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We investigate the question of electroweak naturalness within the deflected mirage mediation (DMM)
framework for supersymmetry breaking in the minimal supersymmetric standard model. The class of
DMM models considered are nine-parameter theories that fall within the general classification of the 19-
parameter phenomenological minimal supersymmetric standard model. Our results show that these DMM
models have regions of parameter space with very low electroweak fine-tuning, at levels comparable to the
phenomenological minimal supersymmetric standard model. These parameter regions should be probed
extensively in the current LHC run.
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I. INTRODUCTION

Theories with TeV-scale supersymmetry, such as the
minimal supersymmetric standard model (MSSM) and its
extensions, have long been considered to be leading
candidates for new physics that can elucidate the origin
of electroweak symmetry breaking and address the gauge
hierarchy problem associated with the Standard Model
Higgs boson. With the null result to date of searches for
superpartners, and with the very recent turn-on of the LHC
which will probe TeV-scale energies at an unprecedented
level, the issue of theoretical “naturalness” is a key question
for this class of theories.
Of course, the question of how “fine-tuned” a specific

model is depends on the criteria used to gauge it. One
general method, which has become a standard approach, is
to evaluate the sensitivity to observables such as the Z
boson massmZ to changes in the input parameters at a high
scale, for example by the Barbieri-Giudice fine-tuning
measure [1],

ΔBG ¼ maxi

���� ∂ lnm
2
Z

∂ ln ai
����; ð1Þ

in which the ai represent the parameters at the theory. This
measure quantifies the extent to which electroweak to
TeV-scale observables are sensitive to variations in the
high-scale parameters and as such is a gauge of the
naturalness of the theory.
However, it has recently been emphasized (see, e.g.,

Ref. [2]) that to address the specific question associated
with naturalness in light of the nonobservation of super-
symmetry at the LHC, which is how the observed value of
mZ emerges when the superpartners must generically have
masses that far exceed this value, fine-tuning measures

other than ΔBG may yield valuable information. One
specific fine-tuning measure of this type is known as the
electroweak fine-tuning measure ΔEW, [2–14], which
assesses the extent to which cancellations occur in the
prediction of the Z boson mass as a function of the model
parameters. In practical terms, fine-tuning by this measure
is a reflection of the degree to which the model parameters
that enter in the expression for mZ are of order mZ
themselves at the electroweak scale (low fine-tuning) or
are much larger (high fine-tuning). It has been emphasized
previously that the naturalness measure Δ−1 can serve as a
Bayesian prior and as a likelihood estimate [15,16].
More precisely, in the MSSM, the Z boson mass is given

at one loop by the following well-known relation,

m2
Z

2
¼ m2

Hd
þ Σd

d − ðm2
Hu

þ Σu
uÞtan2β

tan2β − 1
− μ2; ð2Þ

in which the Σu;d
u;d are the one-loop corrections for down-

type and up-type quarks, respectively (explicit expressions
can be found in Ref. [4]). The expression for ΔEW then
takes the form

ΔEW ¼ maxijCij=ðm2
Z=2Þ; ð3Þ

in which the Ci are the terms in Eq. (2), for example
−m2

Hu
tan2β=ðtan2β − 1Þ. As each of the Ci are defined at

the electroweak scale, each is determined purely by the
supersymmetric spectrum, independent of the high-scale
dynamics and renormalization group running effects that
yield that spectrum. For this reason, this fine-tuning
assessment is often referred to as a determination of the
degree of “electroweak naturalness” of a given model.
In studies of electroweak naturalness for various models

of the MSSM soft terms, it has been noted that several
general conditions at the electroweak scale result in low
values of ΔEW and hence a small degree of fine-tuning.
These conditions include (i) jμj ∼ 100 GeV, which results
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in light Higgsino-like neutralinos; (ii) m2
Hu
ðmZÞ ∼ −m2

