ ðpq þ pq̄Þ2 over
both the squared masses proportional to the f scale (MW0 ,
MZ0 , MNi

, mP) and the SM gauge bosons. We only keep
the leading order in this expansion. This amounts to an
expansion, at the largest, in the m2

τ=M2
Z ratio.

The diagrams contributing to the photon penguin are
those in Fig. 1 and the result is given by:

T γ ¼
e2

Q2

v2

f2
X
j

Vjμ�
l Vjτ

l μ̄ðp0Þ½Q2γλðFj
LPL þ Fj

RPRÞ

þ imτσλνQνðGj
LPL þ Gj

RPRÞ�τðpÞq̄ðpqÞQqγ
λqðpq̄Þ;

ð18Þ

where PL
R
¼ ð1 ∓ γ5Þ=2 and Qq is the electric charge

matrix:

Qq ¼
1

3

0
B@

2

−1
−1

1
CA; ð19Þ

in units of jej, and q ¼ ðu; d; sÞT . With our assumptions
above we find Fj

R ¼ Oðm2
τ=M2

ZÞ, Gj
L ¼ 0 and:
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Fj
L ¼ αW

4π

1

16M2
W

��
χ3jðχ2j − 8χj þ 13Þ

ðχj − 1Þ4 − 4δ2ν
M2

W’

M2
W

�
ln χj

þ 4χ5j − 19χ4j þ 29χ3j þ 5χ2j − 95χj þ 40

6ðχj − 1Þ3
�
;

Gj
R ¼ αW

4π

1

8M2
W

��
χ3jð2χj þ 1Þ
ðχj − 1Þ4 þ 2δ2ν

M2
W’

M2
W

�
ln χj

þ 6χ5j − 15χ4j − 35χ3j þ 72χ2j − 66χj þ 20

6ðχj − 1Þ3
�
; ð20Þ

where αW ≡ α=s2W and χj ¼ M2
Nj
=M2

W’ . Notice that we

have extracted a factor v2=f2 in Eq. (18) for the definition
of the form factors.
The penguin-like diagrams with Z and Z0 are given in

Fig. 2. They give the following results:

T Z ¼ g
M2

Z

X
j

Vjμ�
l Vjτ

l μ̄ðp0Þ½γμðHj
LPL þHj

RPRÞ�τðpÞ

× q̄ðpqÞ½γμðZLPL þ ZRPRÞ�qðpq̄Þ;
T Z0 ¼ g

M2
Z’

X
j

Vjμ�
l Vjτ

l μ̄ðp0Þ½γμð ~Hj
LPL þ ~Hj

RPRÞ�τðpÞ

× q̄ðpqÞ½γμðZL
0PL þ ZR

0PRÞ�qðpq̄Þ; ð21Þ

where now:

ZL ¼ g
cW

ðTq
3 − s2WQqÞ; ZR ¼ −

g
cW

s2WQq;

Z0
L ¼ g

6

ffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − t2W

q
13×3; Z0

R ¼ −
gt2Wffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − t2W

p Qq; ð22Þ

being:

Tq
3 ¼

1

2

0
B@

1

−1
−1

1
CA: ð23Þ

Hj
R and ~Hj

R in Eq. (21) are, again, Oðm2
τ=M2

ZÞ and we
disregard them. For the “left-handed” form factors we find:

Hj
L ¼ αW

32π

�
δZ

c2W
ffiffiffiffiffiffiffiffiffiffiffiffiffi
3− t2W

p �
ð3χjðχj − 2Þ− 2c2Wð7χ2j − 14χj þ 4ÞÞ χj ln χj

ðχj − 1Þ2 þ
−5χ2j þ 5χj þ 6þ 6c2Wð3χ2j − χj − 4Þ

2ðχj − 1Þ
�

−δ2ν 2χ
2
j − 5χj þ 3

cWðχj − 1Þ
�
;

~Hj
L ¼ αW

32π

1

c2W
ffiffiffiffiffiffiffiffiffiffiffiffiffi
3− t2W

p �
ð3χjðχj − 2Þ− 2c2Wð7χ2j − 14χj þ 4ÞÞ χj ln χj

ðχj − 1Þ2 þ
−5χ2j þ 5χj þ 6þ 6c2Wð3χ2j − χj − 4Þ

2ðχj − 1Þ
�
: ð24Þ

FIG. 1. Penguin-like diagrams for τ → μγ� in the SLH model.

