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Phenomenological implications of an SU(5) x S4 x U(1) SUSY GUT of flavor

Maria Dimou,"" Stephen F. King,"" and Christoph Luhn>*
'School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, United Kingdom
*Theoretische Physik 1, Naturwissenschaftlich-Technische Fakultdt, Universitdt Siegen,

Walter-Flex-Strafle 3, 57068 Siegen, Germany
(Received 15 January 2016; published 19 April 2016)

We discuss the characteristic low energy phenomenological implications of an SU(5) supersymmetric
(SUSY) grand unified theory whose flavor structure is controlled by the family symmetry S, x U(1), which
provides a good description of all quark and lepton masses, mixings as well as charge parity violation.
Although the model closely mimics minimal flavor violation (MFV) as shown in M. Dimou, S. F. King, and
C. Luhn, J. High Energy Phys. 02 (2016) 118., here we focus on the differences. We first present numerical
estimates of the low energy mass insertion parameters, including canonical normalization and renorm-
alization group running, for well-defined ranges of SUSY parameters and compare the naive model
expectations to the numerical scans and the experimental bounds. Our results are then used to estimate the
model-specific predictions for electric dipole moments (EDMs), lepton flavor violation (LFV), B and K
meson mixing as well as rare B decays. The largest observable deviations from MFV come from the LFV

process u — ey and the electron EDM.
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I. INTRODUCTION

The flavor problem has been around for a long time,
but only relatively recently has new information been
provided in the form of neutrino mass and lepton mixing.
Subsequently, a lot of effort has been put into trying to
formulate a theory of flavor (for reviews see e.g. [1]) which
can account for the observed pattern of fermion masses and
mixing, while providing more accurate predictions for the
less well measured (or unmeasured) flavor parameters in
the neutrino sector; see e.g. [2].

A possible additional source of experimental information
which could shed light on the flavor puzzle would be the
observation of rare flavor changing processes at rates beyond
that predicted by the standard model (SM). Such observations
could in principle provide insight into the nature of the theory
of flavor beyond the SM. So far, experiment has unfortunately
not measured any flavor or charge parity (CP) violation
beyond SM expectations. Indeed all data are consistent with
the concept of minimal flavor violation (MFV) [3], in which
all flavor and CP-violating transitions are governed by the
Cabibbo-Kobayashi-Maskawa (CKM) matrix and the only
relevant local operators are the ones that are relevant in the
SM. Although the formulation of MFV in an effective field
theory, involving an approximate SU(3)° symmetry1 broken
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'In the framework of GUTs it is not possible to implement
SU(3)> symmetry at the GUT scale. However, in GUTs based on
SU(5) [4] or Pati-Salam [5], it is certainly possible to introduce
an SU(3) flavor symmetry, and this has been shown to be
sufficient [6].
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by the Yukawa matrices, allows some new operators which
can in principle give significant contributions [7,8], in all
cases, MFV predicts very SM-like flavor and CP violation
consistent with observation.

The absence of flavor violation is consistent with the
absence of any new physics (NP) beyond the SM, such as
supersymmetry (SUSY) which, if softly broken at the TeV
scale, would in general imply large deviations from SM
flavor and CP violation [9]. For example, SUSY models
involve one-loop diagrams that induce flavor changing
neutral current (FCNC) processes such as b — sy and
1 — ey at rates which are proportional to the mass insertion
parameters, i.e. the off-diagonal elements of the scalar
mass matrices in the super-CKM (SCKM) basis where the
Yukawa matrices are diagonal [9,10]. Such SUSY contri-
butions are very small in the constrained minimal super-
symmetric standard model (CMSSM) where the squark and
slepton mass squared matrices are proportional to the unit
matrix at the high energy scale and the trilinear A-terms
are aligned with the Yukawa matrices, resulting in an
(approximate) MFV-like structure at low energy [9]. But
there is no convincing theoretical basis for either the
CMSSM or MFV. Moreover, in SUSY grand unified
theories (GUTs), the CMSSM framework while providing
suppressed flavor violation cannot easily control CP
violation in the form of electric dipole moments
(EDMs) which remains a challenge [9]. However, the
real challenge is to justify the assumptions of MFV or the
CMSSM, while at the same time providing a realistic
explanation of quark and lepton (including neutrino)
masses, mixing and CP violation.

Following the discovery of neutrino mass and mixing,
there has been an impetus to revisit the favor problem

© 2016 American Physical Society
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using a family symmetry of some kind, in particular
discrete non-Abelian family symmetry [1]. It was realized
that in such models, spontaneous CP and flavor violation
could solve the CP and flavor problems of the SM [11,12]
without any ad hoc assumptions about MFV or the
CMSSM. The family symmetry that is responsible for
the structure of the Yukawa sector will automatically
control the soft SUSY breaking sector as long as the
SUSY breaking hidden sector respects the family sym-
metry. This is realized for instance in supergravity induced
SUSY breaking.

Considering a SUSY framework, the choice of an SU(3)
family symmetry [12,13] provides a benchmark scenario
where flavor and CP violation is controlled by family
symmetry. The spontaneous breaking of family and CP
symmetry by vacuum expectation values (VEVs) of the so-
called flavon fields perturbs the SUSY breaking sector,
thereby generating distinct deviations from MFV or the
CMSSM. Unfortunately, these signatures which were
expected to appear in run 1 of the LHC [14] did not in
fact materialize, and the allowed parameter space has been
much reduced [15]. At leading order, the CMSSM is
enforced by the SU(3) family symmetry acting on the
squark and slepton mass squared matrices. When SU(3) is
broken by flavon VEVs, to generate quark and lepton
flavor, those flavons appearing in the Ké&hler potential
give important contributions to the kinetic terms, requiring
extra canonical normalization [16]. Since SUSY breaking
also originates from the Kéhler potential, the flavons also
modify the couplings of squarks and sleptons to the fields
with SUSY breaking F-terms, where the corrections have a
different form to the flavon corrections appearing in the
superpotential. All of this occurs at the high scale.
Additional flavor violation is generated by renormalization
group (RG) running down to low energy, taking into
account the seesaw mechanism [17] and threshold
corrections [18].

In this paper we discuss the characteristic low energy
phenomenological implications of an SU(5) SUSY GUT
whose flavor structure is controlled by the family symmetry
S4 x U(1), which provides a good description of all quark
and lepton masses, mixings as well as CP violation. In a
recent paper we showed how MFV emerges approximately
in this setup [19]. Assuming a SUSY breaking mechanism
which respects the family symmetry, we calculated in full
explicit detail the low energy mass insertion parameters in
the SCKM basis, including the effects of canonical nor-
malization and renormalization group running, showing
that the peculiar flavor structure of the model, defined by
the small family symmetry S, x U(1), is sufficient to
approximately mimic MFV.? However there are important

2Depending on the implementation of a particular family
symmetry, SUSY GUTs of flavor typically realize some approxi-
mation of MFV at high as well as low scales [20].
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phenomenological differences which can provide telltale
signatures of the model, and it is the main purpose of this
paper to discuss these in detail. In other words, we exploit
the low energy mass insertion parameters of the model
calculated in [19] to analyze a panoply of rare and flavor
changing processes as well as EDMs in both the lepton
and quark sectors. The results are quite illuminating:
while we find only small new effects in B physics, very
large effects arise for lepton flavor violation (LFV) and
the electron EDM which are therefore predicted to be
observed soon.

The layout of the remainder of the paper is as
follows. In Sec. II we give a succinct summary of
the analytic Yukawa matrices and mass insertion
parameters calculated in [19]. In Sec. III we discuss
numerical estimates of the low energy mass insertion
parameters for ranges of SUSY parameters which are
consistent with the bounds from direct searches for
squarks and sleptons at LHC run 1. We compare the
naive model expectations to the numerical scans and the
experimental bounds. In Sec. IV these results are then
used to estimate the predictions for EDMs, LFV, B and
K meson mixing as well as rare B decays. The largest
observable deviations from MFV come from the LFV
process u — ey and the electron EDM. Section V
concludes the paper.

II. YUKAWA MATRICES AND SUSY
BREAKING PARAMETERS

In this section, we briefly summarize the GUT scale
Yukawa matrices and soft SUSY breaking parameters
constructed within the framework of the family sym-
metry model in [19]. Working in a power expansion of
the Wolfenstein parameter A~ 0.225 [21], we present all
expressions to leading order (LO). The entries of the
flavor matrices are generally complex, where the phases
are given in terms of two free parameters 64, 64, with the
exception of the soft trilinear terms whose phases are not
identified with the corresponding Yukawa phases but are
kept as free parameters, even though their flavor struc-
ture is the same as that of the Yukawas. Details on this
aspect can be found in [19]. In the present work, we
comment on the consequences of this generalization
where relevant.

A. Yukawa sector

The fermion structure was already scrutinized in [22],
and we have completed this analysis by including the
effects of canonical normalization. In the basis with
canonical kinetic terms, that is after redefining the super-
fields such that the Kihler metrics are identified with the
unit matrix, the Yukawa matrix for the up-type quarks
reads
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Vul® L — Jkay,e! @020
Gur ~ —1koyed® yedt —Skaye 02 (2.1)
_ % k4yte—i(30§+2631)/16 _ % k3yle—i(79§+39§)/15 ¥,

where y, and k; are real order one coefficients, with the former stemming from the Yukawa part of the superpotential of
the theory and the latter from the Kihler potential. In particular, k,, k3 and k4 appear in the noncanonical Kihler metric of
the SU(5) 10-plets, in the (12), (23) and (13) elements, respectively.

The Yukawa matrices for the down-type quarks and charged leptons take the form

2l 78 5,43 %, ei(303+20) 45
Vo~ i e Ly | 2.2
(Zgz _ %)ﬁ;) o—i(364+200) 36 (Zg _ %yb) o~i(364+269) 46 YA
=3gfe %S (Z‘zj - %)@) 20
Vo™ | B e hyat (d-%y,)0 | 23)
—X 2 3e=its v, 24 v 2

Again, these expressions are given in the canonical basis and all coefficients are real and of order one. X,, y, and z¢ arise
from the superpotential operators and K3 from the Kihler potential, where it enters symmetrically in all off-diagonal
elements of the noncanonical Kihler metric of the SU(5) 5-plets.

Finally, the Dirac neutrino Yukawa matrix in the canonical basis is given by

Yo _}'D(K3+K§V> 24 (ZD _ }'D(K3+K_’zv))/14
2 1 2
Vo o _yD(K32+K§V)/14 (Z]D _ yp(K32+K§V))/14 v ’ (2.4)
(ZlD _ ,VD(K32+K13V)) 24 Y _}'D(K32+K§1) 4

which is real up to LO in 4. The parameters yj, and z? originate from the superpotential, while K% is associated to the
Kihler metric of the right-handed neutrinos. Note that this metric is identical to that of the SU(5) 5-plets, up to renaming the
order one coefficients; see [19] for details.

Transforming the left- and right-handed superfields f; x by unitary matrices U{’ »» We obtain the canonically normalized
diagonal and positive Yukawas in the SCKM basis

vy 00 po0 0 0
Yoorm | 0 yi* 0. Yeur=| o ¢ o | (2.5)
0 0 y 0 0 y,2

)~C2
20 0
YEUT ~ 0 3ys)“4 0 . (26)
0 0y

Up to phase convention, the CKM matrix is given by Vegm,,, = (UHTUY, leading to the mixing angles
2. (2.7)

A

Vs

. X
SIU(G%)GUT ~ ))—/13, tan(eg3)GUT ~ ﬁﬂz, t5111(‘961[2)GUT ~
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The mixing arises purely from the down-type quark sector
and incorporates the Gatto-Sartori-Tonin relation [23]

01, ~ /m,/m. The amount of CP violation is given by
the Jarlskog invariant [24]

q 75
JCpgy, ® A5 —sinb.
YpYs

(2.8)

These results are in agreement with the LO expressions
derived in [22], where canonical normalization effects were
ignored. As discussed in [19], the LO results for the quark
and charged lepton masses and mixing angles remain
unaffected by the process of canonicalizing the kinetic
terms. We point out that these 13 observables of the charged
fermion sector are given in terms of only eight input
parameters (4, Y, ..., Vs %2 and 69) at LO.

) bor  (by = boiky)2*
Tour
mg e boy
for the SU(5) 10-plets as well as
N N N N N
o g (B -kt (B - k)
F(N)gur N N N
mzou ~ B(() ) (Bg )_Kg ))/14 ,
’ ()
B,
(2.10)

for the SU(5) 5-plets and the right-handed neutrinos, with
the latter being associated to the coefficients with index N.
For convenience, we absorb the universal order one
parameter B, on the diagonal into the soft SUSY breaking
mass m, so that the leading contribution to the diagonal
entries of M%__/mj is 1.

C. Mass insertion parameters

In order to study the phenomenological implications of
the soft SUSY breaking sector, it is useful to rotate all
quantities into the physical basis where the Yukawa
matrices are diagonal and positive, i.e. the SCKM basis.
Any misalignment between the fermion and sfermion
flavor matrices constitutes a source of flavor violation,
with the off-diagonal entries of the sfermionic mass
matrices contributing to FCNCs. The sfermion mass
matrices are given as
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B. Soft SUSY breaking sector

The soft trilinear A-terms and the Yukawa couplings
originate in the same superpotential terms. Hence, they
have a similar flavor structure and, in the basis of canonical
kinetic terms, the soft flavor matrices AéUT /Ay, where Ag
denotes the scale of the trilinear terms, can be deduced from

Egs. (2.1)-(2.4) by simply replacing y, —>.aue"(95“’i>,
Ve = ae @y s an, oy a0y,
a, ei(ag-e‘;)’ % o X8 ei(e‘;d—e;)’ z{' N z{ A0 -07)  and

yp — ap. Here, the Yukawa phases are all given in terms
of 94, 04 as follows: @, = 0r = 65 = 0} =264 + 304,
0, =05 =0y = 0¢ and 6; =3(04 +6¢). On the other
hand, the trilinear phases 6%, 6, 6, are kept free.

