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The condensation of scalar bilinear in a classically scale invariant strongly interacting hidden sector is
used to generate the electroweak scale, where the excitation of the condensate is identified as dark matter.
We formulate an effective theory for the condensation of the scalar bilinear and find in the self-consistent
mean field approximation that the dark matter mass is of Oð1Þ TeV with the spin-independent elastic cross
section off the nucleon slightly below the LUX upper bound.
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I. INTRODUCTION

Can we explain the origin of “mass without mass” [1]?
Yes, a large portion of the baryon mass can be produced
by dynamical chiral symmetry breaking (DχSB) “from
nothing” [2,3]. This nonperturbative mechanism, instead of
the Brout-Englert-Higgs mechanism, can also be applied to
trigger electroweak symmetry breaking [4,5]. After the
discovery of the Higgs particle [6,7], however, it is a fair
assumption that can exist. Since the Higgs mass term is the
only term in the standard model (SM) that breaks scale
invariance at the classical level, we can thus ask where the
Higgs mass term comes from. Even the Higgs mass term,
too, may have its origin in a nonperturbative effect. In fact
DχSB in a QCD-like hidden sector has been recently used
to induce the Higgs mass term in a classically scale
invariant extension of the SM [8–11].
In this paper we focus on another nonperturbative effect,

the condensation of the scalar bilinear (CSB) [12,13]
(see also [14,15]) in a strongly interacting hidden sector,
to generate directly the Higgs mass term via the Higgs
portal [16]. The main difference between two classes of
models, apart from how a scale is dynamically generated, is
that in the first class of models (with DχSB) the scale
generated in a hidden sector has to be transmitted to the SM
via a mediator, e.g. a SM singlet scalar in the model
considered in [8–11], while such a mediator is not needed
in the second class of models (with CSB). This will be an
important difference if two classes should be experimen-
tally distinguished. Another important difference is that the
DM particles of the first class are CP-odd scalars, while
they are CP-even scalars in the second class, as we will see.
Our interest in the second class of models is twofold: first,

because thediscussiononhow theHiggsmass is generated in
[16] is rather qualitative, we here formulate an effective
theory to nonperturbative breaking of scale invariance by the
CSB. This enables us to perform an approximate but

quantitative treatment. Second, since only one flavor for
the strongly interacting scalar field S is considered in [16] so
that there is no darkmatter (DM) candidate, we introduceNf
flavors and investigate whether we can obtain realistic
candidates of DM. The DM candidates in our scenario are
scalar-antiscalar bound states, which are introduced as the
excitation of the condensate in the self-consistent mean field
approximation (SCMF) [17,18]. Their interactions with the
SM can be obtained by integrating out the “constituent”
scalars. In this approximationwecan constrain the parameter
space of the effective theory in which realistic DM candi-
dates are present.

II. THE MODEL AND ITS EFFECTIVE
LAGRANGIAN

We start by considering a hidden sector described
by an SUðNcÞ gauge theory with the scalar fields
Sai ða¼1;���;Nc;i¼1;���;NfÞ in the fundamental represen-
tation of SUðNcÞ. The Lagrangian of the hidden sector is

LH ¼ −
1

2
trF2 þ ð½DμSi�†DμSiÞ − λ̂SðS†i SiÞðS†jSjÞ

− λ̂0SðS†i SjÞðS†jSiÞ þ λ̂HSðS†i SiÞH†H; ð1Þ

where DμSi ¼ ∂μSi − igHGμSi, Gμ is the matrix-valued
gauge field, the trace is taken over the color indices, and the
parentheses in Eq. (1) stands for an SUðNcÞ invariant
product. The SM Higgs doublet field is denoted by H. The
total Lagrangian is LT ¼ LH þ LSM, and the SM part,LSM,
contains the SM gauge and Yukawa interactions along with
the scalar potential VSM ¼ λHðH†HÞ2 without the Higgs
mass term.
We assume that below a certain energy the gauge

coupling gH becomes so strong that the SUðNcÞ invariant
scalar bilinear forms a UðNfÞ invariant condensate [12,13]

