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We propose to construct a chirally broken model based on the infrared fixed point of a conformal system
by raising the mass of some flavors while keeping the others massless. In the infrared limit, the massive
fermions decouple, and the massless fermions break chiral symmetry. The running coupling of this system
“walks,” and the energy range of walking can be tuned by the mass of the heavy flavors. Renormalization
group considerations predict that the spectrum of such a system shows hyperscaling. We have studied
a model with four light and eight heavy flavors coupled to SUð3Þ gauge fields and verified the above
expectations. We determined the mass of several hadronic states and found that some of them are in the
2–3 TeV range if the scale is set by the pseudoscalar decay constant Fπ ≈ 250 GeV. The 0þþ scalar state
behaves very differently from the other hadronic states. In most of our simulations, it is nearly degenerate
with the pion, and we estimate its mass to be less than half of the vector resonance mass.
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I. INTRODUCTION

Electroweak symmetry breaking (EWSB) and the nature
of the Higgs boson are central questions of beyond the
Standard Model (BSM) investigations. A gauge theory
exhibiting spontaneous chiral symmetry breaking (SχSB)
may describe EWSB when coupled to the Standard Model.
In such a system, three of the massless Goldstone pions
become the longitudinal component of the W� and Z
bosons, while all other hadronic states appear as exper-
imentally observable excitations in the spectrum. The
physical energy scale is set by matching the decay constant
of the pseudoscalar (pion) to the vacuum expectation value
of the EWSB, i.e., Fπ ≈ 250 GeV. BSM theories based on
this construction are particularly interesting as they predict
several resonances around 2–3 TeV, an energy range
accessible at the LHC. The lightest vector meson state
in our model is close to 2 TeV and could correspond to the
recently reported resonance [1]. These theories are based
on similar concepts originally introduced in the context
of technicolor [2–5]. Phenomenologically viable models
must have properties quite different from QCD, suggesting
they are likely near the conformal boundary. Recent lattice
simulations with many fundamental flavors or with fer-
mions in higher representations have indeed revealed
non-QCD-like properties [6–11].
A composite BSM model with two massless fermions

generates the required three Goldstone bosons. If the
number of fermions is larger than two, as is the case in
systems with fundamental flavors near the conformal
boundary, the additional massless pseudoscalars have to
acquire mass. While the precise mechanism of this could

be complicated, for an effective description, one can simply
add a mass term to the additional fermion flavors. In a
model with Nf fermions, one would keep Nl ¼ 2 flavors
massless and make Nh ¼ Nf − Nl fermions massive. That
way, the system will have only three massless Goldstone
bosons in the infrared limit, yet the additional flavors will
have an influence on the spectrum.
When the total number of fermions increases above a

critical value, the system crosses the conformal boundary.
The infrared properties are now characterized by a non-
perturbative infrared fixed point (IRFP). Nevertheless, the
construction proposed above works just the same. Lifting
the masses of all but Nl ¼ 2 flavors will lead to SχSB
with three massless Goldstone bosons in the infrared limit.
The presence of the conformal IRFP influences both the
running of the gauge coupling and the spectrum. The idea
to give mass to some of the flavors studied was previously
discussed in Ref. [12], and a similar construction, though
with different phenomenology, has been proposed, e.g., in
Refs. [13] and [14].
In this paper, we investigate the properties of such a

system, based on the Nf ¼ 12 conformal model [15–20].
We lift the masses of Nh ¼ 8 fermions (heavy flavors)
and keep Nl ¼ 4 flavors light. This choice is motivated by
the lattice action we use in our simulations, but a chirally
broken model with four light flavors also has phenomeno-
logical relevance. An example is the composite two-Higgs-
doublet model of Ref. [21] that assumes four light flavors
and the Higgs bosons emerge as pseudo-Goldstone states.
More commonly discussed models feature two massless
fermions in the chiral limit and thus require simulations
with Nl ¼ 2. Our choice is, however, sufficient to
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investigate general properties of mass split systems. By
changing mh from zero to ∞, our model interpolates
between the conformal 12-flavor and the chirally broken
4-flavor systems. If mh > 0, chiral symmetry is sponta-
neously broken. In the next section, we deduce that the
hadron spectrum of the light flavors shows hyperscaling in
mh assuming mh is in the scaling regime of the IRFP and
ml ¼ 0. Ratios of hadron masses are independent of mh,
yet by tuning mh → 0 one can control the energy depend-
ence of the gauge coupling, making it walking. Walking, in
turn, can influence some of the infrared properties impor-
tant to satisfy electroweak constraints.
We study both the hadron spectrum and the running