FIG. 2. Penguin-like diagrams for τ → μZ, Z0 in the SLHmodel.
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Notice that the result for ~Hj
L corresponding to the penguin-

like Z0 contribution, and that is very similar to the result for
Hj

L, is Oð1Þ in the v=f expansion that we are performing.
This is due to the fact that the definitions of Hj

L and ~Hj
L in

Eq. (21) carry a factor of the inverse squared mass of the
reciprocal gauge boson in the penguin. Then the T Z’

amplitude conveys the leading suppression factor in this
factor term [see MZ’ in Eq. (9)].

Finally we turn to evaluate the box diagrams in Fig. 3.
We proceed following the same approaches as in the case of
the penguin diagrams. In addition we consider that the
external momenta vanish. The result is given by:

T B ¼ g2
Xu;d;s
q

X
j

Vjμ�
l Vjτ

l B
j
qμ̄ðp0ÞγμPLτðpÞ

· ψqðpqÞγμPLψqðpq̄Þ; ð25Þ

where ψq ¼ fu; d; sg and

Bj
q ¼ αW

64π
½αjq ln χj þ βjq ln δþ γjq�; ð26Þ

and δ ¼ m2
D=M

2
W’ . The remaining terms are given by:

αju ¼ 1

M2
Wðχj − δÞ

�
3χjδδνðδ�d þ δdÞ

ðχj − 1Þ − δ2δνðδ�d þ δdÞþ
χjð6 − 13χjÞ
ðχj − 1Þ2

M2
W

M2
W’

þ ðδ2 − 6δÞ M
2
W

M2
W’

þ δ2δ2dδ
2
ν

M2
W’

M2
W

�
;

αjd ¼
3δν

M2
Wðχj − 1Þ ðδ

�
d þ δdÞ;

αjs ¼ 3δν
M2

Wðχj − 1Þ ðδ
�
s þ δsÞ;

βju ¼ δ2

M2
Wðδ − χjÞ

�
δ2dδ

2
ν

M2
W’

M2
W

þ δðδ − 8Þ
ðδ − 1Þ2

M2
W

M2
W’

− δνðδ�d þ δdÞ
δ2 − 5δþ 4

ðδ − 1Þ2
�
;

βjd ¼ βjs ¼ 0;

γju ¼ −
1

2M2
W

�
3δ2νδ

2
dχj

M2
W’

M2
W
þ δð3χ2j − 16χj þ 13Þ − 3χ2j þ 13χj þ 4

ðδ − 1Þðχj − 1Þ
M2

W

M2
W’

�
;

γjd ¼
3

2M2
W
δνðδ�d þ δdÞχj;

γjs ¼ 3

2M2
W
δνðδ�s þ δsÞχj: ð27Þ

Here the δd and δs parameters have been defined at the end
of Sec. II.

B. Hadronization

Our results for the full amplitude T in Eq. (17) are
given in terms of light quark bilinears with different
weights provided by the theory. As our goal is to study
the final states of one meson (either pseudoscalar or
vector) and two pseudoscalar mesons, we need to
implement a procedure in order to hadronize the
quark bilinears. An essentially model-independent
scheme is the one provided by chiral perturbation
theory [43–45]. We follow the procedure and

definitions put forward in Ref. [15] where all the
expressions are fully given.
The quark bilinears that appear in T can be written in

terms of the QCD quark currents:

Vi
μ ¼ q̄γμ

λi

2
q; Ai

μ ¼ q̄γμγ5
λi

2
q; ð28Þ

where we recall that q ¼ ðu; d; sÞT . For instance, the
electromagnetic quark current in Eq. (18) reads:

J em
μ ¼ q̄Qqγμq ¼ V3

μ þ
1ffiffiffi
3

p V8
μ; ð29Þ

FIG. 3. Boxdiagrams for τ → μqq̄ in the SLHmodel. The internal
quark states are ðu; ūÞ → fd;Dg, ðd; d̄Þ → fug, ðs; s̄Þ → fcg.
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and

ūγμPLu ¼ J3μ þ
1ffiffiffi
3

p V8
μ þ

2ffiffiffi
6

p J0μ;

d̄γμPLd ¼ −J3μ þ
1ffiffiffi
3

p V8
μ þ

2ffiffiffi
6

p J0μ;

s̄γμPLs ¼ −
2ffiffiffi
3

p V8
μ þ

2ffiffiffi
6

p J0μ; ð30Þ

with Jiμ ¼ ðVi
μ − Ai

μÞ=2. The QCD currents are determined
as the functional derivatives, with respect to the external
auxiliary fields, of the resonance chiral theory action
LRχT [45]:

Vi
μ ¼

∂LRχT

∂vμi
				
j¼0

; Ai
μ ¼

∂LRχT

∂aμi
				
j¼0

ð31Þ

where j ¼ 0 indicates that, after derivation, all the external
currents are put to zero. The vector current contributes to an
even number of pseudoscalar mesons or a vector resonance,
while the axial-vector current gives an odd number of
pseudoscalar mesons.

