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Spin-one matter fields are relevant both for the description of hadronic states and as potential extensions
of the Standard Model. In this work we present a formalism for the description of massive spin-one fields
transforming in the (1,0) @ (0, 1) representation of the Lorentz group, based on the covariant projection
onto parity eigenspaces and Poincaré orbits. The formalism yields a constrained dynamics. We solve the
constraints and perform the canonical quantization accordingly. This formulation uses the recent
construction of a parity-based covariant basis for matrix operators acting on the (j,0) @ (0, j)
representations. The algebraic properties of the covariant basis play an important role in solving the
constraints and allowing the canonical quantization of the theory. We study the chiral structure of the theory
and conclude that it is not chirally symmetric in the massless limit, hence it is not possible to have chiral
gauge interactions. However, spin-one matter fields can have vector gauge interactions. Also, the
dimension of the field makes self-interactions naively renormalizable. Using the covariant basis, we

classify all possible self-interaction terms.
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I. INTRODUCTION

States transforming in the (1,0) @ (0, 1) representation
have been shown to be appropriate for the description of
low-energy interactions of the low-lying nonets of vector
and axial-vector mesons [1]. The corresponding fields are
written in tensor language (an antisymmetric second-rank
tensor field is used to describe spin-one mesons) and the
effective theory known as resonance chiral perturbation
theory (RyPT) involves a nonlinear realization of chiral
symmetry. Also, possible effects of spin-one matter par-
ticles described by tensor fields in physics beyond the
standard model have been proposed in [2].

On the other hand, many alternatives for physics beyond
the standard model have been proposed and although the
first results of the Large Hadron Collider (LHC) showed no
evidence of any of these possibilities up to energies of the
order of 1.5 TeV [3-11], recently a series of excess of
events in several searches of new spin-one bosons at the
level of 2-3 standard deviations point to the possible
existence of new spin-one resonances close to 2 TeV
[12]. The simplest possibility for these resonances is some
realization of the left-right symmetric models and the first
possible explanations of the excess of events following this
route have been already proposed in [13,14]. An alternative
to the understanding of these events would be offered by
spin-one matter fields. Indeed, it is intriguing that the
standard model and most of the proposed nonsupersym-
metric extensions use only the (0, 0), (1/2,0), (0,1/2) and
(1/2,1/2) representations of the Homogeneous Lorentz
Group (HLG). The consistent formulation of a theory
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involving fields transforming in the chiral (I, 0) and
(0, 1) representations of the HLG would certainly enlarge
the possibilities for beyond the standard model theories.

Recently, an algorithm for the construction of a covariant
basis for the matrix operators acting on the (j,0) & (0, j)
representation space was put forth in Ref. [15]. This
construction is based on the covariant properties of the
parity operator, and the explicit form of the covariant
matrices is given for j =1/2, 1, 3/2. For j = 1/2 the
covariant basis reproduces the conventional basis acting on
Dirac space, and the Dirac equation is recovered as the
covariant projection onto parity eigenspaces. This alter-
native view of the Dirac equation, and the fact that the
covariant basis for (1,0) @ (0, 1) has been already con-
structed in [15], leads us to explore the j = 1 generalization
of the structure of the Dirac theory. Since a chirality
operator appears in a natural way in the covariant basis,
chiral states can be constructed directly. This allows us to
study alternatives for the formulation of chiral effective
theories for hadrons using the Dirac-like theory for fields
transforming in the (1,0) @ (0,1) representation of
the HLG.

In this work, we propose a theory for massive spin-one
matter fields which is a direct generalization to j = 1 of the
structure of the Dirac theory for fermions. The formalism is
based on the simultaneous projection onto invariant parity
subspaces and appropriate Poincaré orbit. The formalism
yields a constrained dynamics with second class con-
straints. We work out these constraints in the classical
field theory, and show that sensible results are obtained
upon quantization once we use the specific algebraic
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properties of the covariant basis. We study the chiral
structure and classify the naively renormalizable self-
interactions of the spin-one matter fields.

Our paper is organized as follows. In the next section we
introduce the formalism and study the solutions and
discrete symmetries at the classical level. The constraints
and corresponding dynamics are analyzed in Sec. III. The
canonical quantization of the free theory is discussed in
Sec. IV. The chiral structure and naively renormalizable
interactions are described in Sec. V. We give our con-
clusions in Sec. VI and close with two appendixes with
technical details of the calculations.

IL. PARITY-BASED FORMALISM FOR THE
(1,0) @ (0,1) REPRESENTATION

It was shown in [15] that the parity-based covariant basis
for a general (j,0) @ (0, ;) operator space contains the
following:

(1) Two Lorentz scalar operators, the unit matrix of

dimension 2(2;j + 1) and the chirality operator y.

(2) Six operators transforming in the (1,0) @ (0,1)

representation forming a rank-2 antisymmetric ten-
sor, M, whose components are the corresponding
generators of the HLG.

(3) A pair of symmetric traceless matrix tensors trans-
forming in the (j, j) representation, with the first one
denoted S#1#2-#2i and the second one given by
)(Sﬂlﬂzmﬂz,/.

(4) A series of tensor matrix operators with the appro-
priate symmetry properties such that they transform
in the (2,0) & (0,2),(3,0) & (0,3),...,(2/,0) ®
(0,2j) representations of the HLG.

The rest frame parity operator is the time component of
the first symmetric traceless tensor, IT = S%--9. The boost
operator can be explicitly constructed due to the simple
representation form [in the chiral basis for the (j,0) @
(0,7) space] of the boost generator K= —iyJ=
—idiag(J, —=J). Using the boost operator, it is possible to
construct explicitly the states (j-spinors or simply spinors
in the following) in an arbitrary frame once we know them
in the rest frame. Another important application of the
boost operator is the construction of the covariant form of a
given operator from its form in the rest frame. In particular,
we can calculate the covariant form of the parity operator.
A simple calculation yields

Sﬂlﬂz-..ﬂijﬂl pﬂz .. 'pﬂZj

B(p)IIB!(p) = o GY

Let us briefly review the application to j = 1/2. In this
case the covariant basis is given by two scalar operators, 1
and y, an antisymmetric tensor, M,,, and two vector
operators (the “symmetric” operators of rank 2j = 1)
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{1,y,S¥, yS*, M*}. (2)

The algorithm outlined in [15] yields
St =T (g% — 2iM%). (3)

This is the conventional set used in the literature up toa 1/2
factor in M,,,, where the chirality operator is the conven-
tional y° Dirac matrix and S* = y*. Boosting the rest frame

parity operator we get

= Lﬂ pﬂ

B(p)IB~'(p) .