Turning to the soft scalar mass squared matrices in the
canonical basis, we find

€i(eg_9g)(b4 _ k4(b012+b02))/16

65i0§<b3 _ k3(b012+b02))/15 s (2.9)
b02
2 (2 v vi,2
mi = (M) +YsY 0,
2 (52 viy .2
m;, = (mf)RR + YY 0, 4,
, = -
m]?LR - Afvu,d - ﬂYfUd,u? (21 1)

where ﬁ112( and Af denote the soft flavor matrices in the

SCKM basis, and Y  are the diagonal Yukawa matrices. y is
the (real) Higgsino mass parameter, and the VEVs of the
two neutral Higgs bosons are defined as

% (%

72tﬂ, Ud: 27
V91t V1t
\/v: + 0% =174 GeV. The

where 7; = tan § = Z—d and v =
indices L and R refer to the chirality of the corresponding

SM fermions and mj% = (m]% ). With these definitions,
RL LR

the amount of flavor violation can be measured in terms of
the dimensionless mass insertion parameters [10]

(2.12)

v, =

5f _ (mJZ}LL)iJ
( LL)U <m}>%L ’
(5f )i = (mJ%RR)’f
R (mg)je
(m2 )i/‘
i)y = 2.1
( LR)U <m}>%R ’ ( 3)

075026-4



PHENOMENOLOGICAL IMPLICATIONS OF AN ...

where the average masses in the denominators are defined
by

<m}>%3 = (m;AA)ii(m%BB%j- (2.14)
We mention in passing that the phase structure of the mass
insertion parameters depends on the choice of the phase
conventions of the CKM and Pontecorvo-Maki-Nakagawa-
Sakata (PMNS) matrices. In [19], we have worked out the
expressions in Eq. (2.13) explicitly for our model at the
GUT scale, choosing a phase convention in which Vgm
and Upyns take their standard form.

The effects of RG running down to the low energy scales
where experiments are performed were also estimated,
using the leading logarithmic approximation. Introducing
the parameters

1 MGUT 1 MGUT
— . y=—sln . @15
T < My, ) ™ 162 "\ Mg (2.15)

we performed a two-stage running (i) from Mgyr
to Mg, where the right-handed neutrinos are integrated
out, and (ii) from My to Mgysy ~ My = M, . For Mgyt~
2 x 10'6 GeV, Mg ~ 10'* GeV and M,,,, ~ 10° GeV, n =
0.19 is of the order of our expansion parameter A~ 0.22
and 7y = 0.03. In terms of their A-suppression, the resulting
flavor structures of the low energy mass insertion param-
eters 6 read

VAV 1+ 28
Sy~ 1 A, S~ 1 2,
1 |
B0 N
Sipg~1 0 % 2191, (2.16)
0 A 1
| VA 1o 2
Sy~ 1 2|, e~ 1 2],
1 1
YARVERVE
e~ 2 24 2, (2.17)
20028 22
| VA | VR
S~ 1 2. Sk~ 1 2,
1 1
VARVERVN
Sp~ | A 20| (2.18)
PR
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Appendix A provides the explicit expressions for each
entry in terms of the parameters of the model.

III. NUMERICAL ANALYSIS

A. Parameter range

Numerical results for the running quark and charged
lepton masses as well as for the quark mixing angles at the
GUT scale can be found in [25]. The matching conditions
from the SM to the minimal supersymmetric standard
model (MSSM), imposed at the SUSY scale, take the form

MSSM A
yuct"’yuct SIHﬂ’

B Ao

~ (1 +17,)y)SMcos g,
YN & (1 417 yYSSM cos
yM x yMSSM co5 3, (3.1)

for the singular values of the Yukawa matrices. Similarly,
we have for the CKM mixing

gSM 1+ T+n, aqMSSM

¢.SM_,
i3 1 +7 912 ~

¢.MSSM
015

’ ’

59M 5%MSSM. (3.2)

Here

g =Ng =M iy =y + 14— 1) h=mn—m
(3.3)

represent SUSY radiative threshold corrections that are
parametrized by #; = €; tan 3, with explicit expressions for
€; available in [26]. The unprimed # parameters correspond
to corrections to the first two generations, the primed ones
to the third generation, and the one with index “A” to a
correction due to the soft SUSY breaking trilinear terms.
The parameter /3 follows from the absorption of #) into /3,

cos B = (1 + 1)) cos 3, sinfrsing, (3.4)
with the approximation being valid for tan$ = 5. In the
limit where threshold effects for the charged leptons are
neglected, tan # simply reduces to tan j3.

Our model predicts 9, , = y,4%, where the hat indicates
the diagonalized Yukawa sector at the GUT scale. As a
consequence, very large values of tan 8 are excluded, and
we only study the parameter space in which tan f € [5, 25],
keeping the value of y;, below 4. In order to obtain viable
ranges for our Yukawa input parameters, we plot y, ., .
(X,/v,)? and (1 +7;)y, against tan 3 using the results for
the diagonalized Yukawa sector at the GUT scale provided
in [25]. We remark that y,,, y, and X, are extracted from the
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lepton sector. We fit the resulting curves using the relative
uncertainties 6(y,)/v,=31%, 6(y.)/y.=3.5%, 6(y,)/y, =
10%, o(y) /v, = 0.6%; see [25]. Concerning y, and X,, we
take o(y,)/ys = 10% and o(X,)/X, = 10%, allowing for
higher order corrections to the mass ratios that would
reduce the discrepancy between the values of X,/y;
predicted from the lepton and the quark sectors and
maximize the GUT scale value of (9,9,)/(9,5.). Due to
the implementation of the Georgi-Jarlskog relation [27], it
is equal to 9 in our model at LO, while its preferred range is
10.7:%:;3 [25], which is independent of threshold corrections
and also not sensitive to a change of the SUSY scale.

We estimate the low energy Yukawa couplings using the
leading logarithmic approximation as described in [19].
Clearly, the resulting low energy Yukawa matrices are only
valid up to that approximation. Mindful of such limitations,
we obtain

Yiow ~ Diag[(1 + Ry, A%, (1 + Ri)yA* (14 Ry,

(3.5)

N

~2
szm%kuwm%mu+@MAu+@ww}

(3.6)

f’fow ~Diag [(1 + Rﬁ);—2

A

Aﬂu+Raw¢%a+R®nﬂ}

(3.7)

where the corrections from the RG running are encoded in
the parameters R’,

, 46
R, = <? 9y

- 3y?> = 3Ny, R} = R}, — 3ny3,

(3.8)
. 44 . : . 24
Ry=n<9y, R,=Ry=nyi. Re=n=gy—nnyh:
(3.9)
Here, gy =~ +/0.52 denotes the universal gauge coupling

constant at the GUT scale. Our scan produces the following
values for the right-hand sides of Eq. (3.1),

PHYSICAL REVIEW D 93, 075026 (2016)
Y, sinf € [3.4,6.9] x 107°,
Vi, sinf € [2.34,2.65] x 1072,
Y., sinf € [0.77,0.89],

[

[
Vi, cosp(1+17,) € [0.9,1.6] x 1075,
Y., cos B(1 +17,) € [2.2,3.5] x 107,
Y., cos B(1 +17,) € [1.17,1.6] x 1072,
Y, cos B(1+17;) € [2.4,3.8] x 1076,
Vi, cos (1 + ) € [5.6,7.7) x 1074,

[

Vi, cosf € [1.06,1.14] x 1072, (3.10)

which have to be compared to the SM values, taken from
Table II of [25]

€ [3.40,7.60] x 107°,

€ [2.69,3.20] x 1073,

€[0.78,0.88],

ySM € [1.15,1.56] x 1075,
€ [2.29,2.84] x 107,
€[1.21,1.42) x 1072,
€ [2.85,2.88] x 107,

yiM € [6.01,6.08] x 1074,
€ [1.02,1.03] x 1072, (3.11)

The correspondlng ranges of the order one input parameters
of the Yukawa sector are listed in the first five rows of the
first column of Table I. All other coefficients that are not
fixed by this fit are scanned over the interval +[0.5, 2], with
the following exceptions: we allow the absolute value of the
Dirac neutrino Yukawa coupling yp to be as small as 0.2
but not larger than 0.6, such that it does not exceed the

TABLE I. Ranges of the input parameters used in our scan.
Yukawa terms Range Soft trilinear terms ~ Range
X2, Vs [0.2, 1.6] X4, ay +[0.2,2]
Vb [0.7, 3.8] a, +[0.5, 4]
Yu [0.3, 0.6] a, +[0.3, 2]
Ve [0.5, 0.6] a,
Vi [0.46, 0.6] a,
o +[0.2,0.6] ap +[0.5.2]
Z +[0.5.2] e
Kihler metric Range Soft mass terms Range
ky, ks, ks, K (N) +[0.5,2] by, by, b, B§N> +[0.5,2]
bots bos B(()M, — [0.5, 2]
SUSY masses Range SUSY ratios Range
M, [0.3, 5] TeV tan [5, 25]
my [0.05, 5] TeV Q) [-3,3]
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maximum allowed value of y,. We also relax the lower
bounds on |x§], |a,| and |, | and extend the upper bound on
|a,|, such that they are allowed to get the same values as the
corresponding Yukawa coefficients. The coefficients ¢y,
and cy, of the soft Higgs mass squares,

2

— 2 2 o 2
H,ur — €H,M0: My oor = €H,Mp» (312)

are taken to be positive, just like the coefficients by, by,

and B(()N) of the leading order diagonal elements of the soft

scalar mass squared matrices. Phases are generally allowed
to take arbitrary values within [0, 2z]. As mentioned earlier,
tan /3 is varied between 5 and 25. Concerning the CMSSM
parameters, we define

(3.13)

ay = Ag/my, x=(My;/mg)*,

and scan over M, € [0.3,5] TeV, m, € [0.05,5] TeV as
well as ay € [-3,3] in order to avoid charge and color
breaking minima.’

The p parameter, which we take as real, is given at the
electroweak scale by the relation”

My, - 3G
7: B —H, (314)
g1

where M, denotes the Z boson mass [30]. Z¥ and ZZ are
radiative corrections, with the most important contributions
coming from the stops,

. 3 A? =82 (L —2xy)A
25(’1»2):16,,2F(m221_)<Yf2‘9§¢ . >
I 7
(3.15)
~ 3 Yiu? + 8g5 (5 — 3 xw)A
2i(t) = 1622 F(m;zl,z)(g%:F t P —4m~23 4.
5] il

(3.16)

In these expressions, Y,, A, and u denote the low energy
Yukawa and trilinear couplings and the low energy u
parameter, respectively. Moreover

*In our numerical scan, we have checked that the potentials are
always bounded from below and that the corresponding minima
do not break charge or color [28].

The lack of any evidence for low energy supersymmetry
requires a certain amount of cancellation between the terms of
Eq. (3.14); see e.g. [29].

PHYSICAL REVIEW D 93, 075026 (2016)

1
2 _ - 2 2 2 2 2 32
m;ly2 =5 (m~ + mERR:':\/4m?LR + (m~ —m ) ),

L Trr
2
F(m?) = m*(log( ) —1).
) = (g (57) 1)

1 2
A =3 (m? —m3 )+ M5 cos(2p) (4_1 - §XW> ,
. M
Xy = sin’Oy, 9= 4—15, Mg = \/m;m;,,
(3.17)

. . . 2 2 2
with 0y, denoting the Weinberg angle. me and m;

are the low energy (33) elements of the squark mass
matrices defined in Eq. (2.11). The so-determined u
parameter can then be used to calculate the physical
Higgs mass. Adopting the approximate formulas of
Sec. II D of [31], we demand that the resulting Higgs mass
lies within the interval [110, 135] GeV. Additionally, we
impose cuts on the SUSY parameters from direct searches
by requiring that the first and the second generation squark
masses are larger than 1.4 TeV.

B. Estimates of the low energy mass
insertion parameters

In this section, we analyze the predictions for the low
energy mass insertion parameters 6 whose explicit expres-
sions are given in Appendix A. Tables [I-VI provide naive
expectations for the individual §s, where we take into
account the A-suppression and the main effects of the RG
running, while setting any order one coefficients to 1.
Clearly, we still expect to see a spread within a few orders
of magnitude due to the variation of the SUSY scale and the
order one coefficients. The third columns of Tables II-VI
list existing experimental bounds. The full ranges of our s
arising from scanning over the input parameters, given in
Table I, are depicted in Figs. 1-3.