1. τ → μP

Only the axial-vector current contributes and that means
that T γ does not participate. The axial-vector current is
determined from the leading Oðp2Þ chiral Lagrangian and
we get, for P ¼ fπ0; η; η0g:

T ZðPÞ ¼ −i g2

2cW

F
M2

Z
ZðPÞ

X
j

Vjμ�
l Vjτ

l

× μ̄ðp0Þ½QðHj
LPL þHj

RPRÞ�τðpÞ;

T Z0 ðPÞ ¼ i
g2

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 − 3t2W

p F
M2

Z’

Z0ðPÞ
X
j

Vjμ�
l Vjτ

l

× μ̄ðp0Þ½Qð ~Hj
LPL þ ~Hj

RPRÞ�τðpÞ;
T BðPÞ ¼ −ig2F

X
j

Vjμ�
l Vjτ

l B
jðPÞμ̄ðp0Þ½QPL�τðpÞ: ð32Þ

Here F≃ 0.0922 GeV is the decay constant of the pion and
the ZðPÞ, Z0ðPÞ and BjðPÞ factors are given in Table I.

The width of these processes, with T ðPÞ ¼ T ZðPÞþ
T Z0 ðPÞ þ T BðPÞ, is given by:

Bðτ → μPÞ ¼ λ1=2ðm2
τ ; m2

μ; m2
PÞ

4πm2
τΓτ

1

2

X
i;f

jT ðPÞj2; ð33Þ

where λðx; y; zÞ ¼ ðxþ y − zÞ2 − 4xy, and

X
i;f

jT ðPÞj2 ¼ 1

2mτ

X
k;l

½ðm2
τ þm2

μ −m2
PÞðakPal�P þ bkPb

l�
P Þ

þ2mμmτðakPal�P − bkPb
l�
P Þ�; ð34Þ

with k, l ¼ Z, Z0, B. Defining Δτμ ¼ mτ −mμ, Στμ ¼ mτ þ
mμ we have:

aZP ¼ − g2F
4cWM2

Z
ΔτμZðPÞ

X
j

Vjμ�
l Vjτ

l ðHj
R þHj

LÞ;

aZ
0

P ¼ g2F

8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 − 3t2W

p
M2

Z’

ΔτμZ0ðPÞ
X
j

Vjμ�
l Vjτ

l ð ~Hj
R þ ~Hj

LÞ;

aBP ¼ −
g2F
2

Δτμ

X
j

Vjμ�
l Vjτ

l BjðPÞ;

bZP ¼ g2F
4cWM2

Z
ΣτμZðPÞ

X
j

Vjμ�
l Vjτ

l ðHj
R −Hj

LÞ;

bZ
0

P ¼ −
g2F

8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 − 3t2W

p
M2

Z’

ΣτμZ0ðPÞ
X
j

Vjμ�
l Vjτ

l ð ~Hj
R − ~Hj

LÞ;

bBP ¼ −
g2F
2

Στμ

X
j

Vjμ�
l Vjτ

l BjðPÞ: ð35Þ

2. τ → μPP

Here we will consider the decays into the pairs PP̄ ¼
fπþπ−; KþK−; K0K0g. To the final state of two pseudo-
scalar mesons all vector components of the different pieces
discussed above, i.e. γ, Z, Z0-penguins and the box
amplitude, contribute. The hadronization is driven by the
vector form factor that can be defined through the electro-
magnetic current in Eq. (29):

hP1ðp1ÞP2ðp2ÞjJ em
μ j0i ¼ ðp1 − p2ÞμFP1P2

V ðQ2Þ; ð36Þ

TABLE I. Factors appearing in Eq. (32). The mixing between the octet (η8) and the singlet (η0) components of the nonet of
pseudoscalar mesons is parametrized by the angle θη ≃−18°. The functions Bj

q are given in Eq. (26).