gauge coupling in numerical simulations and verify theo-
retical expectations. In particular, we show that ratios of
hadron masses in the ml ¼ 0 chiral limit are independent
of mh in the scaling regime of the IRFP. We compare the
predicted spectrum with QCD and the conformal Nf ¼ 12-
flavor systems. Despite some similarities, the spectrum
we observe is distinct from both QCD and the Nf ¼ 12

predictions. Setting the energy scale by Fπ ≈ 250 GeV, we
predict the lightest vector excitation to be around 2 TeV.
The mass of the isomultiplet scalar is only slightly larger,
while the nucleon and axial vector are both around 2.7 TeV.
At the fermion masses we can investigate, the mass of the
isosinglet scalar is comparable to the pion. Thus, predicting
its chiral limit value is difficult, and we only quote the
bound M0þþ=Fπ ≲ 4. Simulations on larger volumes and
smaller fermion masses are needed to make this prediction
more precise. In addition, when coupled to the SM heavy
quarks, radiative corrections will lower the mass of the
scalar considerably [22]. Preliminary results of both the
spectrum and running coupling were presented in
Refs. [23,24], and a publication with further details is in
preparation [25].

II. RENORMALIZATION GROUP STRUCTURE
AND RUNNING COUPLING

Our 4þ 8-flavor model is built on the conformal IRFP of
the SU(3) Nf ¼ 12-flavor system. Near the IRFP, the only
relevant parameter is the fermion mass. When all fermions
have a degenerate mass that is much smaller than the lattice
cutoff Λa ∝ 1=a, we expect hyperscaling with mass scaling
dimension ym ¼ 1þ γm ≈ 1.25 [15,16,19]. The Wilson
renormalization group (RG) equations predict that a change
in the energy scale μ → μ0 ¼ μ=b (b > 1) transforms the
bare mass m̂ ¼ am as m̂ → m̂0 ¼ bymm̂, while the bare
gauge coupling g → g0 approaches its fixed point value g⋆.
(For simplicity, we consider only one gauge coupling,
ignoring all other irrelevant couplings.) It is straightforward
to derive a scaling relation for any two-point correlation
function CH [26,27],

CHðt; g; m̂i; μÞ ¼ b−2yHCHðt=b; g0; m̂0
i; μÞ; ð1Þ

where yH denotes the scaling dimensions of operator H.
With repeated RG steps, the irrelevant couplings approach
the IRFP, and the b dependence of Eq. (1) can be written
as CH ∝ b−2yHFðt=b; bm̂1=ymÞ where F is some unknown
function. Since correlation functions are expected to show
an exponential decay CHðtÞ ∝ expð−MHtÞ when the fer-
mion mass is finite, Eq. (1) implies the scaling relation

aMH ∝ ðm̂Þ1=ym : ð2Þ

The renormalization group equation (1) is valid even when
some of the fermions are kept massless [24]. The hyper-
scaling relation of Eq. (2) remains unchanged with the
replacement m̂ → m̂h and applies for both light and heavy
flavored hadrons, as long as m̂l ¼ 0 and all heavy flavors
are degenerate. Therefore, dimensionless ratios, such as
MH=Fπ , are independent of the heavy mass, as long as m̂h
is in the scaling regime of the IRFP. Since this system is
chirally broken, even the hadrons made up of light flavors
are massive (except the Goldstone pions), and hyperscaling
implies that their mass in units of Fπ is independent of the
heavy flavor mass.
Nevertheless, even for m̂h → 0, the heavy flavors will

