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Spin-one matter fields are relevant both for the description of hadronic states and as potential extensions
of the Standard Model. In this work we present a formalism for the description of massive spin-one fields
transforming in the ð1; 0Þ ⊕ ð0; 1Þ representation of the Lorentz group, based on the covariant projection
onto parity eigenspaces and Poincaré orbits. The formalism yields a constrained dynamics. We solve the
constraints and perform the canonical quantization accordingly. This formulation uses the recent
construction of a parity-based covariant basis for matrix operators acting on the ðj; 0Þ ⊕ ð0; jÞ
representations. The algebraic properties of the covariant basis play an important role in solving the
constraints and allowing the canonical quantization of the theory. We study the chiral structure of the theory
and conclude that it is not chirally symmetric in the massless limit, hence it is not possible to have chiral
gauge interactions. However, spin-one matter fields can have vector gauge interactions. Also, the
dimension of the field makes self-interactions naively renormalizable. Using the covariant basis, we
classify all possible self-interaction terms.
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I. INTRODUCTION

States transforming in the ð1; 0Þ ⊕ ð0; 1Þ representation
have been shown to be appropriate for the description of
low-energy interactions of the low-lying nonets of vector
and axial-vector mesons [1]. The corresponding fields are
written in tensor language (an antisymmetric second-rank
tensor field is used to describe spin-one mesons) and the
effective theory known as resonance chiral perturbation
theory (RχPT) involves a nonlinear realization of chiral
symmetry. Also, possible effects of spin-one matter par-
ticles described by tensor fields in physics beyond the
standard model have been proposed in [2].
On the other hand, many alternatives for physics beyond

the standard model have been proposed and although the
first results of the Large Hadron Collider (LHC) showed no
evidence of any of these possibilities up to energies of the
order of 1.5 TeV [3–11], recently a series of excess of
events in several searches of new spin-one bosons at the
level of 2–3 standard deviations point to the possible
existence of new spin-one resonances close to 2 TeV
[12]. The simplest possibility for these resonances is some
realization of the left-right symmetric models and the first
possible explanations of the excess of events following this
route have been already proposed in [13,14]. An alternative
to the understanding of these events would be offered by
spin-one matter fields. Indeed, it is intriguing that the
standard model and most of the proposed nonsupersym-
metric extensions use only the (0, 0), ð1=2; 0Þ, ð0; 1=2Þ and
ð1=2; 1=2Þ representations of the Homogeneous Lorentz
Group (HLG). The consistent formulation of a theory

involving fields transforming in the chiral (1, 0) and
(0, 1) representations of the HLG would certainly enlarge
the possibilities for beyond the standard model theories.
Recently, an algorithm for the construction of a covariant

basis for the matrix operators acting on the ðj; 0Þ ⊕ ð0; jÞ
representation space was put forth in Ref. [15]. This
construction is based on the covariant properties of the
parity operator, and the explicit form of the covariant
matrices is given for j ¼ 1=2, 1, 3=2. For j ¼ 1=2 the
covariant basis reproduces the conventional basis acting on
Dirac space, and the Dirac equation is recovered as the
covariant projection onto parity eigenspaces. This alter-
native view of the Dirac equation, and the fact that the
covariant basis for ð1; 0Þ ⊕ ð0; 1Þ has been already con-
structed in [15], leads us to explore the j ¼ 1 generalization
of the structure of the Dirac theory. Since a chirality
operator appears in a natural way in the covariant basis,
chiral states can be constructed directly. This allows us to
study alternatives for the formulation of chiral effective
theories for hadrons using the Dirac-like theory for fields
transforming in the ð1; 0Þ ⊕ ð0; 1Þ representation of
the HLG.
In this work, we propose a theory for massive spin-one

matter fields which is a direct generalization to j ¼ 1 of the
structure of the Dirac theory for fermions. The formalism is
based on the simultaneous projection onto invariant parity
subspaces and appropriate Poincaré orbit. The formalism
yields a constrained dynamics with second class con-
straints. We work out these constraints in the classical
field theory, and show that sensible results are obtained
upon quantization once we use the specific algebraic
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properties of the covariant basis. We study the chiral
structure and classify the naively renormalizable self-
interactions of the spin-one matter fields.
Our paper is organized as follows. In the next section we

introduce the formalism and study the solutions and
discrete symmetries at the classical level. The constraints
and corresponding dynamics are analyzed in Sec. III. The
canonical quantization of the free theory is discussed in
Sec. IV. The chiral structure and naively renormalizable
interactions are described in Sec. V. We give our con-
clusions in Sec. VI and close with two appendixes with
technical details of the calculations.

II. PARITY-BASED FORMALISM FOR THE
ð1; 0Þ ⊕ ð0; 1Þ REPRESENTATION

It was shown in [15] that the parity-based covariant basis
for a general ðj; 0Þ ⊕ ð0; jÞ operator space contains the
following:
(1) Two Lorentz scalar operators, the unit matrix of

dimension 2ð2jþ 1Þ and the chirality operator χ.
(2) Six operators transforming in the ð1; 0Þ ⊕ ð0; 1Þ

representation forming a rank-2 antisymmetric ten-
sor, Mμν, whose components are the corresponding
generators of the HLG.

(3) A pair of symmetric traceless matrix tensors trans-
forming in the ðj; jÞ representation, with the first one
denoted Sμ1μ2…μ2j and the second one given by
χSμ1μ2…μ2j .

(4) A series of tensor matrix operators with the appro-
priate symmetry properties such that they transform
in the ð2; 0Þ ⊕ ð0; 2Þ; ð3; 0Þ ⊕ ð0; 3Þ;…; ð2j; 0Þ ⊕
ð0; 2jÞ representations of the HLG.

The rest frame parity operator is the time component of
the first symmetric traceless tensor, Π ¼ S00…0. The boost
operator can be explicitly constructed due to the simple
representation form [in the chiral basis for the ðj; 0Þ ⊕
ð0; jÞ space] of the boost generator K ¼ −iχJ ¼
−idiagðJ;−JÞ. Using the boost operator, it is possible to
construct explicitly the states (j-spinors or simply spinors
in the following) in an arbitrary frame once we know them
in the rest frame. Another important application of the
boost operator is the construction of the covariant form of a
given operator from its form in the rest frame. In particular,
we can calculate the covariant form of the parity operator.
A simple calculation yields

BðpÞΠB−1ðpÞ ¼ Sμ1μ2:::μ2jpμ1pμ2…pμ2j

m2j : ð1Þ

Let us briefly review the application to j ¼ 1=2. In this
case the covariant basis is given by two scalar operators, 1
and χ, an antisymmetric tensor, Mμν, and two vector
operators (the “symmetric” operators of rank 2j ¼ 1)

f1; χ; Sμ; χSμ;Mμνg: ð2Þ

The algorithm outlined in [15] yields

Sμ ¼ Πðg0μ − 2iM0μÞ: ð3Þ

This is the conventional set used in the literature up to a 1=2
factor in Mμν, where the chirality operator is the conven-
tional γ5 Dirac matrix and Sμ ¼ γμ. Boosting the rest frame
parity operator we get

BðpÞΠB−1ðpÞ ¼ Sμpμ

m
: ð4Þ

Since the rest frame projectors onto states of well-defined
parity are

~P� ¼ 1

2
ð1� ΠÞ; ð5Þ

the condition for well-defined parity in the rest frame is

~P�uð0Þ ¼ uð0Þ; ð6Þ

and boosting this equation we get the following condition:

ðSμpμ ∓ mÞuðpÞ ¼ 0: ð7Þ

Transforming to configuration space the positive parity
projection yields the Dirac equation

ðiSμ∂μ −mÞψðxÞ ¼ 0; ð8Þ

where ψðxÞ ¼ uðpÞe−ip·x.

