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The charged lepton flavor violating (CLFV) processes of μ−e− → e−e− decay by four Fermi contact
interactions in a muonic atom for various atoms are investigated. The wave functions of bound and
scattering state leptons are properly treated by solving Dirac equations with Coulomb interaction of the
finite nuclear charge distributions. This new effect contributes significantly in particular for heavier atoms,
where the obtained decay rate is about one order of magnitude larger than the previous estimation for 208Pb.
We find that, as the atomic number Z increases, the μ−e− → e−e− decay rates increase more rapidly than
the result of the previous work of Z3, suggesting this decay as one of the promising processes to search for
CLFV interaction.
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I. INTRODUCTION

The charged lepton flavor violating (CLFV) processes
are known to provide important signals on physics beyond
the standard model (SM). The analysis of search for μþ →
eþγ decays in the cosmic-ray muons by Hincks and
Pontecorvo in 1947 [1] has given the first upper limit on
the branching ratio of CLFV processes. Since then, the
upper limits of the branching ratios of CLFV processes
have been improved and now reach around the orders of
10−12 ∼ 10−13 [2,3]. These upper limits put stringent
constraints on various theoretical models beyond the
SM. These CLFV searches include the processes such as
μþ → eþγ, μþ → eþe−eþ and μ−N → e−N conversion in a
muonic atom. Recently, another process of μ−e− → e−e−

decay in a muonic atom has been proposed by Koike et al.
in 2010 [4]. A unique feature of this process is that both
photonic and contact leptonic interaction can be proved,
and an experimentally clean signal is expected because the
sum of the energies of two electrons is restricted to the
muon mass minus the binding energy of the muon in a
muonic atom. The measurement of this process is planned
in the COMET phase-I experiment in J-PARC [5].
In Ref. [4], the decay rate of the muonic atom was

evaluated by using the nonrelativistic bound state wave
functions of muon and electron and the plane wave
approximation of the final electrons. It was shown the
decay rate increases with the atomic number Z as Γ ∼ Z3.
Therefore, heavy muonic atoms would provide a great
opportunity for the CLFV search. However, as is well
known, the effects of the Coulomb interaction are signifi-
cant for the ordinary decay of bound muons in heavy nuclei
[6,7]. Since the quantitative evaluation of the decay process

is needed in order to disentangle the mechanism of CLFV
interaction, it is important to update the estimations of
Ref. [4] by taking into account the effects of the Coulomb
interactions for the relativistic leptons. The importance of
the Coulomb distortion for the μ− − e− conversion process
in a muonic atom has been reported in Refs. [8–10]. For the
μ− − e− conversion process where the nucleus stays intact,
it is sufficient to consider the s-wave muon and electron
states. For μ−e− → e−e− decay of muonic atom, on the
other hand, two electrons with the energy of approximately
one half of the muon mass are emitted in the final state. The
angular momentum of each electron is not limited in this
process. A formalism of the μ−e− → e−e− decay with the
partial wave expansion of leptons is necessary, as has been
common in the nuclear beta decay and muon capture
reactions [11].
In Sec. II, we summarize the relevant effective

Lagrangian for the μ−e− → e−e− process and develop a
formula of the decay rate using the partial wave expansion
of the lepton wave function. Our refined estimations of the
μ−e− → e−e− decay rate for the muonic atom are presented
in Sec. III. Finally, our conclusion is given in Sec. IV.

II. FORMULATION

The effective Lagrangian of the CLFV process μ−e− →
e−e− is given as

LI ¼ Lphoto þ Lcontact; ð1Þ

Lphoto ¼ −
4GFffiffiffi

2
p mμ½ARēLσμνμR þ ALēRσμνμL�Fμν þ ½H:c:�;

ð2Þ
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Lcontact ¼−
4GFffiffiffi