influence other observables. Consider, e.g., the running
gauge coupling as sketched in the top panel of Fig. 1. At
high energies, the coupling runs from the bare coupling
toward the IRFP. At the UV energy scale denoted by ΛUV,
the gauge coupling reaches the vicinity of the IRFP. Its
value is close to g⋆ and changes only slowly when further
reducing the energy scale. In this regime, the coupling
“walks.” If all fermions were massless, gðμ → 0Þ ¼ g⋆ as is
indicated by the solid line in the figure. On the other hand,
if some of the fermions are massive, their mass becomes
comparable to the cutoff at some energy scale, denoted by
ΛIR, and they decouple. In this limit, the system behaves
like a chirally broken model with Nl massless fermions.
The corresponding fast running coupling is denoted by the
dashed blue lines in Fig. 1. The walking range between the
scales ΛUV and ΛIR can be tuned by m̂h, and a walking
behavior in these systems is guaranteed. The red long-
dashed curve in Fig. 1 describes the case where the heavy
fermions decouple before the gauge coupling reaches the
vicinity of the IRFP. This situation can be avoided by
tuning m̂h → 0 and is not considered here.
Our numerical simulations support the expectations

outlined above. The bottom panel of Fig. 1 shows the
running coupling calculated at five different values,
m̂h ¼ 0.050, 0.060, 0.080, 0.100, and ∞ (i.e., Nf ¼ 4).
We define the energy dependent running coupling through
the Wilson flow scheme and match the scales such that
all five systems predict the same g2ðμÞ in the infrared
limit [28,29]. The Nf ¼ 4 system shows the expected fast
running, but a shoulder develops as m̂h is lowered. The
dashed curves in the bottom panel of Fig. 1 indicate regions
where cutoff effects could be significant; however,
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theoretical considerations guarantee that the gauge cou-
pling takes its IRFP value as m̂h → 0. The similarity
between the top and bottom panels of Fig. 1 is striking
and suggests that our simulations have entered the walking
regime. A walking gauge coupling leads to the enhance-
ment of the fermion condensate and is necessary to satisfy
electroweak constraints.

III. LATTICE SIMULATIONS AND
THE HADRON SPECTRUM

Wilson renormalization group considerations predict that
the 4þ 8-flavor system shows hyperscaling in the aml ¼ 0
chiral limit where dimensionless ratios of hadron masses
are independent of the heavy mass amh. However, these
ratios have to match neither the Nf ¼ 12- nor the Nf ¼ 4-
flavor values. In this section, we present numerical results
for the hadron spectrum of the Nf ¼ 4þ 8 model at four
different amh values.

We use staggered fermions with nHYP smeared gauge
links [30,31] and a gauge action that is the combination
of fundamental and adjoint plaquette terms. This action has
been used in Nf ¼ 12-flavor simulations [15,16,19], and
we chose the parameters for this work based on those
results. We have carried out simulations at one gauge
coupling, β ¼ 4.0, and four different values of the mass of
the heavy flavors, amh ¼ 0.050, 0.060, 0.080, and 0.100.
Based on the results of the finite size scaling study [19], we
expect that the three lightest values are within the scaling
regime of the IRFP, while mh ¼ 0.100 could be on the
boundary. We chose the light fermion masses in the range
aml ¼ 0.003–0.035, and the lattice volumes vary from
243 × 48 to 483 × 96. At many (aml; amh) mass values, we
consider two volumes to monitor finite volume effects. We
use the Wilson flow transformation to define the lattice
scale [28]. As aml → 0 and amh → 0, our simulations
approach the Nf ¼ 12 conformal limit, and consequently
the lattice spacing decreases, requiring simulations on
increasingly larger volumes. Since we observe significant
changes in the lattice spacing both when varying amh and
aml, we present our results in terms of a common reference
scale a⋆ that we define as the lattice scale on the (363 × 64,
amh ¼ 0.080, aml ¼ 0.003) ensemble and convert results
on other ensembles using ratios of the Wilson flow scale.
Figure 2 summarizes our results of the hadron spectrum.

The panels show dimensionless ratios MH=Fπ for the
pseudoscalar (pion), vector (rho), isomultiplet scalar (a0),
axial vector (a1), nucleon (N), and isosinglet scalar (0þþ)
states. The first narrow panel shows the values for QCD [32]
which is known to be similar toNf ¼ 4, ourmh → ∞ limit.
The last panel presents averages of numerical results for 12
degenerate flavors also accounting for the spread in the
literature [7,16,33,34]. (In conformal systems, the ratios are
expected to be constant, up to corrections due to scaling
violation.) The wider panels in the middle show the Nf ¼
4þ 8 spectrum as the function of the light fermion mass
measured in terms of the common lattice scale a⋆ at our four
amh values. The errors in Fig. 2 are statistical only. Based on
the comparison of different volumes, we estimate that finite
volume effects are below the few percent level. We indicate
data points by an open symbol where we suspect larger
systematic effects. Details will be discussed in Ref. [25].
Since the Nf ¼ 4þ 8 system is chirally broken, we