A. The structure of the spin-one representation

In the case of spin-one, the basis of matrices with well-
defined Lorentz transformation properties is

f1; χ; Sμν; χSμν;Mμν; Cμναβg: ð9Þ

The symmetric tensor Sμν is given by

Sμν ¼ Πðgμν − iðg0μM0ν þ g0νM0μÞ − fM0μ;M0νgÞ: ð10Þ

This tensor is traceless in the Lorentz indices

Sμμ ¼ 0; ð11Þ

which leaves nine independent components transforming in
the (1, 1) representation of the HLG. These operators
satisfy the following algebraic relations:

½Sμν; Sαβ� ¼ −iðgμαMνβ þ gναMμβ þ gνβMμα þ gμβMναÞ;
ð12Þ
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fSμν; Sαβg ¼ 4

3

�
gμαgνβ þ gναgμβ −

1

2
gμνgαβ

�

−
1

6
ðCμανβ þ CμβναÞ: ð13Þ

Finally the tensor transforming in the ð2; 0Þ ⊕ ð0; 2Þ
representation is given by

Cμναβ ¼ 4fMμν;Mαβg þ 2fMμα;Mνβg − 2fMμβ;Mναg
− 8ðgμαgνβ − gμβgναÞ: ð14Þ

It has the following symmetries:

Cμναβ ¼ −Cνμαβ ¼ −Cμνβα; Cμναβ ¼ Cαβμν; ð15Þ

the contraction of any pair of indices vanishes and it
satisfies the algebraic Bianchi identity

Cμναβ þ Cμαβν þ Cμβνα ¼ 0: ð16Þ

These symmetries leave only 10 independent components
out of the 256 components of a general four-index tensor.
The explicit form of the 6 × 6 matrix tensor operators in

Eq. (9) can be found in [15], in the chiral basis of states
diagonalizing the chirality operator, χ. For the purposes of
this work it is convenient to work in the “parity” basis of
states where the particle-antiparticle interpretation is easier.
The matrix operators are related by O ¼ FOχF† where F
stands for the change of basis matrix

F ¼ 1ffiffiffi
2

p
�
I I

I −I

�
: ð17Þ

Here we will just need the explicit representation of Sμν,
which in the parity basis is given by

S00 ≡ Π ¼
�
I 0

0 −I

�
; S0i ¼

�
0 −Ji

Ji 0

�
;

Sij ¼
�
gij þ fJi; Jjg 0

0 −gij − fJi; Jjg

�
; ð18Þ

where Ji ≡ 1
2
ϵijkMjk are the conventional spin one

matrices.

B. The spin-one parity projection

The condition for a state transforming in ð1; 0Þ ⊕ ð0; 1Þ
to have well-defined parity is given by Eq. (6), with the
corresponding parity operator in this representation space.
A similar procedure as the one used for the spin 1=2 case
yields the following equation:

ðSμν∂μ∂ν þm2ÞψðxÞ ¼ 0: ð19Þ

This equation was proposed long ago by Weinberg [16]
following a different approach and several aspects of this
theory have been studied in the literature [17–20]. The main
drawback of this equation is that it contains unphysical
solutions. In the parity-based covariant construction this is
easily understood from the algebraic properties of the
symmetric tensor in Eq. (13). Indeed, using this equation
it is easy to show that

ðSμν∂μ∂νÞ2 ≡ ðSð∂ÞÞ2 ¼ ∂4; ð20Þ

and multipliying on the left Eq. (19) with Sð∂Þ −m2 we
obtain

ð∂4 −m4ÞψðxÞ ¼ 0: ð21Þ

This equation has the conventional plane wave solutions
with p2 ¼ m2 but also solutions belonging to the p2 ¼
−m2 Poincaré orbit. This problem can be traced back to the
naive construction of the projectors in Eq. (5). It can be
shown that the corresponding boosted operators

~P�ðpÞ ¼
1

2

�
1� SðpÞ

m2

�
ð22Þ

cease to be projectors as soon as we go off-shell. The
correct parity projectors for the general off-shell case are

P�ðpÞ ¼
1

2

�
1� SðpÞ

p2

�
: ð23Þ

In addition to finding the right parity projection we must
also take care of the projection on the desired Poincaré
orbit. To this end we use the simultaneous mass and parity
projector

p2

m2
P�ðpÞ ¼

1

2m2
ðp2 � SðpÞÞ: ð24Þ

This procedure yields the following equation in coordinate
space:

ðΣμν∂μ∂ν þm2ÞψðxÞ ¼ 0; ð25Þ

where

Σμν ¼ 1

2
ðgμν þ SμνÞ: ð26Þ

Using Eq. (20) and multiplying Eq. (25) on the left by
1
2
ð∂2 − Sð∂ÞÞ −m2 it is easy to show that the fields satisfy

the Klein-Gordon equation

ð∂2 þm2ÞψðxÞ ¼ 0; ð27Þ
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whose solutions are of the form ψðxÞ ¼ urðpÞe−ip·x where
r denotes the particle polarization. The theory for particles
with negative parity can be constructed in a similar way; in
the following we will focus on the positive parity case.
The formulation of wave equations for spinning particles

is an old problem and as far as we know Eq. (25) was
firstly considered in [21] following a different approach,
including electromagnetic interactions at the classical
level. Closely related work was also done in [22,23].
The present approach, based on the parity and Poincaré
projections, permits us to identify all quantum numbers
from first principles. Also, the algebraic structure of the
ð1; 0Þ ⊕ ð0; 1Þ representation space will allow us to work
out the constrained dynamics at the classical level and the
proper quantization of this theory.
The spinors urðpÞ have six components and satisfy the

following equation:

ðΣμνpμpν −m2ÞurðpÞ ¼ 0: ð28Þ

Equivalently, since a free particle spinor must satisfy the
Klein-Gordon condition, the spinor also satisfies

ðSμνpμpν −m2ÞurðpÞ ¼ 0: ð29Þ

Let us first explore the free particle solutions of Eq. (25).
Introducing the explicit form of the Sμν matrices in Eq. (25)
we get

� ∂2 þm2 þ ðJ ·∇Þ2 −J ·∇∂0

J ·∇∂0 m2 − ðJ ·∇Þ2
�
ψðxÞ ¼ 0: ð30Þ

Writing ψ in terms of the “up” (φ) and “down” (ξ) three-
component components we get

½∂2 þm2 þ ðJ · ∇Þ2�φ ¼ J · ∇∂0ξ; ð31Þ

½m2 − ðJ · ∇Þ2�ξ ¼ −J · ∇∂0φ: ð32Þ

The second line yields the ξ field in terms of the time
derivatives of the φ field, i.e. it is a constraint of the theory
which leaves only the three complex components of φ
required to describe a particle-antiparticle spin-one system
as the physical degrees of freedom. The constraint equation
reads

ξ ¼ −O−1J · ∇∂0φ; ð33Þ

with O ¼ m2 − ðJ · ∇Þ2 which is nonsingular.
The true equation of motion for the φ field is obtained

multiplying the first equation by O and using the second
one to get

ð½∂2 þm2 þ ðJ · ∇Þ2�½m2 − ðJ · ∇Þ2� þ ðJ · ∇Þ2∂2
0Þφ ¼ 0:

ð34Þ

Notice that this equation is second order in time
derivatives and seemingly higher order in space derivatives.
However, because of the algebraic properties of Ji matrices,

ðJ · ∇Þ3 ¼ ðJ · ∇Þ∇2; ð35Þ

and it is easy to show that this equation can be rewritten as

m2½∂2 þm2�φ ¼ 0; ð36Þ

i.e., it is just the Klein-Gordon equation for the three
complex degrees of freedom in φ.
In momentum space, writing φðxÞ ¼ ϕrðpÞe−ip·x we find

the following solutions to the equation of motion:

urðpÞ ¼ N

�
ϕrðpÞ

− J·p
E ϕrðpÞ

�
; ð37Þ

where N is an appropriate normalization factor.
Our formalism is designed for massive particles.