(4)

Since the rest frame projectors onto states of well-defined
parity are

P, =-(1+1), (5)

N[ =

the condition for well-defined parity in the rest frame is
P.u(0) = u(0), (6)
and boosting this equation we get the following condition:
($*pu F mu(p) = 0. (7)

Transforming to configuration space the positive parity
projection yields the Dirac equation

(1540, - mw(x) = 0. 0
where y(x) = u(p)e™r~.

A. The structure of the spin-one representation

In the case of spin-one, the basis of matrices with well-
defined Lorentz transformation properties is

(1,5, SM 4 SH, MP, e} (9)
The symmetric tensor S* is given by
S = T = i(P MO + M) = (M. M), (10)
This tensor is traceless in the Lorentz indices

S, =0, (11)
which leaves nine independent components transforming in
the (1, 1) representation of the HLG. These operators

satisfy the following algebraic relations:

(57, %) = —i( M + "M + gPMH 4 GO,
(12)
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Finally the tensor transforming in the (2,0) & (0,2)
representation is given by

b = 4{Mm, M%)} + 2{M"*, M*P} — 2{ MM}, M**}
- 8(¢"“g” — ¢’ 9*). (14)

It has the following symmetries:

C;wa/)’ = _Cl/ﬂ(lﬁ = _C/w/)’a’ C;wa/)’ = C(lﬂﬂw (15 )

the contraction of any pair of indices vanishes and it
satisfies the algebraic Bianchi identity

C/waﬁ + Cyaﬂv + Cﬂﬂl/a =0. (16)

These symmetries leave only 10 independent components
out of the 256 components of a general four-index tensor.

The explicit form of the 6 x 6 matrix tensor operators in
Eq. (9) can be found in [15], in the chiral basis of states
diagonalizing the chirality operator, y. For the purposes of
this work it is convenient to work in the “parity” basis of
states where the particle-antiparticle interpretation is easier.
The matrix operators are related by O = FO,F' where F
stands for the change of basis matrix

F:\%(j _II) (17)

Here we will just need the explicit representation of S*,
which in the parity basis is given by

SOOEH:<1 o> Sm:<0 —Jf')
0 -1)° Jo 0 )

. 0 {Jgi g 0

Sii = <g by o ) (18)
0 —g7 ={J". '}

where J'=1¢V M, are the conventional spin one

matrices.

B. The spin-one parity projection

The condition for a state transforming in (1,0) @ (0, 1)
to have well-defined parity is given by Eq. (6), with the
corresponding parity operator in this representation space.
A similar procedure as the one used for the spin 1/2 case
yields the following equation:

(8#0,0, + m*)y(x) = 0. (19)
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This equation was proposed long ago by Weinberg [16]
following a different approach and several aspects of this
theory have been studied in the literature [17-20]. The main
drawback of this equation is that it contains unphysical
solutions. In the parity-based covariant construction this is
easily understood from the algebraic properties of the
symmetric tensor in Eq. (13). Indeed, using this equation
it is easy to show that

(80,0,)* = (8(9))* = 9", (20)
and multipliying on the left Eq. (19) with S(9) — m? we
obtain

(0 = m)y(x) = 0. (21)

This equation has the conventional plane wave solutions
with p? = m? but also solutions belonging to the p? =
—m? Poincaré orbit. This problem can be traced back to the
naive construction of the projectors in Eq. (5). It can be
shown that the corresponding boosted operators

) =5 (165) @)

m

cease to be projectors as soon as we go off-shell. The
correct parity projectors for the general off-shell case are

P, (p) = % <1 + ng)). (23)

In addition to finding the right parity projection we must
also take care of the projection on the desired Poincaré
orbit. To this end we use the simultaneous mass and parity
projector

(P* £5(p)). (24)

g
i
H,

=
i

m 2m?

This procedure yields the following equation in coordinate
space:

(20,0, + mP)(x) = 0, (25)

where

T = (g + SM). (26)

N[ =

Using Eq. (20) and multiplying Eq. (25) on the left by
1(0* = 8(9)) — m* it is easy to show that the fields satisfy
the Klein-Gordon equation

(0* + m?*)y(x) =0, (27)
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whose solutions are of the form w(x) = u,(p)e™"?* where
r denotes the particle polarization. The theory for particles
with negative parity can be constructed in a similar way; in
the following we will focus on the positive parity case.

The formulation of wave equations for spinning particles
is an old problem and as far as we know Eq. (25) was
firstly considered in [21] following a different approach,
including electromagnetic interactions at the classical
level. Closely related work was also done in [22,23].
The present approach, based on the parity and Poincaré
projections, permits us to identify all quantum numbers
from first principles. Also, the algebraic structure of the
(1,0) @ (0, 1) representation space will allow us to work
out the constrained dynamics at the classical level and the
proper quantization of this theory.

The spinors u,(p) have six components and satisfy the
following equation:

(2 pup, —m*)u,(p) = 0. (28)

Equivalently, since a free particle spinor must satisfy the
Klein-Gordon condition, the spinor also satisfies

(Sﬂyp,upu - mz)ur(p> =0. (29)

Let us first explore the free particle solutions of Eq. (25).
Introducing the explicit form of the $*¥ matrices in Eq. (25)
we get

-J- Vo,

<82+m2+(J-V)2
m>—(J-V

x)=0. 30
i, o e =0 o)
Writing y in terms of the “up” (¢) and “down” (§) three-
component components we get

[0 +m* + (J-V)?|p = J - VOy¢, (31)

[m* = (J- V)’]¢ = =J - Voyg. (32)

The second line yields the £ field in terms of the time
derivatives of the ¢ field, i.e. it is a constraint of the theory
which leaves only the three complex components of ¢
required to describe a particle-antiparticle spin-one system
as the physical degrees of freedom. The constraint equation
reads

E=-071J- Voo, (33)

with O = m? — (J - V)? which is nonsingular.