expect the pion mass to scale asMπ ∝
ffiffiffiffiffiffi

ml
p

, while all other
hadrons should acquire finite mass in the aml ¼ 0 chiral
limit. For large amh in the limit aml → 0, we observe
QCD-like behavior; i.e., Mπ=Fπ decreases, and Ma1=Fπ

increases toward the QCD value. On the other hand, our
system describes degenerate 12 flavors in the limit of
aml ¼ amh ≪ 1. At our largest ml values corresponding
to aml ¼ 0.035, we find all six ratios to be in agreement
with the 12-flavor averages.
The ratios MH=Fπ for the ϱ, a0, and nucleon states

show a fairly linear dependence on a⋆ml, allowing for a

FIG. 1. Top: The expected running gauge coupling of
conformal and mass-split systems. The solid blue curve sketches
the evolution of the gauge coupling in a conformal system.
The dashed blue curve shows the change in a mass-split system,
while the red long-dashed curve describes a situation where the
fermions decouple before the gauge coupling could approach
the conformal IRFP. Bottom: Numerical results for the running
coupling constant g2 for different values of m̂h and in the
m̂h ¼ ∞ (four-flavor limit) with m̂l extrapolated to the chiral
limit. The emergence of the walking regime is evident as m̂h → 0.
The dashed sections of the lines indicate where we suspect
cutoff effects may be significant.
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simple estimate of their values in the ml ¼ 0 chiral limit.
On the other hand, extrapolating the isosinget 0þþ state to
the chiral limit is much more difficult. At amh ¼ 0.050 and
0.060, the 0þþ is degenerate with the pion at all our aml
values, indicating that our light fermions are not light
enough to be in the chiral regime. For amh ¼ 0.080 and
0.100, the 0þþ slowly separates from the pion indicating a
nonzero M0þþ=Fπ value as ml → 0. This is the expected
behavior because the 0þþ is not a Goldstone boson.
Testing the hyperscaling hypothesis (valid only in the

chiral limit), we compare our four different amh values in
Fig. 3. The left panel shows the ratios for the pion, rho, and
a1 exhibiting very little scatter in amh. In particular,Mϱ=Fπ

seems to be independent of the mass of the heavy flavors
with a chiral limit of just above 8.0. Thus, the vector state
in our model would be around 2 TeV if Fπ ≈ 250 GeV.
Interestingly, many other near conformal models with an
SUð3Þ gauge group, like the Nf ¼ 8 fundamental [11,35],
the Nf ¼ 2 sextet [36], and even the conformal Nf ¼ 12

fundamental [16,33,34], as well as QCD predict almost
the same Mϱ=Fπ ratio. Reference [11] argues that this
could be a consequence of some remnant vector meson
dominance—an idea worth exploring in the future.
The right panel of Fig. 3 shows the ratios for the 0þþ, a1,

and nucleon. Here, we observe a larger spread for different
amh. At this point, we cannot say whether this spread is due
to systematical errors or a possible breakdown of hyper-
scaling, because corrections to hyperscaling may depend
on the observable. In the case of the nucleon, the staggering
of the different amh values might be interpreted to approach
the four-flavor QCD-like limit. The a0 state is more
difficult to interpret, since systematic effects are increasing
as ml → 0 [25]. The 0þþ receives contributions from
disconnected diagrams, and thus the signal is noisier and

the spread less significant. Overall, the 0þþ shows a
coherent trend: for larger aml, it is degenerate with the
pion—a behavior previously observed in Nf ¼ 8 simula-
tions [8,11,37]—and approaches the value of the degen-
erate 12-flavor limit [7]. When aml decreases, the 0þþ
becomes lighter, and a linear extrapolation of the data for
a⋆ml ≤ 0.01 would predict a chiral value M0þþ=Fπ ≈ 4.
This value is half of the vector resonance and thus lower
than the prediction in QCD. However, it is possible that
smaller aml values, especially when mh is closer to the
IRFP, could extrapolate to an even lower mass value.