Z=2,
as easily seen from Eq. (2); and (iii) large At, which is
needed to raise the Higgs mass without requiring heavy
stops. These conditions are not easily met within certain
classes of models but can be achieved in others. In the
19-parameter phenomenological MSSM (pMSSM) [17], it
is to be expected that there are regions of parameter space
that meet these criteria and hence yield low values for ΔEW,
which was shown explicitly in a recent study [14].
Similarly, this can also be achieved in the 19-parameter
supergravity mode (SUGRA19) [7].
However, in models with fewer free parameters, clearly

these conditions are more difficult to achieve. For example,
minimal gauge mediation has difficulty because the
A-terms are generated at two loops, and m2

Hu
tends to

run large and negative. Models of mirage mediation (the
mixed moduli-anomaly mediation scenario [18–21] based
on the Kachru-Kallosh-Linde-Trivedi (KKLT) construction
[22]) also have difficulties, tending to have either large
values of μ, for similar reasons as minimal gauge media-
tion, or small values of μ and fail constraints on B meson
decays [10] (see Refs. [23–25] for studies of the phenom-
enology of mirage mediation). However, the variation on
minimal supergravity known as NUHM2 [26], a nonuni-
versal Higgs model that has six free parameters, can satisfy
all of these criteria, yielding results for ΔEW as low as
∼5–10 [8,10,14]. The low fine-tuning allowed in this
scenario is quite striking given that the NUHM2 is only
a six-parameter model. As such, it has been dubbed
“radiative natural supersymmetry” (RNS), wherein the
MSSM and electroweak symmetry breaking arise naturally
as the low energy limit of an underlying supersymmetry
(SUSY) grand unified theory, and its phenomenological
implications at the LHC and for dark matter physics have
been thoroughly explored [2,4–6,9,11–13].
The purpose of this paper is to explore the question of

electroweak naturalness within a class of supersymmetric
models known as deflected mirage mediation (DMM)
models. This framework is a natural extension of mirage
mediation to include additional contributions from gauge
mediation [27,28]. In deflected mirage mediation, the
gauge-mediated contributions to the soft supersymmetry
breaking parameters can be comparable to the gravity-
mediation and anomaly-mediated contributions at the grand
unified theory (GUT) scale, which in turn produces distinct
phenomenology and a rich theory space for exploring
current and future LHC supersymmetry searches, including
examples of both simplified and compressed supersym-
metric spectra [29–31]. It is worth noting that the question
of fine-tuning using high-scale fine-tuning measures such
as ΔBG within the DMM framework has been explored
[31], particularly in light of the Higgs mass measurement at
the LHC [32–34], though there is no prior fine-tuning study
of DMM using the electroweak naturalness criterion.

As will be discussed in more detail shortly, the deflected
mirage mediation framework, in its most general form, has
a rich parameter space that can include regions that are
outside the realm of the pMSSM (e.g., that predicts
nonuniversal scalar masses for the first and second gen-
erations). However, for phenomenological reasons, it is
useful to consider only the subspace of DMM theory space
that falls within the pMSSM guidelines. Hence, we con-
sider this restricted DMM parameter region within this
paper. This will allow for a straightforward comparison
with the pMSSM. We will demonstrate that within DMM
models of this type there are regions of parameter space
with ΔEW as low as ∼3.7; i.e., it is roughly equivalent to the
best-case scenarios in SUGRA19 and slightly better than
the best-case scenarios in the NUHM2/RNS scenario.
(Here, we note that direct comparisons with the pMSSM
scan done in Ref. [11] are difficult as they likely have not
sampled enough of the space to capture the low fine-tuned
regions that SUGRA19, NUMH2, and DMM explore,
which are all embeddable at low energy in the pMSSM.)
The paper is organized as follows. In the next section, we

quickly review the soft terms in DMM and discuss the
parameter space for the subspace of DMM models of
interest in this paper. In Sec. III, we investigate the question
of electroweak naturalness for this class of models and
show that there is a region of parameter space with
extremely low values of the fine-tuning measure ΔEW.
We then summarize and conclude in Sec. IV.