1. Up-type quark sector

The strongest constraints on the up-type mass
insertion parameters involve the (12) sector and stem from
D° — D° mixing. The SM contribution to this amplitude
conserves CP to a good approximation and provides
significant constraints on the imaginary parts of (6%5),,
A,B = L,R. These limits were derived in [32], assuming
equal squark and gluino masses of 1 TeV. We quote them in
the third column of Table II, rescaled to masses of 1.5 TeV.
The limits on the RR and RL parameters are identical to the
LL and LR ones due to the L <> R symmetric form of the
gluino-squark box diagram. The index LL = RR refers to
the assumption that (6%,),, = (8%g)12, as is the case in
our model. In the second column of Table II, we give

a naive estimate for +/[Im[(6¥,)%,]| & \/|Im[(8%z)3,]|~
V/Im[(8%,)12(8%%)1o]|. For 04 = z/2, as suggested from
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TABLE II. The naive numerical expectations for the low energy up-type mass insertion parameters as extracted
from our model (second column), to be compared with experimental bounds in the literature (third column). The full
ranges of the ds are shown in Fig. 1. Note that the (12), (21) and (31) 6} parameters remain zero up to order 8.
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Parameter Naive expectation Exp. bound
-2
Im/[(5* 2 sm(2€ ) - Vi 2.85x 10 [32]
Im[(7 , g )12l O(W”“ x 107* sm(262)) (1.65 x 103)],,_zx
-3
|Im[(5ZR.RL)%2H 0 375 x107°[32]
of -1
(872 )13l O<1+111]++g?x}, 600 x 10_5> 0(107") [33]
61,{
(O%r) 13l (’)(H 1+IEG1]§} y?) 262 x 10°5
5u
(6% 1) 23] O<l I:gSS‘x)r o8 X 10_5>
o ’
|(S%r) 23l ( HHE‘SS} ) 15 8 x 10~ 5)
‘(5ZR)1”5| agu, _
o o (1+63/\)A ~ 1077
(87 r) 23l , O(1071) [34]
@ “,‘;12 (1+63X)/1 ~5x 1077
|Gk )13l 0
|(Bke) a3l o

mg T+6.3x

o) (aou H"?(

—8y7 +ires) a5 x 10—7)

maximizing the Jarlskog invariant of Eq. (2.8), these

\/ Im[(6}; re)1a)| s at
most ~|(6Y,);,], we only show the full range of the
absolute value of that parameter in Fig. 1, plotted against
the corresponding GUT scale coefficient l~7,2, defined in
Eq. (A1). This coefficient quantifies the mismatch between
the Kéhler metric and the soft mass matrix elements for the
SU(5) 10-plets and can be as large as 6 when the associated
parameters contribute constructively and receive their
maximum values in the scan. The effects of the RG running
are trivial and depend only on x = (M ,/mg)%; for x ~ 1

quantities vanish to LO. Since

and 512 ~ 1, we estimate a value of around 4 x 10~, shown
by the blue dashed line in Fig. 1. With increasing x, we
obtain even smaller values, as the RG suppression is
increased. The red dotted line shows the experimental
limit, adapted from [32] and valid for (6%, ), = (8%g)2-
The LL and RR parameters of the (i3) sector (i = 1, 2)
have GUT scale coefficients with the same range as the
parameters of the (12) sector but a different RG suppression
due to the milder running of the third generation sfermionic
masses. This is represented by the factor R, appearing in
Eq. (A13), where 1 and R, are defined in Egs. (2.15) and
(A7), respectively. Approximating these ds as shown in
Table II and taking x ~ 1, R, ~ 3y} + 1 as well as y, 0.5,
we expect (571 gr)13| o< 2° and |(87; gg)as| o< 4 to vary
around 2 x 107> and 8 x 107>, respectively. The existing
bounds on these variables from flavor changing effects
are very weak, leaving them essentially unconstrained. B,

mixing can place a bound on |(8%, ),5| of the order of 10~
at most, as described in [33].

The parameters of LR type have a slightly different
behavior. They are proportional to the factor (agv,/my)
which, for |Ag| > 0.5 TeV, can cause an extra suppression
of up to O(107%). Because of this factor, the LR parameters
show a dependence on the mass scale, even at the GUT
scale. (6{R)ij are also generally proportional to the mis-
match of the ratios of soft trilinear over Yukawa sector
coefficients for the ith and the jth generation and vanish,
barring RG induced corrections, if those are aligned.
To estimate the magnitude of these parameters in
Table II, we take |ag|v,/my~ 107!, x~ 1, y,~0.5 and
R, ~ 1.75, while their full ranges are shown in Fig. 1. The
(6% &) 13 parameter was zero at the GUT scale but receives a
contribution through the RG running of the order of 5A’.
Similarly, (6%%),3, which was suppressed by A7 at the GUT
scale, receives a similar running contribution which comes
in at an even lower order, namely nA°. Such an effect is not
found in any other o parameter. Finally, we remark that
(8% g ge)12 as well as (8%, ),3 are zero up to order A%, where
we truncate our expansion.

The limits on the LR parameters of the (i3) sector
(i = 1,2) originate mainly from the requirement that the
potential be bounded from below with a vacuum that does
not break charge or color [28]. We have already constrained
the trilinear parameters accordingly and do not comment on
those effects any further. Other bounds on the LR off-
diagonal parameters can be deduced by demanding that the
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supersymmetric radiative corrections to the CKM matrix
elements do not exceed their experimental values [38]. The
limit for |(6Y g ),3| quoted in Table II has been obtained in
[34] by considering chargino loop contributions to
b — slI™l~. In our model, all up-type mass insertion
parameters of the LR type turn out to be safely below
any current bound.

2. Down-type quark sector

We first consider the (12) elements of the down-type
mass insertion parameters (84;),,, where A,B = L,R.
The corresponding bounds are derived from the results
of [35] which we have rescaled to my~ 1.5 TeV and
(mg/mg)* € [0.3,4]. These bounds are summarized in the
third column of Table III and have been extracted using
observables related to kaon mixing. They are given
separately for the real and imaginary parts due to a relative
difference of an order of magnitude.

In our model, (6¢,),, ~ A3 is real at LO, while the next-
to-leading order (NLO) contribution is a linear combination

of e and cos(46¢ + 64). Therefore, , /|Im[(5¢ il

proportional to y/sin(64)A7/2. Setting 6§ = /2, i.e. the
value preferred by the Jarlskog invariant J{,, we expect
Im[(57,)%,,, ] to take its maximum value. In Fig. 2 we only
plot the absolute value of this mass insertion parameter
versus its GUT scale coefficient B),, see Eq. (A1), which
can take values between O and 12. Our naive numerical
estimate of |(6¢, ),,|, approximated as shown in the second
column of Table III, is of the order of 103 for x ~ 1,
visualized by the blue dashed line in Fig. 2. Since the
experimental limits are given as ranges, we depict them by
the red shaded region.

The parameter (6%;),, is proportional to e, so that

[Im[(6%%)%,]] vanishes for 64 =x/2, while the

TABLE III.

PHYSICAL REVIEW D 93, 075026 (2016)

corresponding real part is maximized. The RG suppression
is again trivial, only depending on x, while the GUT scale
5 parameter is proportional to Ry, = (By — K3); see
Eq. (Al). When By = —K5 =2 and x < 1, the absolute
value of the mass insertion reaches its maximum of 1072, as
can be seen in the associated plot in Fig. 2. On the other
hand, for B; = 0.5, K5 = 1 and x > 1, it can scale down to
about 105, Note that | (54) 5| = |(542)s3] = |(8%¢) 3. as
can be seen in Eqgs. (A32)-(A33).

The mass insertion parameters (5¢3);, = —(8%,)), =
(84x),; Teceive an extra suppression from the factor
agv,/my, for which we use the value of 5 x 1073 in our
naive numerical estimates. Then, for x ~ 1, we expect these
& parameters to vary around 7 x 1077; see the last two rows
of Table III. As can be seen in Fig. 2, our model predictions
lie well below the limits. Furthermore, if the Yukawa and
soft trilinear phase structures are aligned, the phases within
a¢, cancel and (6¢),, becomes real at the given order in A.

As parts of our parameter space place the down-type
mass insertion parameter | (¢, ),,| within a region possibly
excluded by kaon mixing observables, we study the
relevant contributions in Sec. IV in more detail. Due to
additional strong constraints on the product of LL and RR
mass insertion parameters, we see that actually a large
fraction of the parameter space is excluded.

The bounds on (845),3, A, B = L, R are related to b — s
transitions. They are taken from [36] and were derived
by demanding that the contribution of each individual
mass insertion parameter to the flavor observables
BR(B — X,y), BR(B; = u"u~) and AMp does not
exceed the current experimental limits. The analysis was
performed for six representative points of the MSSM
parameter space which are compatible with LHC SUSY
and Higgs searches as well as an explanation of the
discrepancy of (g—2), from its SM value in terms of
one-loop SUSY contributions from charginos and neutra-
linos. We present the extracted bounds in the third column

The naive expectation for the ranges of (5/% 3)12, A,B = L, R, as extracted from our model (second
column), to be compared with experimental bounds from [35] for m; ~ 1.5 TeV and (mg/ m,-])

2 €10.3,4] (third

column). The full ranges of these s as produced in our scan are shown in Fig. 2.

Parameter

Naive expectation

Exp. bound

Re[(57,)1]] O(t54 #2x107)
i 1 x5 1074 feos(209) )

)
V[Re[(8%x)1,]] O(V“’S@"?

1+6.1x
tm{ (57, )7, |

[6.6 x 1072, 3.3 x 1071]

(’)( ”lilz(gx 227 x10° 4\/sm(9d))
+/sin(26) [8.7 x 10_3, 4.2 x 10_2]
|Im[ ) 2]| (’)( T61x 24 ~4 x 10 4 /sm(2€d)>
-3
[Re[(87 ()72 . ) [7.8,12] x 10
%Y ’7 a X pa V\T ~ =
tm(57 g g )12]] O( ' 1+635* A x Re(Im)[f(6" = 03,05 = 03)] # 7 x 10 7) [1,5.7] x 10~
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FIG. 1. The low energy up-type mass insertion parameters plotted against their GUT scale coefficients, defined in Eqs. (A1)—(A2)
[except for (8} z )33 Which are plotted against a coefficient multiplying the RG running contribution, cf. Eqs. (A26)-(A27)]. The blue
dashed lines represent our naive numerical expectations according to the second column of Table II, while the red dotted lines (when
available) represent their experimental limits, shown in the third column of Table II. Since (%), & (8%, )15, only the LL parameter is
plotted. The plots have been produced by scanning over the input parameters listed in Table I.
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FIG. 2. The low energy down-type mass insertion parameters (5;{B)

B
0.6' 13l

ij> A,B=L, R, i=1, 2,3 plotted against their GUT scale

coefficients, defined in Eqs. (A1)-(A2). The blue dashed lines represent our naive numerical expectation according to the second
columns of Tables III-V. The red shaded areas cover the parameter space bounded by the limits shown in the third column of the
corresponding tables, with the red dotted lines denoting the weakest limit in each case. The absolute values of 54 are equal in the (12),
(23) and (13) sectors and also |(6Y) 12| = [(6%; ) 12| = [(8) 3]- We therefore only show the bounds stemming from the (12) sector as
they are the strongest ones. All plots have been produced by scanning over the input parameters shown in Table L.
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FIG. 3. The low energy lepton mass insertion parameters (54 B)ij, A, B = L, R, plotted against the down-type Js to which they are
related via the SU(5) framework. The dashed lines represent their GUT scale relations, while the red shaded areas denote experimental
limits on the parameter space according to the third column of Tables III-VI. Scanning over the input parameters within the ranges
shown in Table I, we observe that in particular |(§¢,);,| exceeds its limit for much of our parameter space. Note that (8¢, ),| =

1(672)23] = [(871)13] and [(8%,) 12| = [(67R) 12| = (8% )13l-
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TABLE IV. The naive expectation for the ranges of (5j§ 3)23, A,B = L, R, as extracted from our model (second
column), to be compared with experimental bounds from [36] (third column). The full ranges of each § parameter,
produced by scanning over the input parameters as shown in Table I, are plotted in Fig. 2.

Parameter Naive expectation Exp. bound
(671 )3 O(li7§;x/12|b017b02 ~5 X 10—3> [6x1072,8 x 107!]
|(8%r )23l Ol At 4 x 107 [6.3,9.7] x 107!
(67 )3l 0(0%1 1+,,(l;6+3ia,v,) s 10_6) [7x1073,2 x 107!
(Vi (st onEmnmis) o 3 107) 2.6 >107

of Table IV, where the intervals arise due to the dependence
on the SUSY spectra. We note that, for simplicity, all Js
were assumed to be real in [36].

At the GUT scale, the parameter (6¢, ), ~ A2 is propor-
tional to (bg; — b ); it can therefore vanish at that order if
by — bg;. In that case, it would still receive a nonzero
contribution through the running, as can be seen in
Eq. (A31), through the factor R,, defined in Eq. (A7).
To see this effect, we expand (¢ L)23 to first order in the
running parameter 7, defined in Eq. (2.15), taking the limit
boy = bo;. Then, for R, ~3y7 + 1, y,~ 0.5 and x ~ 1, we
expect the absolute Value of (6¢,),3 to vary around 5 x
1073 for 323 « by; — by — 0, as shown by the blue dashed
line in Fig. 2. The spread towards smaller values of (8¢, ),;
as 323 deviates from zero is mainly due to the parameter
space where by, — b, is negative, thereby partly canceling
the R, contribution. As can be seen in Fig. 2, all generated
points lie below the limits of the corresponding (23) sector.