IV. OUTLOOK AND CONCLUSION

We study a model with spontaneously broken chiral
symmetry built on the infrared fixed point of a conformal

FIG. 2. The pion, rho, isosinglet 0þþ and isomultiplet a0 scalar, axial, and nucleon mass of the light flavor spectrum in units of Fπ . The
first narrow panel shows the experimental values for QCD [32] normalized by Fπ ¼ 94 MeV, while the last one corresponds to average
values obtained from Nf ¼ 12-flavor simulations [7,16,33,34]. The four wider panels show the Nf ¼ 4þ 8 spectrum as the function of
the light quark mass a⋆ml for amh ¼ 0.100, 0.080, 0.060, and 0.050. If the chirally broken Nf ¼ 4þ 8 system triggered EWSB,
Fπ ≈ 250 GeV would set the correct electroweak scale.

FIG. 3. Combining all four amh values from Fig. 2. The left
panel shows the pion, rho, and a1, and the right panel shows the
0þþ, a0, and nucleon states in units of Fπ .
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system by splitting the fermion masses. Specifically, we
study a system with Nl ¼ 4 light (massless) and Nh ¼ 8
heavy flavors. Renormalization group arguments imply this
system exhibits a walking gauge coupling tunable with the
heavy fermion mass and the spectrum shows hyperscaling.
Even though our model has four massless fermions in the
infrared, its spectrum is not QCD-like. We predict ratios
MH=Fπ for several hadronic states. Using the value
Fπ ≈ 250 GeV, the lightest vector excitation would be
around 2 TeV, the mass of the isomultiplet scalar only
slightly larger, while the nucleon and axial vector are both
around 2.7 TeV. The 0þþ scalar state remains close to the
pion in most of our simulations even when the rho is close
to the two-pion threshold, a behavior not observed in QCD
simulations. Thus, we expect the 0þþ to be light, at most
half of the vector state. However, since our simulations
imply the light fermions are not yet in the chiral regime, it
is difficult to predict the mass of the scalar state. In
addition, the scalar mass will decrease further due to
top-loop corrections when coupled to the SM.
In summary, our model exhibits a light 0þþ state

(Higgs candidate) and predicts additional resonances in
the 2–3 TeV range. Most remarkably, the latter predictions
seem to be rather universal for BSM models based on the
SU(3) gauge theory and are most likely within the reach
LHC run II. If the confidence on the 2 TeV resonance [1]
increases, further studies are warranted. We are considering
simulations of models with only two light flavors that are
closer to the conformal window.

ACKNOWLEDGMENTS

The authors thank their colleagues in the LSD
Collaboration for fruitful and inspiring discussions.
Computations for this work were carried out in part on
facilities of the USQCD Collaboration, which are funded
by the Office of Science of the U.S. Department of
Energy, on computers at the MGHPCC, in part funded
by the National Science Foundation, and on computers
allocated under the NSF Xsede program to Project
No. TG-PHY120002. We thank Boston University,
Fermilab, the NSF, and the U.S. DOE for providing
the facilities essential for the completion of this work.
R. C. B., C. R., and E. W. were supported by DOE
Grant No. DE-SC0010025 and in addition acknowledge
the support of NSF Grant No. OCI-0749300.
A. H. acknowledges support of the DOE Grant No. DE-
SC0010005. O. W. is supported by STFC, Grant No. ST/
L000458/1. This project has received funding from the
European Union’s Horizon 2020 research and innovation
program under the Marie Skłodowska-Curie Grant
No. 659322. R. C. B., A. H., and C. R. thank the Aspen
Center for Physics, which is supported by National
Science Foundation Grant No. PHY-1066293. R. C. B.,
A. H., and O. W. thank the KITP, Santa Barbara, sup-
ported in part by the National Science Foundation under
Grant No. NSF PHY11-25915. A. H. and O. W. thank
the CERN Theory group for their hospitality during the
completion of this manuscript.

[1] G. Aad et al. (ATLAS Collaboration), J. High Energy Phys.
12 (2015) 055; CMS Collaboration, CERN Report
No. CMS-PAS-EXO-14-010, 2015.

[2] S. Weinberg, Phys. Rev. D 19, 1277 (1979).
[3] L. Susskind, Phys. Rev. D 20, 2619 (1979).
[4] E. Eichten and K. D. Lane, Phys. Lett. 90B, 125

(1980).
[5] T. Appelquist, J. Terning, and L. C. R. Wijewardhana, Phys.