However, it has a soft m → 0 limit which is worth
exploring. In the massless limit, our equation reduces to
the system

½∂2 þ ðJ · ∇Þ2�φ − J · ∇ ∂0ξ ¼ 0 ð38Þ

J · ∇ ∂0φ − ðJ · ∇Þ2ξ ¼ 0: ð39Þ

Notice that now the operator ðJ · ∇Þ2 accompanying the ξ
spinor is not invertible (in momentum space, it is the
helicity operator, and it has a zero eigenvalue). In this case
we expect to have a gauge invariance which reduces the
degrees of freedom contained in the ψ spinor. In the next
section, we will work out the Hamiltonian analysis of the
constrained dynamics of the theory, and will show that in
the massive case all constraints are second class. In the
massless limit the characteristic matrix of the constraints
has no inverse and first class constraints (gauge sym-
metries) appear. A straightforward calculation shows that
the massless equation of motion (or the Lagrangian in the
following section) is invariant under the following gauge
transformations [24]:

φi → φi þ ðJ · ∇Þijεj; ð40Þ

ξi → ξi þ ∂0εi þ ∂if; ð41Þ

where εðxÞ is an arbitrary three component spinor, and fðxÞ
is an arbitrary scalar function. This reduces our six degrees
of freedom to only two as expected.
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Coming back to the massive theory which is the topic of
this paper, the presence of nondynamical degrees of free-
dom in ψ makes clear that the quantization of the theory
must proceed through a careful study of the constraints.
Before elaborating on this point and in preparation for the
particle interpretation necessary for the quantization of the
theory, we study the charge conjugation operation.

C. Interacting theory and discrete symmetries

We use the gauge principle for the simplest case of a
Uð1Þ gauge group. Gauging Eq. (25) we get

½Σμνði∂ − qAÞμði∂ − qAÞν −m2�ψ ¼ 0; ð42Þ

where q is the Uð1Þ charge of the particle. Complex
conjugating Eq. (42) and multiplying on the left by a
matrix in the ð1; 0Þ ⊕ ð0; 1Þ representation space denoted
by Γ we obtain

½ΓðΣμνÞ�Γ−1ði∂ þ qAÞμði∂ þ qAÞν −m2�ψc ¼ 0; ð43Þ

with

ψc ≡ Cψ ¼ Γψ�: ð44Þ

If we require ψc to satisfy the same equation as ψ but with
the opposite Uð1Þ charge, −q, the symmetric tensor S must
satisfy the following relation:

ΓðSμνÞ�Γ−1 ¼ Sμν: ð45Þ

The construction of the matrix Γ satisfying Eq. (45) can
be done from first principles and we just quote the final
result. Up to a phase this matrix is given by

Γ ¼
�
U 0

0 −U

�
; ð46Þ

where U stands for the time reversal operator in the
ð1; 0Þ ⊕ ð0; 1Þ representation space:

U ¼ e−iπJ2 ¼

0
B@

0 0 1

0 −1 0

1 0 0

1
CA: ð47Þ

A crucial difference with the Dirac theory is that for
spin-one matter fields the charge conjugation operator
commutes with the rest frame parity operator,

½C;Π� ¼ 0: ð48Þ

This relation defines the particle-antiparticle structure in the
corresponding quantum field theory. In the rest frame, the
“down” component of the spinors in Eq. (37) corresponds

to negative parity as in the Dirac case. However, for spin-
one matter particles, it is not connected with the antiparticle
solutions. Indeed, as we can see from the explicit form of
the spinors in Eq. (37), the “down” component vanishes in
the rest frame, and for an arbitrary frame it is fixed by the
kinematics.
The charge conjugated spinor, given by

ucrðpÞ ¼ Γu�rðpÞ; ð49Þ

also satisfies the equation

ðΣμνpμpν −m2ÞucrðpÞ ¼ 0: ð50Þ

The adjoint spinors obey the adjoint equations

ūrðpÞðSμαpμpα −m2Þ ¼ 0; ð51Þ

ūcrðpÞðSμαpμpα −m2Þ ¼ 0: ð52Þ

These spinors are normalized according to

ūcrðpÞucsðpÞ ¼ ūrðpÞusðpÞ ¼ δrs: ð53Þ

The corresponding completeness relation is

X
r

uraðpÞūrbðpÞ ¼
X
r

ucraðpÞūcrbðpÞ ¼
�
SðpÞ þm2

2m2

�
ab
:

ð54Þ

Now, the minimally coupled equation, Eq. (42), written
in terms of the covariant derivative

Dμψ ¼ ∂μψ þ iqAμψ ; ð55Þ

and the parity components fφ; ξg, is
�
D2 þm2 þ 1

2
DifJi; JjgDj

�
φ −

1

2
JifDi;D0gξ ¼ 0;

ð56Þ

1

2
JifDi;D0gφþ

�
m2 −

1

2
DifJi; JjgDj

�
ξ ¼ 0: ð57Þ

Again, Eq. (57) does not involve the time derivative of ξ
and is therefore still a constraint. While the manipulation of
this equation is complicated by the presence of the non-
commuting differential operators Dμ, we can check in a
calculation similar to the one leading to Eq. (34) that the
true equation of motion has the form
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��
D2 þm2 þ 1

2
DifJi; JjgDj

�

þ 1

2
JifDi;D0gO−1

c
1

2
JjfDj;D0g

�
φ ¼ 0: ð58Þ

The operator O−1
c ¼ ½m2 − 1

2
DifJi; JjgDj�−1 involves only

the spatial components of Dμ, and therefore this is an
equation containing only second time derivatives of the φ
components. Therefore, the counting of degrees of freedom
is unaltered from the free case.

III. CLASSICAL FIELD THEORY AND
CONSTRAINTS

The equation of motion can be derived from the
following Hermitian Lagrangian:

L ¼ ∂μΨ̄Σμν∂νΨ −m2Ψ̄Ψ ð59Þ

where Ψ̄ ¼ Ψ†Π. In order to exhibit the dynamical content
we write the theory in terms of the “up” (φ) and “down” (ξ)
components of the field and the corresponding conjugate
momenta

Ψ ¼
�
φ

ξ

�
; ζ ¼

�
π

τ

�
: ð60Þ

In terms of these components the Lagrangian reads

L ¼ ∂0φ
†∂0φþ ∂iφ

†∂iφ −
1

2
∂0φ

†Ji∂iξ −
1

2
∂0ξ

†Ji∂iφ

−
1

2
∂iφ

†Ji∂0ξ −
1

2
∂iξ

†Ji∂0φþ 1

2
∂iφ

†fJi; Jjg∂jφ

þ 1

2
∂iξ

†fJi; Jjg∂jξ −m2ðφ†φ − ξ†ξÞ: ð61Þ

Notice that this Lagrangian does not contain second time
derivatives in the “down” component ξ. The canonical
conjugated momenta are given as

πa ¼
δL

δð∂0φaÞ
¼ ∂0φ

†
a −

1

2
ð∂iξ

†JiÞa;

π†a ¼ δL

δð∂0φ
†
aÞ

¼ ∂0φa −
1

2
ðJi∂iξÞa; ð62Þ

τa ¼
δL

δð∂0ξaÞ
¼ −

1

2
ð∂iφ

†JiÞa;

τ†a ¼ δL

δð∂0ξ
†
aÞ

¼ −
1

2
ðJi∂iφÞa: ð63Þ

Clearly, Eqs. (63) are (primary) constraints on the variables
of the system

ρa ¼ τa þ
1

2
ð∂iφ

†JiÞa ¼ 0; ρ†a ¼ τ†a þ 1

2
ðJi∂iφÞa ¼ 0:

ð64Þ

The Hamiltonian density is

H¼πa∂0φa þ ∂0φ
†
aπ

†
a þ τa∂0ξa þ ∂0ξ

†
aτ

†
a − L: ð65Þ

A straightforward calculation yields

H ¼ πaπ
†
a þ 1

2
πaðJi∂iξÞa þ

1

2
ð∂iξ

†JiÞaπ†a

þ 1

4
ð∂iξ

†JiÞaðJj∂jξÞa − ∂iφ
†
a∂iφa

−
1

2
∂iφ

†
afJi; Jjgab∂jφb −

1

2
∂iξ

†
afJi; Jjgab∂jξa

þm2ðφ†
aφa − ξ†aξaÞ: ð66Þ

Notice that this Hamiltonian density does not contain the τ
momenta nor time derivatives of the “down” spinor.
According to Dirac classic lectures [25] the time evolution
of the system is given by the modified Hamiltonian H�
given by

H� ¼
Z

d3xH� ð67Þ

with the modified Hamiltonian density

H� ¼ Hþ λaρa þ λ†aρ
†
a; ð68Þ

where λa and λ†a are the Lagrange multipliers.
The Hamilton equations read

∂0φa ¼
δH�

δπa
¼ π†a þ 1

2
ðJi∂iξÞa; ð69Þ

∂0πa ¼ −
δH�

δφa
¼ −∂i∂iφ†

a − ∂j∂iðφ†JiJjÞa −m2φ†
a

þ 1

2
ð∂iλ

†JiÞa; ð70Þ

∂0ξa ¼
δH�

δτa
¼ λa; ð71Þ

∂0τa ¼ −
δH�

δξa
¼ 1

2
∂iðπJiÞa −

3

4
ð∂j∂iξ

†JiJjÞa þm2ξ†a:

ð72Þ

The corresponding equations for the adjoint phase space
variables, not shown here, are given by the adjoint of these
equations.
The time evolution of any observable can be written in

terms of the Poisson brackets as
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_A ¼ fA;H�g: ð73Þ

In our case the Poisson bracket is given by

fAðxÞ; BðyÞg

¼
Z

d3x0X
a

�
δAðxÞ
δΨaðx0Þ

δBðyÞ
δζaðx0Þ −

δBðyÞ
δΨaðx0Þ

δAðxÞ
δζaðx0Þ

�
ð74Þ

where the sum is over all the field components and their
conjugate momenta.
A straightforward calculation yields

fφaðxÞ; πbðyÞg ¼ δabδ
3ðx − yÞ;

fξaðxÞ; τbðyÞg ¼ δabδ
3ðx − yÞ; ð75Þ

and the corresponding adjoint relations.
The dynamics generated by H� must preserve the

constraints hence the following relations must hold:

∂0ρa ¼ fρa; H�g ¼ 0; ∂0ρ
†
a ¼ fρ†c; H�g ¼ 0: ð76Þ

In our system this produces new (secondary) constraints

κa ¼ ∂iðπJiÞa −
1

2
ð∂j∂iξ

†JiJjÞa þm2ξ†a ¼ 0; ð77Þ

κ†a ¼ ∂iðJiπ†Þa −
1

2
ð∂j∂iJiJjξÞa þm2ξa ¼ 0: ð78Þ

Requiring that the new constraints be preserved by the
dynamics we get

λ†a − ∂iðφ†JiÞa ¼ 0; λa − ∂iðJiφÞa ¼ 0: ð79Þ

These relations just define the Lagrange multipliers but do
not generate new constraints.
In total, we have 24 degrees of freedom in the

Hamiltonian description, 12 coming from the fφ†;φg
fields and their associated momenta fπ†; πg, and another
12 from the fξ†; ξg fields and their momenta fτ†; τg. On
the other hand, we have the set of 12 constraints ffag ¼
fρa; ρ†a; χa; χ†ag. This leaves us with 12 degrees of freedom
in phase space, that correspond to 3 complex degrees of
freedom obeying a second-degree equation of motion, as
expected for a particle-antiparticle field with 3 degrees of
freedom.
Following the procedure outlined by Dirac in Ref. [25]

we calculate now the matrix of the Poisson brackets of the
constraints

Δabðx; yÞ ¼ ffaðxÞ; fbðyÞg: ð80Þ

A straightforward calculation yields the following block
matrix form:

Δðx; yÞ ¼ m2δ3ðx − yÞ

0
BBB@

0 0 0 −1
0 0 −1 0

0 1 0 0

1 0 0 0

1
CCCA: ð81Þ

This is a nonsingular matrix thus all the obtained con-
straints are second class constraints. The inverse of this
matrix is given by

Δ−1ðy; zÞ ¼ 1

m2
δ3ðy − zÞ

0
BBB@

0 0 0 1

0 0 1 0

0 −1 0 0

−1 0 0 0

1
CCCA: ð82Þ

To proceed with the quantization we need the Dirac
bracket, defined as

fA; BgD ¼ fA; Bg

−
Z

d3zd3z0fA; faðzÞgΔ−1
ab ðz; z0Þffbðz0Þ; Bg:

ð83Þ

For the canonical variables the inverse matrix in Eq. (82)
simplifies the calculation. For example

fφaðxÞ; πbðyÞgD
¼ δabδ

3ðx − yÞ − 1

m2

Z
d3zfφaðxÞ; ρcðzÞgfκ†cðzÞ; πbðyÞg

−
1

m2

Z
d3zfφaðxÞ; ρ†cðzÞgfκcðzÞ; πbðyÞg

þ 1

m2

Z
d3zfφaðxÞ; κcðzÞgfρ†cðzÞ; πbðyÞg

þ 1

m2

Z
d3zfφaðxÞ; κ†cðzÞgfρcðzÞ; πbðyÞg;

and similar expressions hold for the remaining pairs of
conjugate variables. A straightforward calculation yields

fφaðxÞ; πbðyÞgD ¼
�
1 −

ðJ · ∇Þ2
2m2

�
ab
δ3ðx − yÞ; ð84Þ

fφaðxÞ; τbðyÞgD ¼ 0; ð85Þ

fξaðxÞ; πbðyÞgD ¼ 0; ð86Þ

fξaðxÞ; τbðyÞgD ¼ ðJ · ∇Þ2ab
2m2

δ3ðx − yÞ: ð87Þ

We can rewrite these relations in compact spinor notation
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fΨaðxÞ;ζbðyÞgD ¼
�
Σ00−

ðJ ·∇Þ2
2m2

S00
�
ab
δ3ðx− yÞ: ð88Þ

The quantization of the theory must be done replacing
the Dirac bracket by the quantum commutator−i½; �, and we
expect the quantum commutator of the canonical conjugate
fields to be

½ΨaðxÞ; ζbðyÞ� ¼ i
�
Σ00 −

ðJ ·∇Þ2
2m2

S00
�
ab
δ3ðx − yÞ: ð89Þ

To end this section we would like to remark that the
coupling to an external Uð1Þ field can spoil the quantiza-
tion procedure rendering the commutation relations of the
canonical variables ill defined for some values of the
external field [26]. We do not expect this to be the case
here as pointed by the coupled true equation of motion (58)
but in order to ensure this, we performed the analogous
calculations for the coupled theory finding the very same
canonical commutation relations. The calculations are
rather long, and we defer the details to Appendix A.