2
p ½g1ðēLμRÞðēLeRÞ þ g2ðēRμLÞðēReLÞ

þ g3ðēRγμμRÞðēRγμeRÞ þ g4ðēLγμμLÞðēLγμeLÞ
þ g5ðēRγμμRÞðēLγμeLÞ þ g6ðēLγμμLÞðēRγμeRÞ�
þ ½H:c:�; ð3Þ

where GF ¼ 1.166 × 10−5 GeV−2 is the Fermi coupling
constant, and AR;L and gis ði ¼ 1; 2;…; 6Þ are dimension-
less coupling constants. The left- and right-handed fields
ψL=R are given as ψL=R ¼ PL=Rψ with PL=R ¼ ð1 ∓ γ5Þ=2.
The effective Lagrangian consists of two parts. The first

part, Lphoto, represents the photonic interaction of μ → eγ
types, which generates the long range μ − e interaction
with one photon exchange between a muon and an electron.
The second part, Lcontact, is the four Fermi interaction. In
this work, we concentrate on the contact interaction as our
first attempt to examine the role of Coulomb interaction on
the μ−e− → e−e− decay of muonic atoms.
We evaluate the decay rate of two-electron emission of

the muonic atom within the independent particle picture of
the muonic atom and the final state. The transition
amplitude is given by the matrix element of the effective
CLFV interaction in Eq. (3),

Mðp1; s1; p2; s2; αμ; sμ;αe; seÞ≡
Z

d3 rhes1p1es2p2 jLcontactjμsμαμeseαei

¼ −
4GFffiffiffi

2
p

X6
i¼1

gi

�Z
d3rψ̄eð−Þ

p1;s1ðrÞOA
i ψ

μ
αμ;sμðrÞψ̄eð−Þ

p2;s2ðrÞOB
i ψ

e
αe;seðrÞ − ð1 ↔ 2Þ

�
; ð4Þ

where ψeð−Þ
p;s ðrÞ is the wave function of a scattering electron

with its momentum p and spin s. The superscript ð−Þ
represents the incoming wave boundary condition. The
wave functions of bound leptons are denoted as ψ l

α;s with
l ¼ μ, e, spin s and α ¼ n, κ. Here, κ represents both the
orbital and the total angular momentum simultaneously
[12,13]. The second term (1 ↔ 2) in Eq. (4) is the exchange
term obtained from the first term by exchanging the
quantum numbers of final electrons. The Dirac matrix
OA

i and OB
i for each gi in Eq. (3) is given as

OA
1 ¼ OB

1 ¼ PR; OA
2 ¼ OB

2 ¼ PL;

OA
3 ¼ OA

5 ¼ γμPR; OA
4 ¼ OA

6 ¼ γμPL;

OB
3 ¼ OB

6 ¼ γμPR; OB
4 ¼ OB

5 ¼ γμPL: ð5Þ

We assume that the muon bound state is in the n ¼ 1,
κ ¼ −1 state denoted simply by αμ ¼ 1S. Since the orbit
of the bound muon is about 200 times smaller than that
of the electron, the n ¼ 1, κ ¼ −1 electron bound state
gives the main contribution to the decay rate of the
muonic atom as long as we consider the contact
interaction in Eq. (3). The μ−e− → e−e− decay rate of
a muonic atom is given, with possible contributions of
electron bound states of κe ¼ −1 and any n included, as
follows:

Γ ¼ 1

2

�X
s1;s2

Z
d3p1d3p2

ð2πÞ32E1ð2πÞ32E2

��
1

2

X
sμ;se;n

�

× 2πδðEp1
þ Ep2

−mμ −me þ Bμ þ Bn
eÞ

× jMðp1; s1; p2; s2; 1S; sμ; nS; seÞj2; ð6Þ

where Bμ and Bn
e are the binding energies of the muon

and electron in a muonic atom and Epi
is an energy of

one of the electrons with its momentum pi. Here the
initial muon spins are averaged. The normalization of the
bound state wave function is given asZ

d3rψ l
α;s

†ðrÞψ l
α;s0 ðrÞ ¼ δα;α0δs;s0 ; ð7Þ

and the scattering wave function is normalized asZ
d3rψeð−Þ†

p;s ðrÞψeð−Þ
p0;s0 ðrÞ ¼ 2Epð2πÞ3δ3ðp − p0Þδs;s0 : ð8Þ

The double differential decay rate with respect to the
electron energy and the angle θ between emitted elec-
trons is given as

d2Γn

dEp1
d cos θ

¼ 4π · 2π
8ð2πÞ5 jp1jjp2j

×
X

s1;s2;sμ;se

jMðp1; s1; p2; s2; 1S; sμ; nS; seÞj2;