Rev. D 44, 871 (1991).
[6] F. Bursa, L. Del Debbio, D. Henty, E. Kerrane, B. Lucini, A.

Patella, C. Pica, T. Pickup, and A. Rago, Phys. Rev. D 84,
034506 (2011).

[7] Y. Aoki, T. Aoyama, M. Kurachi, T. Maskawa, K.-i. Nagai,
H. Ohki, E. Rinaldi, A. Shibata, K. Yamawaki, and T.
Yamazaki (LatKMI Collaboration), Phys. Rev. Lett. 111,
162001 (2013).

[8] Y. Aoki, T. Aoyama, M. Kurachi, T. Maskawa, K. Miura,
K.-i. Nagai, H. Ohki, E. Rinaldi, A. Shibata, K. Yamawaki,
and T. Yamazaki (LatKMI Collaboration), Phys. Rev. D 89,
111502 (2014).

[9] A. Hietanen, R. Lewis, C. Pica, and F. Sannino, J. High
Energy Phys. 07 (2014) 116.

[10] Z. Fodor, K. Holland, J. Kuti, S. Mondal, D. Nogradi, and
C. H. Wong, Proc. Sci. LATTICE2014 (2015) 244.

[11] T. Appelquist et al. (LSD Collaboration), arXiv:1601
.04027.

[12] D. D. Dietrich and F. Sannino, Phys. Rev. D 75, 085018
(2007).

[13] L. Vecchi, arXiv:1506.00623.
[14] M. A. Luty and T. Okui, J. High Energy Phys. 09 (2006) 070.
[15] A. Hasenfratz, Phys. Rev. Lett. 108, 061601 (2012).
[16] A. Cheng, A. Hasenfratz, Y. Liu, G. Petropoulos, and D.

Schaich, Phys. Rev. D 90, 014509 (2014).
[17] A. Cheng, A. Hasenfratz, G. Petropoulos, and D. Schaich,

J. High Energy Phys. 07 (2013) 061.
[18] E. Itou and A. Tomiya, Proc. Sci.LATTICE2014 (2014) 252.
[19] A. Cheng, A. Hasenfratz, Y. Liu, G. Petropoulos, and D.

Schaich, J. High Energy Phys. 05 (2014) 137.
[20] M. P. Lombardo, K. Miura, T. J. N. da Silva, and E. Pallante,

J. High Energy Phys. 12 (2014) 183.
[21] T. Ma and G. Cacciapaglia, J. High Energy Phys. 03 (2016)

211.
[22] R. Foadi, M. T. Frandsen, and F. Sannino, Phys. Rev. D 87,

095001 (2013).

COMPOSITE HIGGS MODEL AT A CONFORMAL FIXED POINT PHYSICAL REVIEW D 93, 075028 (2016)

075028-5

http://dx.doi.org/10.1007/JHEP12(2015)055
http://dx.doi.org/10.1007/JHEP12(2015)055
http://dx.doi.org/10.1103/PhysRevD.19.1277
http://dx.doi.org/10.1103/PhysRevD.20.2619
http://dx.doi.org/10.1016/0370-2693(80)90065-9
http://dx.doi.org/10.1016/0370-2693(80)90065-9
http://dx.doi.org/10.1103/PhysRevD.44.871
http://dx.doi.org/10.1103/PhysRevD.44.871
http://dx.doi.org/10.1103/PhysRevD.84.034506
http://dx.doi.org/10.1103/PhysRevD.84.034506
http://dx.doi.org/10.1103/PhysRevLett.111.162001
http://dx.doi.org/10.1103/PhysRevLett.111.162001
http://dx.doi.org/10.1103/PhysRevD.89.111502
http://dx.doi.org/10.1103/PhysRevD.89.111502
http://dx.doi.org/10.1007/JHEP07(2014)116
http://dx.doi.org/10.1007/JHEP07(2014)116
http://arXiv.org/abs/1601.04027
http://arXiv.org/abs/1601.04027
http://dx.doi.org/10.1103/PhysRevD.75.085018
http://dx.doi.org/10.1103/PhysRevD.75.085018
http://arXiv.org/abs/1506.00623
http://dx.doi.org/10.1088/1126-6708/2006/09/070
http://dx.doi.org/10.1103/PhysRevLett.108.061601
http://dx.doi.org/10.1103/PhysRevD.90.014509
http://dx.doi.org/10.1007/JHEP07(2013)061
http://dx.doi.org/10.1007/JHEP05(2014)137
http://dx.doi.org/10.1007/JHEP12(2014)183
http://dx.doi.org/10.1007/JHEP03(2016)211
http://dx.doi.org/10.1007/JHEP03(2016)211
http://dx.doi.org/10.1103/PhysRevD.87.095001
http://dx.doi.org/10.1103/PhysRevD.87.095001