The experimental bounds for (54,),; are taken from
[35], where they were extracted from B, mixing related
observables and given in terms of |Re[5¢,]| and [Im[54 ;]|
Their orders of magnitude are at most of the same order as
64|, and for mz ~ 1 TeV and (m;/m;)* € [0.25,4] they
are summarized in the third column of Table V. The limits
for the RR and RL type §s are equal to the LL and LR type

TABLE V. The naive expectation for the ranges of (645),,
A, B = L, R, as extracted from our model (second column), to be
compared with experimental bounds from [35] for m; ~ 1 TeV
and (my/mg)* € [0.25, 4] (third column). The full ranges of the
0s as produced in our scan are shown in Fig. 2.

Parameter Naive expectation Exp. bound
5d 2nR, 44 ~ —4
(0705l (’)(IMZM oy =y, 2 % 10 ) [12,14] x 10-!
|(5%R)13| O(|+6|XA4N4X1O )
|(5CLIR)13| O(aoullﬁ—né; PaTx10- )
(61 S 6.9 x 102
)2
RL/13 O(rx;;t;d 1*'7( 51_:21;;» %)26 ~D X 10—7)

ones, respectively, as the gluino contribution to the box
diagram for meson mixing is symmetric under L <> R.

In our model, we expect |(6¢,)5] to have a similar
behavior as |(8¢, ),;| but with an extra suppression of A2.
Furthermore, [(87 )y mimics [(87z) 1ol = |(8k )12l =
|(64%)15| with an extra enhancement factor of A~!. The
RL parameters (13) and (23) sectors are of the same order
in A and should therefore have a similar numerical range.
All (13) sector mass insertion parameters &4, lie below the
limits set by B, mixing, as can be seen in Fig. 2.

3. Charged lepton sector

The bounds on the mass insertion parameters (5%z);;,
A, B = L, R of the charged lepton sector are taken from [37].
They were derived by studying radiative, leptonic and
semileptonic LFV decays as well as 4 — e conversion in
heavy nuclei. The analysis was performed for six represen-
tative points in the MSSM parameter space, which are in
agreement with LHC SUSY and Higgs searches as well as
data on (g —2),. Moreover, four additional, more general
two-dimensional scenarios, characterized by universal squark
and slepton mass scales, were considered in [37]. The derived
limits vary within an order of magnitude in all cases and are
summarized in the third column of Table VI. We note that all
os were assumed to be real in [37] for simplicity.

Atthe GUT scale, the massinsertion parameter (8¢, ), ~ A*
is proportional to R 12 = B3 — K;3.Itsabsolute value is equal to
|(6%%) 12| due to the SU(5) framework. However, the param-
eter of the lepton sector, given in Eq. (A41), receives large RG
corrections which encode seesaw effects. At the low energy
scale, it is nonzero even for B; = K3, due to the term propor-
tional to the small parameter 77, which is defined in Eq. (2.15)
and originates from the running between the GUT scale and the
scale of the right-handed neutrinos. In the second column of
Table VI, we estimate this effect by considering B; = K5. We
then expand to first order in 7y and consider R, ~ R}, where R,
and R} aredefined in Eqs. (A8)~(A9).Forx ~ 1, R, = 3)% + 1
and yp ~ 0.5, we expect the low energy [(8¢,),,| to vary
around 2 x 10~*. However, the nontrivial expression of E 125
cf. Egs. (A41) and (A54), creates a spread of about two orders
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The naive expectation for the ranges of (65; B) ij» A,B = L, R, as extracted from our model (second

column), to be compared with experimental bounds from [37] (third column). The full ranges of the § parameters

produced in our scan are shown in Fig. 3.

Parameter Naive expectation Exp. bound

¢ -5
(67012 O 2 1079 [1.5,60] x 10
1(67.1)23.15] R [0.7,35] x 1072
(ke )12 O~ 1072) [0.35,25] x 1073
| (0% )23l Ol n4x1072) 2.10] x 10"
| (%) 13l O(1+015x~2x10 ) ’
| (07 g(reyh2] [1.2,22] x 106
aw ot as v
[(870) 13! .

N ag, +’7—+’7 (+ -—3) ~ _

(07 k)23l O( o A e 8 x 10 7) [1,22] x 1072

(4
|(8%2) 231 O( 12:;, 1+ﬂ 5 TZ?)%;]SX vD)/14 ~ 10" )

of magnitude around this value. As |f(’ 12| increases, the mass
insertion parameter lies above the limits given in Table VI. As
can be seen from Fig. 3, the nonobservation of 4 — ey places
stronger constraints on the down-type quark s than the direct
bounds from the quark sector. Analogous to the down-
type RR parameters, the absolute values of the (12), (23)
and (13) lepton LL parameters are identical; see
Egs. (A41)—-(A42).

Similarly, at the GUT scale, the absolute values of the RR
parameters in the lepton sector are equal to the LL ones of
the down-type sector times the Georgi-Jarlskog factor of
1/3. For the (12) ds, the RG running effects are trivial,
consisting only of a suppression through x, which is milder
in the lepton sector where the numerical prefactor of x is
0.15, as compared to a factor of 6.5 in the quark one. For
the (13) and (23) parameters, the nontrivial running effects
in the quark sector are obvious in Fig. 3, where we see that
even though [(5¢,),3,3 can get very small for negative
boy — boa, |(6%g)23.13] can only receive such small values
when by — byy; see e.g. Egs. (A30) and (A44).

Finally, the variation of the LR parameters can be
understood in an analogous way to the one described in
the quark sector. (85 z) il = [(8%1)ijeu.l>
tion of the (23) parameters which are not equal due to a
term which involves a Hgs, thereby receiving an extra
factor of 9 for the leptons; see Egs. (A40) and (AS52)
together with Eq. (A2). As in the down-type sector,
(8% )12l = 1(87R)12] = (8, )13] and we only show the
(12) parameter in Fig. 3 which features the strongest
experimental constraint.

IV. PHENOMENOLOGICAL IMPLICATIONS

In the preceding section, we found that parts of the
parameter space spanned by the (12) mass insertion

parameters of the down-type and charged lepton sector
are excluded due to experimental limits set by y — ey
and kaon mixing observables. The corresponding bounds
are available in the literature and their derivation is highly
dependent on the assumed SUSY mass spectra. Possible
interference effects between contributions from multiple &
parameters to a given observable can additionally have
significant effects. These are usually ignored when setting
“model independent” limits on mass insertion parameters.

In this section, we therefore investigate the phenomeno-
logical implications of the deviations of our model from
MFV. In particular, we focus on the predictions for
BR(u — ey) and €. We also scrutinize whether the phase
structure of our model can survive the strong limits set by
electric dipole moments. Since the analysis in [36], which
provides the limits on (84;),;, assumes real parameters
throughout, we also study how our model contributes to the
time-dependent CP asymmetry associated with the decay
B, — J/w. For completeness, we check that the limits set
by the decay B, — J/wK and the mass differences AM B,
are satisfied. Finally, we also consider the branching ratios
of b - sy and Bs,d d /ﬂ'ﬂ_

Adopting the leading logarithmic approximation, the low
energy gaugino masses [39]

2
M; ="M, , i=1,23, (41)
9u i

with g, =33/5, f, = 1 and 3 = =3, are given by

Ml %0.43M1/2, M2%O.83M1/2, M3%253M1/2

(4.2)
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the current experimental limit of Eq. (4.3), while the black dotted line corresponds to the expected future limit of |d, /e| <3 x 1073 cm ~
1.52 x 1077 GeV~! [42]. Right panel: the behavior of the functions 4, k; and (in anticipation of the discussion in Sec. IV B) A,.

A. Electron EDM

The current experimental limit for the electric dipole
moment of the electron stems from the ACME collabora-
tion [40] and is given by

|d,/e| <8.7x 107 cma4.41 x 10715 GeV~!. (4.3)

This tiny value poses a strong constraint on the phases of
any model. The supersymmetric contributions depend on
the mass insertion parameters as follows [41],5

d \/_
e % g43¥2 I 0 C
e 87cosiOy m mg,, Im[— (57 )1 Cpmz,,
+{(87.0)1:(078)i11C. + (01r)1i(Op) i1 Cpr } MR,
- {(5LL)1i(5iR>ij(5§R)j1 + (07 )1;(0%0)i (61 R)in }
X ngij/_], (4.4)
where m; , and m;  are given in Eq. (A12). Moreover
mp. = for i =1, 2 and mp = m;RR with the latter

being deﬁned in Eq. (A12). The expression of Eq. (4.4) is
actually proportional to the bino mass M;, which we have
approximated by Eq. (4.2) using x = (M,,,/my)?. The
dimensionless loop functions C;, whose expressions can
be found in Appendix B, encode the contributions from
the pure bino (i = B) and the bino Higgsino with left-
(i =B, L) and right-handed (i = B, R) slepton diagrams.
For x <« 1, all ratios of different C; functions are close to 1.
With increasing x, Cp takes slightly larger values than the
rest of the functions, reaching up to twice the value of
Clp 1(r) and three times the value of C. This can be seen in

the limit where the left- and right-type slepton masses are not
very different, such that the loop functions take the form [41]

>The corresponding expression in [14] also includes triple
mass insertions of type (LR)(RR)(RR) and (LL)(LL)(LR). In
our model, these give suppressed contributions to d,/e of order
AT and A3, respectively, which can be safely neglected.

4 4
Cp z@hl(?_f)v B zﬂ(hl(x)+2k1(x)),
m? B 3m‘é1

e
4

Chpi Ch 1 (11 (5) + k(7). (4.5)

where we consider m; = | /m;, 15

2, Mz, as the average slepton
mass’ and % = (M,/m;)?. The function h, is given in
Appendix B while k; denotes the derivative k(X)=
d(xh(x))/dx. Their behavior is shown in the right panel
of Fig. 4.

The dominant contribution to the electron EDM comes
from the single chirality flipping diagonal mass insertion

(8¢ )11 45, such that we can make the approximation

043\/‘; |a0|0d

d, /el ———
de/el 8rcos? Oy m3

1, .
(1+ RZ)g [Tm[a¢,]|2°Cp,
(4.6)

where R} is an RG running factor defined in Eq. (3.9) and
a¢,/3, defined in Eq. (A2), is the (11) element of AGyr/ Ao,

with AEUT denoting the GUT scale soft trilinear matrix in
the SCKM basis. Its imaginary part is nonzero when
allowing the phases of the soft trilinear sector to be different
from the phases of the corresponding Yukawa sector. Then,
for |agvy/mo| ~ 1072, my~1 TeV and x ~ 1, we expect
|d,/e| to vary around 1013 GeV~!.

As can be seen in the left panel of Fig. 4, which was
produced using the full expression in Eq. (4.4), the
numerical choice for the suppression factor |agv,/my|
corresponds to the yellow points and brings our prediction

®m; and mz,,, only differ in the order one coefficients by, and

b02 Wthh take values in the same range. Since the dominant term
in Eq. (4.4) involves the first generation masses, we use m; =

ms,, M, rather than m; = | /mg;, \/m;, Mz, as the average

slepton mass.
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for the EDM above its current experimental limit, repre-
sented by the red dotted line.

In the case where the phases of the soft trilinear and
Yukawa sectors are equal, &‘1’1 and all factors in Eq. (A2)
become real. In that case, the dominant imaginary part
originates from the NLO contribution’ to (6¢,),, and is
proportional to sin(46¢ + 04). Setting 04 = /2, as is
preferred by the Jarlskog invariant JZp,, given in
Eq. (2.8), we see that also the NLO contribution vanishes
for ¢ = 0, such that |d,/e| would only arise at order 2%.

Concerning the terms of Eq. (4.4) with double mass
insertions, they enter at orders (8z)2(0%5)a; ~ A5,
(07 r)13(O)31 ~A'" and (871 )15 (87 p)or ~ (671)13(87 k)31~
4% in our model. In the situation described in the preceding
paragraph, the first two terms are real, while the contribu-
tions of the latter two cancel against each other. Finally, the
contributions of the triple mass insertions are further
|

gy

BR(i = e7) =34 107 x 043°Mjyx™ (‘(5&)12 (—(5;R)22

0

+ |(5¢ (_ 5¢.)%
G (~(0i0)3, "

It is proportional to the bino mass squared that has been
approximated by Eq. (4.2) and expressed as M% =
0.43%xm3, where x = (M ,/m)?. The loop function C)
encodes the wino-Higgsino contribution and is defined in
Appendix B, along with the rest of the functions C;.

In our model, (&7, )15 ~ 4%, (83r)12 ~ 4%, (07 &) 12(21) ~ P
and (8¢ ), ~ 4*. To get an estimate of the dominant §s in
Eq. (4.8), we first compare the SU(2) (x C}) and the U(1)
(x Cy 1, Cp) contributions to the (67, ), term by studying

the ratio
Ag ad 1
C 1 =29 22 C —C
/(-5 eni361)

Whlch, in the hmlt' where m;,and mg are not very
different, can be written as

R =

. (4.9)

The behavior of the loop functions /; and h,, which are
defined in Appendix B, as well as k;(X) = d(xh,(X))/dx is

"The SCKM rotation which renders the Yukawa sector
diagonal and real does not do the same to the A-terms beyond
leading order.

mg; m;
M ¢y - Cy) + (610

PHYSICAL REVIEW D 93, 075026 (2016)

suppressed, with the largest one, (85, )3(8)33(8%r)31~
219, being real in the case at hand, while all other triple
insertions entail contributions which lie below the exper-
imental limit.