The true equation of motion for the ¢ field is obtained
multiplying the first equation by O and using the second
one to get
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([0* +m?> + (T -V)H[m> = (J- V)2 +J-V)23R)p = 0.
(34)

Notice that this equation is second order in time
derivatives and seemingly higher order in space derivatives.
However, because of the algebraic properties of J; matrices,

J-V)P=J V)V, (35)
and it is easy to show that this equation can be rewritten as
m*[0% + m*jp = 0, (36)

i.e., it is just the Klein-Gordon equation for the three
complex degrees of freedom in ¢.

In momentum space, writing ¢(x) = ¢,(p)e~"?* we find
the following solutions to the equation of motion:

¢-(p) > (37)

u =N

V(p) ( - pr ¢r(p)

where N is an appropriate normalization factor.
Our formalism is designed for massive particles.

However, it has a soft m — 0 limit which is worth

exploring. In the massless limit, our equation reduces to

the system

[0+ (V) le=3-VIe=0 (38)
J-Vayp—(J-V)2£=0. (39)

Notice that now the operator (J - V)? accompanying the &
spinor is not invertible (in momentum space, it is the
helicity operator, and it has a zero eigenvalue). In this case
we expect to have a gauge invariance which reduces the
degrees of freedom contained in the y spinor. In the next
section, we will work out the Hamiltonian analysis of the
constrained dynamics of the theory, and will show that in
the massive case all constraints are second class. In the
massless limit the characteristic matrix of the constraints
has no inverse and first class constraints (gauge sym-
metries) appear. A straightforward calculation shows that
the massless equation of motion (or the Lagrangian in the
following section) is invariant under the following gauge
transformations [24]:

pi =i+ J- V)ijgj’ (40)
& = &+ e+ 0.f, (41)
where £(x) is an arbitrary three component spinor, and f(x)

is an arbitrary scalar function. This reduces our six degrees
of freedom to only two as expected.
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Coming back to the massive theory which is the topic of
this paper, the presence of nondynamical degrees of free-
dom in y makes clear that the quantization of the theory
must proceed through a careful study of the constraints.
Before elaborating on this point and in preparation for the
particle interpretation necessary for the quantization of the
theory, we study the charge conjugation operation.

C. Interacting theory and discrete symmetries

We use the gauge principle for the simplest case of a
U(1) gauge group. Gauging Eq. (25) we get

[Zuy(la - qA)y<la - qA)y - m2]l// =0, (42)
where ¢ is the U(1) charge of the particle. Complex
conjugating Eq. (42) and multiplying on the left by a

matrix in the (1,0) @ (0, 1) representation space denoted
by I' we obtain

[C(Z)* =i + qA),(i0 + qA), — m?y© =0, (43)
with
If we require y° to satisfy the same equation as y but with
the opposite U(1) charge, —q, the symmetric tensor S must
satisfy the following relation:

D(s%) T~ = $m. (45)

The construction of the matrix I' satisfying Eq. (45) can
be done from first principles and we just quote the final
result. Up to a phase this matrix is given by

r- (g _OU), (46)

where U stands for the time reversal operator in the
(1,0) & (0, 1) representation space:

0 0 1
U=ei>=|0 -1 0 |. (47)
1 0 0

A crucial difference with the Dirac theory is that for
spin-one matter fields the charge conjugation operator
commutes with the rest frame parity operator,

€. 11 = 0. (48)

This relation defines the particle-antiparticle structure in the
corresponding quantum field theory. In the rest frame, the
“down” component of the spinors in Eq. (37) corresponds
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to negative parity as in the Dirac case. However, for spin-
one matter particles, it is not connected with the antiparticle
solutions. Indeed, as we can see from the explicit form of
the spinors in Eq. (37), the “down” component vanishes in
the rest frame, and for an arbitrary frame it is fixed by the
kinematics.

The charge conjugated spinor, given by

uy(p) = Tuy(p), (49)
also satisfies the equation
(szpﬂpy - mZ)u;(p) =0. (50)

The adjoint spinors obey the adjoint equations
ur(p)(sﬂapﬂpa - m2) = O’ (51)

ﬁf(p)(slmpﬂpa - m2) =0. (52)

These spinors are normalized according to

iy (p)us (p) = i, (P)us(p) = - (53)
The corresponding completeness relation is

mZ
> )i 0) = S 0) = (T2

r

(54)

Now, the minimally coupled equation, Eq. (42), written
in terms of the covariant derivative

D/AW = aﬂll/ + lgA/,{W? (55)

and the parity components {¢@, &}, is

1 1
(D2 +m?+ EDi{Ji?Jj}Dj>(p - Eji{Di’ Dy} =0,

(56)

1 1
Eji{Di’DO}(P + <m2 —ED,-{J,-,JJ-}D,->§ =0. (57)

Again, Eq. (57) does not involve the time derivative of &
and is therefore still a constraint. While the manipulation of
this equation is complicated by the presence of the non-
commuting differential operators D¥, we can check in a
calculation similar to the one leading to Eq. (34) that the
true equation of motion has the form
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1
[<D2+m +- D{J,, ,}D)

+ 30D DO 17,(D D} [ = 0. (59

The operator O;' = [m? —3D;{J;,J;}D;]™" involves only
the spatial components of D#, and therefore this is an
equation containing only second time derivatives of the ¢
components. Therefore, the counting of degrees of freedom
is unaltered from the free case.