hðS†i SjÞi ¼
�XNc
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This nonperturbative condensate breaks scale invariance,
but it is not an order parameter, because scale invariance is
broken by scale anomaly [19]. The breaking by anomaly is
hard but only logarithmic, which means basically that the
coupling constants depend on the energy scale [19].
Moreover, we should note that the mass term is not
generated by the anomaly since the beta function of the
mass is proportional to the mass itself; see e.g. [20].1 The
creation of the mass term from nothing can happen only by
a nonperturbative effect, i.e. after the condensate (2) has
taken place.2 Therefore, the nonperturbative breaking due
to the condensation may be assumed to be dominant, so that
we can ignore the breaking by scale anomaly in the lowest
order approximation to the breaking of scale invariance.
Under this assumption the condensate is a good order

parameter, and we would like to formulate an effective
theory, which is an analog of the Nambu–Jona-Lasinio
(NJL) theory [3] to DχSB. The Lagrangian of the effective
theory will not contain the SUðNcÞ gauge fields, because
they are integrated out, while it contains the “constituent”
scalar fields Sai , for which we use the same symbol as the
original scalar fields. Since the effective theory should
describe the symmetry breaking dynamically, the effective
Lagrangian has to be invariant under the symmetry trans-
formation in question:

Leff ¼ ð½∂μSi�†∂μSiÞ − λSðS†i SiÞðS†jSjÞ − λ0SðS†i SjÞðS†jSiÞ
þ λHSðS†i SiÞH†H − λHðH†HÞ2; ð3Þ

with all positive λ’s. This is the most general form which is
consistent with the SUðNcÞ ×UðNfÞ symmetry and the
classical scale invariance, where we have not included the
kinetic term for H in Leff , because it does not play any
significant role as far as the effective theory for the CSB is
concerned.3 Note that the couplings λ̂S, λ̂0S and λ̂HS in LH of
(1) are not the same as λS, λ0S and λHS in Leff , respectively.
We emphasize that the effective Lagrangian (3) is scaleless
and is defined slightly above the confinement scale; thus,
the scalar condensate has not taken place yet. Therefore, the
mixing of multiple scales discussed in [21] does not appear
in this level.4 Using the effective Lagrangian (3), we
attempt to approximately describe the nonperturbative
genesis of scale in the original gauge theory (1) by the

dimensional transmutation, à la Coleman-Weinberg in the
effective theory. In the following, we present our formalism
by considering first the Nf ¼ 1 case, and explicitly
demonstrate this mechanism.

A. Nf ¼ 1 (with λ0S ¼ 0)

In the SCMF approximation, which has proved to be a
successful approximation for the NJL theory [17], the
perturbative vacuum is Bogoliubov-Valatin (BV) trans-
formed to j0Bi, such that h0BjðS†SÞj0Bi ¼ f, where f
has to be determined in a self-consistent way. One first
splits up the effective Lagrangian (3) into the sum
Leff ¼ LMFA þ LI, where LI is normal ordered (i.e.
h0BjLIj0Bi¼ 0), and LMFA contains at most the bilinears
of Swhich are not normal ordered. Using the Wick theorem
ðS†SÞ ¼ ∶ðS†SÞ∶þ f, ðS†SÞ2¼ ∶ðS†SÞ2∶þ2fðS†SÞ−f2,
etc., we find

LMFA ¼ ð∂μS†∂μSÞ −M2ðS†SÞ − λHðH†HÞ2 þ λSf2;

where M2 ¼ 2λSf − λHSH†H. To the lowest order in the
SCMF approximation the “interacting” part LI does not
contribute to the amplitudes without external S’s (the mean
field vacuum amplitudes). We emphasize that, in applying
the Wick theorem, only the SUðNcÞ invariant bilinear
product ðS†SÞ ¼ PNc

a Sa†Sa has a nonzero (BV trans-
formed) vacuum expectation value. To compute loop
corrections we employ the M̄S scheme, because dimen-
sional regularization does not break scale invariance. To the
lowest order the divergences can be removed by renorm-
alization of λIðI ¼ H; S;HSÞ, i.e. λI → ðμ2ÞϵðλI þ δλIÞ,
and also by the shift f → f þ δf, where ϵ ¼ ð4 −DÞ=2,
and μ is the scale introduced in dimensional regularization.
The effective potential for LMFA can be straightforwardly
computed:

VMFA ¼ M2ðS†SÞ þ λHðH†HÞ2 − λSf2 þ
Nc

32π2
M4 ln

M2

Λ2
H
;

ð4Þ

where ΛH ¼ μexpð3=4Þ is chosen such that the loop
correction vanishes at M2 ¼ Λ2

H. (VMFA with a term linear
in f included but without the Higgs doublet H has been
discussed in [23–25]. The classical scale invariance forbids
the presence of this linear term.) Note here that the scale ΛH
is generated by the nonperturbative loop effect. To find the
minimum of VMFA we look for the solutions of

0 ¼ ∂
∂Sa VMFA ¼ ∂

∂f VMFA ¼ ∂
∂Hl

VMFAðl ¼ 1; 2Þ: ð5Þ

The first equation gives0¼ðSaÞ†M2¼ðSaÞ†ð2λSf−λHSH†HÞ,
which has three solutions: (i) hSai ≠ 0 andhM2i ¼ 0,
(ii) hSai¼0 and hM2i¼0, and (iii) hSai¼0 andhM2i≠0.

1In the viewpoint of the Wilsonian renormalization group, the
classical scale invariance means that the bare mass is exactly put
on the critical surface [21]. Once this tuning is made, the
renormalized mass keeps vanishing under the renormalization
group transformation.

2Once the mass is dynamically generated, the scale anomaly
contributes to the mass running.

3Quantum field theory defined by (3) with the kinetic term for
H is renormalizable in perturbation theory [22].

4In contrast, the NJL Lagrangian has a scale at which the
Lagrangian is given, although the NJL model is also defined
before the dynamical breaking of chiral symmetry.
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The effective potential VMFA in the solution (i) has a flat
direction, which corresponds to the end-point contribution
discussed in [26]. In the flat direction (i.e. f ¼ H ¼ 0),
VMFA ¼ 0 for any value of Sa, so that the SUðNcÞ
symmetry is spontaneously broken. If all the extremum
conditions (5) are imposed for the solution (i), we obtain
hfi ¼ hð½Sa�†SaÞi ¼ ð2λH=λHSÞhH†Hi along with C ¼ 0

and hVMFAi ¼ 0 [23].5 Next we consider (ii) and find that
hSai¼ hfi¼ hHi¼ 0 with hVMFAi ¼ 0. The third solution
(iii) can exist if

C ¼ 4λHλS − λ2HS > 0 ð6Þ
is satisfied, and we find

jhHij2 ¼ v2h=2 ¼ λHS

C
Λ2
Hexp

�
32π2λH
NcC

−
1

2

�
;

hfi ¼ 2λH
λHS

jhHij2;

hVMFAi ¼ −
Nc

64π2
Λ4
Hexp

�
64π2λH
NcC

− 1

�
< 0:

Consequently, the solution (iii) presents the true potential
minimum if (6) is satisfied [in the energy region where (3)
should serve as the effective Lagrangian]. Self-consistency
means that f ¼ h0BjðS†SÞj0Bi is equal to hfi at the
potential minimum in the mean field approximation.
The Higgs mass at this level of approximation becomes

m2
h0 ¼

λHSΛ2
H

C

�
16λ2HλS

C
þ Ncλ

2
HS

8π2

�
exp

�
32π2λH
NcC

−
1

2

�
:

ð7Þ

In the small λHS limit we obtain m2
h0 ≃ 4λHjhHij2 ¼

2λHShfi, where the first equation is the SM expression,
and the second one is simply assumed in [16]. So the Higgs
mass (7) contains the backreaction. The analysis above
shows that the scale created in the hidden sector can be
desirably transmitted to the SM sector. The reason that
hVMFAi < 0 for the solution (iii) is the absence of a mass
term in the effective Lagrangian (3); the classical scale
invariance does not allow the mass term. A mass term in (3)
would generate a term linear in f in VMFA, which can
lift the hVMFAi into a positive direction [24,25], while
VMFA ¼ 0 remains in the flat direction [26].
At this stage we would like to mention that Bardeen and

Moshe [26] (and also others) pointed out the intrinsic
instability inherent in (3) (which is related to its triviality) if
one regards (3) as a fundamental Lagrangian. We however
discard this fundamental problem, because we assume that

such a problem is absent in the original theory described
by (1).