B. BR(u — ey)

According to Fig. 3, a large part of our parameter space
in the (12) charged lepton sector appears to be excluded by
the experimental limit set by the nonobservation of 4 — ey.
In this section, we therefore study in detail the contributions
to this LFV process within our model. The current
experimental limit for the branching ratio

BR(u — ey) <57 x 10713 (4.7)

is set by the MEG collaboration [43]. The expression for
the corresponding SUSY contribution is given by [41]

mg m; 1
LL_"€RR C/
—L RO+

mg Mg 2
ity , 2C,L + C’z) + (85 g) 1 —E—2 Cyy
0

Higmy,
2). (4.8)
[

shown in the right panel of Fig. 4, and ¥ = (M,/m;)?,
X = (My/m;)?, 5 = (u/mg)?, with my = | /g, 7tz .. The
contours in the left panel of Fig. 5 show the dependence
of R, as defined in Eq. (4.10), on (M,/u)? and x. We see
that for (M,/u)>= 1.5, R is larger than 1 for all
x~0.43°x/(1 +0.3x) £0.6, while for (M,/u)>~O(1)
and smaller, the U(1) contributions can dominate if X does
not decrease faster than (M,/u)?. The right panel in Fig. 5
is based on our scan and shows that the correlation of
(M,/u)? and X through x is such that R, as defined in
Eq. (4.9), stays larger than 1 in most of our parameter
space, making the SU(2) contribution to the (8¢, ), term in
Eq. (4.8) the most important one.

Similarly, one can show that the RR contribution to
u — ey in Eq. (4.8) is comparable to the LL one only when
[(84)1241/1(85 )12 2 1, although (55, ), is suppressed by
an order of 1 with respect to (64 ). This happens because
the RR parameter has only two U(1) contributions which
come in with opposite signs, allowing even for a complete
cancellation.

Finally, we study the relative size of the LL and LR
contributions by considering the ratio

M, Mg
——Cp
ﬂt/}mﬂ

ptgmy, (57.)12C

mg,, Mg, (67 2)12Cp

Hig C/z
Ay Cp

R :’ = 2k . (411)

wherNe k= 3y,(Ri2 = 2nvE12)/ (a5, (p§ )?)|, with Ry, af,
pi, E1p and ny defined in Egs. (A1)-(A2), (A15), (A54),
and (2.15), respectively. The absolute value of the
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10310721071 1 23456 7 891020304050607080

FIG. 5. Left panel: the contour lines for R, the approximate ratio of the SU(2) over the U(1) contributions to the (5¢,);, term in

Eq. (4.8), as defined in Eq. (4.10). For the average slepton mass m; = ,/m; 7

e Mopes X = (M, /m3)* ~0.43%x/(1 + 0.3x), with

x=(My,/ mg)?. Right panel: the ratio R (without approximation), as defined in Eq. (4.9) and produced in our scan. The dependence of
(M,/u)?* and X on x is such that the SU(2) contributions dominate for most of the parameter space.

right-hand side of Eq. (4.11) exhibits a similar behavior as
the ratio R, defined in Eq. (4.9) and shown in the right panel
of Fig. 5. Taking into account the A-suppression (1* ~ 1072)
and the range of x which can vary within two orders of
magnitude, we find that the (65;),, contribution to the
branching ratio can be comparable to the (&%,),, one
when (M,/u)? ~ 1.

Considering situations in which the (8¢ ),, contribution
to Eq. (4.8) dominates, we obtain the approximate

expression
~ 2 MG o laf[\?
BR(#—)E}/) (52R)12NO 10 aom—ghl(x) ? . (412)

N

In the case where (6,),, is more important, e.g. when
(M,/u)? < 1, cf. right panel of Fig. 5, we obtain

BR(-ey)

1077

107+

10—11

my(TeV)

01051 152253354455

prey)

FIG. 6. The supersymmetric contribution to the branching ratio of u — ey versus the average slepton mass m; =

BR(x — e7)

(52L)I2

xt/z, mg % o2
NO ?mTh2(37xL) |R12—21’]NE12| . (413)

erLL

For x; = (M;/m;, )* ~x~0.1, xx1, aqy~ 1, t53~ 10,
u~my=1 TeV and m;, , ~ 750 GeV, the approximations
of Egs. (4.12)—(4.13) both produce a value of the order of
1071 times the relevant order one coefficients squared. In
order to gain an extra suppression of at least an order of
magnitude, the latter are preferred to be smaller than 1.
The total supersymmetric contribution to the branching
ratio of y — ey of Eq. (4.8) as produced in our scan is
shown in Fig. 6. There it is plotted against the average
slepton mass (left panel) as well as |d,/e| (right panel).

BR(u—ey)

107°

10—11 L

10—13 g

10—15 L

-17
10 10-20

|d./el(GeV™)

10-2

ag vy [ mg

my iy  (left

€LL" "€RR

panel) as well as |d, /| (right panel). The red dotted lines represent the current experimental limits given in Egs. (4.3) and (4.7) while the
black dotted lines show the expected future limits, that is BR(u — ey) <6 x 1071 [44] and |d, /e| < 1.52 x 10717 GeV~! [42].
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FIG. 7. The range of the (12) lepton mass insertion parameters as produced in our scan, together with the resulting prediction for the
branching ratio of 4 — ey. The grey points do not satisfy the current experimental limit given in Eq. (4.3).

From the left panel we observe that our model requires
rather heavy sleptons, in the TeV range, in order to survive
the current experimental limit in Eq. (4.7), which is
denoted by the red dotted line. As can be seen in
Egs. (4.8) and (4.13), there is also a strong y dependence,
with a preference for large values. The right panel of Fig. 6
shows that the 4 — ey branching ratio is correlated with
the electron EDM, mainly through the slepton masses and
the bino-slepton mass ratio. The combination of the
current limits on both observables highly restricts our
parameter space. Reaching the expected future limits,
denoted by the black dotted lines, would nearly exclude
our model.

In Fig. 7 we show our predictions for BR(y — ey) in
the plane of two (12) mass insertion parameters as
produced in our scan. Comparing this to the discussion
of Sec. III B 3 reveals that, with the present MEG bound,
1(85,)12] S5x 1073 and [(854)1,] 5% 107 are not
excluded as it was suggested by the limits in Fig. 3.
On the other hand, |(6%%),| can take its maximum values
produced by the scan. The reason for these weaker
bounds is twofold. First, the analysis in [37] sets the
limits on the mass insertion parameters by choosing 7 as
large as 60, whereas we only allow for maximum values
of 25. Secondly, the derivation in [37] requires that the

C. Meson mixing

Turning to AF =2 transitions, we study the SUSY
contributions to meson mixing. The dispersive part of the
mixing for a meson P can be parametrized as [45]

P,SM P,NP
M7, = M3 + M3

= MM (1 + hpe?ior),  (4.14)

and the corresponding mass difference is given by
AMp =2|MY,|. (4.15)

We express the SM contribution as MM = | MP;5M| 203",

The NP contribution, M1 = |M*; NP|e2’9P is encoded in
the real parameters
M5
hp = \MESM) op = O0p — ppM. (4.16)
12

The contributions of the gluino-squark box diagram in
terms of mass insertion parameters read [10,14]

M3 = Af <g< D1(88,)% + (54 )2]

AV (89,),1(808) 5 + A8 )% + (84.)%)

discrepancy of (g—2), from its SM value is explained —|—A5’( )((52’13)]-14(6%,_)]-,»), (4.17)
by SUSY contributions.
where
. a2 1 - ~
0= s Mpfh AT = 24y1(v) + 6674 ().
"~ 216m 3
. M 2 M 2 ~
AP — (384 L) 472 24— ) +36 ,
10 = () 72t + (2 () 36ty
~ M 2 _ M 2 .
APO — _p3p( P : O = (144 2 ) — 84 . 4.18
4 P Yf6(y) P fe(y) (4.18)
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M p denotes the mass of the meson under consideration and
fp is the associated decay constant. m; and m; are the

masses of the meson’s constituent quarks while m; is an
average squark mass which we define as
P=K
dy,Ma )
i = { RR p_3 (4.19)
\% mdLL mbLL deR’ = Psd>

with my , mj ~and m; defined in Eq. (A11). The loop

functions f4(y) and }6())), where y = (m;/m;)?, are given
in Appendix B and the gluino mass has been approximated
by Eq. (4.2).

1. B, — B, mixing
The SM contribution to Bq, q = s, d meson mixing
given by [46]

2
fé”SM = GleMzB M3 (Vzhvz*q)zﬂBSO(xt)f%qBBq’ (4.20)
with
Vie = =|Vyles, Via=|Viale™, (421)
1531:’[ = —B,, ¢1591:/I =p. (4.22)

Here 5 is a QCD factor, lA?Bq a perturbative parameter

related to hadronic matrix elements and Sy(x, =
m?(m,;)/M3,) is the Inami-Lim loop function [47]. The
calculation of the pure SM contribution to the B, mass
difference gives [48]

AMSM — 12524138 5 1013 GeV, 423
B, 127

with the largest uncertainty stemming from the nonpertur-

bative factor fp B B,» for which the value 275 + 13 MeV

[49] has been used.® The SM prediction for AM g, can be
deduced from the ratio [48]
A M(SM)

AM(SM)

= 0.02835 £ 0.00187, (4.24)

which is less sensitive to theoretical uncertainties. On the

other hand, the associated experimental averages as of

summer 2014, provided by the HFAG group, read [51]
AME® =

(1169 £0.1) x 10~'3 GeV, (4.25)

$We note that the 2014 average of the FLAG collaboration [50]
corresponds to a lower central value but with a larger error:

I8,/ B3, lkiac = 266 + 18 MeV.

PHYSICAL REVIEW D 93, 075026 (2016)

AMS®) = (3.357£0.020) x 1072 GeV,  (4.26)
M<CXP)
B,
T = 0.02879 £ 0.0002. (4.27)
AMY

Comparing Eq. (4.23) with Eq. (4.25) leads to a negative
central value for the experimentally allowed NP contribu-
tion to AMp , with a similar result being obtained for
AMp,. The main source for the errors are the uncertainties
of the SM calculation.” In view of Egs. (4.23)—-(4.27), and
in anticipation of reduced theoretical uncertainties, we
conclude that the largest NP effects that could still be
allowed should be consistent with

|AM )| <2x 10712 GeV,

|AM )| < 1% 10713 GeV. (4.28)
Using Egs. (4.15) and (4.17), we can estimate the effects
of the gluino-squark box diagrams. Taking into account the
A-suppression of each ¢ parameter entering Eq. (4.17), we
(@)

can write AM’ in the schematic form

AM 0(/14(14 —|—A (7 )/12 +Afr(§)ﬂ4 —|—A§‘(f])/16),
Afd’(g)/lz + A?d'(g)/P).

(4.29)

AM%iocﬂS(AB”’ + A5

Figure 8 shows the individual contributions as a function of
y = (mg/mg)*. The largest contributions originate from the

terms proportional to AB””O and AB“'d’(g), i.e. the terms
associated with the 5‘LiL and &%p, cf. Eq. (4.17). The

contributions from the LR-type mass insertion parameters,

-(9)

proportional to Affj' , are negligible. The maximum effect

of the gluino-squark box diagrams is obtained when x =

)2
LL(RR)/i3

and (6¢,)5(8%%);; terms interfering constructively. For
relatively light m; around 2 TeV, |Alf“"”(g)|rmlX
O(107'?) GeV. Assuming furthermore |(8¢,),5] ~ 1073,
(671 )23l 2 x 1077 and |(8fg) 3] = [(8g)as| & 107> (cf.
Fig. 2) as well as y = 0.3, we can use Eqs. (4.15) and (4.17)
together with Fig. 8 to estimate the maximum gluino
effects as |AM£§>|max ~O(107%) GeV and |AM1(_egd)|max ~
O(1071%) GeV. This is about two orders of magnitude
smaller than the corresponding SM and experimental values.
For relatively large values of 75 and a light CP-odd Higgs
mass M,, the contributions of the double penguin (DP)
diagrams, which scale as r3u*/M3, become important.

(M /2/mq)? and y are smaller than 1, with the (5¢

9. . . . ..
For a recent discussion on theoretical uncertainties and
comparison with experimental results, see [52].
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FIG. 8.

Considering diagrams with (i) two gluino, (ii) one gluino
and one Higgsino and (iii) one gluino and one wino loop,
the associated part of Mfé’ can be approximated by [14]

B,,(DP) B,,(DP) .“ DP) B,.(DP)
M; =4, (5%R)3J4 2{A ol +(57,)3A5" )

(4.30)
where i = 1(2) for ¢ = d(s) and
Allffq.(DP) _ a3 Mqu%;q < Mp, >2 2m3, SO,
167 m% my, +m,) 3M3,
quv(DP) A;; Vv qfl(y,,),
A (PP 2(m—;f4(yz,yﬂ) - gz—;ﬁ()’))- (4.31)
Yo = (u/mz)* and y, = (My/m;)? where the latter is

related to y = (my/m;)* via the approximations of

Eq. (4.2). The loop functions f5(y), f1(Vu), fa(y2Yu)
are given in Appendix B. Their behavior is sketched in

Fig. 9, along with that of [A2%"")|. For |4,/ > 500 GeV,

the dominant contribution to Eq. (4.30) comes from Agd -(DP)

in the B, sector, even for our maximum values of |(6¢, ) 3|,
while for By, where |(5¢,),3] assumes larger values (cf.