P ¼ π0 P ¼ η P ¼ η0

ZðPÞ 1 1ffiffi
6

p ðsin θη þ
ffiffiffi
2

p
cos θηÞ 1ffiffi

6
p ð ffiffiffi

2
p

sin θη − cos θηÞ
Z0ðPÞ ffiffiffi

3
p

t2W cos θηt2W − ffiffiffi
2

p
sin θηð3 − t2WÞ sin θηt2W þ ffiffiffi

2
p

cos θηð3 − t2WÞ
BjðPÞ 1

2
ðBj

d − Bj
uÞ 1

2
ffiffi
3

p ½ð ffiffiffi
2

p
sin θη − cos θηÞBj

u þ ð2 ffiffiffi
2

p
sin θη þ cos θηÞBj

d� 1

2
ffiffi
3

p ½ðsin θη − 2
ffiffiffi
2

p
cos θηÞBj

d − ðsin θη þ
ffiffiffi
2

p
cos θηÞBj

u�
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where Q ¼ p1 þ p2. The determination of the vector form factor has a long story and we will not dwell on it here. We will
consider its construction in the frame of the chiral theory and will take the results put forward in Ref. [15], except for the
pion case where we take the improved version of Refs. [46,47].
After hadronization we obtain:

T P
γ ¼ e2

Q2

v2

f2
FPP̄
V ðQ2Þ

X
j

Vjμ�
l Vjτ

l μ̄ðp0Þ½Q2ðpq − pq̄ÞðFj
LPL þ Fj

RPRÞ þ 2imτpλ
qσλνpν

q̄ðGj
LPL þGj

RPRÞ�τðpÞ;

T P
Z ¼ g2

2s2W − 1

2cWM2
Z
FPP̄
V ðQ2Þ

X
j

Vjμ�
l Vjτ

l μ̄ðp0Þðpq − pq̄ÞðHj
LPL þHj

RPRÞτðpÞ;

T P
Z0 ¼ −g2

t2W
4M2

Z’

ffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − t2W

p FPP̄
V ðQ2Þ

X
j

Vjμ�
l Vjτ

l μ̄ðp0Þðpq − pq̄Þð ~Hj
LPL þ ~Hj

RPRÞτðpÞ;

T P
B ¼ g2

2
FPP̄
V ðQ2Þ

X
j

Vjμ�
l Vjτ

l ðBj
u − Bj

dÞμ̄ðp0Þðpq − pq̄ÞPLτðpÞ: ð37Þ

The branching ratio for the process is

Bðτ → μPPÞ ¼ κ

64π3m2
τΓτ

Z
sþ

s−
ds
Z

tþ

t−
dt

1

2

X
i;f

jT Pj2;

ð38Þ

where κ ¼ 1 for πþπ−, KþK− and K0K̄0. In Eq. (38), and
in terms of the momenta of the particles participating in
the process, s ¼ ðpq þ pq̄Þ2 and t ¼ ðp − pq̄Þ2. Moreover
T P ¼ T P

γ þ T P
Z þ T P

Z0 þ T P
B, and the integration limits are

tþ− ¼ 1

4s
½ðm2

τ −m2
μÞ2− ðλ1=2ðs;m2

P;m
2
PÞ∓ λ1=2ðm2

τ ;s;m2
μÞÞ2�;

s− ¼ 4m2
P;

sþ ¼ ðmτ−mμÞ2: ð39Þ

3. τ → μV

We would like to consider also the decays into a vector
resonance, namely V ¼ ρ, ϕ. From a quantum field theory
point of view, a resonance is not an asymptotic state and,
indeed, a vector decays strongly into a pair of pseudoscalar
mesons. When an experiment measures a final state with a
vector resonance, in fact what it is measuring is a pair of
pseudoscalar mesons with a squared total mass approach-
ing m2

V . Hence the definition of a resonance from an
experimental point of view is uncertain. Actually the chiral
nature of the lightest pseudoscalar mesons realizes on this
occurrence and two pions into a J ¼ I ¼ 1 state are
indistinguishable from a ρð770Þ meson, for instance. As
a consequence the channels τ → μV are related with
τ → μPP that we discussed above. We follow the proposal
in Ref. [15].
The outcome of this circumstance is that the branching

ratio of τ → μV is obtained from that of the τ → μPP by
trying to implement the experimental procedure, that is,

focusing in two pseudoscalar mesons on the mass (and
width) of the resonance. That is

Bðτ → μρÞ ¼ Bðτ → μπþπ−Þjρ;
Bðτ → μϕÞ ¼ Bðτ → μKþK−Þjϕ þ Bðτ → μK0K0Þjϕ;

ð40Þ

where the two pseudoscalars branching ratio is the one
given by Eq. (38) but where the s� limits of integration are
now specified by:

s� ¼ M2
ρ �

1

2
MρΓρðM2

ρÞ ð41Þ

and

s� ¼ M2
ϕ �

1

2
MϕΓϕðM2

ϕÞ; ð42Þ

respectively. Here the total widths of ρ and ϕ are taken from
Ref. [1]. We think that this definition of the branching ratios
into vector mesons approaches the experimental interpre-
tation and provides a reasonable estimate of them.