III. CLASSICAL FIELD THEORY AND
CONSTRAINTS

The equation of motion can be derived from the
following Hermitian Lagrangian:

L =0,U3"9,¥ — m* IV (59)
where U = W'TI. In order to exhibit the dynamical content

we write the theory in terms of the “up” (¢) and “down” (&)
components of the field and the corresponding conjugate

momenta
() () e

In terms of these components the Lagrangian reads
L = 0yp'0pp + 0,0" 0 — anéﬂulaif - anflflaiq’
1 : 1 . 1 o
- Eﬁi(pTJ’aof - E@,ﬂ]’(%(p + Eai(PT{le J}0;
1 o "
+§5iff{ﬁ’ﬂ}aj5—m2(€0T€0—§'5)- (61)

Notice that this Lagrangian does not contain second time
derivatives in the “down” component £ The canonical
conjugated momenta are given as

oL .1 ..
n, = = Oopa —=(0;E'T") s
50002 o 2( &)
oL 1, .
227._:8 a——J’@,- , 62
a 5(80§0(L) 0P 2( é)a ( )
oL 1
Tqg = Py T‘]l a’
; oL 1
T = =5 (' 0ip),- (63)
(80511) 2

Clearly, Egs. (63) are (primary) constraints on the variables
of the system
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Pa =Ty += (8@]’) =0,
(64)

The Hamiltonian density is

H= ﬂa80(pa + 80(pd7[a +7 8Oga + 60§a7d - L. (65)

A straightforward calculation yields

H = ﬂ'aﬂ'z + lﬂa(.,iaig)a +%(ai§1-]i)aﬂj

2
1 b o
Z( fTJl) (Jja 5) lfl’aa'%
1 o o
= SORMI T D00 = 3 DT Vs
+ m2 (qu;(pa - ézga) (66)

Notice that this Hamiltonian density does not contain the =
momenta nor time derivatives of the ‘“down” spinor.
According to Dirac classic lectures [25] the time evolution
of the system is given by the modified Hamiltonian H*
given by

H* = / dPxH* (67)
with the modified Hamiltonian density

H* =H + Aapa + Aph. (68)

where 1, and A% are the Lagrange multipliers.
The Hamilton equations read

SH* . 1.
Aopa = % = Tla +§ (J 81'5)(1’ (69)
oH* . .
Ot = =35 == ~0,0'ph — 0,0,(pT I, — Mg}
1 )
+304 ), (70)
oH*
=— =1 71
aOéa 5Ta as ( )
oH* 1 . 3 o
— _ —_H. i _ = A ETTiT] 2 e
Onta = =55 =5 0ial)a = (O0LT1)  + ma.

(72)

The corresponding equations for the adjoint phase space
variables, not shown here, are given by the adjoint of these
equations.

The time evolution of any observable can be written in
terms of the Poisson brackets as
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A={A H}. (73)
In our case the Poisson bracket is given by
{A(x). B(y)}
0A OB OB 0A
— /d3X/Z (X)/ (y/) _ (y)/ (X/) (74)
 100.(x) 80 (X) 6V, (x") 60, (x)
where the sum is over all the field components and their

conjugate momenta.
A straightforward calculation yields

{{pa(x)’ﬂb(y)} = 5ab53(x - y)’
{éa (X)’ Tb(y)} = 5ab53 (X - y)’ (75)

and the corresponding adjoint relations.
The dynamics generated by H* must preserve the
constraints hence the following relations must hold:

Oopa = {pa- H} =0, Oppis ={pl.H'} =0.  (76)

In our system this produces new (secondary) constraints

Ky = 0i(mJ), — = (8;0,6T T )+ m2El =0, (77)

!
2
K'Z = 3l~(./"7zj)a —%(alﬁ'l]’ﬂf)a + nga =0. (78)

Requiring that the new constraints be preserved by the
dynamics we get

ﬂjl - ai((pf‘]i)a = 0’ /111 - ai(1i¢)a =0. (79)
These relations just define the Lagrange multipliers but do
not generate new constraints.

In total, we have 24 degrees of freedom in the
Hamiltonian description, 12 coming from the {¢', ¢}
fields and their associated momenta {z', 7}, and another
12 from the {&, &} fields and their momenta {z',7}. On
the other hand, we have the set of 12 constraints {f,} =

{ParPos Xas x4 }. This leaves us with 12 degrees of freedom
in phase space, that correspond to 3 complex degrees of
freedom obeying a second-degree equation of motion, as
expected for a particle-antiparticle field with 3 degrees of
freedom.

Following the procedure outlined by Dirac in Ref. [25]
we calculate now the matrix of the Poisson brackets of the
constraints

Aup(x,¥) = {fa(x). Fo(¥)}- (80)

A straightforward calculation yields the following block
matrix form:

PHYSICAL REVIEW D 93, 076003 (2016)

00 0 -1
00 -1 O

A(x,y) = m*&(x —y) o1 o0 ol (81)
1 0 0 O

This is a nonsingular matrix thus all the obtained con-
straints are second class constraints. The inverse of this
matrix is given by

0 0 01

1 0 1 0
Rt Aat] ISR P C-)

-1 0 0 O

To proceed with the quantization we need the Dirac
bracket, defined as

{A.B}p = {A, B}

- [ @adra s @A a2 B,
(83)

For the canonical variables the inverse matrix in Eq. (82)
simplifies the calculation. For example

{9.(x).7(y)}p
— 600’ (x = ¥) = o [ Palga().pu (D HE () 7))

_# / Pz{p,(x), pl(2) ko (2), 7, (¥)}
+% / P{p,(%).x.(2) P! (2). 75(y)}
+% / P 2{,(x). <H(2) Hpe (). 7y ()}

and similar expressions hold for the remaining pairs of
conjugate variables. A straightforward calculation yields

Rviv
(0u.mo = 1= 5] -y,
ab
[0u(0). 53} = 0. (85)
{600 1)} = 0. (36)
., =S sy, (s7)

2m?