[23] R. C. Brower, A. Hasenfratz, C. Rebbi, E. Weinberg, and
O. Witzel, J. Exp. Theor. Phys. 120, 423 (2015); Proc. Sci.
LATTICE2014 (2014) 254; E. Weinberg, R. C. Brower,
A. Hasenfratz, C. Rebbi, and O. Witzel, J. Phys. Conf. Ser.
640, 012055 (2015).

[24] A. Hasenfratz, R. C. Brower, C. Rebbi, E. Weinberg, and
O. Witzel, arXiv:1510.04635.

[25] R. C. Brower, A. Hasenfratz, C. Rebbi, E. Weinberg, and
O. Witzel (unpublished).

[26] T.DeGrandandA.Hasenfratz,Phys.Rev.D80, 034506(2009).
[27] L.DelDebbio andR.Zwicky,Phys.Rev.D82, 014502 (2010).
[28] M. Lüscher, J. High Energy Phys. 08 (2010) 071.
[29] A. Hasenfratz, Proc. Sci. LATTICE2014 (2015) 257.
[30] A. Hasenfratz and F. Knechtli, Phys. Rev. D 64, 034504

(2001).
[31] A. Hasenfratz, R. Hoffmann, and S. Schaefer, J. High

Energy Phys. 05 (2007) 029.

[32] K. A. Olive et al. (Particle Data Group Collaboration), Chin.
Phys. C 38, 090001 (2014).

[33] Y. Aoki, T. Aoyama, M. Kurachi, T. Maskawa, K.-i. Nagai,
H. Ohki, A. Shibata, K. Yamawaki, and T. Yamazaki
(LatKMI Collaboration), Phys. Rev. D 86, 054506
(2012).

[34] Z. Fodor, K. Holland, J. Kuti, D. Nogradi, C. Schroeder, K.
Holland, J. Kuti, D. Nogradi, and C. Schroeder, Phys. Lett.
B 703, 348 (2011).

[35] Y. Aoki, T. Aoyama, M. Kurachi, T. Maskawa, K.-i. Nagai,
H. Ohki, A. Shibata, K. Yamawaki, and T. Yamazaki
(LatKMI), Phys. Rev. D 87, 094511 (2013).

[36] J. Kuti, KITP, Lattice Gauge Theory for the LHC and
Beyond, Santa Barbara, CA, 2015 (unpublished).

[37] E. Rinaldi (LSD Collaboration), arXiv:1510.06771; E.
Weinberg, 33rd International Symposium on Lattice Gauge
Theory, Kobe, Japan, 2015 (unpublished).

R. C. BROWER et al. PHYSICAL REVIEW D 93, 075028 (2016)

075028-6

http://dx.doi.org/10.1134/S1063776115030176
http://dx.doi.org/10.1088/1742-6596/640/1/012055
http://dx.doi.org/10.1088/1742-6596/640/1/012055
http://arXiv.org/abs/1510.04635
http://dx.doi.org/10.1103/PhysRevD.80.034506
http://dx.doi.org/10.1103/PhysRevD.82.014502
http://dx.doi.org/10.1007/JHEP08(2010)071
http://dx.doi.org/10.1103/PhysRevD.64.034504
http://dx.doi.org/10.1103/PhysRevD.64.034504
http://dx.doi.org/10.1088/1126-6708/2007/05/029
http://dx.doi.org/10.1088/1126-6708/2007/05/029
http://dx.doi.org/10.1088/1674-1137/38/9/090001
http://dx.doi.org/10.1088/1674-1137/38/9/090001
http://dx.doi.org/10.1103/PhysRevD.86.054506
http://dx.doi.org/10.1103/PhysRevD.86.054506
http://dx.doi.org/10.1016/j.physletb.2011.07.037
http://dx.doi.org/10.1016/j.physletb.2011.07.037
http://dx.doi.org/10.1103/PhysRevD.87.094511
http://arXiv.org/abs/1510.06771