ð9Þ
where Ep2

¼ −Ep1
þmμ þme − Bμ − Bn

e and is related
to the total decay rate as

Γ ¼ 1

2

X
n

Z
En
max

me

dEp1

Z
1

−1
d cos θ

d2Γn

dEp1
d cos θ

; ð10Þ

where En
max ¼ mμ − Bμ − Bn

e . The transition matrix
element M is evaluated by using the partial wave
expansion of the electron scattering state. The electron
scattering state with the incoming boundary condition is
expressed as
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ψeð−Þ
p;s ðrÞ¼

X
κ;ν;m

4πilκðlκ;m;1=2;sjjκ;νÞY�
lκ ;m

ðp̂Þe−iδκψκ
p;νðrÞ;

ð11Þ

where δκ is a phase shift for partial wave κ.
ðlκ; m; 1=2; sjjκ; νÞ and Ylκ ;mðp̂Þ are Clebsch-Gordan
coefficients and spherical harmonics, respectively.
Furthermore, the wave function ψκ

p;νðrÞ, where the sub-
scripts p, ν mean a momentum of the electron and a spin
of the partial wave, is written with the radial part gκpðrÞ,
fκpðrÞ and the angular-spin part χκ [12,13] as follows:

ψκ
p;νðrÞ ¼

�
gκpðrÞχνκðr̂Þ
ifκpðrÞχν−κðr̂Þ

�
: ð12Þ

Similarly, the bound state wave function is given as

ψ l
α;sðrÞ ¼

� gκn;lðrÞχsκðr̂Þ
ifκn;lðrÞχs−κðr̂Þ

�
; ð13Þ

where the subscript l is for muon l ¼ μ or electron l ¼ e
and s is a spin of the lepton. The radial wave functions
gκðrÞ and fκðrÞ are obtained by solving the following
Dirac equation with the Coulomb potential VCðrÞ for the
appropriate boundary condition:

dgκðrÞ
dr

þ1þ κ

r
gκðrÞ− ðEþmþeVCðrÞÞfκðrÞ¼ 0; ð14Þ

dfκðrÞ
dr

þ1−κ

r
fκðrÞ− ðE−mþeVCðrÞÞgκðrÞ¼ 0: ð15Þ

Using the partial wave expansion of the scattering wave
function the transition amplitude can be written as follows:

Mðp1; s1; p2; s2; 1S; sμ; nS; seÞ ¼ 2
ffiffiffi
2

p
GF

X
κ1;κ2;ν1;ν2;m1;m2

ð4πÞ2ð−iÞlκ1þlκ2eiðδκ1þδκ2 Þ

× Ylκ1 ;m1
ðp̂1ÞYlκ2 ;m2

ðp̂2Þðlκ1 ; m1; 1=2; s1jjκ1 ; ν1Þðlκ2 ; m2; 1=2; s2jjκ2 ; ν2Þ
×
X
J;M

ðjκ1 ; ν1; jκ2 ; ν2jJ;MÞðj−1; sμ; j−1; sejJ;MÞ

×
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2jκ1 þ 1Þð2jκ2 þ 1Þp
4π

X6
i¼1

giWiðJ; κ1; κ2; Ep1
Þ: ð16Þ

Here WiðJ; κ1; κ2; Ep1
Þ is the transition matrix element for

the gi term that includes both direct and exchange terms.
We introduce the function ZABCDðL; S; JÞ, which consists
of the radial overlap integral, 9j and parity Clebsch-Gordan
coefficients as