IV. NUMERICAL RESULTS

The provision of numerical estimates for our LFV
branching ratios, from our results in the previous section,
requires an all-inclusive discussion of the parameters of the
SLH model that we have employed:

(i) Scale of compositeness f. As commented in the
Introduction almost everyone expects some new
physics around E ∼ 1 TeV, and going up. We could
fix the scale of compositeness in the SLH model as
that f ∼ 1 TeV. However analyses of the model
from Higgs data and electroweak precision observ-
ables [48,49] seem to indicate that, at 95% C.L.,
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values of f ≲ 3.5 TeV should be excluded for our
model. That, of course, also delays the appearance
of a strongly coupled region. For definiteness we
choose a range 2 TeV < f < 10 TeV in order to
furnish our results.

(ii) Heavy neutrinos. “Little” neutrinos drive the dy-
namics of LFV lepton decays. Inherited from the SM
setting we have three different heavy neutrinos that
appear in the amplitudes in Eqs. (18), (21), (25) and
that provide an amplitude (17) that we can write,
generically, as:

T ¼
X
j

Vjμ�
l Vjτ

l AðχjÞ; ð43Þ

with j adding over the three families and AðχjÞ a
generic function of χj ¼ M2

Nj
=M2

W’ . We do not have

any information on the mixing matrix elements Vik
l

and we have to keep at least two families in order
to have a nonvanishing result; as a consequence we
will give our numerical results assuming only two
families and, accordingly, one mixing angle. Hence
we will have:

T ¼ sin θ cos θ½Aðχ1Þ − Aðχ2Þ�: ð44Þ

In Ref. [42] it can be observed that, from LFV
tau decays into leptons within the SLH model and
for f ≃ 1 TeV, experimental bounds require
sin 2θ ¼ 2 sin θ cos θ < 0.05 and even smaller from
muon-electron conversion in nuclei. As we propose
higher values for the scale of compositeness we will
take, for the numerical determinations sin 2θ≃ 0.25,
though we will also study the variation of the
branching ratios in function of this parameter.
“Little” neutrino masses are also unknown. Ex-

perimental bounds on these masses are rather loose
and very much model dependent [50–52]. However,
we will take into account the results in Ref. [42]
pointing to χ1χ2 ≲ 0.01 and

ffiffiffiffiffiffiffiffiffiffiffiffi
χ1=χ2

p − ffiffiffiffiffiffiffiffiffiffiffiffi
χ2=χ1

p ≲
0.05. Given our larger values for f we will use
(χ2 > χ1 is assumed, our spectrum cannot be
degenerated) 0 ≤ χ1 ≤ 0.25 and 1.1χ1 ≤ χ2 ≤ 10χ1,
where the latter limits of χ2 correspond to the
nearly degenerate and large mass-splitting cases,
respectively.

(iii) tan β ¼ f1=f2. The ratio of the two vevs from the
spontaneous breaking of the upper symmetry is also
an unknown parameter in our model. The mixing
between a “little” and a light neutrino, parametrized
by δν in Eq. (16), can give us a hint. Phenomeno-
logical analyses indicate that δν < 0.05 [42,50,53].
Therefore from Eq. (16) we obtain that jftβj≳
3.5 TeV. We will take, as a value of reference, tβ ¼
5 and will explore the range 1 < tβ < 10.

(iv) Quark parameters. As commented above we do not
consider flavor-mixing in the quark sector. The
redefinition of fields that diagonalizes the mixing
between “little” and light quarks is parameterized by
the δp parameters that appear in the box amplitude,
Eq. (27), for p ¼ d, s. We follow the proposal of
Ref. [32] and assume that the mixing effects in the
down-quark sector are suppressed in the tβ > 1

regime. This is analogous to what happens in the
neutrino case. It implies:

δd ≃ δs ≃−δν: ð45Þ

Finally, in the box diagrams also appears the ratio
δ ¼ m2

D=M
2
W’ that involves the mass of the “little”

down quark D. In all the numerical evaluations we
take δ ¼ 1.