IV. CANONICAL QUANTIZATION OF SPIN 1
MATTER FIELDS

Under an infinitesimal transformation

Ψ → Ψ0 ¼ Ψþ δΨ ð90Þ

the Lagrangian changes as

δL ¼ ∂μ½∂αΨ̄ΣαμδΨþ δΨ̄Σμα∂αΨ�: ð91Þ

Invariance under a given transformation yields conserved
currents. First, our Lagrangian is invariant under the global
Uð1Þ transformations Ψ0 ¼ eiqλΨ. The corresponding con-
served current is given by

Jα ¼ iqðð∂μΨ̄ÞΣμαΨ − Ψ̄Σανð∂νΨÞÞ: ð92Þ

Invariance under space-time translations yields the fol-
lowing stress tensor:

Tμ
ν ¼ ∂νΨ̄Σμα∂αΨþ ∂αΨ̄Σαμ∂νΨ

− ημνð∂αΨ̄Σαβ∂βΨ −m2Ψ̄ΨÞ: ð93Þ

The angular momentum density is similarly obtained as

M0ij ¼ T0jxi − T0ixj þ iðΨ̄ϵijkJkΣ0ν∂νΨÞ
− ið∂μΨ̄Σμ0ϵijkJkΨÞ: ð94Þ

The field and its adjoint are expanded in the conventional
Fourier series

ΨðxÞ ¼
X
p;r

αðpÞ½crðpÞurðpÞe−ipx þ dþr ðpÞucrðpÞeipx�;

ð95Þ

Ψ̄ðxÞ ¼
X
p;r

αðpÞ½cþr ðpÞūrðpÞeipx þ drðpÞūcrðpÞe−ipx�;

ð96Þ

where αðpÞ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2EðpÞVp

and r denotes the polarization
of the one-particle states. The particle (antiparticle) creation
(annihilation) operators satisfy the following commutation
relations:

½crðpÞ; c†sðp0Þ� ¼ δrsδpp0 ; ½drðpÞ; d†sðp0Þ� ¼ δrsδpp0 :

ð97Þ

A. Commutation relations

The conjugated momenta are given by

ζ̄d ¼
∂L

∂Ψ̄d;0
¼ Σ0μ

dað∂μΨÞa; ð98Þ

ζd ¼
∂L

∂Ψd;0
¼ ð∂μΨ̄ÞaΣμ0

ad: ð99Þ

The commutators of the fields with the canonical con-
jugated momenta are given by

½ζd;Ψb� ¼ ð∂μΨ̄ÞaΣμ0
adΨb −Ψbð∂μΨ̄ÞaΣμ0

ad; ð100Þ

½ζ̄d; Ψ̄b� ¼ Σ0μ
dað∂μΨÞaΨ̄b − Ψ̄bΣ

0μ
dað∂μΨÞa: ð101Þ

Inserting the Fourier series in Eq. (100) we get

½ζdðx1Þ;Ψbðx2Þ� ¼
X
p;r

−ipμ

2Vp0

½ūraðpÞurbðpÞΣμ0
ade

ipðx1−x2Þ

þ ūcraðpÞucrbðpÞΣμ0
ade

ipðx2−x1Þ�: ð102Þ

For equal time x01 ¼ x02 ¼ 0, using Eq. (54) we get

½ζdðx1Þ;Ψbðx2Þ�x0
1;2¼0

¼ −i
X
p

pμ

2Vp0

�
SðpÞ þm2

2m2

�
ba
Σμ0
ade

ipiðxi1−xi2Þ

− i
X
p

pμ

2Vp0

�
SðpÞ þm2

2m2

�
ba
Σμ0
ade

−ipiðxi1−xi2Þ: ð103Þ

Changing pi → −pi in the second term we get
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½ζdðx1Þ;Ψbðx2Þ�x0
1;2¼0

¼ −i
X
p

eipiðxi1−xi2Þ

V

×

�
Σ00p0p0 þ ð2Σ0iΣ0j þ ΣijΣ00Þpipj

m2

�
bd
: ð104Þ

This equation can be further reduced using the algebra
satisfied by S. Indeed, using Eq. (13) it is possible to show
that

ð2Σ0iΣ0j þ ΣijΣ00Þpipj ¼
1

2
ðΣijpipj − p2Σ00Þ: ð105Þ

Using this relation we can further reduce our commutator to

½ζdðx1Þ;Ψbðx2Þ�x0
1;2¼0 ¼ −i

X
p

eipiðxi1−xi2Þ

V

×

�
Σ00 þ ðSij − gijS00Þpipj

4m2

�
bd
:

ð106Þ

Finally, using the explicit representation of the Sμν matrices
it can be shown that

ðSij − gijS00Þpipj ¼ 2ðJ · pÞ2S00; ð107Þ

and putting it all together we obtain

½ζdðx1Þ;Ψbðx2Þ�x0
1;2¼0 ¼ −i

�
Σ00 −

ðJ · ∇Þ2
2m2

S00
�

bd

× δðx1 − x2Þ: ð108Þ

A similar calculation yields

½ζ̄dðx1Þ; Ψ̄bðx2Þ�x0
1;2¼0 ¼ −i

�
Σ00 −

ðJ · ∇Þ2
2m2

S00
�

bd

× δðx1 − x2Þ: ð109Þ

This is exactly the result expected from our classical
analysis of the constrained dynamics in the previous section
summarized in Eq. (88).

B. Energy and momentum of the field

The energy density of the field is defined as

H ¼ T00 ¼ ∂0Ψ̄Σ00∂0Ψ − ∂iΨ̄Σij∂jΨþm2Ψ̄Ψ: ð110Þ

After a straightforward algebra, integrating the normal
product of T00 we get the following expression for the
total energy of the field:

H ¼ ð2πÞ3
X
p;r

X
r0
αðpÞ2½cþr ðpÞcr0 ðpÞūrðpÞðΣ00p0p0 − Σijpipj þm2Þur0 ðp0Þ

þ drðpÞcr0 ð−pÞūcrðpÞð−Σ00p0p0 − Σijpipj þm2Þur0 ð−pÞe−2ip0x0

þ cþr ðpÞdþr0 ð−pÞūrðpÞð−Σ00p0p0 − Σijpipj þm2Þucr0 ð−pÞe2ip0x0

þ drðpÞdþr0 ð−pÞūcrðpÞðΣ00p0p0 − Σijpipj þm2Þucr0 ð−pÞ�: ð111Þ
Next, we use

−Σ00p0p0 − Σijpipj ¼ 2Σ0ip0pi − ΣðpÞ; ð112Þ
and the equations of motion in Eqs. (28), (50), (51), (52) to obtain

H ¼ ð2πÞ3
X
p;r

X
r0
αðpÞ2½cþr ðpÞcr0 ðpÞūrðpÞð2Σ0μp0pμÞur0 ðpÞ

þ drðpÞcr0 ð−pÞūcrðpÞð2Σ0ip0piÞur0 ð−pÞe−2ip0x0

þ cþr ðpÞdþr0 ð−pÞūrðpÞð2Σ0ip0piÞucr0 ð−pÞe2ip0x0

þ dþr0 ðpÞdrðpÞūcrðpÞð2Σ0μp0pμÞucr0 ðpÞ�: ð113Þ
With the aid of Eqs. (12), (13) it is possible to show that

ūrðpÞðΣ0μpμÞusðpÞ ¼ p0δrs; ð114Þ

ūrðpÞðΣ0ipiÞucr0 ð−pÞ ¼ ūcrðpÞðΣ0ip0piÞur0 ð−pÞ ¼ 0: ð115Þ
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Using these results we obtain the expected total energy of
the field:

H ¼ ð2πÞ3
V

X
p;r

p0½cþr ðpÞcrðpÞ þ dþr ðpÞdrðpÞ�: ð116Þ

The total momentum of the field is

Pi ¼
Z

NfT0
i gd3x

¼
Z

Nf∂iΨ̄Σ0ν∂νΨþ ∂μΨ̄Σμ0∂iΨgd3x: ð117Þ

Inserting the Fourier expansion of the fields in Eqs. (95),
(96) a little algebra yields

Pi ¼ ð2πÞ3
X
p;r

X
r0
αðpÞ2

× ½cþr ðpÞcr0 ðpÞūrðpÞΣ0νpνur0 ðpÞð2piÞ
− cþr ðpÞdþr0 ð−pÞūrðpÞΣ0jpjucr0 ð−pÞð−2piÞe2ip0x0

− drðpÞcr0 ð−pÞūcrðpÞΣ0jpjur0 ð−pÞð−2piÞe−2ip0x0

þ dþr ðpÞdr0 ðpÞūcrðpÞΣ0νpνucr0 ðpÞð2piÞ�: ð118Þ

The terms appearing here are similar to the previous
calculation and we simply give the final result