Fig. 2), the two terms in the curly brackets are comparable.
B,.(DP)

For light average squark masses m; around 2 TeV, A *
can reach values up to O(1071¢) GeV, while |(5%;)
1072 (cf. Fig. 2). Then, for A,> m; and p < m~,
|A§‘(‘”'(DP)| ~O(10712)), such that |AM " PP
2x 107120 x 3% /M3 GeV, barring contributions from

~
13|max ~

PHYSICAL REVIEW D 93, 075026 (2016)
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The dependence of the individual contributions in Eq. (4.29) on y = (mg/ m;])z. The average squark mass m; is defined in
Eq. (4.19) while the functions Af""”(g) can be found in Eq. (4.18).

the qu»(DP> term. When 7, takes its maximum value of 25
and u ~ My, the double penguin contributions to AM B,

increase to about an order of magnitude above the gluino-
box contributions, which is however still significantly below
the SM and experimental values.

Figure 10 shows the predicted SUSY contributions to the
B, meson mixings as produced in our scan. They are
plotted against the average squark mass defined in
Eq. (4.19) and lie below both the experimental measure-
ments (red dotted lines) and the NP limits (blue dotted
lines) by at least an order of magnitude. This result is in
agreement with the findings in Sec. III B 2, where we have
compared our predictions for the mass insertion parameters
with existing limits in the literature.

The effects of the complex down-type mass insertion
parameters of the (23) and (13) sectors can be studied
through the time-dependent CP asymmetries associated
with the decays B; — J/w¢ and B; — J/wK. Focusing
on the mixing-induced CP asymmetries, we have [53]

2 bl

= 4.32

with

where f denotes the final state of the decay and A is

the corresponding amplitude. As the absorptive part I lfé’
of the B, meson mixing is much smaller than the dis-

. B, . B B, .
persive one M,;, ie. I'|)7 < M j, we can approximate

q/p =1/ Mfg* /Mfé’. Then, the A, factors associated with

the decays B, — J/w¢ and B; — J/wK take the form
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FIG. 9. The dependence of the loop functions as well as |A§"3’(Dp) | appearing in Eq. (4.30) on y = (mz/my)?, y, = (u/my)* and
Vo = (Mz/m,~1)2 ~ 0.11y. The blue lines correspond to y,/y = 30 and the magenta ones to y,/y = 0.3. In the plots for |A§”'<DP) s

have assumed that A, ~ m;.
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FIG. 10.  The absolute value of the gluino and double penguin contributions to AMp  versus the average squark mass as defined in
Eq. (4.19). The color coding corresponds to different values of x = (M ,/ mg)?. The red dotted lines denote the experimental central
values of Egs. (4.25)—(4.26), while the blue dotted lines indicate the maximum allowed NP contributions according to Eq. (4.28).

Aippp=e""", py==2p+arg(1+hp e*s),

Sijpp = 001540035, Sk, = 0.682 % 0.019,

/IJ/WKS:—e_iqu, ¢d:2ﬂ+arg<1+h3d€2i6311), (434) (436)
where the parameters /5 and o are defined in Eq. (4.16), 100 e sMm expectations read [55]
while the SM phases f; and f can be found in Eqgs. (4.21)—
(4.22). The mixing-induced time-dependent asymmetries o B 10.0012
can then be simply written as SJ/V"/’ = sin(24,) = 0.0365 g 013
SShk, = sin(28) = 0.771100,]. (4.37)

SJ/II/¢ = — Sin(¢s), SJ/'//KS = Sin(¢d). (435)

The current measurements are [51]10

"'LHCb recently published their first measurements of

Sywks = 0.746 = 0.030 [54] in the limit of a vanishing direct

1- |A<B *J/V/Ks)/A(B =J/yKs) ‘

HAB, =7 [y Ks) ] AB,~IJyKs)P =0, thereby
improving consistency with ‘the SM expectation.

CP asymmetry, i.e.

SSM 7)wg COMes with a relatively small error, whereas S5} T )wKs

depends strongly on the value of |V,,|, which differs
significantly when extracted via inclusive or exclusive
decays, see e.g. [46], with the above data preferring the

lower exclusive result. The value of S5M 7 )wKs quoted in

Eq. (4.37) has been derived by averaging over inclusive
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and exclusive semileptonic determinations of the relevant
CKM elements and using the value of the CP-violating
parameter €, see Eq. (4.45), amongst the input parameters
but not the measurement of sin(2f) itself.

Comparing Eq. (4.36) and Eq. (4.37), we observe that the
NP contributions to S;,,, and S;/,k, can be as large as
~100% and ~10% of the respective SM values. In order to
reach 10% deviations, hg and hg, should be larger than
~4 X 10‘ and ~0.14 respectively, corresponding to
|AM
Wthh maximize the effect. In view of Fig. 10, we would
expect a non-negligible contribution to S 4 in a small part

)| 25 x 10714, Here we have assumed NP phases

of the parameter space. However, at leading order, (¢, ),;
and (6%z),; are real, cf. Eqs. (A31) and (A33). They only
receive nontrivial phase factors at order A%, suppressing the
imaginary part of AM3”SY by one power of A~ 10~" with
respect to the real parf. As a result, any deviation from
SJ/W is only of the order of 1%. In the B sector, (6¢,);5
and (6%),5 are already complex at leading order in 4, cf.
Egs. (A30) and (A32). But as can be seen from Fig. 10,
|AM3SY] 0 & 1071 is too small to be relevant. Even for
|AMSUSY| ~ 107!4, the maximum deviation from S5}
would be ~3% at most.

In conclusion, our model would not be able to explain
any persistent deviations from SM expectations in observ-
ables related to B meson mixing.

J/wKg

2. K — K mixing
The SM contribution to the kaon mixing reads [46]

GiM
11;]1_21( M%V((‘/csvid)z’/lccSO(xc)

+ (Vtsvrd)znttSO(xt)
+ 2VL‘S Vidvts V;kdnctSO (xcv xt))f%(BK’

MK.SM _

(4.38)

where #; are QCD factors, By denotes a perturbative
parameter and Sy(x; = m?(in;)/M3,) are the Inami-Lim
loop functions [47]. From thls the SM value for the kaon
mass difference is numerically given by [56]

AME™ =330(34) x 1075 GeV,  (4.39)
while the experimental measurement yields [57]
AM ) — 3, 484(6) x 10715 GeV. (4.40)

We therefore impose the constraint that the maximum
allowed NP contribution should be limited by

AMO®) <5 % 10716 GeV. (4.41)

For kaon mixing, the relevant mass insertion parameters
are those of the (12) sector. Taking into account their
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FIG. 11. The dependence of the individual contributions in
Eq. (4.42) on y = (my/m;)*. The average squark mass m; is
defined in Eq. (4.19) while the functions AZK'(” ) can be found in
Eq. (4.18).

A-suppression, we can write the gluino-box contribution to
the mixing amplitude, given in Eq. (4.17), in the schematic
form

AMY o« 28(A5 D + AS D21 AF D24 4 AT D04, (4.42)
Figure 11 depicts the individual contributions as a function
of y = (my/m;)*. It shows that the dominant contribution
K.(9)

originates from the term proportional to A5, i.e. the term
proportional to (8¢, ),,(5%x)a1; see Eq. (4.17). The effects
of the LR-type Js, proportional to Af’s@, are negligible.
Using Eqgs. (4.15) and (4.17) together with Fig. 11, we can
estimate the maximum gluino contributions to |[AMg]|.
Assuming y~03, AX9 ~ 10713 GeV and (89,), ~
5 x 10‘2 (8%r)a; =7 x 1073 (cf. Fig. 2), we expect that

IAM?|,... ~ 5 x 10714 GeV, which is about one order of
magnitude larger than the experimental result of Eq. (4.40).

The DP contributions to AM g arise at the level of four
mass insertions, by effectively generating the (s — d)
transitions through (s — b) followed by (b — d). The
relevant part of the mixing amplitude takes the form [14]

05?052

M 230m2 t3?
MEPP = 22y 12 (m +Kmd> 9M2b Mﬂz zy(fs(y))2
(4.43)
2 (5ZL)23 (5zL)31(57€R)23(51d€R)31’ (4.44)

with the loop function f5(y) given in Appendix B. We find
that this contribution is completely negligible, as it is
proportional to A'*. The upper left panel of Fig. 12 shows
the combined gluino and DP SUSY contribution to AMg,
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FIG. 12. Upper panels: the absolute value of SUSY contributions to AM g (left) and eg (right) plotted against the average squark mass
defined in Eq. (4.19), with the different colors corresponding to different values of x = (M, 1/ mg)?. Lower panels: the most important
mass insertion parameters, relevant for K mixing (left) with different colors representing the produced value of [e3VSY |; |AMSVSY| versus
|e3VUSY| (right), with the grey shaded points being excluded by BR(u — ey). The red dotted lines indicate the experimentally observed
values, while the blue dotted lines show the limits on NP contributions.

as produced in our scan. It can exceed the NP limit quoted
in Eq. (4.41) (blue dotted line) for small values of x, even
shooting above the experimental value of Eq. (4.40) (red
dotted line) for x < 1.

We now turn to the CP-violating parameter €y, defined
as [46]

K'eei(pe

co — Im(MESM) 4 Im(MESUSYY),
K \/EAM?p( (M3°") (M3°777))

(4.45)

where the superweak phase'' ¢, = arctan(2AMy/AT’) =
(43.52 +0.05)° [57], and the factor k. = 0.94 £+ 0.02 [58]
takes into account that ¢, # 7 /4 and includes long distance
contributions. The experimentally measured value of e is [57]

) — (2228 £0.011) x 1073 x %,  (4.46)

while the SM prediction depends highly on the value of V.,
[46]. According to [59] and for theinputset from the angle-only

AT denotes the difference of the widths.

fit [60], where the Wolfenstein parameters do not show an
unwanted correlation with 5 and By, one finds

€™ =2.17(24) x 1073 (inclusive V).

€M = 1.58(18) x 1073 (exclusive V).  (4.47)
We therefore demand that
1€0P)] < 0.8 x 1073, (4.48)

The upper right panel of Fig. 12 shows the absolute value
of our predicted SUSY contribution to e, plotted against
the average squark mass. We find that it can exceed the
limit of Eq. (4.48) by more than three orders of magnitude
when x < 1. In view of Fig. 2, we would not have expected
such a big effect. However, the limits on the mass insertion
parameters used in Sec. IIIB2 only take into account
one nonzero mass insertion at a time. As we have seen
in this section, the dominant contribution to the kaon
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mixing amplitude stems from the multiple § term

A (54 ), (844)5, (cf. Fig. 11). The nonzero phase of
the RR parameter is the source of our prediction of a
large [e3VSY].

The lower left panel of Fig. 12 shows [e3VSY| in the
1(64,)12-1(8%%) 12| plane. It indicates that for |(6¢,),| ~
5 x 1072, i.e. towards the largest possible value according
to Fig. 2, |(8%) 12| < 1073 is required. When |(5%,),,| takes
its maximum value of ~1072, |(6¢,);,| should stay
below ~107%.

Finally, from the lower right panel of Fig. 12 we observe
that egx places stronger bounds on the mass insertion
parameters than AM. Due to the SU(5) framework of
our model there is a correlation between the § parameters
relevant in kaon mixing and the ones that enter the branching
ratio of (u — ey). Denoting the points excluded by BR(y —
ey) with a grey shade reveals that there still remains a small
area of parameter space which is excluded by eg.

D. BR(b — s7)
We now consider the gluino contribution to the branch-
ing ratio of b — sy. In terms of the relevant mass insertion
parameters it is given by [10]

aca

817:2m‘3 mer(\mbM3 () (5iL)23
q

+mgMy(y)(8¢g)3* + L < R),

BR(b — sy) =
(4.49)

where the loop functions M,(y), M3(y) are defined in
Appendix B, 7 denotes the mean life of the B meson and
y = (mg/mg)*. This observable does not constrain our
parameter space. Even for squark masses as low as
100 GeV and y =1, the LL and RR mass insertion
parameters would only need to be smaller than 0.4 to be
consistent with the current experimental value of [51],

BR(B — X,y) = (3.43 +£0.21 £0.07) x 107, (4.50)

PHYSICAL REVIEW D 93, 075026 (2016)

which is in good agreement with the SM prediction [61].
Similarly, the chirality flipping mass insertion parameters
would need to be smaller than 3 x 1073, In our scan we
find, cf. Fig. 2, (52, )5 < 107, (8e)as < 102 (8 p) <
1075 and (8%, )3 < 107°. Taking into account the squark
mass dependence and the fact that our scan excludes such
light squarks, we have found that our model predicts a
contribution to BR(b — sy) which is at least three orders of
magnitude below the experimental measurement.

E. BR(Bs’d — ﬂ"'ﬂ_)

The most recent SM predictions for the branching ratios
of By, — utu~ are given by [62]

BR(B, — )M = (3.65 4+ 0.23) x 107,

BR(B, = utu™ )™ = (1.06 £0.09) x 1071, (4.51)
while the averages of the CMS and LHCDb collaborations
read [63]

BR(B, — ptpu~) ) = 28707 x 1079,

BR(B, — ptu~ )0 = 3.9f11"§ x 10710, (4.52)
The B, sector therefore still allows for rather large
relative deviations from the SM expectations. In the
case of B, the experimental measurement yields a value
which is slightly lower than the SM prediction.12 We
therefore quote the allowed room for contributions from
new physics as

BR(B; — utu~)NP) < 1.68 x 1072,

BR(B, — utu~)NP) <4.53 x 10710, (4.53)

The chargino and gluino contributions to the branching
ratio of B, — ppu~ can be expressed as [14]

5,3, M3 m2
BRB +,,7) — q q q 1_4 14
(By = w'u) 327 My,

8

My

m Ky
. ’2—”c§34 e [qu - % (6)n + <5%R>,-3>]

q
where

AT A8 =2 130 (01, = G
2

2 2
(-3
MBq

2}, (4.54)

"The calculations in [62] have been performed using the inclusive value of |V, |. Working with the exclusive one would result in a
lower central value of BR(B, — ™)™ = 3.1 x 10~ which fully agrees with the data [64].
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The SUSY contributions to the branching ratios of B, — u Tu~ versus the average squark mass mg, defined in Eq. (4.19). The

red dotted lines denote the experimental measurements, whlle the blue dotted lines indicate the max1mum NP contributions.