TABLE II. Experimental upper bounds, at 90% C.L., on the
branching ratios of the LFV decays τ → lðP; V; PPÞ for l ¼ μ,
e, studied in this article. We quote them from the PDG [1].

Process

B × 108 (90% C.L.) [1]

l ¼ μ l ¼ e

τ → lγ <4.4 <3.3
τ → lπ0 <11.0 <8.0
τ → lη <6.5 <9.2
τ → lη0 <13.0 <16.0
τ → lπþπ− <2.1 <2.3
τ → lKþK− <4.4 <3.4
τ → lKSK̄S <8.0 <7.1
τ → lρ0 <1.2 <1.8
τ → lϕ <8.4 <3.1

2 4 6 8 10
f (TeV)

1e-09

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

μπ+π−

μΚ+Κ−

μπ0

μη
μη’

μρ0

μφ

FIG. 4. Dependence of the scale of compositeness f for the
branching ratios of LFV tau decays into hadrons in the SLH
model. They are normalized to the present upper bounds in
Table II, i.e. a value of 1 in the y-axis indicates the present upper
limit. We use χ1 ¼ 0.25, χ2 ¼ 10χ1, tβ ¼ 5 and sin 2θ ¼ 0.25.
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The input of SM parameters and masses is taken from
the PDG [1]. In particular we will take sin2 θW ¼ 0.23,
F ¼ 0.0922 GeV and θη ¼ −18°.
Although we will present our results for LFV tau decays

into a muon and hadrons, the analytical results on the decay
to an electron should be essentially the same because we
have expanded the mass of the outgoing charged lepton
over heavy masses in our calculation. The only difference
between both channels is one of phase space, that would
turn out to be tiny in any case due to the relative high mass
of the tau lepton, and the lepton flavor mixing matrix
elements. Provided that the latter are of the same order of
magnitude, we consider our results to be valid for both
decays: τ → l hadrons for l ¼ e, μ.
The present upper bounds on the LFV hadron tau decays

branching ratios, that we study in this article, are collected
in Table II. All these bounds originate in the excellent work

carried out by both BABAR and Belle experiments in the
last ten years. It can be seen that present limits stand at the
10−8 level. Super B Factories, like the SuperKEKB/Belle II
project [10] will give the next step. Hadron decays of the
tau lepton are almost background free, although efficiencies
are different from channel to channel. All in all, expected
sensitivities are in the range of Bðτ → l hadronsÞ ∼
ð2–6Þ × 10−10 [6].
In Fig. 4 we show the dependence on the scale of

compositeness f of the branching ratios (normalized to
the upper bounds in Table II) in the LFV hadron decays
under study. We use χ1 ¼ 0.25, χ2 ¼ 10χ1, tβ ¼ 5 and
sin 2θ ¼ 0.25. The plotted range for the scale of compos-
iteness seems the most natural in these models, however a
higher value of f might also make sense. In any case Fig. 4
shows clearly the trend of the prediction. It can be seen that,
in the most optimistic case, for low values of f, our results

0.15 0.3 0.45 0.6 0.75 0.9 1.05 1.2
M

N1
 (TeV)

1e-11

1e-10

1e-09
μπ+π−

μΚ+Κ−

μπ0

μη
μη’

μρ0

μφ

0.15 0.3 0.45 0.6 0.75 0.9 1.05 1.2
M

N1
 (TeV)

1e-10

1e-08

1e-06

0.0001

μπ+π−

μΚ+Κ−

μπ0

μη
μη’

μρ0

μφ

FIG. 5. Dependence of the LFV branching ratios on MN1
. On the left we assume a small splitting of the heavy neutrino

spectrum: χ2 ¼ 1.1 χ1. On the right we assume a large splitting: χ1 ¼ 10 χ2. We input tβ ¼ 5, sin 2θ ¼ 0.25 and f ¼ 6 TeV.
Normalization as in Fig. 4.