II. OVERVIEW OF DEFLECTED MIRAGE
MEDIATION MODELS

Deflected mirage mediation models are characterized by
three classes of contributions to the soft supersymmetry
breaking parameters. As is the case in mirage models, there
is a KKLT-like contribution to the soft masses that consists
of tree-level supergravity contributions associated with a
modulus field, as well as comparable anomaly mediation
terms at a high scale, which is taken for simplicity to be the
GUT-scale MG. Deflected mirage mediation scenarios also
include gauge-mediated contributions, which take the form
of a deflection of the soft terms at some messenger scale
Mmess. The messenger fields associated with the gauge
mediation terms are typically taken to be N vectorlike pairs
of fundamental representations of SUð5Þ. In these scenar-
ios, the MSSM matter and Higgs fields are also each
characterized by a modular weight label ni that appears in
the respective Kähler potential terms for each of these
fields. [To be more rigorous, the Kähler potential for the
MSSMmatter fields is taken to be diagonal in family space.
For the matter and Higgs fields, it generically takes the
form K ∼

P
i
~KiΦiΦi, with ~Ki ¼ ðT þ TÞ−ni ].

More explicitly, the high-scale soft terms at MG take the
form
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Maðμ ¼ MGÞ ¼ M0

�
1þ g20

16π2
b0aαm ln

MP

m3=2

�
; ð4Þ

Aiðμ ¼ MGÞ ¼ M0

�
ð1 − niÞ −

γi
16π2

αm ln
MP

m3=2

�
; ð5Þ

m2
i ðμ ¼ MGÞ ¼ M2

0

�
ð1 − niÞ −

θ0i
16π2

αm ln
MP

m3=2

−
_γ0i

ð16π2Þ2
�
αm ln

MP

m3=2

�
2
�
; ð6Þ

in which m3=2 is the gravitino mass (m3=2 generically
exceedsM0 by about a loop factor in magnitude and thus is
typically of order 10–100 TeV). Note that the physical
trilinear terms are Aijkyijk, in which Aijk ¼ Ai þ Aj þ Ak.
In the above expressions, b0a ¼ ba þ N, in which ba are

the one-loop beta functions for the gauge couplings
[b1;2;3 ¼ ð33=5; 1;−3Þ in the MSSM]. The anomalous
dimensions γ0i ¼ γi are given by γi ¼ 2

P
ag

2
acaðΦiÞ−

ð1=2ÞPlmjyilmj2, in which the yijk are the norma-
lized MSSM Yukawa couplings and the ca are the
quadratic Casimirs. The _γi’s are given by _γi ¼
2
P

ag
4
abacaðΦiÞ −

P
lmjyilmj2byilm, in which byilm is

the beta function of the Yukawa coupling yilm. The
quantities θ0i ¼ θi are given by θi ¼ 4

P
ag

2
acaðQiÞ−P

ijkjyijkj2ð3 − ni − nj − nkÞ. (Explicit expressions for
these quantities can be found, for example, in
Appendix A of Ref. [30].)
The threshold contributions due to gauge mediation at

Mmess take the form

ΔMaðμ ¼ MmessÞ ¼ −M0N
g2aðMmessÞ

16π2
αmð1þ αgÞ ln

MP

m3=2
;

ð7Þ

Δm2
i ðμ ¼ MmessÞ ¼ M2

0

X
a

2caN
g4aðMmessÞ
ð16π2Þ2

×

�
αmð1þ αgÞ ln

MP

m3=2

�
2

: ð8Þ

Note that the trilinear terms do not receive threshold
contributions at one-loop order, and hence these contribu-
tions are negligible.
From Eqs. (4)–(8), we see that the model parameters for

a general DMM scenario thus include (i) an overall mass
scaleM0 associated with the tree-level supergravity media-
tion; (ii) a dimensionless parameter αm, which denotes the
relative importance of anomaly mediation with respect to
the tree-level gravity mediation (the KKLT scenario pre-
dicts αm ¼ 1); (iii) the number of messenger pairs N;
(iv) the messenger scale Mmess; (v) the dimensionless
parameter αg, which denotes the relative importance of

gaugemediation with respect to anomalymediation; (vi) the
modular weights ni; (vii) the ratio of electroweak Higgs
vacuum expectation values; and (viii) the sign of μ. Here,
the standard procedure has been followed in which the
model-dependent Higgs parameters μ and b ¼ Bμ are
replaced by tan β, mZ, and the sign of μ.
In a general DMM model of this type, the soft scalar