Pi ¼
ð2πÞ3
V

X
p;r

pi½cþr ðpÞcrðpÞ þ dþr ðpÞdrðpÞ�: ð119Þ

C. U(1) charge

The total current of the field is given by

jα ¼
Z

d3xNðJαÞ

¼
Z

d3xNðiqðð∂μΨ̄ÞΣμαΨ − Ψ̄Σανð∂νΨÞÞÞ; ð120Þ

which after substitution of the Fourier expansion of the
fields and some manipulation yields

jα ¼ q
Z

d3xN
X
p;r

X
p0;r

i2αðp0ÞαðpÞ

× ð½p0
μ þ pμ�cþr0 ðp0ÞcrðpÞūr0 ðp0ÞΣμαurðpÞeiðp0−pÞx

þ ½p0
μ − pμ�cþr0 ðp0Þdþr ðpÞurðp0ÞΣμαucrðpÞeiðp0þpÞx

− ½p0
μ − pμ�dr0 ðp0ÞcrðpÞūcr0 ðp0ÞΣμαurðpÞe−iðp0þpÞx

− ½p0
μ þ pμ�dr0 ðp0Þdþr ðpÞūcr0 ðp0ÞΣ0μαucrðpÞeiðp−p0ÞxÞ:

ð121Þ

For α ¼ 0 we get the charge associated with the Uð1Þ
invariance as

Q ¼
X
p;r

X
r0

i2qð2πÞ3
2Vp0

2pμc
þ
r0 ðpÞcrðpÞūr0 ðpÞΣμ0urðpÞ

−
X
p;r

X
r0

i2qð2πÞ3
2Vp0

2pμdþr ðpÞdr0 ðpÞūcr0 ðpÞΣμ0ucrðpÞ;

ð122Þ

and using again Eq. (114) we get

Q ¼ ð2πÞ3
V

q
X
p;r

ð−cþr ðpÞcrðpÞ þ dþr ðpÞdrðpÞÞ: ð123Þ

D. Propagator

The propagator is the expectation value of the time-
ordered product of the fields

iΓFðx − yÞab ¼ h0jTðΨaðxÞΨ̄bðyÞÞj0i: ð124Þ

Substituting the Fourier expansion of the fields we get

iΓFðx − yÞab ¼

8>><
>>:

P
p

1
2Vωp

ðSðpÞþm2

2m2 Þabe−ipðx−yÞ x0 > y0

P
p

1
2Vωp

ðSðpÞþm2

2m2 Þabeipðx−yÞ y0 > x0
;

ð125Þ

where ωp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
and we used the polarization sum

relations in Eq. (54). We can rewrite this equation with the
help of the step function and in the continuum limit as

iΓFðx − yÞ

¼ θðx0 − y0Þ
Z

d3p
ð2πÞ32ωp

�
SðpÞ þm2

2m2

�
e−ipðx−yÞ

þ θðy0 − x0Þ
Z

d3p
ð2πÞ32ωp

�
SðpÞ þm2

2m2

�
eipðx−yÞ:

ð126Þ

Writing ΓFðx − yÞ in a four-dimensional integral repre-
sentation we expect to connect with the classical Green’s
function, Gðx − yÞ, obtained solving the wave equation in
Eq. (25) in the presence of sources. The Fourier transform
of the Green’s function, ~GðpÞ, satisfies

ðΣμνpμpν −m2Þ ~GðpÞ ¼ I: ð127Þ

Using

½SðpÞ�2 ¼ p4; ð128Þ

it is easy to show that
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~GðpÞ ¼ ΔðpÞ
p2 −m2 þ iϵ

ð129Þ

where

ΔðpÞ ¼ SðpÞ − p2 þ 2m2

2m2
: ð130Þ

Notice that we are distinguishing SðpÞ from SðpÞ here.
We use SðpÞ when the momentum p is on-shell whereas if
p is off-shell as in Eq. (130) we use SðpÞ. Also notice that
on-shell

ΔðpÞjp2¼m2 ¼ SðpÞ þm2

2m2
¼

X
r

urðpÞūrðpÞ: ð131Þ

This result suggests that the appropriate four-dimensional
integral representation of the two-point QFT Green’s
function in Eq. (126) is not just the direct generalization
of the polarization sum; rather, it can incorporate terms
proportional to p2 −m2.
In coordinates space the classical Green’s function reads

iGðx − yÞ ¼ i
Z

d4p
ð2πÞ4

ΔðpÞ
p2 −m2 þ iϵ

e−ipðx−yÞ: ð132Þ

In order to connect with (126) it is convenient to write the
above equation as

iGðx − yÞ ¼ i
Z

d3p
ð2πÞ3 IðpÞe

ipðx−yÞ ð133Þ

where IðpÞ is the integral with respect to p0 ¼ ω

IðpÞ ¼ 1

2π

Z
∞

−∞

Δðω;pÞe−iωðx−yÞ0
ω2 − p2 −m2 þ iϵ

dω: ð134Þ

This integral can be solved by the residue theorem in the
conventional way. However, since we are working with an
unconventional extension off-shell of the polarization sum
and at the end we obtain additional terms, we give some
details of the calculation in Appendix B. The final result for
the relation of the two-point correlation function in
Eq. (126) and the integral in Eq. (132) is

iΓFðx − yÞ ¼ iGðx − yÞ þ S00 − 1

2m2
δ4ðx − yÞ: ð135Þ

In conclusion, the two-point function in Eq. (126) is
noncovariant and differs from the covariant four-
dimensional integral representation in Eq. (132) by the
term proportional to δ4ðx − yÞ. The noncovariance of the
two-point correlation function in the canonical quantization
is a generic property of s > 1=2 field theories. This point
has been discussed in detail by Weinberg in [16] and we

refer the reader to this reference for further details.
Concerning the calculation of the covariant S-matrix
elements, the conclusion there is that the correct
Feynman rules are obtained just skipping the noncovariant
terms like the term proportional to δ4ðx − yÞ in Eq. (135),
i.e., in the calculations we must use

iΓFðx − yÞ ¼ i
Z

d4p
ð2πÞ4

ΔðpÞ
p2 −m2 þ iϵ

e−ipðx−yÞ: ð136Þ

We remark that this four-dimensional integral representa-
tion of the propagator incorporates terms proportional to
p2 −m2 to the naive off-shell generalization of the polari-
zation sum projector

ΔðpÞ ¼ SðpÞ þm2

2m2
−
p2 −m2

2m2
: ð137Þ

This point is crucial when we incorporate interactions via
the gauge principle. Indeed, for the simplest case of
interactions with Uð1Þ massless vector fields, the three-
point function in momentum space is given by

Γμðp; p0Þ ¼ Σμνðp0 þ pÞν: ð138Þ

It is easy to show that the Ward identity due to gauge
invariance is satisfied by this vertex with the propagator in
Eq. (136) but not with the propagator constructed only with
the first term in Eq. (137).
Before ending this section we would like to remark that

the algebraic structure of the symmetric traceless symmet-
ric tensor in Eqs. (12), (13) is crucial in obtaining all the
results presented in this section.