2 4 6 8 10
tanβ

1e-09

1e-08

1e-07

1e-06

1e-05

μπ+π−

μΚ+Κ−

μπ0

μη
μη’

μρ0

μφ

0 0.05 0.1 0.15 0.2 0.25
sin2θ

1e-14

1e-12

1e-10

1e-08

1e-06

μπ+π−

μΚ+Κ−

μπ0

μη
μη’

μρ0

μφ

FIG. 6. Dependence of the LFV branching ratios on tan β (left) and sin 2θ (right). We input ðf; sin 2θÞ ¼ ð6 TeV; 0.25Þ on the left plot
and ðf; tβÞ ¼ ð6 TeV; 5Þ on the right plot. χ1 ¼ 0.25, χ2 ¼ 10 χ1 are used in both panels. Normalization as in Fig. 4.
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imply branching ratios at least four orders of magnitude
smaller than present limits.
The dependence on the “little” neutrino masses is

collected in Fig. 5. We assume the cases of a small
splitting: χ2 ¼ 1.1χ1 and a large one χ2 ¼ 10χ1. The
structure that can be observed on the right-hand side of
Fig. 5 is due to the effect produced by the large splitting in
heavy neutrino masses when the second neutrino reaches
and goes over the mass of the heavy gauge boson W0.
Naturally a small splitting produces branching ratios much
smaller due to the unitarity of the lepton mixing matrix
[see Eq. (44)].
In Fig. 6 we show the dependence of the branching ratios

on the parameters tan β and sin 2θ. It can be seen that the
dependence on tβ is rather mild for tβ ≳ 3.
Correlations between different branching ratios are

shown in Figure 7. The branching ratio of τ → μγ has
been obtained from the SLH prediction for μ → eγ in
Ref. [42]. In this figure we have not normalized the
branching ratios to the upper bounds as we did in previous
figures. In the two first we show Bðτ → μπþπ−Þ and
Bðτ → μπ0Þ versus Bðτ → μγÞ and the vertical red line
indicates the measured present upper bound for the later
decay. That would leave hadron branching ratios, at the
most, of Oð10−12Þ −Oð10−14Þ as we already commented
in the previous discussion. In the lower figure we plot
Bðτ → μπ0Þ versus Bðτ → μπþπ−Þ and it is shown that
both are highly correlated (we come back to this point
later).
We would like to turn now to comment on a property of

our calculation in the SLH model. This is related with
the relative weight of the different contributions that have
been specified in Sec. III. Supersymmetric scenarios seem
to indicate that, in the ’t Hooft-Feynman gauge, box
diagrams provide negligible contributions in comparison
with photon-penguin diagrams in leptonic processes
[54,55]. However it has been pointed out that this might
not be the case in other models. For instance, in the littlest
Higgs model with T-parity both contributions are of the
same order in μ → eeē [56] and the same happens in the
same purely leptonic processes within the SLH model [42].
Notwithstanding in LFV hadron decays of the tau lepton
within this later model, that we have studied in this article,
we do not reach the same conclusion, at least in the unitary
gauge. In Fig. 8 we show the dependence on f for the
different contributions for τ → μπþπ−. It can be seen that in
hadron decays photon-penguin diagrams dominate over
the rest of contributions. Box diagrams give a small input
although one can see that they interfere destructively with
the photon ones. Meanwhile the Z- and Z0-penguin dia-
grams are negligible. In Fig. 9 we plot the analogous
comparison for τ → μπ0 where, obviously, there are not
photon-penguin diagrams contributing. Then box diagrams
give the bulk of the branching ratio though with a
non-negligible positive interference of the Z-penguin

contribution. In the lower plot of Fig. 7 we noticed the
high correlation between both τ → μπþπ− and τ → μπ0

decays. This seems eye-catching because, as we have seen,
both processes are dominated by different contributions:

1e-20 1e-18 1e-16 1e-14 1e-12 1e-10 1e-08 1e-06
B(μγ)

1e-20

1e-18

1e-16

1e-14

1e-12

1e-10

B
(μ

π+ π− )

1e-20 1e-18 1e-16 1e-14 1e-12 1e-10 1e-08 1e-06
B(μγ)

1e-20

1e-18

1e-16

1e-14

1e-12

1e-10

B
(μ

π0 )

1e-20 1e-16 1e-12 1e-08
B(μπ+π−

)

1e-20

1e-16

1e-12

1e-08

B
(μ

π0 )