ABa _a23MB My _mgpt
1 Zﬁ 4-M2 M2 2’

A =

SM __ a2 4GF

10 4 \/_

thquYO(xt)’

2

B ny At
- 2
w

Fol) = (Tl

M
tbvtqfl (y,u) m2 (5ZL)i3f4(YZa Yy)»
9

x—4 3x

TEoIE ln(x)>, (4.55)

with x, = m7? /M3, and i = 1(2) for ¢ = d(s). The loop functions f}(y,), f3(y) and f4(y,.y,) are the ones which appear in
the double penguin contributions to B, mixing in Sec. IV C 1. With C3M' = 0and A, 2 100 GeV, the dominant contribution

to Eq. (4.54) originates from the flavor blind term of ABq, such that we can make the approximation

6 x 10~
BR(BS(d) — Iu+,u_) ~ O< (

Then, for |Au|/M3~O(1), m;~2TeV, 15~25 and
f1(y,) receiving its maximum value of order one (cf.
Fig. 9), we expect BR(By(y) — p'pu~) = O(1071012)),

In Fig. 13, we plot our predicted SUSY contributions to
the branching ratios of B, — u*u~ against the average
squark mass my, defined in Eq. (4.19). The red dott+ed
lines denote the experimental measurements, while the blue
ones correspond to the limits for the NP contributions as
given in Eq. (4.53). In both sectors, B, and B,, our
maximum predictions fall about an order of magnitude
below these limits."

F. Neutron and '*?Hg EDMs

CP-violating effects in the quark sector can manifest
themselves through the quark EDMs as well as the quark

B As discussed in [65] and also in [66], the theory prediction in
Eq. (4.54) should take into account the large width difference
between the mass eigenstates of the B, system. This correction
enhances the corresponding branching ratio by about 10%. Given
the smallness of the new physics contribution in our model, it
does, however, not change our results significantly.

6(1x 1077) GeV* A2
4.56
e 5k R0 ). (450

chromoelectric dipole moments (CEDMs). The gluino
contributions read [14,67,68]

d, a, m;
{%7612;} 4——3Im[(5ZL)ik(‘SZR)kjw?eR)ji]
q

x{Q,F (). FS()} (4.57)

F0)==5M0). FE0) = (3M0) 3000

(4.58)

where Q, denotes the electric charge of quark ¢ and the
loop functions N(y), Ny(y), with y = (mz/m;)?*, are
given in Appendix B. As the first generation squarks
dominate Eq. (4.57), we use the average squark masses

my = \/my, Mg, my=/my mg . (4.59)
with MG, ey given in Eqgs. (A10)-(A11).
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FIG. 14. The neutron EDM versus the average squark mass m; =
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/My, with my and m3 as defined in Eq. (4.59) (left panel) and

versus the electron EDM (right panel). The red dotted lines denote the current experimental limits as given in Eqgs. (4.63) and (4.3) and
the black dotted lines the future limits |d,,/e| <1072 cm~ 5 x 107" GeV~' and |d,/e| <3 x 1073 cm ~ 1.52 x 1077 GeV~! [42].

Similar to the case of the electron EDM, we consider the
most general scenario where the phases of the soft trilinear
sector are different from the corresponding Yukawa ones.
Then the dominant contributions of Eq. (4.57) arise from
the single mass insertions with i = j =k =1,

Im[(67 ¢ )11] Im[alﬂ]lg’ Im[(égR)ll] x Im[Zz‘fl]/16,

(4.60)

where Zz{j is defined in Eq. (A2). The double and triple mass
insertions start contributing at orders A'? and 1® for the up
and down quark (C)EDMs, respectively.

If, however, the phases of the soft trilinear and Yukawa
sectors are aligned, Zzlfj is real. In the case of the up quark
sector, one should then check'* whether the NLO correc-
tions to Im[(8%z);,] also vanish, before assuming that the
term Im[(67 1 )13(87 g)33(Skr)31] o sin(405 — 65)2'> domi-
nates. The situation in the down sector is such that the NLO
correction to (6¢,);; gives a nonvanishing contribution to
the (C)EDMs. Explicitly, we find Im[(6¢%);1]xi0 &
sin(404 + 6¢)47, while the smallest contribution from multi-
ple mass insertions is Im[(&{; )15, (67 g)y1] o sin(65)2°.

In order to compare the gluino contributions of our
model according to Eq. (4.57) with the experimental limits,
we take into account the RG running from the SUSY scale
down to the hadronic scale, using the LO results of [69], for
a(ug~1TeV)~0.089 and a;(uy~1GeV)~0.358
[70]. Then,

d(i (uw) = 0,87qui (us),

d‘][ dl]i C

e (uu) = 0.38-~ (us) —0.39Q,dg (us). (4.61)
with déic) (us) as given in Eq. (4.57).

"“We have truncated our expansion at the order of 8.

With these preparations, we can study the predictions for
the neutron and the '”?’Hg EDMs. Adopting the QCD sum
rules approach, the neutron EDM at the renormalization

scale y = 1 GeV is given in terms of the QCD #-term and
the quark (C)EDMs by [42]

d _ d d
- 82x 10717 cmf —0.1274 +0.78 4
e e e

+ (=0.3dS + 0.3d5 — 0.014dY), (4.62)
while the current experimental limit is [71]
|d,/e] <2.9x 10726 cm~ 1.47 x 10712 GeV~!.  (4.63)

The quark (C)EDMs can also be probed through measure-
ments of the EDMs of atomic systems, where '“Hg
provides the best upper limit amongst the diamagnetic
systems [72]

|dyg/e| <3.1x 1072 em~ 1.57 x 10715 GeV~!.  (4.64)

However, large theoretical uncertainties in the atomic and
in particular the nuclear calculations prevent the extraction

of bounds on dfl[c). Equation (4.64) limits the nuclear Schiff
moment as [73]

She < 1.45 X 1072|e| fm?, (4.65)

which, assuming it is dominated by pion-nucleon inter-
actions, can be expressed as [74]

S = 13.5(0.015%)y + (£)0.02\y + 0.0255).-
(4.66)

In this equation, the gf[")w denote the pion-nucleon cou-

plings. Their coefficients in Eq. (4.66) are the best fit values
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taken from the review article [74], which assesses the
strengths and weaknesses of different, sometimes contra-
dictory, nuclear calculations provided in the literature.
Combining Egs. (4.65)—(4.66) with the relation

gy =2 % 10712(dS — dS), (4.67)

which was derived in [75], it can be inferred that [73]

|(dS —dS)/e| <2.8x 10726 cm ~ 1.42 x 10712 GeV~!.

(4.68)
However, this bound only applies if the coefficient of QETIX,N
in Eq. (4.66) takes its best fit value. In principle, it could
also be zero, in which case no bound on |(d§ —d9)/e|
could be extracted.

In the left panel of Fig. 14, we show our prediction for
the neutron EDM versus the average first generation squark
mass mg = ,/mgmy. For squark masses less than about
6 TeV, it lies just below the red line denoting the
experimental limit in Eq. (4.63). For heavier squarks it
stays below the limit by at least one order of magnitude.
The color coding corresponds to the predicted value of
|(dS — dS)/e| x 10> GeV, which can also reach the limit
in Eq. (4.68) for large |d,/e| values. In the right panel of
Fig. 14, the neutron and electron EDMs are plotted against
each other. They are of the same order of magnitude, but it
is the current electron EDM limit that constrains our
parameter space. When the future experimental limits are
reached, only the small part lying in the lower left corner
bounded by the black dotted lines will survive.

V. CONCLUSIONS

In a recent paper we showed how MFV can emerge
approximately from an SU(5) SUSY GUT whose flavor
structure is controlled by the family symmetry S, x U(1)
[19], providing a good description of all quark and lepton
masses, mixings as well as CP violation. We showed that
the model leads to mass insertion parameters in
Egs. (2.16)—(2.18) which very closely resemble the
MFV forms, where 8}{%; are unit matrices and &}5*
are proportional to the Yukawa matrices.

Whereas in [19] we focused on the similarity to MFYV,
here we highlight the differences, which we do by con-
sidering the predictions for electric dipole moments, lepton
flavor violation, B and K meson mixing as well as rare B
decays. As expected, many of the new physics contribu-
tions fall well below current limits. This is the case for
example in B physics observables, where deviations are
negligible (at the 1% level). Thus, our model would
be unable to explain any discrepancies between SM
expectations and measurements in AMp_, or in the time-

dependent asymmetries S, and S, k. This is in marked
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TABLE VII. The flavor “DNA” of our SU(5) x S, x U(1)
SUSY GUT model following the labeling proposed in [14]. The
predicted contributions to the various flavor observables are
classified into three categories: %> indicates large observable
effects while visible but small effects are marked by **. The
absence of sizable effects is shown by *.

d. p—eyAMg , Syyg Sk, AMg €x Byg— p'u d,

*ok ok kk ok * * * *k ok kok * * %

contrast to the SU(3) family symmetry models previously
studied, where large effects were expected in these
observables. Thus, neutrino physics which led to S; x
U(1) appears to lead us towards models with small such
deviations.

On the other hand there are observable effects which
would distinguish the SU(5) x S, x U(1) SUSY GUT
model from MFV. The most significant effects of the
departure from MFV appear in the (12) down-type quark
and charged lepton sectors, related to kaon mixing observ-
ables and the branching ratio of y — ey. We find that
(65, )1 provides the dominant contribution to BR(u — ey)
and that our model requires rather heavy sleptons, exceed-
ing about 1 TeV, in order to satisfy the experimental bound.
Another important area where our model gives observable
deviations from MFV is CP violation, in particular the
electron EDM, where again large (TeV scale) slepton
masses are required for compatibility with current bounds
to be achieved. The model therefore predicts that a signal
should be observed in both 4 — ey and the electron EDM
within the expected future sensitivity of these experiments.

Turning to CP violation in the kaon system, the model
contributes significantly to ex due to the phase of (6%z);,-
The SM prediction for this observable depends sensitively
on |V.|, which differs when considering inclusive or
exclusive decays, leading to a lower central value in the
latter case. However, even for inclusive values of |V, |, the
SM expectation for ex is about 10% below the measure-
ment. Our model is capable of providing sufficient
enhancement to explain the experimentally observed value
of eg.

We collect our findings in Table VII, where we classify
various flavor observables according to the expected size of
our model’s predictions. Large observable effects are
indicated by *%%, while visible but small effects are
labeled by x*. A single star % shows the absence of
sizable effects on a particular flavor observable. This
classification, which was first suggested in [14], is
undoubtedly somewhat vague by nature and therefore
limited in its scope. Yet, it has proved to be a useful tool
in comparing characteristic predictions of various models
of flavor. Table VIII of [14] shows the expected predictions
of a selection of different models. Comparing this table
with our model’s DNA, see Table VII, demonstrates the
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specific signatures of our SU(5) x S, x U(1) SUSY GUT
of flavor. According to the phenomenological study in [14],
all of the discussed models which predict large effects on
€k also predict large contributions to S, /,,4. In contrast, our
model features large contributions to €k in conjunction with
negligible effects on S, ,,,. Furthermore, all SUSY models
in [14] entail large contributions to B; — utu~ while such
contributions are tiny in our model. Those models in [14]
which lead to a large electron EDM (d, ) also predict a large
neutron EDM (d,). Again, our model differs from this
pattern by predicting large observable d, together with only
small d,. Concerning y — ey we observe that sizable
effects are expected for our model as well as all flavor
models scrutinized in [14]. This comparison illustrates that
the phenomenological signatures of our SU(5) x S, X
U(1) SUSY GUT are indeed quite different from those
of previously discussed flavor models.