ZABCDðL;S;JÞ¼
Z

∞

0

drr2Aκ1
p1
ðrÞB−1

1;μðrÞCκ2
p2
ðrÞD−1

n;eðrÞ

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lAκ1þ1Þð2lB−1þ1Þð2lCκ2þ1Þð2lD−1þ1Þ

q

×ðlAκ1 ;0;lCκ2 ;0jL;0ÞðlB−1;0;lD−1;0jL;0Þ

×

8<
:
lAκ1 1=2 jκ1
lCκ2 1=2 jκ2
L S J

9=
;
8<
:
lB−1 1=2 1=2

lD−1 1=2 1=2

L S J

9=
;: ð17Þ

Here A and C represent the electron scattering states with
momentum p1 and p2 and B and D represent the bound
states of the muon and electron. The radial wave functions
AðrÞ, BðrÞ, CðrÞ, and DðrÞ are either gðrÞ or fðrÞ
introduced in Eqs. (12)–(13). The angular momentum lhκ
is defined as

lhκ ¼
�
lþκ for h ¼ g;

l−κ for h ¼ f:
ð18Þ

The amplitude Wi for i ¼ 1;…; 6 is written by using
linear combination of Z as

W1ðJÞ ¼
1

2
fX−

α ðJ; 0; JÞ − Xþ
β ðJ; 0; JÞ þ i½Yþ

α ðJ; 0; JÞ þ Yþ
β ðJ; 0; JÞ�g; ð19Þ

W2ðJÞ ¼
1

2
fX−

α ðJ; 0; JÞ − Xþ
β ðJ; 0; JÞ − i½Yþ

α ðJ; 0; JÞ þ Yþ
β ðJ; 0; JÞ�g; ð20Þ

W3ðJÞ ¼ 2fX−
α ðJ; 0; JÞ þ Xþ

β ðJ; 0; JÞ − i½Yþ
α ðJ; 0; JÞ − Yþ

β ðJ; 0; JÞ�g; ð21Þ

W4ðJÞ ¼ 2fX−
α ðJ; 0; JÞ þ Xþ

β ðJ; 0; JÞ þ i½Yþ
α ðJ; 0; JÞ − Yþ

β ðJ; 0; JÞ�g; ð22Þ
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W5ðJÞ ¼ 3
XJþ1

L¼jJ−1j
X−
β ðL; 1; JÞ − Xþ

α ðJ; 0; JÞ þ i

�
3

XJþ1

L¼jJ−1j
Y−
α ðL; 1; JÞ þ Y−

β ðJ; 0; JÞ
�
; ð23Þ

W6ðJÞ ¼ 3
XJþ1

L¼jJ−1j
X−
β ðL; 1; JÞ − Xþ

α ðJ; 0; JÞ − i

�
3

XJþ1

L¼jJ−1j
Y−
α ðL; 1; JÞ þ Y−

β ðJ; 0; JÞ
�
; ð24Þ

with

X�
α ðL; S; JÞ ¼ ZggggðL; S; JÞ þ ZffffðL; S; JÞ � ½ZgfgfðL; S; JÞ þ ZfgfgðL; S; JÞ�; ð25Þ

X�
β ðL; S; JÞ ¼ ZggffðL; S; JÞ þ ZffggðL; S; JÞ � ½ZgffgðL; S; JÞ þ ZfggfðL; S; JÞ�; ð26Þ

Y�
α ðL; S; JÞ ¼ ZggfgðL; S; JÞ − ZffgfðL; S; JÞ � ½ZfgggðL; S; JÞ − ZgfffðL; S; JÞ�; ð27Þ

Y�
β ðL; S; JÞ ¼ ZgggfðL; S; JÞ − ZfffgðL; S; JÞ � ½ZgfggðL; S; JÞ − ZfgffðL; S; JÞ�: ð28Þ

Since we assume the bound states of the muon and electron are both in the κ ¼ −1 state, the total angular momentum J can
be J ¼ 0 or 1 and X�

αðβÞ and Y
�
αðβÞ are nonzero only for even L and odd L respectively. It is noticed that only the S ¼ 0 term

contributes for W1, W2, W3, and W4, while both S ¼ 0 and 1 terms contribute for W5 and W6.
After summing the spins of leptons, we yield the differential transition rate,

d2Γn

dEp1
d cos θ

¼ G2
F

π3
jp1jjp2j

X
κ1;κ2;κ01;κ

0
2
;J;l

ð2J þ 1Þð2jκ1 þ 1Þð2jκ2 þ 1Þð2jκ0
1
þ 1Þð2jκ0

2
þ 1Þ

×
1þ ð−1Þlκ1þlκ0

1
þl

2

1þ ð−1Þlκ2þlκ0
2
þl

2
i
−lκ1−lκ2þlκ0

1
þlκ0

2e
iðδκ1þδκ2þδκ0

1
þδκ0

2
Þ

× ðjκ1 ; 1=2; jκ01 ;−1=2jl; 0Þðjκ2 ; 1=2; jκ02 ;−1=2jl; 0ÞWðjκ1jκ2jκ01jκ02 ; JlÞ

× ð−1ÞJ−jκ2−jκ02
X6
i¼1

giWiðJ; κ1; κ2; Ep1
; nÞ

X6
i0¼1

g�i0W
�
i0 ðJ; κ01; κ02; Ep1

; nÞPlðcos θÞ; ð29Þ

where PlðxÞ is Legendre polynomial and W is Racah coefficient, and we can estimate the angular integral analytically and
obtain the following formula for the decay rate of μ−e− → e−e− of a muonic atom,

Γ ¼ G2
F

π3
X
n

Z
En
max

me

dEp1
jp1jjp2j

X
J;κ1;κ2

ð2J þ 1Þð2jκ1 þ 1Þð2jκ2 þ 1Þ
����
X6
i¼1

giWiðJ; κ1; κ2; Ep1
; nÞ

����
2

: ð30Þ

III. NUMERICAL RESULTS

At first, we study the transition density ρtrðrÞ given by
the product of lepton wave functions as

ρtrðrÞ ¼ g−1p1
ðrÞg−1μ ðrÞg−1p2

ðrÞg−1e ðrÞ ð31Þ

to find the role of theCoulomb interaction on the leptonwave
function. Here we take the most important transition matrix
element of the 1S electron andmuon to the κ ¼ −1 electrons
(μ−ð1SÞ þ e−ð1SÞ → e−ðκ ¼ −1Þ þ e−ðκ ¼ −1Þ), where

the two electrons are equally sharing the energy
Ep1

¼ Ep2
¼ ðmμ þme − B1S

μ − B1S
e Þ=2. We examine four

models for the lepton wave functions shown in Table I. In
model I, the bound state wave functions of the muon and
electron are calculated in the nonrelativistic approximation
(Non. Rel.) with Coulomb interaction of point nuclear
charge (Point Coul.) and the electron scattering states are in
the plane wave approximation (PLW). Then the wave
function of the scattering state is replaced by the solution
of the Dirac equation (Rel.) in model II. In model III, both
the bound state and the scattering state lepton wave
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functions are calculated from the Dirac equation with point
nuclear charge. Finally, we used the uniform nuclear charge
distribution (Uniform Coul.) in model IV.
The transition densities of the four models for the

μ−e− → e−e− decay of the 208Pb muonic atom are shown
in Fig. 1. The dashed curve shows transition density in
model I that simulates the previous analysis. By including
the Coulomb attraction for scattering electrons in model II,
the transition density is enhanced around the muon Bohr
radius as shown by the dash-dotted curve. Further we use
the consistent lepton wave functions of the Dirac equation
with point nuclear charge in model III. The transition
density becomes very large as shown by the dash-two-
dotted curve, which is 1=3 of the actual transition density.
However, the use of point nuclear charge would not be
appropriate for an atom of large Z, where the Bohr radius of
the muon can be comparable to the nuclear radius. The
solid curve shows our final result by using a finite charge
distribution of nucleus in model IV. The peak position of
the transition density is shifted toward larger r compared
with that of point nuclear charge. Here the charge distri-
bution of nucleus is taken as a uniform distribution as

ρCðrÞ ¼
3Ze
4πR3

θðR − rÞ: ð32Þ

We use R ¼ 1.2A1=3 for mass number A. For each Z, we
take the mass number A of the most abundant isotope [14],
e.g., A ¼ 208 for Z ¼ 82.