B. Nf > 1 and dark matter

Here we consider the case with Nf > 1 and take into
account the excitations of the condensate, σ and
ϕαðα ¼ 1; � � � ; N2

f − 1Þ, which are introduced as

h0BjðS†i SjÞj0Bi ¼ fij ¼ hfiji þ Z1=2
σ δijσ þ Z1=2

ϕ tαjiϕ
α: ð8Þ

Here tα are the SUðNfÞ generators in the Hermitian matrix
representation, and Zσ and Zϕ are the wave function
renormalization constants of a canonical dimension 2.
The unbroken UðNfÞ flavor symmetry implies hfiji ¼
δijf0 and hϕαi ¼ 0, where hσi can be absorbed into f0, so
that we can always assume hσi ¼ 0. Furthermore, the
flavor symmetry ensures the stability of ϕα, i.e. they can
be good DM candidates, because they are electrically
neutral and their interactions with the SM sector are loop
suppressed, as we will see. Note that σ and ϕα in (8) are
introduced as c-numbers without kinetic terms. However,
their kinetic terms will be generated through Sa loop
effects, and consequently we will reinterpret them as
quantum fields describing physical degrees of freedom.
The investigation of the vacuum structure is basically
the same as in the Nf ¼ 1 case. We are interested in the
solution of type (iii) of the previous case, i.e.
f0 ≠ 0; jhHij ¼ vh=2 ≠ 0, which is the true potential mini-
mum if

G ¼ 4NfλHλS − Nfλ
2
HS þ 4λHλ

0
S > 0 ð9Þ

is satisfied. Similar calculations as in the previous case
yield among other things

m2
h0 ¼

λHSNfΛ2
H

G

�
16λ2HðNfλS þ λ0SÞ

G
þ NcNfλ

2
HS

8π2

�

× exp

�
32π2λH
NcG

−
1

2

�
: ð10Þ

The SCMF Lagrangian L0
MFA involving σ and ϕα can now

be written as

L0
MFA¼ð∂μS†i ∂μSiÞ−M2

0ðS†i SiÞ

þNfðNfλSþ λ0SÞZσσ
2þλ0S

2
Zϕϕ

αϕα

−2ðNfλSþλ0SÞZ1=2
σ σðS†i SiÞ−2λ0SZ

1=2
ϕ ðS†i tαijϕαSjÞ

þ λHS

2
ðS†SÞhð2vhþhÞ−λH

4
h2ð6v2hþ4vhhþh2Þ;

ð11Þ

where M2
0 ¼ 2ðNfλS þ λ0SÞf0 − λHSv2h=2, and TrðtαtβÞ ¼

δαβ=2. Further, h is the Higgs field contained in the Higgs

5Due to hM2i ¼ 0 there exists a tachyonic state, because the
inequality of [24], 16π2=ð2NcλSÞ− ln½hM2i=Λ2

Hexpð−3=2Þ�< 0,
cannot be satisfied for a finite ΛH and a positive λS.
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doublet as HT ¼ ðHþ; ðvh þ hþ iχÞ= ffiffiffi
2

p Þ, where Hþ and
χ are the would-be Nambu-Goldstone fields. Linear terms
in σ and h are suppressed in (11), because they will be
canceled against the corresponding tadpole corrections.
Using (11) and integrating out the constituent scalars Sai ,

we can obtain effective interactions among σ, ϕ and the
Higgs h. We first compute their inverse propagators, up to
and including one-loop order, to obtain their masses and the
wave function renormalization constants:

Γαβ
ϕ ðp2Þ¼Zϕδ

αβλ0SΓϕðp2Þ¼Zϕδ
αβλ0S½1þ2λ0SNcΓðp2Þ�;

Γσðp2Þ¼ 2ZσNfðNfλSþλ0SÞ½1þ2NcðNfλSþλ0SÞΓðp2Þ�;
Γhσðp2Þ¼−2Z1=2

σ vhλHSðNfλSþλ0SÞNfNcΓðp2Þ;
Γhðp2Þ¼p2−m2

h0þðvhλHSÞ2NfNcðΓðp2Þ−Γð0ÞÞ;
ð12Þ

wherem2
h0 is given in (10), the canonical kinetic term forH

is included, and

Γðp2Þ ¼ −
1

16π2

Z
1

0

dx ln

�
−xð1 − xÞp2 þM2

0

Λ2
Hexpð−3=2Þ

�
:

We have included neither the wave function renormaliza-
tion constant for h (which is approximately equal to 1
within the approximation here) nor the corrections to Γh
coming from the SM sector (which will only slightly
influence our result).
The DM mass is the zero of the inverse propagator, i.e.

Γαβ
ϕ ðp2 ¼ mDM

2Þ ¼ 0; ð13Þ

and Zϕ (which has a canonical dimension 2) can be
obtained from Z−1

ϕ ¼ 2ðλ0SÞ2NcðdΓ=dp2Þjp2¼m2
DM
. The σ

and Higgs masses are obtained from the zero eigenvalues
of the h − σ mixing matrix. Strictly speaking, this mixing
has to be taken into account in determining the renorm-
alization constants (matrix) for σ and h. However, the
mixing is less than 1% in a realistic parameter space so that
we ignore the mixing for the renormalization constants. As
we can see from (12), the radiative correction to the inverse
propagator is proportional to 2λ0SNc=16π2, so that the
solution of (13) for a real positive p2 can exist if λ0SNc

is sufficiently large. Therefore, if an upper limit of λ0S is set,
there will be a minimum value of Nc. It turns out that the
minimum Nc is 3 for Γϕðp2Þ with Nf ¼ 2 to have a zero if
0 < λ0S < 2π. For a larger Nf we need a larger Nc: the
minimum Nc is 4 for Nf ¼ 3 for instance.
The link of ϕ to the SM model is established through the

interaction with the Higgs, which is generated at one loop
as shown in Fig. 1. We use the s-channel momenta p ¼
p0 ¼ ðmDM; 0Þ for DM annihilation, because we restrict
ourselves to the s-wave part of the velocity-averaged

annihilation cross section hvσi. For the spin-independent
elastic cross section off the nucleon σSI we use the
t-channel momenta p ¼ −p0 ¼ ðmDM; 0Þ. In these approx-
imations the diagrams of Fig. 1 yield the effective couplings

κsðtÞδαβ ¼ δαβΓϕ2h2ðM0; mDM; ϵ ¼ 1ð−1ÞÞ; ð14Þ

where

Γϕ2h2ðM0; mDM; ϵÞ

¼ ZϕNcðλ0SÞ2λHS

4π2

Z
1

0

dx
Z

1−x

0

dy

× ½M2
0 þm2

DMðxðx − 1Þ þ yðy − 1Þ − 2ϵxyÞ�−1;

and we consider only the parameter space with mDM,
mσ < 2M0, because beyond that our SCMF approximation
will break down. Then we obtain

hvσi ¼ 1

32πm3
DM

X
I¼W;Z;t;h

ðm2
DM −m2

I Þ1=2aI þOðv2Þ;

where mW;Z;t;h are the W, Z, top quark and Higgs masses,
respectively, and

aWðZÞ ¼ 4ð2Þκ2sΔ2
hm

4
WðZÞ

�
3þ 4

m4
DM

m4
WðZÞ

− 4
m2

DM

m2
WðZÞ

�
;

at ¼ 24κ2sΔ2
hm

2
t ðm2

DM −m2
t Þ;