In summary, theories with discrete flavor symmetries
such as the SU(5) x S4 x U(1) SUSY GUT model, moti-
vated by neutrino physics, seem to lead to MFV-like flavor
changing expectations, but with some important excep-
tions. This study shows that, while observable deviations in
B physics are generally not expected to show up, departures
from MFV are expected in both 4 — ey and the electron

PHYSICAL REVIEW D 93, 075026 (2016)

EDM within the foreseeable future sensitivity of these
experiments. CP-violating effects may also be observed in
€k, perhaps resolving some possible SM discrepancies.
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APPENDIX A: LOW ENERGY MASS INSERTION
PARAMETERS

In this appendix, we show explicitly the full expressions
of the low energy mass insertion parameters used in our
numerical analysis. They are given in terms of the high
energy order one coefficients introduced in Sec. II.
Performing the transformation to the SCKM basis, it is
useful to define the corresponding GUT scale parameters

byy = —(bs — by k3),

=~ ~2
7 X2 % ) % Vs o
By, =2—=(by — boiky), Bz = (bo1 = bpa). By == (bo1 — bg2), R = B3 —Kj, (A1)
s YbYs Vb
and
a o _ gy 2
an = auel(g“ %) ay, =a ei%=6) as; = a, ay; =23 (y_[_ A z2“>
t 2
) a .
Zl(lil = & (2 ~2 gi(@a‘%) — &g’(ag_gi)> s Zlgz = asei(ez_ai)’ a33 = abel( b 9;;)
s X2 Vs
a - ' . v cna
al, =%, <’f_2 i(03—6%) ﬂei(az’—é‘k)) 5,513 =y, (& PG @ez(eb_eb))
X2 Vs Vs Yb
a Zd <d,
~ a y s(n“da d
agl — Zg <_ el<9h_9b) 3 ,i(0y—0 )) ,
Vb 23
2 dy .
gd — s (ﬁ i(0-00) _ ei(ﬁg—ﬁi)) 4 7 <@ei(ﬂz—9£> _%2_ i —9;”’>>
32 2 d ’
b \Vs Vb Vb 25
2 a ) a ) a Zda %) .
as, = 9& (_s i(0-00) _ _bei(eg—9;)> + 24 (_beiwg—ei,) - Ldei(ﬁz a_azd)). (A2)
Yo \Vs Vb Yy 2y

Here, 74 parametrizes the (23) and (32) entries of the up-type quark Yukawa matrix of order A7 before canonical
normalization; the associated phase is given by 65" = 309 + 204. They become subdominant contributions to the (23) and
(32) elements of Y%, in Eq. (2.1). The parameter of the corresponding soft trilinear contribution is denoted by z5* with
phase 9; . In addition to z§ we also need fo which parametrizes a subdominant contribution to the (22) and (23) elements of
Y& r in Eq. (2.2) of order 2°. For the phase we have 65/ = 664 + 404, and the corresponding parameters of the A-terms are
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sz“ and 95{’“ . It is worth mentioning that all Zz{j become real in the limit where the Yukawa and trilinear phase structures are
aligned such that the relation 9? = 9;% holds.

In order to describe the renormalization group running from the GUT scale down to low energies, we introduce the
parameters in Egs. (3.8)—(3.9) as well as

46 , My,

Rf = ﬂ(?g%f AO/ + 3a,yt) +3nyypap,  RY =R+ 3na.y;, (A3)

44 M, ), 24 , My,
RO=n—g— 2, RO=RY+nay, RE=n=g—L+nyypap, (A4)

5 AO 5 AO
R, =P —yp(Ks +KY)., RS =zl —ap(Ks +KY), (A5)
and
2 3 2 2

Ry =4n{ 095 =i | = 3nvyb, (A6)
R, = (2boy + cp, )yt + agas, (A7)
Ry = (1+ B 4 cy, )yh + ajap, (A8)
Ry = (14 BY + cu,)ypzl + agapz; ™. (A9)

In these expressions, gy~ +/0.52 denotes the universal gauge coupling constant at the GUT scale, M, is the
universal gaugino mass parameter and A, is the scale of the soft trilinear terms. Using the SUSY breaking mass my,
we have also introduced ay = Ay/my; see Eq. (3.13). n and 5y have been defined in Eq. (2.15), while ¢y is given
in Eq. (3.12).

With these definitions, the 4 parameter at the low energy scale can be approximated by u ~ ugyr(1 + R),), and the low
energy sfermion masses, whose GUT scale definitions are given in Eq. (2.11), take the form

~ - ~ u ~ ~ u - ~ - ~ u ~ ~ u
my, , ~mg, N mome, m;, ~ n’l()pLy;s mg,. ~mg, . ~ m()pRl(;, mi.,. ~ n’l()pRyn (AIO)
v N A~ d .~ d . N M. d
my A ms, X Mmpyi, my, N MoPya my N Mz, RMmp N MPR, (A11)
~ - ~ e - ~ - e - ~ e
mg,, R my, XM, &myp], M ™ MG R MG D 6 Mz, R MO P s (A12)

with

2

v
pZm = /by + 6.5x, pZ3G = \/bOZ +6.5x — 277Rq +m_uzyt2(1 + Rytv)z’
0

2
Uy y
Pl = /bor + 6.15%,  ply = \/b02 6,155 —4nR, + 5331+ R, (A13)
0
pilG =V bOl +6.5x, piw = \/bOZ +6.5x _4’7qu p;ie =V1+6.lx, (A14)

Poic = Vbor +0.15x,  pbi; = /by +0.15x,  p§ =+/1+0.5x—2nyR,. (A15)

Here, x = (M, 5/ myg)? as defined in Eqs. (3.13). With these definitions at hand, we can write the mass insertion parameters
at the low energy as follows.
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1. Up-type quark sector

1 e

(0f )12 = 7(1),4 E e b2t
LIG
1 ) -
(i) = ﬁe_l(wgwg)(l —ny7)b34°,
PricPpsc
1 —i d d o
(6f1)2s = We (792+2H3>(1 — y7) b3,
LIG L3G
(Ba)r = s e b
RR)12 (7o) A7,
R
1 -
(8pp)1z = ———=— (1 = 2ny7)b132°,
i Pric P gic
1 ) y -
(5;‘?R)23 = Wel(segw;)(l - 2’1)%2)[923/157
RIG R3G
L fat 1+R R?
G =— 0y gy (G FUTR LN
moPZmPZm Yu A()l/; 1+ Ry
g, . (as, wu(l+R,) R
(61r)2 :—MO (1 +Ri)< 2 _ B2 )24,
mopPicPpic Ve Aot/} 14+ Ry,
v a4; p(1+R,) R¢
(0ir)s = ———y:(1 +RY) (i— E_2——),
My P; 36 Pgic Vs Aotﬂ 1+ R;
(5ZR)12 = (5ZR)21 = (5ZR)31 =0,
U AoVy - x3 (0% —6%) R? > 7
0 =X —=e'\%2 %) 4 2nA’,
( LR)13 mOpZIGp;tgm 2Yp Yt (x2 1+ R n
U _ ApUy dg i(07-0)) R? 6
0 = —yyy<—e’(* s —— )2
( LR)23 mopzlcplu@(;{ sYb)t ¥, 1+R%

i d Ag  (pa_gy R?
+ 47 [6’9303‘3(1 + R = ny7) + 2095y, (e’%i’z + <—‘ et 4 ! y>
Vs 1 +R;

d, z 2

X (%, cos(09) — z4 cos(404 + 04)) 4 zdei 40 +3) (ei(ﬂﬁ-a’i) - Zzidei@da _64d)>>] }
4

AUy

= —— (14 R} = 2ny7) e %% ay 1.
mopz.%cp;l(; ( ! nyl) =

(éiR)32

(A16)

(A17)

(A18)

(A19)

(A20)

(A21)

(A22)

(A23)

(A24)

(A25)

(A26)

(A27)

(A28)

At the GUT scale, (8%z),5 is zero up to the order 43 where we truncate our expansion. The nonzero value in Eq. (A26) is
purely generated via the RG evolution. Similarly, a term proportional to 74° is generated in (8 ; ),5, which was of order A7 at

the GUT scale. The A-suppression of all other low energy mass insertion parameters (6{ L Rrr.LR)ij Temains unaffected by the

running, such that the corresponding RG effects can simply be absorbed into new order one coefficients.

2. Down-type quark sector

1 ~
8 ) =55 Bk,
( LL)IZ (pzm)z 12
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6= e T gy (1) A30
( LL)13 _pilcpime ybys( o 02+ g q) + 1 —|—R{7 ’ ( )
S Y opr (14 ) 2 A31
(LL)ZS_WE(OI_ 02 +2nR,) +1+Ri ) (A31)
1 -
(B%r)12 = —(0kp)13 = 773 iR A%, (A32)
(PR)
1 -
(0kr)as = = vz RiaA, (A33)
REZZ T (ph)?
2 ad t;(1+R R?
() = — 22y 4 gy ( _Hy LR R y)xﬁ, (A34)
mop§icPg Vs X3/ Vs Ao 1+ R,
(60 )y = — 00 (1+R>‘)<&—32—”tﬂ(1+R")—2 Ra >,14 (A35)
Lk mopilcpfe ’ a Vs AO 1+RZ
~d a
Ay ag;  ptp(l+ RM) R} 2
8 )y = —2 3y (1 +R) (—— —2 2, A36
(LR)33 0 chpﬁie b( b) v Ao 1+R% ( )
aol)d I\ ~
(521R)12 = —(51{1921 = (5ZR)13 =4 4 (1 JFRZ)“?Z/IS’ (A37)
mOPLleR
(60 )y = — 0% (1+R>')<a—g3+2 i <ﬂ+ R ))ﬁ (A38)
LRI23 mopilcpﬁ * d Vs 1 +Ri Vi 1 +RZ 7
XVa o Yy5d 16
(6, )5, = — 0% =itd (1 4 RY)ad 76, (A39)
LR)31 mopimp;ie b/%31

~d 2 2(1 R)' 2 ~d R4 1 R,V 2
mop'sc p Vb il 204+R)* ¥ \ve 1+R)) (1+Ry)

3. Charged lepton sector

1 - -
(672)12 = —(671)23 = L (Riz = 2nyE ) A%, (A41)
L
(071)13 =~ () (RIZ - 277NET2))~4, (A42)
L
1 o B1y
o5 =—— it 2 )3 A43
( RR)IZ (p;m)z 3 ( )
1 B
Sor)i3 = ———— 54 Ad4
Okl = o3 (A44)
9 1 5, 2
(Okr)23 = —e——— 3Bl (A45)
RIG R3G
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T i v (Zat -5+ m) -2 )
(0Lr)2 = pz;;m “}j:" 3y,(1 +Re) (C;—gz - ’;—Z’ (I+R,) =27 fZR)e,)x“,
(67r)33 = ﬁw%yb(l +R?) <Z;—§:3 /X:(l +R,) — 2%)12,

(6ir)12 = IQL%WD::OO (1+R)e®ad,n’,
(O7p)1z = Pili;m % <(1 + RY)as, + 2nyypR,y, (3—2 +7 ng§>>i6,

1 l)dao

prRlG mg

(67r)21 = (O1r)31 = (1+RY)e Y d ,15

1 [F [0

e e
PLP g Mg

~ Re R
(07r)2s = ((1 + R2)as; + 2nyypR,yp (— + >>161

R, 1+R)

1 V40

e e
PrLPric My

(0ir)32 = (14 R2)3ag;2".

(A46)

(A47)

(A48)

(A49)

(A50)

(A51)

(A52)

(A53)

Here we have additionally introduced Elz which parametrizes the off-diagonal entries of (5¢),; in Egs. (A41)-(A42)

induced by the RG running. It is defined as

Epp = y}(Ry, + BY — KYBY) + R} — (K5 + KY)R,.

APPENDIX B: LOOP FUNCTIONS

(A54)

The dimensionless functions Cy, C;, Cy, C5, Cp , Cp; and Cj which appear in the expressions for the EDM of the

electron in Sec. IVA and the branching ratio of u — ey in Sec. IV B are defined as [41]

m
Ci = _Oli’
2
where
2 2 2 1
Ig(M7, my, my) = S5 Veg1(x1) = yrg1(xg)],
mp —mg

1 YL
I M3 — h —h ,
1 (my My, @?) = m2 Yy, —x, [h1(xe) = hi(yL)]

1 ye
2 2 2y —
Lp(mig. M7, %) *m_%yR — xz [h1(xg) = M (yg)]:

M,cot?0
Iy(m3, M3 ) = =20 L

M]mL yL— X 7 [ha(xp) = ha(yp)],

1
Iy g(M7, mi, my) = “wl—ml (yrhi (xg) — milp),

R
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1

]%,L(M%’m%»mz) :m(hhl(h) _m%]B)’ (B7)
R L
m2m% 1
Iy mi) = o5 s Okl =il (BS)
R L
with
M M3 , M3 w K
_Mi _ M _ _ K - B9
XL m% XR m12e xL m% yL m% YR m12e ( )
and
00 = 1 -y +2yln(y) () = L+4y =5y + (2 +4y)In(y) | () = 7y* +4y = 11 =2(y* + 6y +2) In(y)
1 - > It - s I — .
(1-y)? (1-y)* 2(y - 1)*

(B10)

Note that we assume real and positive values for M; and u?.

The loop functions appearing in the meson mixing amplitudes of Sec. IV C as well as the branching ratios of B ; —
up~ in Sec. IV E read [14]

6(1+3y)In(y) +y* =9y* =9y + 17

fobr) = e , B1)
Foly) = 6y(1+y) 1n(y3)<y—_y3l>—59y2 +9y +1 ’ (B12)

1) = 5+ ). (813

125) = =3 =~ T 0, (B14)

) o ym) 1 B15)

(I-x32(y—x) (1=-y)Px=-y) (I=x)(1-y)
_2+5y—y2 y
Co6(l-y)? (-

In(y). (B16)

The relevant functions for the branching ratio of » — sy in Sec. IV D are given by [10]

_ 1+4y -5y +4yln(y) +2y*In(y)

M , B17
) ATy (B17)
—1+9y +9y> = 17y3 + 18y*In(y) + 6y In(y
M) = y ) 6 nly) (B18)
12(y—1)
Finally, the loop functions entering the hadronic EDM expressions in Sec. IV F are [67]
3444y — 36y — 12y + y* + 12y(2 + 3y) In(y
Niy) = SR (B19)
6(y—1)
10 + 9y — 18y? — y* + 3(1 + 6y + 3y?) In(y
Na(y) = — o 1<> . JInG) (B20)
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