mass-squared parameters have generation-dependent labels
given by the possibility of family-dependent ni values, as
well as the presence of Yukawa couplings in the θi0 and _γ0i
quantities. While the contributions to the anomalous
dimensions, etc., are typically negligible for all practical
purposes for the first and second generations due to the
hierarchical standard model fermion masses, a general
assignment of the modular weights ni can yield a sizable
nonuniversal contribution. For simplicity as well as phe-
nomenological reasons, we thus will always restrict our-
selves to a subspace of DMM parameter space in which the
matter fields all carry a universal modular weight nM. In
addition, we will assume that the two electroweak Higgs
fields also carry an independent modular weight nH, which
introduces an amount of nonuniversality.
The DMM scenarios studied here thus have nine

independent parameters (two masses, six dimensionless
parameters, and one sign): the mass scales M0 and Mmess,
the dimensionless quantities αm and αg, the number of
SUð5Þmessenger pairs N, the modular weights nM and nH,
tan β, and signμ. We note that with this assumption
regarding the modular weights these scenarios represent
a subset of the full 19-parameter pMSSM.

III. ELECTROWEAK NATURALNESS
IN DMM MODELS

In our analysis of electroweak naturalness in this class of
DMM models, we use a subset of the data set as studied in
Ref. [30]. This data set was determined as follows: for a
randomly chosen mirage mediation point in the region
M0 ∈ ½1; 5� TeV, tan β ∈ ½5; 50�, and αm ∈ ½0; 2�, we build
a three-dimensional scan in the DMM parameter, scanning
αg ∈ ½−1; 1� in steps of 0.05, log10½Mmess=GeV� ∈ ½5; 14� in
unit steps, and N ∈ ½1; 5� in unit steps. The modular
weights nM and nH for the matter and Higgs fields,
respectively, are allowed to vary independently between
0 and 1 in half-integer steps. The renormalization group
(RG) equations were solved using a version of the package
SOFTSUSY 3.3.9 [35] that has been modified to account
for the gauge mediation contributions [27,28,30].
The phenomenological constraints applied to these

model points are as follows. At the electroweak scale,
points with negative mass squares or that do not result in
electroweak symmetry breaking or that do not have a
neutralino lightest supersymmetric particle (LSP) are
excluded. The surviving points are then cut according to
an upper bound on the relic density, Ωχh2 ≤ 0.128, taken
from Ref. [36], as calculated by MicrOMEGAs 2.2 [37],
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and a (conservative) Higgs mass bound 123 GeV ≤ mh ≤
127 GeV [32–34]. Finally, we apply constraints from
Bs→μþμ− and b→sγ, with the values of BrðBs→μþμ−Þ
taken within ð1.5 − 4.3Þ × 10−11 [38–40] and a value of
Brðb → sγÞ within ð3.03 − 4.08Þ × 10−4 [41]. These cuts
follow the ranges used in the previous work onΔEW [10,14]
to facilitate comparisons with these studies. In total, we use
a 2 million point subset and after application of all
phenomenological constraints, leading to slightly more
than 200,000 viable DMM model points.
We now turn to the determination ofΔEW for these model

points. Figure 1 shows the results for ΔEW from the entire
scan described previously and used in Ref. [30]. The results
of the figure do not change if we require m~g > 1.3 TeV,

consistent with current generic bounds from the LHC [42],
because the cut on Brðb → sγÞ removes some of the low
mass gluinos. We use this bound on the gluino henceforth.
In Fig. 1 and the left panel of Fig. 2, we see that there is a

large region that is less than 1% fine-tuned. The minimum
fine-tuning is of order 27%, ΔEM ≈ 3.7. These are smaller
than the minimum values for the NUHM2 model of
ΔEM ≈ 7 [8,14] or ≈10 [10], slightly larger than the values
found in SUGRA19 [7]. Furthermore, we see that if we
want less than 1% electroweak fine-tuning, then gluino
masses less than about 8 TeV are allowed in DMM.
The right panel of Fig. 2 shows the relic density as a