ah ¼ κ2s

�
1þ 24λHΔh

m2
W

g2

�
2

with Δh ¼ ð4m2
DM −m2

hÞ−1 [mh is the corrected Higgs
mass which should be compared with mh0 of (10).] The
DM relic abundance is Ωĥ2 ¼ ðN2

f − 1Þ × ðY∞s0mDMÞ=
ðρc=ĥ2Þ, where Y∞ is the asymptotic value of the ratio
nDM=s; s0 ¼ 2890=cm3 is the entropy density at present;
ρc ¼ 3H2=8πG ¼ 1.05 × 10−5ĥ2 GeV=cm3 is the critical
density; ĥ is the dimensionless Hubble parameter;
Mpl ¼ 1.22 × 1019 GeV is the Planck energy; and g� ¼
106.75þ N2

f − 1 is the number of the effectively massless
degrees of freedom at the freeze-out temperature. To obtain
Y∞ we solve the Boltzmann equation

FIG. 1. The interaction between DM and the Higgs h arises at
the one-loop level. Diagrams ∝ λ2HSðvh=M0Þ2 are ignored,
because λ2HSðvh=M0Þ2 ≪ λHS.
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dY
dx

¼ −0.264g1=2�

�
mDMMPL

x2

�
hvσiðY2 − Ȳ2Þ

numerically, where x is the inverse temperature mDM=T,
and Ȳ is Y in thermal equilibrium. The spin-independent
elastic cross section off the nucleon σSI can be obtained
from [27]

σSI ¼
1

4π

�
κtf̂m2

N

mDMm2
h

�2� mDM

mN þmDM

�
2

;

where κt is given in (14), mN is the nucleon mass, and
f̂ ∼ 0.3 stems from the nucleonic matrix element [28].6

Before we scan the parameter space, we consider a
representative point in the four-dimensional parameter
space of the scalar couplings with Nf ¼ 2 and Nc ¼ 5:

λS ¼ 1.20; λ0S ¼ 5.38;

λHS ¼ 0.0525; λH ¼ 0.130;

which give f0 ¼ 0.0749 TeV2, M0 ¼ 1.08 TeV, mDM ¼
0.801 TeV, mσ ¼ 1.98 TeV, ΛH ¼ 0.501 TeV, Ωĥ2 ¼
0.121, σSI ¼ 1.68×10−45 cm2, κs ¼ 0.3988, κt ¼ 0.3089.
In Fig. 2 we show in themDM − σSI plane the predicted area
for various Nf and Nc. The predicted values of σSI are just
below the LUX upper bound (black dashed line) [30] and
can be tested by XENON1T, whose sensitivity is

Oð10−47Þ cm2 [31,32]. If we increase Nf, we have to
suppress Y∞, because Ωĥ2 ∝ ðN2

f − 1ÞY∞, which requires
a larger hvσi, leading to a larger σSI.

III. SUMMARY

We have assumed that the SM without the Higgs mass
term is coupled through a Higgs portal term with a
classically scale invariant gauge sector, which contains
Nf scalar fields. Due to the strong confining force the
gauge invariant scalar bilinear forms a condensate, thereby
violating scale invariance. The Higgs portal term is
responsible for the transmission of the scale to the SM
sector, realizing electroweak scalegenesis. We have for-
mulated an effective theory for the condensation of the
scalar bilinear. The excitation of the condensate is identi-
fied as DM, where its scale is dynamically generated in the
hidden gauge sector. Our formalism is simple and its
application will be multifold. We have found that the
DM mass is of Oð1Þ TeV and the predicted spin-
independent elastic cross section off the nucleon is slightly
below the LUX upper bound and could be tested by the
XENON1T experiment.
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FIG. 2. The spin-independent elastic cross section σSI of DM off the nucleon as a function of mDM for Nf ¼ 2, Nc ¼ 5 (red) and 8
(green) and for Nf ¼ 3x, Nc ¼ 5 (blue), where Ωĥ2 is required to be consistent with the PLANCK experiment at 2σ level [33].
The black dashed line stands for the central value of the LUX upper bound [30].

6If the value f̂ improved by the recent lattice simulation [29] is
used, we obtain slightly smaller values (about 20%).
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