An analytic formula of the μ−e− → e−e− decay rate of
the muonic atom is given in the previous work [4] as

Γ0 ¼
mμ

8π2
ðZ − 1Þ3α3ðGFm2

μÞ2
�
me

mμ

�
3

G; ð33Þ

where G≡G12 þ 16G34 þ 4G56 þ 8G0
14 þ 8G0

23 − 8G0
56

with Gij ≡ jgij2 þ jgjj2 and G0
ij ≡ Reðg�i gjÞ. The formula

shows that the decay rate is proportional to ðZ − 1Þ3. The
formula was obtained by using the nonrelativistic bound
state of the muon and 1S electron with a point nuclear
charge and the plane wave approximation for the final
electrons.
The decay rate Γ obtained in this work is shown in Fig. 2.

Here the ratios Γ=Γ0 are plotted. We retain only the term of
g1 and set the other gs to zero. The contribution of the
dominant 1S bound electron is included. The dashed curve
in Fig. 2 shows the decay rate evaluated with model I. The
ratio for model I deviates from unity for large Z because of
using the finite size bound muon wave function instead of
using the plane wave in the previous estimation. When we
replace the plane wave electrons with the Dirac wave
function for point nuclear charge (II), the decay rate
increases as shown in the dash-dotted curve. When both
bound and scattering states are described by the Dirac
equation that includes the Coulomb interaction of point
nuclear charge (III), the decay rate is even more enhanced
as shown in the dash-two-dotted curve. A realistic descrip-
tion of Γ=Γ0 is obtained by using the uniform nuclear
charge distribution in model IV as shown in the solid curve
in Fig. 2.
The results show that, while Γ0 gives reasonable esti-

mation for smaller Z ∼ 20, the Z dependence of the Γ is
stronger than ðZ − 1Þ3. The ratio Γ=Γ0 is about 7.0 for the
208Pb. We found slightly different Z dependence of Γ for
two types of the effective CLFV contact interaction. The

FIG. 2. The atomic number (Z) dependence of the ratio of the
decay rate Γ=Γ0. The dashed, dash-dotted, dash-two-dotted, and
solid curves show the transition density in models I–IV, respec-
tively. We note that the factor 1=3 has not been multiplied to the
dash-two-dotted curve.

TABLE I. Models for the lepton wave functions.

Model Bound state Scattering state

I Non. Rel./Point Coul. Rel./PLW
II Non. Rel./Point Coul. Rel./Point Coul.
III Rel./Point Coul. Rel./Point Coul.
IV Rel./Uniform Coul. Rel./Uniform Coul.

FIG. 1. The transition density ρðrÞr2 for the
μ−ð1SÞ þ e−ð1SÞ → e−ðκ ¼ −1Þ þ e−ðκ ¼ −1Þ. The dashed,
dash-dotted, dash-two-dotted, and solid curves show the tran-
sition density in models I–IV, respectively.
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interaction of the gi term with i ¼ 1, 2, 3, 4, which leads to
the same helicity states of two electrons, gives Γ=Γ0 ∼
7.0ð1.1Þ for 208Pb (40Ca). For the gi term with i ¼ 5, 6,
where the opposite helicity states of electrons are emitted,
the decay rate is Γ=Γ0 ∼ 6.3ð1.1Þ for 208Pb (40Ca).
Therefore, Z dependence of the decay rate for g1 ∼ g4 is
slightly stronger than that of g5 and g6.
All the results of the decay rate were obtained by