function of the LSP mass. The points with the smallest fine-
tuning typically have Oð150 GeVÞ LSPs and do not fulfill
the relic density constraint, and another nonthermal species
such as an axion is needed [12]. This does not need to be
the case if there are coannihilations between a heavier
Higgsino-like LSP and the right-handed sleptons. An
example of this sort of spectra is shown in the right panel
of Fig. 3, in which less than 0.5% fine-tuning can be
achieved in a corner of parameter space with large M0 and
αm and both modular weights equal to 1. Removing the
upper bound on the amount of fine-tuning admits spectra
where the proper relic density can be achieved through
coannihilation with a stop or gluino as well. Over much of
the Higgsino-like parameter space, the difference between
~χ02 − ~χ01 is typically < 10 GeV and often less than
< 5 GeV, leading to very soft and likely hard to detect
signals at LHC13 [9].
The region withΔEW less than ∼100 is made up of points

with mass spectra similar to the two example spectra shown
in Fig. 3. These two points share a light, highly mixed stop
and very light pure Higgsino LSP, but they also share a near
degeneracy among the next heaviest particles after the
Higgsino-like neutralinos and charginos. In the left panel,

FIG. 1. ΔEW as a function of the LSP mass for the full data set
without a cut on the gluino mass and shaded by the gluino mass
in TeV.

FIG. 2. A plot of ΔEW as a function of the LSP mass for points with ΔEW < 100, (left) shaded by the gluino mass in TeV, and (right)
shaded by the relic density.
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we have a near degenerate gluino and stop, and in the right,
we have a near degenerate stau, smuon, and selectron. As
mentioned earlier, coannihillation with the stau allows the
spectrum to generate a value of the dark matter relic density
near the measured value from the Planck experiment [36].
The left-hand spectra in Fig. 3 are similar to the spectra
found in points with low fine-tuning in the NUHM2 model.
In this model, and similarly in the SUGRA19 model, the
least tuned points tend to have a ∼1 TeV, highly mixed
stop and a plethora of particles above ∼1.5 TeV, including
a ∼2 TeV gluino. Unlike NUMH2, DMM does not have
universal gaugino masses, and so M1 and M2 can and tend
to be much larger.
If we further use a tighter bound of 3.3% fine-tuning, we

can compare the bounds in the NUHM2 model from
Ref. [14]. In most respects, the two models agree. In
DMM, the gluino mass is capped at about 5 TeV, larger than
the upper bound in Ref. [14]. Similarly, the bounds on M1

and M2 of 900 and 1700 GeV, respectively, from Ref. [14]
are instead 4.35 and 4.15 TeV in DMM. Nonuniversal
gaugino masses, like those in DMMEq. (4), relax the limits
in minimal supergravity-like models. Other bounds, like
those on the lightest stop, are similar to NUHM2 and below
the upper bounds from the pMSSM or SUGRA19 from
Refs. [7,14]. The results indicate that as we increase the
number of degrees of freedom the bounds on particle
masses, other than the lightest stop, and parameters, other
than μ and m2

Hu
, weaken but are still within the range of

future colliders and Higgs factorylike experiments [43].
Wino- and binolike LSPs are typically more fine-tuned

than Higgsino-like points. The minimum point with a
winolike LSP has ΔEW ≈ 60, and the minimum binolike
point in the sample has ΔEW ≈ 176. These are both more
fine-tuned than the values explored in the natural super-
symmetry phenomenological study in the NUHM2 model

of Ref. [11] because they allow for other hierarchies in the
soft terms other than the M1 > M2 > M3 in DMM at the
GUT scale. The messenger-scale contribution Eq. (8)
preserves the same hierarchy in gaugino masses, although
the hierarchy in terms of the absolute value of the gaugino
masses may change. This allows for winolike LSPs while
there were none in mirage mediation. For winolike points,
the deflection must be large, N ≥ 3 and αg ∼ 1, and at a low
scale. The deflection to the Higgs masses for these points
are large, positive, and leads to large values of m2