FIG. 7. Scattered plots that show correlations between different
branching ratios: Bðτ → μπþπ−Þ versus Bðτ → μγÞ (upper plot),
Bðτ → μπ0Þ versus Bðτ → μγÞ (middle plot) and Bðτ → μπ0Þ
versus Bðτ → μπþπ−Þ (lower plot). We vary f ∈ ð2 TeV;
10 TeVÞ, sin 2θ ∈ ð0; 0.25Þ, tβ ∈ ð1; 10Þ, χ1 ∈ ð0; 0.25Þ and
χ2 ¼ aχ1 for a ∈ ð1.1; 10Þ. Red lines indicate the present upper
bound for Bðτ → μγÞ at 90% C.L.
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the first by the photon-penguin diagrams and the second by
the boxes. However, as it can be seen, the parameters of the
model and the hadronization establish a correlation
between hadron processes that is not so apparent in
τ → μγ, for instance.
As commented in Sec. III we did not include

Higgs-penguin contribution on the basis that their cou-
plings to light quarks are suppressed by their masses. In
Refs. [20,57] it was pointed out that a Higgs could couple,
through a loop of heavy quarks, to two gluons able to
hadronize into one or two pseudoscalars and, at least in the
latter case, give a relevant contribution comparable with the
one of the photon-penguin amplitude. This is indeed a two-
loop calculation in our framework and we have not

considered to sum this addition. In our opinion this could
change our results for a factor not larger than Oð1Þ and
therefore it would not change our main conclusions.
In Ref. [42] it was indicated that, at least in LFV decays

of the muon into leptons and muon conversion in nuclei,
the behavior of the SLH model is very similar to the
littlest Higgs with T-parity. If that assertion could be
extended to the hadron decays of the tau lepton, as it
seems rather sensible, we would definitely conclude that
little Higgs models predict a high suppression for these
channels. It is now the turn of the flavor factories to
clarify this issue.

V. CONCLUSIONS

We have analysed LFV decays of the tau lepton into one
pseudoscalar, one vector or two pseudoscalar mesons in the
simplest little Higgs model, characterized as a composite
Higgs model with a simple group SUð3ÞL ⊗ Uð1ÞX and
with a scale of compositeness f ∼ 1 TeV were a feature of
collective symmetry breaking occurs providing a light
Higgs boson. This model has interesting features like a
reduced extension of the spectrum of gauge bosons and
fermions over the SM ones and a small number of unknown
parameters. In contrast the model has no custodial sym-
metry, though the lack of it does not bring large unwanted
corrections. For the inclusion of the quark sector we use the
anomaly-free embedding that does not need the role
of an ultraviolet completion in order to cancel a gauge
anomaly in the extended sector. The model has already
been confronted with LHC data [48,49] and keeps its
strength waiting for more precise determinations.
Lepton flavor violating decays are, due to their high

suppression in the SM, an excellent benchmark where to
look for new physics. Though present upper bounds are
very tight both in μ → eγ and other muonic decays into
leptons where one could expect that LFV, if any, will be
first observed, tau physics provide the unique property of
being the only lepton decaying into hadrons and, con-
sequently, offer a new scenario that, moreover, has been
thoroughly explored in B-factories like BABAR and Belle.
Present upper limits on branching ratios of the studied
processes are of Oð10−8Þ and future flavour factories, like
Belle II, could lower those up to two orders of magnitude.
Therefore the study of LFV hadron decays of the tau lepton
is all-important in order to face the near future experimental
status.
We have considered the study of several hadron decays

of the tau lepton, i.e. τ → μðP; V; PPÞ decays where P is
short for a pseudoscalar meson and V for a vector one. The
leading amplitude for these decays, in the SLH model, is
given by a one-loop contribution dynamically driven by the
mixing of the light charged leptons, τ and μ with the heavy
“little” neutrinos of the model. We have carried out the
calculation at leading order in the v=f expansion and our
results are Oðv2=f2Þ. For the numerical determination
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 μ π+ π−

FIG. 8. Dependence on the scale of compositeness f for τ →
μπþπ− showing the relative weights of the different contributions
in the unitary gauge. Normalization and input as in Fig. 4.
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FIG. 9. Dependence on the scale of compositeness f for τ →
μπ0 showing the relative weights of the different contributions in
the unitary gauge. Normalization and input as in Fig. 4.
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of the branching ratios we have considered previous
constraints on the input constants of the model, although
we have allowed their variation rather prodigally in order to
convey the generic pattern of the predictions. Hence we
have studied the dependence of the branching ratios on the
relevant parameters of the model.
We conclude that, for the most natural settings, the

predictions of the SLH model for theses processes are,
typically, between 4 and 8 orders of magnitude smaller than
present upper bounds and, therefore, out of reach for the
foreseen next flavor factories. An observation of any of
these decays by Belle II not only would signal new physics
but also would falsify the SLH model.
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