including a sufficiently large number of partial waves of
final electrons. The convergence properties of the decay
rate against the number of partial waves included are shown
in Table II. The number of partial waves needed to obtain
convergent results was jκj ∼ 6 for Pb and Sn and jκj ∼ 13
for Ca. This happens because the muon Bohr radius is
increasing for decreasing Z.
We have also examined the realistic form of the

distribution of nuclear charge using the Woods-Saxon
form,

ρCðrÞ ¼ ρ0

�
1þ exp

�
r − c
z

��
−1
; ð34Þ

for 40Ca, 120Sn, and 208Pb. The parameters, c and z, and the
ratio of the decay rate Γ=Γ0 are listed in Table III. The
modification of the decay rate using Woods-Saxon form
charge distribution in place of uniform distribution is less
than 1%.
The results shown so far were obtained including only

the main transitions where the initial electrons are bound in
the 1S state. The contributions of the electrons from the
higher shell 2S; 3S… are estimated within the independent
particle model for the atomic electrons. Contributions of
higher shell electrons increase the transition rate by ∼20%
as shown in Table III, which is consistent with the result of
the previous work.

The energy and angular distribution of the electron
calculated from the double differential decay rate in
Eq. (9) for the 208Pb is shown in Fig. 3. The two final
electrons are mainly emitted with the same energy in an
opposite direction, since the momentum carried by the
bound two leptons is minimized in this configuration. The
electron energy spectrum normalized by decay rate
dΓ=dE=Γ and the angular distribution between the two
electrons are shown in Figs. 4–5 for models IV (solid) and I
(dashed). The maximum of the energy distribution is
around half of the total energy mμ þme − B1S

μ − B1S
e .

Most of the final electrons are emitted in the opposite
directions. The shapes of the energy distribution and the
angular distribution are significantly different from models
I and IV. The angular and energy distributions in model IV
become narrower than those of model I. This is because the
muon is less bound for finite range nuclear charge
distribution, and therefore it has a smaller high momentum
component.

TABLE III. The parameters of the charge distribution of the
Woods-Saxon form and the ratio of the decay rates Γ=Γ0 for 40Ca,
120Sn, and 208Pb [15]. In the fourth (fifth) column, the Γ=Γ0

including the contribution of the 1S (1S and higher shells) is
shown.

Nuclei c [fm] z [fm] Γ=Γ0 (only 1S) 1Sþ 2Sþ � � �
40Ca 3.51(7) 0.563 1.15 1.35
120Sn 5.315(25) 0.576(11) 2.21 2.67
208Pb 6.624(35) 0.549(8) 6.96 8.78

FIG. 3. The energy and angular distribution of emitted electrons
for the 208Pb by using g1 type interaction.

TABLE II. The convergence property of the partial wave
expansion of Γ=Γ0.

Nuclei jκj ≤ 1 jκj ≤ 5 jκj ≤ 10 jκj ≤ 20

40Ca 0.141 0.847 1.11 1.15
120Sn 0.731 2.17 2.21 2.21
208Pb 2.89 6.94 6.96 6.96

FIG. 4. The normalized energy distribution of the electron for
the 208Pb. The solid (red) curve and the dashed (blue) curve are
obtained by using models IV and I, respectively. The g1 term is
included and all bound S state electrons are taken into account.
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For the interaction that leads to the same chirality of final
electrons, i.e., g1 ∼ g4 terms of Eq. (4), the Pauli principle
prevents the final electron from having the same momen-
tum. On the other hand, in g5 and g6 terms that lead to
electrons with opposite chiralities, this does not apply. A
difference between two interaction terms appears near
cos θ ¼ 1 as seen in Fig. 6.
Finally, we evaluate upper limits for the branching

ratio of the μ−e− → e−e− decay of a muonic atom. The
branching ratio of μ−e− → e−e− is defined by using the
μ−e− → e−e− decay rate of muonic atom Γðμ−e− → e−e−Þ
[Γ given in Eq. (6)] and the total decay rate of muonic
atom 1=~τμ,