Hu
at

MSUSY, to compensate we will need a larger value of μ or of
the messenger-scale corrections, however either solution
leads to large fine-tuning. If we were to allow a lower
messenger scale or larger αg, we would likely admit
winolike DMM points with smaller fine-tuning. Running
may also modify this hierarchy, opening up the possibility
of regions with binolike LSPs. Light, pure-bino dark matter
tends to be overproduced, setting a lower bound onM1 and
μ, leading to increased fine-tuning in the binolike sample.
An investigation of the Higgs mass as a function of the

stop mass and the stop mixing parameter Xt, as shown in
Fig. 4, demonstrates that points with low fine-tuning are
typically those that are near maximally mixed jXt=~t1j ∼ 2.5
and have TeV-scale stops [44,45]. In the left panel, we see
that in the Xt=m~t1 vs ΔEW plane a lighter Higgs will
typically allow points with lower fine-tuning. The notch in
the lower left corner of both distributions corresponds to a
region that is excluded by the constraint on Brðb → sγÞ.
In Fig. 5, we see that there are two distinctive regimes for

the μ parameter. In one regime, m2
Hu

is negative at MSUSY,
and in the other,m2

Hu
is positive and runs to negative values

belowMSUSY. For Higgsino-like points, the latter set forms
a tight band, while the former has a spread. For the same
value of μ, points where m2

Hu
is already negative are less

FIG. 3. Examples of the Higgs and superpartner spectra for two representative points with small(ish) values of ΔEW. The left
panel is a point with ΔEW < 4 and a low value of the relic density (Ωχh2 ¼ 2.4 × 10−3), for which M0 ¼ 2600 GeV, αm ¼ 1.21,
tan β ¼ 22, ðnM; nHÞ ¼ ð0.5; 0Þ, αg ¼ 0.1, MMess ¼ 109 GeV, and N ¼ 2. The right panel is a point with ΔEW < 120 and a large
value of the relic density (Ωχh2 ¼ 0.113), for which M0 ¼ 4800 GeV, αm ¼ 1.36, tan β ¼ 38, ðnM; nHÞ ¼ ð1; 1Þ,
αg ¼ −0.4, MMess ¼ 1014 GeV, and N ¼ 1.
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fine-tuned than points where it is positive, but the positive
points reach lower overall values of μ and of ΔEW. The gap
between the two branches comes from the dearth of points
where m2

Hu
∼ 0 at values of μ ≳ 1 TeV, above which

electroweak symmetry breaking is difficult to achieve.
For bino-like points, all have negative m2

Hu
, with lower

fine-tuning occuring for points with larger values of the up-
type Higgs mass. Wino-like points arise from all values of
m2

Hu
, with positive values typically having a smaller μ

parameter and lower fine-tuning.
If we break the sample down by modular weights as

shown in Fig. 6, we see that the majority of points with

extremely low fine-tuning have nH ¼ 0. nH ¼ 0 implies
that the tree-level supergravity contribution to the Higgs
soft mass-squared parameters is maximized [see Eq. (6)],
leading to small masses at the GUT scale, since the
anomaly contribution has the opposite sign. In mirage
mediation models, m2

Hu
will typically run to large and

negative, leading to large values of ΔEW. In DMM, the
addition of the messenger fields deflects the soft masses
upward, leading typically to shallower values at MSUSY
compared to mirage mediation. This is the radiatively
natural scenario explored in Refs. [4–6,9,11–13]. Since
the corrections can be large, there are regions in DMM,
where for ΔEW ≳ 7, nH ¼ 1=2 can lead to low fine-tuning
as well.
Our results show that in DMM all values of nM studied

can result in low electroweak fine-tuning, as opposed to the
case of mirage models, which single out nM ¼ 1 [10]. That
being said, the best results in DMM tend to occur for
nM ¼ 1 or 1=2. These DMM points tend to have soft mass-
squared parameters that are negative at the GUT scale but
are positive at MSUSY through RG evolution and the
positive messenger-scale deflection due to the gauge
mediation terms. The addition of messengers in DMM
leads to larger values for the gauge couplings at the GUT
scale, causing the anomaly mediation contribution to
become increasingly large and negative, and so it may
require a nonzero tree-level gravity contribution, nM ≠ 1, to
moderate the soft mass-squared parameters to get light,
Oð1 TeVÞ stops. In mirage models, the GUT-scale value of
the couplings is smaller, leading to a small positive
anomaly mediation contribution at the GUT scale, which
then runs to give us light stops. If nM ≠ 1 in these models,
the addition of moduli would lead to a heavy stop, and the
model would be fine-tuned.