We can rewrite these relations in compact spinor notation
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{¥,(x).5()}p = {zoo_ﬂ

2m2) SOO] ah53(x—y). (88)

The quantization of the theory must be done replacing
the Dirac bracket by the quantum commutator —i|, |, and we
expect the quantum commutator of the canonical conjugate
fields to be

J-v): V)

m

0, (%), (y)] = i[z% 300] Plx-y). (69)

To end this section we would like to remark that the
coupling to an external U(1) field can spoil the quantiza-
tion procedure rendering the commutation relations of the
canonical variables ill defined for some values of the
external field [26]. We do not expect this to be the case
here as pointed by the coupled true equation of motion (58)
but in order to ensure this, we performed the analogous
calculations for the coupled theory finding the very same
canonical commutation relations. The calculations are
rather long, and we defer the details to Appendix A.

IV. CANONICAL QUANTIZATION OF SPIN 1
MATTER FIELDS

Under an infinitesimal transformation
U U =0T+ 60 (90)
the Lagrangian changes as
SL = 0,[0,VE™SV + W59, V). (91)

Invariance under a given transformation yields conserved
currents. First, our Lagrangian is invariant under the global
U(1) transformations ¥’ = ¢'?*W. The corresponding con-
served current is given by

J = ig((0,V)2*V — U™(9,V)). (92)

Invariance under space-time translations yields the fol-
lowing stress tensor:

T+, = 0,30,V + 9, TT%d, U
— (0, UEP D, — 2T, (93)

The angular momentum density is similarly obtained as

MO = TOx — T (Ve 3 J, %0, W)
- i(aﬂ@Z”Oeiijk\I/). (94)

The field and its adjoint are expanded in the conventional
Fourier series
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U(x) = > a(p)[c,(p)u,(p)e™P* + d; (p)us(p)e'?],

p.r
(95)
U(x) = a(p)c) (p)i,(p)e + d,(p)as(p)e™ ],
p.r
(96)

where a(p) = 1/4/2E(p)V and r denotes the polarization
of the one-particle states. The particle (antiparticle) creation
(annihilation) operators satisfy the following commutation
relations:

[Cr(p)’ C-SI- (p/)] = 5r55pp’v [dr(p)’ d; (p/)] = 5r55pp’-

97)
A. Commutation relations
The conjugated momenta are given by
- oL 0
=——=3"(9,7) , 98
Cd a\Ild,O da( H )a ( )
oL -
= =(9,9) 5. 99
o= g = (O0), (99)

The commutators of the fields with the canonical con-
jugated momenta are given by

(G4, 0] = (8,9) 2 1w, — U,(8,9), e, (100)

Ca 0] = £04(0,9), 9, - ,230(9,¥),.  (101)

Inserting the Fourier series in Eq. (100) we get
S vl
2Vp0

+ 15, (p)u, (p) e to)].

[Ca(x1), ¥p(xy)] = (P)”rb(l))z’,:geiﬁ(xl—xz)
(102)
For equal time x! = xJ = 0, using Eq. (54) we get

[Ca(x1), ‘I’b(Xz)]xO ,=0

+ m2 0 ip.(xi—xi
TH elp,»(x —x5)
Z 2V pg ( 2m? >ba ad |

+m2 0 —ip(xi—xi
zzm( )Y et (103

Changing p; — —p; in the second term we get
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[Ca(x1), ‘I’b(xz)]x?

. eipiocli_x;)
-
P
20 popo + (2ZYEY + ZUED) pp;
X( PoPo + ( i )p,p,> (104)
m bd

This equation can be further reduced using the algebra
satisfied by S. Indeed, using Eq. (13) it is possible to show
that

2=0

o -
(2272 + 2959 p;p; = - (ZVpip; — p°ZY).

5 (105)

Using this relation we can further reduce our commutator to

. eipi(x’i_x;)
[Ca(x1). Wp(x2)] 0 o = —IZT
P
% 200 + (Sij - gijSOO)pipj
4m2 bd.

(106)

Finally, using the explicit representation of the S#** matrices
it can be shown that

(8 = gis®)pip; =20 -pSP,  (107)

PHYSICAL REVIEW D 93, 076003 (2016)

and putting it all together we obtain

. 2
catx). Bl g = =iz - L2 5)
. bd

2m
X 5(X1 - Xz). (108)
A similar calculation yields
— - . (J-V)?
[Ca(x1). Wp(x2)] 0 —g = —i <200 -5 y
X 8(X] — X,). (109)

This is exactly the result expected from our classical
analysis of the constrained dynamics in the previous section
summarized in Eq. (88).

B. Energy and momentum of the field
The energy density of the field is defined as

H=T% = 9,Us9,¥ — 9,¥ZV9,¥ + m*I¥.  (110)

After a straightforward algebra, integrating the normal
product of T% we get the following expression for the
total energy of the field:

H = 203" a(p)les (b)ey (p),(p)(Epopo — T pip; + m2)u, (b))
pr 7

+d,(p)cy (—p)as(p) (=% popo — TV p;p; + m*)u, (—p)e2iro’
+ ¢ (P (=p)it, (p) (=Z% popo — TV p;p; + m?)us, (—p) P’

+d,(p)d; (—p)ul(p)(E®popo — =V pip; + m*)us,(—p)).

Next, we use

—3%popo —Eip;p; = 2% pop; — Z(p),

and the equations of motion in Egs. (28), (50), (51), (52) to obtain

H=(22)") > a(p)’c} (p)c

pror

+d,(p)ey (=p)as (p) (22" popiuy (—p)e e
+ ¢ (p)d (=) (p) (22" popi)uss (—p) e’

+d(p)d,(p)is(p)(2Z% pop,)u (p)]-

With the aid of Egs. (12), (13) it is possible to show that
i, (p) (X% p,)uy(p)

it,(p) (2% p)us (—p) = ai(p)(Z pop;)u, (—p) = 0.