Brðμ−e− → e−e−Þ≡ ~τμΓðμ−e− → e−e−Þ: ð35Þ

We estimate the strength of the CLFV interaction from the
current upper limit of the branching ratio of μþ → eþeþe−.
The branching ratio Brðμþ → eþeþe−Þ is given as

Brðμþ → eþeþe−Þ≡ τμΓðμþ → eþeþe−Þ: ð36Þ

Here Γðμþ → eþeþe−Þ and 1=τμ are the decay rate of
μþ → eþeþe− and total decay rate of the free muon,
respectively. Using the contact CLFV interaction in
Eq. (3), the branching ratio Brðμþ → eþeþe−Þ is given
as [16]

Brðμþ → eþeþe−Þ ¼ 1

8
ðG12 þ 16G34 þ 8G56Þ: ð37Þ

Keeping only the g1 term of the CLFV interaction, we can
express the branching ratio of μ−e− → e−e− decay of the
muonic atom as [4]

Brðμ−e− → e−e−Þ≃ 192πðZ − 1Þ3α3
�
me

mμ

�
3 ~τμ
τμ

Γ
Γ0

× Brðμþ → eþeþe−Þ: ð38Þ

Here we used τμ ¼ 192π3=ðG2
Fm

5
μÞ ¼ 2.197 × 10−6 ½s�.

The upper limit of Brðμ−e− → e−e−Þ can be estimated
by using the current upper limit of the branching
ratio Brðμþ → eþeþe−Þ.
The upper limits of the branching ratio of the

previous work (dashed curve) and our results with 1S
(solid curve) and all nS electrons (dotted curve) are
shown in Fig. 7. Here we used the result of the
SINDRUM experiment Brðμþ → eþeþe−Þ < 1.0 ×
10−12 [17] and the data of the lifetime of muonic atoms
~τμ given in [18]. For 208Pb (238U), the branching ratios
Brðμ−e− → e−e−Þ considering only 1S electrons and all
electrons are 3.3 × 10−18 (6.9 × 10−18) and 4.2 × 10−18

(9.8 × 10−18), respectively. Brðμ−e− → e−e−Þ reaches
about 10−17 for 238U.

FIG. 7. Upper limits of Brðμ−e− → e−e−Þ. The dashed (blue)
curve shows the result of previous work [4]. Our results including
only 1S electrons and all 1S electrons are shown by the solid (red)
curve and the dotted (orange) curve, respectively.

FIG. 6. The angular distribution of emitted electrons for the
208Pb. The angular distribution due to the (g1-g4) terms is shown
in the solid (red) curve, and that of the (g5-g6) terms is shown in
the dashed (black) curve.

FIG. 5. The normalized angular distribution of emitted elec-
trons for the 208Pb. The other features are the same as those in
Fig. 4.
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IV. CONCLUSION

We have made an improved study on the μ−e− →
e−e− decay in muonic atoms. Coulomb interaction of
leptons with finite nuclear charge distributions is taken
into account by using the standard multipole expansion
formalism and the numerical solutions of Dirac equa-
tions for both the electron and muon wave functions.
The effects of Coulomb distortion of the emitted
electron and relativistic treatments of the bound leptons
are significantly important for quantitative estimations
of the decay rate. Enhancements of the decay rates of
about nine and 14 times for 208Pb and 238U respectively
compared with the previous analysis are obtained due to
the enhanced overlap integrals of the lepton wave
functions. We also found that different helicity struc-
tures of the CLFV interaction generate sizable difference
in the Z-dependence of the decay rate and also the
angular distribution of the emitted electrons. Finally, the

upper limits of the branching ratio of the μ−e− → e−e−

decay of the muonic atom were estimated.
In this work we have included only the four Fermi CLFV

interaction. It is important to estimate the photonic inter-
action that generates long range interactions between the
bound muon and many electrons in an atom. In addition to
the decay rates, it would be of great interest to find some
other observables that may be useful to discriminate
photonic and contact interactions and also various terms
of the effective CLFV interactions. These issues are in
progress and will be discussed in a separate paper.
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