V. CHIRAL DECOMPOSITION
AND SELF-INTERACTIONS

The parity-based covariant basis in Eq. (1) includes the
chirality operator χ with the properties

fχ; Sμνg ¼ 0; χ2 ¼ 1; ½χ;O� ¼ 0 ð139Þ

with O denoting any other member of the covariant
basis.
Chiral fields transforming in the (1, 0) (“right” fields)

and (0, 1) (“left” fields) representations are defined as

ψR ¼ PRψ and ψL ¼ PLψ ; ð140Þ

where the projectors onto well-defined chirality subspaces
are given by

PR ¼ 1

2
ð1þ χÞ; PL ¼ 1

2
ð1 − χÞ: ð141Þ

These operators have the following projector properties:
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PR þ PL ¼ 1; PRPL ¼ 0; P2
R ¼ PR; P2

L ¼ PL;

ð142Þ

which together with the commutation relations in
Eqs. (139) imply

OPR;L ¼ PR;LO; SμνPR;L ¼ PL;RSμν: ð143Þ

The Lagrangian in Eq. (59) can be decomposed in terms
of the chiral fields as

L ¼ 1

2
½ψ̄Rði∂Þ2ψL þ ψ̄RSði∂ÞψR þ ψ̄LSði∂ÞψL�

−m2½ψ̄RψL þ ψ̄LψR�: ð144Þ

The first term in the kinetic part couples left and right
fields; hence, the Lagrangian is not chirally symmetric in
the massless limit. Spin 1 matter fields cannot have chiral
gauge interactions. Concerning possible applications to
hadron physics, it is not possible to realize chiral symmetry
linearly and our theory can be useful only with formalisms
realizing chiral symmetry nonlinearly. As for possible
applications to model building for theories beyond the
standard model, the only possibilities for the interactions of
spin-one matter fields in this context are (i) vector gauge
interactions connected or not with the standard model
group, and (ii) self-interactions.
Concerning interactions, we remark that the spin-one

matter field has mass dimension one, thus self-interactions
are naively renormalizable. We can use the covariant basis
to classify all naively renormalizable terms in the corre-
sponding Lagrangian. These terms must be constructed
from the following operators bilinear in the field

ψ̄ψ ; ψ̄χψ ; ψ̄Sμνψ ; ψ̄χSμνψ ; ψ̄Mμνψ ;

ψ̄Cμναβψ ; ψ̄χMμνψ ; ψ̄χCμναβψ : ð145Þ

The last two bilinears arise from the contractions of the
previous two with the Levi-Civita tensor (contractions with
the metric tensor vanish) which can be rewritten in terms of
the chirality operators using the relations

~Mμν ≡ 1

2
ϵμν

ρσMρσ ¼ −iχMμν;

~Cμναβ ≡ 1

2
ϵμν

ρσCρσαβ ¼ −iχCμναβ: ð146Þ

There are ten independent nonvanishing Lorentz invariant
terms that can be built from the products of these bilinears.
The most general naively renormalizable self-interaction
Lagrangian is given by

Lself ¼ c1ðψ̄ψÞ2 þ c2ðψ̄χψÞ2 þ c3ðψ̄SμνψÞ2
þ c4ðψ̄χSμνψÞ2 þ c5ðψ̄MμνψÞ2 þ c6ðψ̄CμναβψÞ2
þ c7ðψ̄ψÞðψ̄χψÞ þ c8ðψ̄SμνψÞðψ̄χSμνψÞ
þ c9ðψ̄MμνψÞðψ̄χMμνψÞ
þ c10ðψ̄CμναβψÞðψ̄χCμναβψÞ: ð147Þ

Some of these terms violate discrete symmetries and it
would be interesting to explore the consequences of the
existence of spin-one matter particles in physics beyond the
standard model, in particular if it could play a role in
resolving the dark matter enigma. If the massless limit of
our formalism is a sensible theory, all these coefficient must
vanish since all these terms violate the gauge invariance
in Eqs. (41).

VI. SUMMARY AND CONCLUSIONS

In this work we introduced a Dirac-like formalism for the
description of spin 1 massive fields transforming in the
ð1; 0Þ ⊕ ð0; 1Þ representation of the HLG. The formalism is
based on the simultaneous projection on parity eigenspaces
and on the appropriate Poincaré orbit. This projection is
done using the parity-based covariant basis for the matrix
operators acting on the ð1; 0Þ ⊕ ð0; 1Þ representation space
constructed in [15]. We constructed the charge conjugation
operator and showed that it commutes with parity. An
explicit construction of the solutions using the representa-
tion of operators in the basis of well-defined parity for
ð1; 0Þ ⊕ ð0; 1Þ shows that the “down” component of the
solutions are suppressed as v=c with respect to the “up”
part of the solutions in the nonrelativistic limit. More
importantly, the “down” part of the solutions are fixed by
the kinematics, as a consequence of the constrained
dynamics. We worked out the constraints at the classical
field theory level, showed that the system has only second
class constraints, and obtained the Dirac bracket of the
canonical conjugate variables. We carried out the canonical
quantization of the theory, and calculated commutator
relations for the canonical variables consistent with the
classical Dirac brackets. Sensible results were obtained for
the relevant physical quantities: energy, momentum, Uð1Þ
charge, and the propagator. The algebraic properties of the
covariant basis were instrumental in obtaining these results.
With the aid of the chirality operator which naturally
appears in the construction of the covariant basis, we
analyzed the chiral structure of the theory finding that
spin-one matter fields cannot have chiral gauge inter-
actions, but admit vector gauge interactions. Spin-one
matter fields have mass-dimension one therefore self-
interactions are naively renormalizable. Using the covariant
basis, we classified all renormalizable self-interaction
terms.
Although the formalism is designed for massive par-

ticles, the classical theory has a soft m → 0 limit, in whose
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case first class constraints (gauge symmetries) appear. It
would be interesting to explore if a sensible quantum field
theory can be obtained in this case.
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APPENDIX A: CONSTRAINED DYNAMICS
WITH A Uð1Þ COUPLING

The Lagrangian with Uð1Þ coupling is

L ¼ DμΨ̄ΣμνDνΨ −m2Ψ̄Ψ; ðA1Þ

DμΨ ¼ ∂μΨþ iqAμΨ; ðA2Þ

D†
μΨ̄ ¼ ∂μΨ̄ − iqAμΨ̄: ðA3Þ

In terms of the “up” φ and “down” ξ fields, the Lagrangian
reads

L ¼ D†
0φ

†D0φ −
1

2
ðD†

0φ
†DiJiξþD†

0ξ
†DiJiφÞ

−
1

2
ðD†

iφ
†JiD0ξþD†

i ξ
†JiD0φÞ

þD†
iφ

†Diφþ 1

2
D†

iφ
†fJi; JjgDjφ

þ 1

2
D†

i ξ
†fJi; JjgDjξ −m2ðφ†φ − ξ†ξÞ: ðA4Þ

For the purposes of quantization, it is instructive to
analyse the Dirac bracket. The canonical momenta in the
presence of a Uð1Þ coupling are

πa ¼
δL

δð∂0φaÞ
¼ D†

0φ
†
a −

1

2
ðD†

i ξ
†JiÞa; ðA5Þ

π†a ¼ δL

δð∂0φ
†
aÞ

¼ D0φa −
1

2
ðJiDiξÞa; ðA6Þ

and

τa ¼
δL

δð∂0ξaÞ
¼ −

1

2
ðDiφ

†JiÞa; ðA7Þ

τ†a ¼ δL

δð∂0ξ
†
aÞ

¼ −
1

2
ðJiDiφÞa; ðA8Þ

which imply constraints even in the presence of electro-
magnetic interactions.
The Hamiltonian density, incorporating the constraints

as Lagrange multipliers, is

H� ¼ πaπ
†
a þ 1

2
πaðJiDiξÞa þ

1

2
ðD†

i ξ
†JiÞaπ†a þ

1

4
ðD†

i ξ
†JiÞaðJjDjξÞa

−D†
iφ

†Diφ −
1

2
D†

iφ
†fJi; JjgDjφ −

1

2
D†

i ξ
†fJi; JjgDjξþm2ðφ†φ − ξ†ξÞ

þ ieA0½πaφa − φ†
aπ

†
a� þ ie

2
A0½ξ†aðJiDiφÞa − ðD†

iφ
†JiÞaξa�

þ λaρa þ λ†aρ
†
a; ðA9Þ

and the Hamilton equations are

∂0φa ¼
δH�

δπa
¼ π†a þ 1

2
ðJiDiξÞa þ ieA0φa; ðA10Þ

∂0π
†
a ¼ −

δH�

δφ†
a
¼ −DiDiφa −

1

2
DiDjðfJi; JjgφÞa

−m2φa þ
1

2
ðJiD†

i λÞa þ ie

�
A0π

† −
1

2
ðJiDiA0ξÞ

�
a

ðA11Þ

∂0ξa ¼
δH�

δτa
¼ λa; ðA12Þ

∂0τ
†
a ¼ −

δH�

δξ†a
¼ 1

2
DiðJiπ†Þa þ

1

4
ðJiJjDiDjξÞa

−
1

2
DiDjðfJi; JjgξÞa þm2ξa −

ie
2
A0ðJiDiφÞa:

ðA13Þ

The temporal evolution of any dependent dynamic
variable fields and momenta can be written as
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_B ¼ ∂B
∂t þ fB;H�g; ðA14Þ

and again they have the same Poisson brackets between
fields and canonical momenta, Eqs. (75).
The dynamics generated by the modified Hamiltonian

must preserve the restrictions

∂0ρa ¼
∂ρa
∂t þ fρa; H�g ¼ 0: ðA15Þ

This leads to secondary constraints

κa ¼ D†
i ðπJiÞa −

1

2
ðD†

jD
†
i ξ

†JjJiÞ
a

þm2ξ†a þ ie
2
F0iðφ†JiÞa ¼ 0: ðA16Þ

and, again, for consistency, requires

∂0κa ¼
∂κa
∂t þ fκa; H�g ¼ 0: ðA17Þ

This condition yields

_κ ¼ −D†
k½D†

jD
†jφþ 1

2
D†

jD
†
i ðφ†fJi; JjgÞ�Jk −m2D†

kφ
†Jk

þ λ†
�
ie
2
FkiJkJi þm2

�
− ieD†

i

�
A0π −

1

2
ðD†

jðA0ξ
†ÞJjÞ

�
Ji

þ ie
2
F0k

�
π − ieA0φ

† þ 1

2
ðD†

i ξ
†JiÞ

�
Jk þ ie

2
_F0iφ

†Ji

−
ie
2
ð _AjD

†
i ξ

†JjJi þD†
j
_Aiξ

†JjJiÞ þ ie _AiπJi ¼ 0: ðA18Þ

Although this is a complicated equation, it just defines λ† and does not give rise to additional secondary constraints.
Now we write the Poisson brackets between the constraints. It is straightforward to see that

fρaðxÞ; ρbðyÞg ¼ 0; ðA19Þ

fρaðxÞ; ρ†bðyÞg ¼ 0; ðA20Þ

fρaðxÞ; κbðyÞg ¼ 0: ðA21Þ

However, for fρaðxÞ; χ†bðyÞg we get

fρaðxÞ; κ†bðyÞg ¼
��

τa þ
1

2
ðD†

kφ
†JkÞa

�
ðxÞ;

�
DiðJiπ†Þb −

1

2
ðDiDjJiJjξÞb þm2ξb

�
ðyÞ

�

−
ie
2

��
τa þ

1

2
ðD†

kφ
†JkÞa

�
ðxÞ; ½F0iðJiφÞa�ðyÞ

�
; ðA22Þ

and since the last line of this equation vanishes,

fρaðxÞ; κ†bðyÞg ¼ −
1

2
fτaðxÞ; ðDiDjJiJjξÞbðyÞg þm2fτaðxÞ; ξbðyÞg

þ 1

2
fðD†

kφ
†JkÞaðxÞ; DiðJiπ†ÞbðyÞg: ðA23Þ

This can be written as

fρaðxÞ; κ†bðyÞg ¼ 1

2
½DyiDyj þDyiD

†
xj�δ3ðx − yÞðJjJiÞba −m2δabδ

3ðx − yÞ: ðA24Þ

In this expression, we can change ∂x by −∂y and AjðxÞ by AjðyÞ in D†
xjδ

3ðx − yÞ to get −Dyjδ
3ðx − yÞ. This allows us to

conclude that
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fρaðxÞ; κ†bðyÞg ¼ −m2δabδ
3ðx − yÞ: ðA25Þ

These are equal to the free field Poisson brackets.

APPENDIX B: INTEGRAL REPRESENTATION OF THE PROPAGATOR

For the calculation of the integral in Eq. (134) we split it into the real axis and the semicircle contributions

1

2π

I
C

Δðω;pÞe−iωðx−yÞ0
ω2 − p2 −m2 þ iϵ

dω ¼ IðpÞ þ 1

2π

Z
CR

Δðω;pÞe−iωðx−yÞ0
ω2 − p2 −m2 þ iϵ

dω: ðB1Þ

Causality requires us to close the contour C with a (counterclockwise) semicircle on the upper complex plane for
ðx − yÞ0 < 0 and with a (clockwise) semicircle on the lower plane for ðx − yÞ0 > 0. In the case ðx − yÞ0 > 0, C encloses the
pole ωϵ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2 − iϵ

p
and we get

IðpÞ ¼ −iΔðωϵ;pÞe−iωϵðx−yÞ0

2ωϵ
−

1

2π

Z
C−
R

Δðω;pÞe−iωðx−yÞ0
ω2 − p2 −m2 þ iϵ

dω: ðB2Þ

Similarly, for ðx − yÞ0 < 0 we obtain

IðpÞ ¼ −iΔð−ωϵ;pÞeiωϵðx−yÞ0

2ωϵ
−

1

2π

Z
Cþ
R

Δðω;pÞe−iωðx−yÞ0
ω2 − p2 −m2 þ iϵ

dω: ðB3Þ

Next we parametrize ω ∈ C�
R as ω ¼ Reiθ with 0 ≤ θ ≤ π for Cþ

R and π ≤ θ ≤ 2π for C−
R. For large R we get

lim
R→∞

ΔðReiθ;pÞ
R2e2iθ − p2 −m2 þ iϵ

¼ 1

2m2
ðS00 − 1Þ ≠ 0; ðB4Þ

and unlike the scalar and fermion case, the integrals over C�
R do not vanish

lim
R→∞

Z
C�
R

Δðω;pÞe−iωðx−yÞ0
ω2 − p2 −m2 þ iϵ

dω ¼ ðS00 − 1Þ
2m2

Z
C�
R

e−iωðx−yÞ0dω: ðB5Þ

The integral on the right-hand side of Eq. (B5) is readily obtained as

Z
C�
R

e−iωðx−yÞ0dω ¼ −2πδðx0 − y0Þ: ðB6Þ

Using Eqs. (B5), (B6) we can rewrite Eqs. (B2), (B3) as

IðpÞ ¼ −iΔðωϵ;pÞe−iωϵðx−yÞ0

2ωϵ
þ ðS00 − 1Þ

2m2
δðx0 − y0Þ; ðx − yÞ0 > 0; ðB7Þ

IðpÞ ¼ −iΔð−ωϵ;pÞeiωϵðx−yÞ0

2ωϵ
þ ðS00 − 1Þ

2m2
δðx0 − y0Þ; ðx − yÞ0 < 0; ðB8Þ

and Eq. (132) reads

iGðx − yÞ ¼ θðx0 − y0Þ
ð2πÞ3

Z
d3p
2ωϵ

Δðωϵ;pÞe−iωðx−yÞ0eipðx−yÞ

þ θðy0 − x0Þ
ð2πÞ3

Z
d3p
2ωϵ

Δð−ωϵ;pÞeþiωðx−yÞ0eipðx−yÞ þ S00 − 1

2m2
δ4ðx − yÞ: ðB9Þ
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Changing p by −p in the second line of Eq. (B9), taking the ϵ → 0 limit and using

Δðωp; pÞ ¼
SðpÞ þm2

2m2
; ðB10Þ

we finally obtain

iΓFðx − yÞ ¼ iGðx − yÞ þ S00 − 1

2m2
δ4ðx − yÞ: ðB11Þ
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