(111)
(112)

» ()i, (P)(2Z% pop,)ur (p)
(113)
= P, (114)
(115)
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Using these results we obtain the expected total energy of
the field:

1 =S et ()e,(p) + df (), B, (116)
Y
The total momentum of the field is
P, = / N{T?}d*x
= / N{O,UZ¥), ¥ 4 0,¥50,0}d’x.  (117)

Inserting the Fourier expansion of the fields in Egs. (995),
(96) a little algebra yields

P, = (2ﬂ)3zza(P)2

x [C*(p)c (p)i(p) =" pLuy (P)(2p;:)
— ¢ () ()T (p)Z pju (=) (<2p;) 7"
= d,(p)ey (=p)t; ()2 pjup (=p) (=2p;)e "

+df(p)d, (p)as(p) = p,us(p)(2p:)]-

The terms appearing here are similar to the previous
calculation and we simply give the final result

277: Zp c+

C. UQ1) charge
The total current of the field is given by

(118)

p) +di(p)d.(p)l. (119)

Jje= / d*xN(J*)
= / d*xN(ig((0,¥)2r¥ — UE™(9,V))),  (120)

which after substitution of the Fourier expansion of the
fields and some manipulation yields

j=q / HNS Y Pa(p')a(p)

p.r pr
X ([Pl + pale ('), (p)i, (p') 2 “u, (p)eiv' —r)x
e (p')d (p)u,(p’ )2"“ ‘(p)e’

+ [Py — Pu (' +p)x
- [P;l - P,,]d/ p')c,(p)u ﬁ,(p )ZH (p)e—l(p +p)x
= [P}, + pudy(p')d; (p)as (p)ZHeus (p)e'P=r).

(121)

For a =0 we get the charge associated with the U(1)
invariance as

PHYSICAL REVIEW D 93, 076003 (2016)

0- ZzquE

2p,cl(p)e.(p)iy (p)20u,(p)

and using again Eq. (114) we get

(2r) qz —ct(p)e(p) +df (p)d,(p)).  (123)

D. Propagator

The propagator is the expectation value of the time-
ordered product of the fields

»(3))10).

Substituting the Fourier expansion of the fields we get

Tp(x = ¥)gp = (O|T(Vy(x)® (124)

Ezv(u ( rr—:_m )abe_ip(x_y) Xo > Yo
irF('x - y)ah = i : ’
szw ( 2 )abelp(x_)) Yo > Xo

(125)

wher.e wp =V p> + m? and we u§ed the polar.izatio'n sum
relations in Eq. (54). We can rewrite this equation with the
help of the step function and in the continuum limit as

iCp(x—y)
d3p S(p) + mz —ip(x—vy
= Q(XO - yO) / (27[)3260[, ( 'm2 )e Pby)

d*p S(p) +m*\ o,
+€(y0_x0)/(27[)3260p< 2m2 >ep( y)'

(126)

Writing I'z(x — y) in a four-dimensional integral repre-
sentation we expect to connect with the classical Green’s
function, G(x — y), obtained solving the wave equation in
Eq. (25) in the presence of sources. The Fourier transform

of the Green’s function, G( p), satisfies
(zw”pﬂpu - mz)é(p) =1 (127)

Using

(128)

it is easy to show that
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~ A
G(p) = % (129)
where
A(p) =3P~ p22+ 2m’ (130)

2m

Notice that we are distinguishing S(p) from S(p) here.
We use S(p) when the momentum p is on-shell whereas if
p is off-shell as in Eq. (130) we use S(p). Also notice that
on-shell

m2
AP o = L S ()7, ).

(131)
This result suggests that the appropriate four-dimensional
integral representation of the two-point QFT Green’s
function in Eq. (126) is not just the direct generalization
of the polarization sum; rather, it can incorporate terms
proportional to p? — m?.

In coordinates space the classical Green’s function reads

iG(x—y) = i/ (d“p Alp)

e_ip(x_y).
27)* p? —m? + ie

(132)

In order to connect with (126) it is convenient to write the
above equation as

i [ &p ip(x-y)
iGx—y)=i 2n) I(p)e (133)
where I(p) is the integral with respect to p° = w
1 . A(a), p)e—im(x—y)o
I(p) =— dw. 134
() 271'/_000)2—p2—m2+i€ v (134)

This integral can be solved by the residue theorem in the
conventional way. However, since we are working with an
unconventional extension off-shell of the polarization sum
and at the end we obtain additional terms, we give some
details of the calculation in Appendix B. The final result for
the relation of the two-point correlation function in
Eq. (126) and the integral in Eq. (132) is

S0 —1
2m?

iTp(x—y) =iG(x—y) + Sx—y). (135)

In conclusion, the two-point function in Eq. (126) is
noncovariant and differs from the covariant four-
dimensional integral representation in Eq. (132) by the
term proportional to §*(x — y). The noncovariance of the
two-point correlation function in the canonical quantization
is a generic property of s > 1/2 field theories. This point
has been discussed in detail by Weinberg in [16] and we

PHYSICAL REVIEW D 93, 076003 (2016)

refer the reader to this reference for further details.
Concerning the calculation of the covariant S-matrix
elements, the conclusion there 1is that the correct
Feynman rules are obtained just skipping the noncovariant
terms like the term proportional to 5*(x — y) in Eq. (135),
i.e., in the calculations we must use

. [ d'p  A(p)
Trlx=y) = l/(2ﬂ)4l?2—m2+iee e (136)

We remark that this four-dimensional integral representa-
tion of the propagator incorporates terms proportional to
p? — m? to the naive off-shell generalization of the polari-
zation sum projector

S(p)+m?> p*-m?

Alp) —
(p) 2m? 2m?

(137)

This point is crucial when we incorporate interactions via
the gauge principle. Indeed, for the simplest case of
interactions with U(1) massless vector fields, the three-
point function in momentum space is given by

(p.p") =2"(p' + p),. (138)
It is easy to show that the Ward identity due to gauge
invariance is satisfied by this vertex with the propagator in
Eq. (136) but not with the propagator constructed only with
the first term in Eq. (137).

Before ending this section we would like to remark that
the algebraic structure of the symmetric traceless symmet-
ric tensor in Egs. (12), (13) is crucial in obtaining all the
results presented in this section.