FIG. 4. A plot of ΔEW as a function of the stop mass (left) and ΔEW vs Xt divided by the stop mass (right), with ΔEW < 100
and a 1.3 TeV cut on the gluino mass. The notches in the lower left corners correspond to regions that are excluded by
Brðb → sγÞ and BrðBs → μþμ−Þ.

FIG. 5. A plot ofΔEW vs. the μ parameter, colored by the gluino
mass. The two tails correspond to points in which m2

Hu
is positive

(top) and negative (bottom) at MSUSY.
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Breaking the results down by other parameters reveals a
few other trends in the fine-tuning results. DMM points
with low fine-tuning tend to have one or two messengers
which integrate out at a possibly high scale with potentially
any value of αg. Large values of N also tend to deflect m2

Hu

too much to run to a shallow minimum over much of the
parameter space, giving large fine-tuning. Furthermore,M0

must be greater than roughly 1.5 TeV, to get mixed stops to
bolster the Higgs mass, which leads to gluino masses
between 2 and 4 TeV that are accessible at the LHC.

IV. CONCLUSIONS

In this paper, we have shown that deflected mirage
mediation, a nine-parameter scenario in which gravity,

anomaly, and gaugemediation all can contribute comparably
to the soft supersymmetry breaking parameters of the
MSSM, admits spectra with low electroweak fine-tuning.
A comparisonof the electroweak fine-tuning ranges inDMM
withmany standardmodels for the soft terms of theMSSM is
shown in Fig. 7. Here, we note that an upper bound was not
determined in Ref. [14] for the pMSSM and hence we quote
the lowest ΔEW presented (the line) and use the arrows to
denote that the range of fine-tuning likely goes far up and
down, past models that can be embedded in the pMSSM like
minimal gauge mediated supersymmetry breaking, and at
least as low as models like DMM. Given the large parameter
space of the pMSSM, we suspect that a more thorough scan
of this scenariowould lead to points that are at least as, or less
fine-tuned than DMM or SUGRA19.

FIG. 6. ΔEW vs the stop mass, with the values of the matter modular weight nM indicated on the left and of the Higgs modular weight
nH on the right, for points with ΔEW < 100.

FIG. 7. A comparison of our results with the fine-tuning ranges found in many SUSY models as taken from Refs. [7,10,14]. The line
for the pMSSM denotes the lower bound determined in Ref. [14]; the arrows denote that the fine-tuning ranges may go below as well as
above this line if a more comprehensive scan is performed. The DMM points are further broken down by the modular weights nM and nH
for the matter and Higgs fields; these points are denoted by dðnM; nHÞ. The dashed line represents ΔEW < 30, which is considered not
fine-tuned.
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The results show that DMM does better in general than
these standard scenarios and is comparable to high-scale
models with many more parameters such as SUGRA19.We
saw that in DMM models with low numbers of messengers
can lead to values with low fine-tuning. The other param-
eters that enter into the deflection, αg and Mmess, do not
have any preferred values. For the parameters that enter into
the GUT-scale masses, we notice αm > 1, with some points
near αm ¼ 2,M0 > 1500 GeV, and with any value of tan β.
Similarly, nH ¼ 1 almost exclusively leads to high fine-
tuning, but other combinations of modular weights lead to
acceptable values of ΔEW. Hence, we see that in DMM

models the combination of gravity mediation, anomaly
mediation, and gauge mediation opens up new avenues
with lower fine-tuning and should motivate us to look at
models beyond the minimal set, where correlations
between parameters can lead to unexpected results.
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