V. CHIRAL DECOMPOSITION
AND SELF-INTERACTIONS

The parity-based covariant basis in Eq. (1) includes the
chirality operator y with the properties
{r.5"y =0, 4 =1, [r.O]=0  (139)
with O denoting any other member of the covariant
basis.
Chiral fields transforming in the (1, 0) (“right” fields)
and (0, 1) (“left” fields) representations are defined as
wr=Pry and y; =Py, (140)
where the projectors onto well-defined chirality subspaces
are given by

1
PR:§(1+)(), Py =

(1=-2).  (141)

N[ =

These operators have the following projector properties:

076003-11



M. NAPSUCIALE et al.

PR+PL:17 PRPLZO, P%:PR, P%:PL,

(142)

which together with the commutation relations in
Eqgs. (139) imply

OPR,L — PR,LO7 S”UPR!L — PL,RS/“/' (143)

The Lagrangian in Eq. (59) can be decomposed in terms
of the chiral fields as

1

L= 3 [k (i0)*w + wgS(i0)wr + L S(i0)y ]

— m2 Ry, + YLyl (144)
The first term in the kinetic part couples left and right
fields; hence, the Lagrangian is not chirally symmetric in
the massless limit. Spin 1 matter fields cannot have chiral
gauge interactions. Concerning possible applications to
hadron physics, it is not possible to realize chiral symmetry
linearly and our theory can be useful only with formalisms
realizing chiral symmetry nonlinearly. As for possible
applications to model building for theories beyond the
standard model, the only possibilities for the interactions of
spin-one matter fields in this context are (i) vector gauge
interactions connected or not with the standard model
group, and (ii) self-interactions.

Concerning interactions, we remark that the spin-one
matter field has mass dimension one, thus self-interactions
are naively renormalizable. We can use the covariant basis
to classify all naively renormalizable terms in the corre-
sponding Lagrangian. These terms must be constructed
from the following operators bilinear in the field

V_IXSW/W’ l/_/MMDl//’

l/_/)( C/waﬂ v.

WS,
WMy,

vy, .
l/_/C/waﬂl//v ( 145)
The last two bilinears arise from the contractions of the
previous two with the Levi-Civita tensor (contractions with

the metric tensor vanish) which can be rewritten in terms of
the chirality operators using the relations

- 1 .
Mﬂ,/ = 3 eﬂ,/"’Mpg = —l)(le,
~ 1 .
C/waﬂ = 56;4“ GCpo-aﬂ = _Ufcﬂvaﬂ (146)

There are ten independent nonvanishing Lorentz invariant
terms that can be built from the products of these bilinears.
The most general naively renormalizable self-interaction
Lagrangian is given by

PHYSICAL REVIEW D 93, 076003 (2016)
Lot = ci1(py)” + e2(pw)* + c3(FSuw)?
+ (P Suw)® + cs(@Muw)* + co(FCruapyr)?
+ e () (paw) + s (WS, ) (W S*w)
+ oM,y ) (wxM"y)

+ clO(l/_/C;wa/}l//) (l/_/)(cﬂyaﬁl//)' (147)
Some of these terms violate discrete symmetries and it
would be interesting to explore the consequences of the
existence of spin-one matter particles in physics beyond the
standard model, in particular if it could play a role in
resolving the dark matter enigma. If the massless limit of
our formalism is a sensible theory, all these coefficient must
vanish since all these terms violate the gauge invariance
in Egs. (41).

VI. SUMMARY AND CONCLUSIONS

In this work we introduced a Dirac-like formalism for the
description of spin 1 massive fields transforming in the
(1,0) & (0, 1) representation of the HLG. The formalism is
based on the simultaneous projection on parity eigenspaces
and on the appropriate Poincaré orbit. This projection is
done using the parity-based covariant basis for the matrix
operators acting on the (1,0) @ (0, 1) representation space
constructed in [15]. We constructed the charge conjugation
operator and showed that it commutes with parity. An
explicit construction of the solutions using the representa-
tion of operators in the basis of well-defined parity for
(1,0) & (0, 1) shows that the “down” component of the
solutions are suppressed as v/c with respect to the “up”
part of the solutions in the nonrelativistic limit. More
importantly, the “down” part of the solutions are fixed by
the kinematics, as a consequence of the constrained
dynamics. We worked out the constraints at the classical
field theory level, showed that the system has only second
class constraints, and obtained the Dirac bracket of the
canonical conjugate variables. We carried out the canonical
quantization of the theory, and calculated commutator
relations for the canonical variables consistent with the
classical Dirac brackets. Sensible results were obtained for
the relevant physical quantities: energy, momentum, U(1)
charge, and the propagator. The algebraic properties of the
covariant basis were instrumental in obtaining these results.
With the aid of the chirality operator which naturally
appears in the construction of the covariant basis, we
analyzed the chiral structure of the theory finding that
spin-one matter fields cannot have chiral gauge inter-
actions, but admit vector gauge interactions. Spin-one
matter fields have mass-dimension one therefore self-
interactions are naively renormalizable. Using the covariant
basis, we classified all renormalizable self-interaction
terms.

Although the formalism is designed for massive par-
ticles, the classical theory has a soft m — 0 limit, in whose
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case first class constraints (gauge symmetries) appear. It
would be interesting to explore if a sensible quantum field
theory can be obtained in this case.
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APPENDIX A: CONSTRAINED DYNAMICS
WITH A U(1) COUPLING

The Lagrangian with U(1) coupling is

L =D, V"D,V — m*¥¥, (A1)
D,V =9,V +igA,V, (A2)
DA 9,V —igA, ¥ (A3)

In terms of the “up” ¢ and “down” £ fields, the Lagrangian
reads

PHYSICAL REVIEW D 93, 076003 (2016)
L = Djp'Dop - % (Do DiJ'E + Dy&' D)
~ 5 (D}g"F'Doé + D} Do)
+Di¢"Dig + %DW{J’} J}Djg
PP D E -l EE). (Ad)
For the purposes of quantization, it is instructive to

analyse the Dirac bracket. The canonical momenta in the
presence of a U(1) coupling are

oL 1

F = o = Pk =3 (D18, (a3)
"= gfp =D - SUDE, (A9
and
I (VLR
= <§fgz) = 3 (D),. (A8)

which imply constraints even in the presence of electro-
magnetic interactions.

The Hamiltonian density, incorporating the constraints
as Lagrange multipliers, is

1 . 1 ‘ 1 o
H* = n,my +=n,(J'Di), + 5 (DIETT) mh + i (DIETT)(J/D;é),

2

oo 1 o 1 e
= D[ Dip— Dl (J'. 1} Dyp = 5 DIE I JY Dy + mi('p — €16)

. e P N )
+ ieA[Tapa — pomy) + EAO[éll(JlDi(p)a — (Do 1), &)

+ AP + Moph,

and the Hamilton equations are

SH . 1,
= = Ty — lD' ] A 19 Al
a()(pa 5ﬂa TTa + 2 (‘I 1§)a +1e 0P ( O)
OH* . 1 o
807[2 = - 5(pT = _DiDl(pa _EDiDj({Jl’JJ}QD)a

1 . 1, .
—mPp, + 5 (JIDI2), + ie|Agnt — 5 (J'D;Ayé)

a

(Al1)

(A9)
oH*
B, =2 — ) Al2
0‘§a 51“ a ( )
oH* 1 ) 1, ...
T — DTt (] .D.
a()Ta— 552 _2D1(J” )a+4(‘] JleD.Ig)a

— DD Y, 4 mi, = AI'Dig),
(A13)

The temporal evolution of any dependent dynamic
variable fields and momenta can be written as
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. B . | R
8= puy, (A14) k0 = D}(a)'), =5 (DID]E I,
ie .o
and again they have the same Poisson brackets between +m?E + = Foi(9'J"), = 0. (Al6)

fields and canonical momenta, Eqgs. (75). 2

The dynamics generated by the modified Hamiltonian

- and, again, for consistency, requires
must preserve the restrictions

apa * = aK
Qopa =5+ {p.. H*} = 0. (A15) Ooka = —

<+ {x, H} = 0. (A17)

This leads to secondary constraints This condition yields

, - .
k=-D{[DiDYgp + ED}D?((/;T{J I = m2Dl gt Ik

i [ 1e k 7i 2 o [P 7y | i

+/1 EFliJ +m —leDi Aoﬂ—E(Dj(Aoé )Jj> J

] 1 . e . .
+§F0k (” —ieAggp’ +2(D,T§TJI)>Jk +§F0i¢ul

€, « 4 o i . . L
—E(AjD,.afTJfJ + DIAE T + ieAn]t = 0. (A18)

Although this is a complicated equation, it just defines A™ and does not give rise to additional secondary constraints.
Now we write the Poisson brackets between the constraints. It is straightforward to see that

{pa(x).ps(y)} =0, (A19)
{Pa(x).p,(y)} =0, (A20)
{Pa(x).x5(y)} = 0. (A21)

However, for {p,(x),x5(y)} we get

(20K = { |5+ 5 0100, 0. | 0,80 = 3 (D70, + | )

ie

-5 5 0l w1 e (A22)

and since the last line of this equation vanishes,

(00 K500} = =5 (£ (0). (DD, (1)} + M2 {2, (). £,(1)
3D} 19),(x). D, (72, ). (A23)

This can be written as

{pa(x), KZ(Y)} = % [DyiDyj + DyiDij]53(X — ) (JT) g = m*68° (X = y). (A24)

In this expression, we can change 9, by —9, and A;(x) by A;(y) in D} 9 (x —y) to get =Dy;6°(x —y). This allows us to
conclude that
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{Pa(%). 5, (¥)} = =m?6,6°(x ). (A25)
These are equal to the free field Poisson brackets.

APPENDIX B: INTEGRAL REPRESENTATION OF THE PROPAGATOR

For the calculation of the integral in Eq. (134) we split it into the real axis and the semicircle contributions

L [ Alw,p)e ot 1/ A(w, p)e=@C)

— do =1 — dw. Bl
2 Je w* — p? — m? +ie @ (p)+2ﬂ' c,w* —p? —m* +ie @ (B1)

Causality requires us to close the contour C with a (counterclockwise) semicircle on the upper complex plane for
(x —y)? < 0 and with a (clockwise) semicircle on the lower plane for (x — y)° > 0. In the case (x — y)° > 0, C encloses the

pole ., = /p? + m*> —ie and we get

L
N 2w, 2z Cga)z—pz—m2+i€

1(p) do. (B2)

Similarly, for (x —y)® < 0 we obtain

iAo, p)e " 1 [ Aw,p)e
- 20, 27 Joy 0 —p* —m? + e

dw. (B3)

1(p)

Next we parametrize € Cx as @ = Re' with 0 < 0 < x for C} and 7 < @ < 2z for C. For large R we get

_ A(Re", p) I S
gg?oR%z"g—pz—mz—i-ie_W(S -D#0, (B4)

and unlike the scalar and fermion case, the integrals over C% do not vanish

Ao, p)eiet=y)’ S0 —1 :
fim [ AR, -1 / =06 dep, (BS)
R=oo ot w” — P~ —m” + 1€ 2m c:

The integral on the right-hand side of Eq. (BYS) is readily obtained as
/ e @) doy = —25(x" — y9). (B6)
Ck

Using Eqgs. (BS), (B6) we can rewrite Egs. (B2), (B3) as

—iA(w,.,p)e @) (500 1)

I(p) = 2o, + Sy 5(x°=y%); (x—y)° >0, (B7)
—iA~w,, iwe(x—y)° S()O -1

I(p) = AL P TT (ST 50040y ooy <0, (B8)

2w, 2m

and Eq. (132) reads

O(x° —y° & ‘ ,
iG(x — y) = M / _pA(a)m p)e—ta)(x—y)oezp(x—y)

(27)3 2w,
9(}70 _ xO) d3p i 0 S00 _ 1
=~ ZE A(—aw,, p)eti@ty) gip(x-y) S x=v). B9
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Changing p by —p in the second line of Eq. (B9), taking the ¢ — O limit and using

A(wpv P) =

we finally obtain

S(p) +m’
Tom (B10)

5% —1
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