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At the LHC, an effective theory of the Higgs sector allows us to analyze kinematic distributions in
addition to inclusive rates, although there is no clear hierarchy of scales. We systematically analyze how
well dimension-6 operators describe LHC observables in comparison to the full theory, and in a range
where the LHC will be sensitive. The key question is how the breakdown of the dimension-6 description
affects Higgs measurements during the upcoming LHC run for weakly interacting models. We cover
modified Higgs sectors with a singlet and doublet extension, new top partners, and a vector triplet. First,
weakly interacting models only generate small relevant subsets of dimension-6 operators. Second, the
dimension-6 description tends to be justified at the LHC. Scanning over model parameters, significant
discrepancies can nevertheless arise; their main source is the matching procedure in the absence of a
well-defined hierarchy of scales. While these issues require vigilance, they should not present a major
problem for future LHC analyses.
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I. INTRODUCTION

The Higgs boson [1] discovery announced on July 4,
2012 [2], is a historical milestone in the physics of the 21st
century. The thorough scrutiny of the LHC run I data has
so far confirmed that the narrow resonance observed at a
mass around 125 GeV is compatible with the minimal
Standard Model (SM) agent of electroweak symmetry
breaking [3]. To date, this agreement is limited to around
20% precision in the Higgs couplings [4–7], which is not
sensitive to the deviations that one would expect from
typical perturbatively extended Higgs sectors. This accu-
racy, based on a large set of on-shell and most recently
off-shell Higgs measurements [7], will soon improve with
data from run II. Odds are high that the upcoming runs
will shed light on a possible UV completion of the
Standard Model [8,9].
Based on everything we know, such an underlying theory

should be described by a gauge field theory. While the
measurement of Higgs couplings from inclusive rates has
been extremely successful at run I, it needs to be extended,
for example to include kinematic distributions. For this
purpose, Higgs effective field theories (EFTs) [10–12] have
become the koiné for discussing the phenomenology of
extended Higgs sectors. In the effective field theory
language, beyond the Standard Model (BSM) effects are
described in terms of a Lagrangian with local operators of
increasing mass dimension d > 4. Each of them includes a
suppression by inverse powers of a new physics scale,
which should be well separated from the experimentally
accessible scale, in our case the electroweak scale, Λ ≫ v.

Despite its generality, the EFT approach is known to
suffer from its limited applicability when the hierarchy of
scales is not guaranteed. This has fueled intense inves-
tigation in the context of dark matter searches [13]. While
in that field EFT-based predictions are usually robust for
early-Universe and late-time annihilation rates as well as
for dark matter-nucleon scattering, the required hierarchy
of scales can break down for dark matter signals at
colliders. Because hadron colliders do not have a well-
defined partonic energy, strategies relying on boosted
objects and large recoils are the most critical. While it is
not clear that a marginal separation of scales invalidates the
EFT approach, such observables clearly pose a challenge.
There exists a first set of studies of the applicability of

EFTs to Higgs physics at the LHC [14–16]. These ques-
tions first arose in studies of tagging jet kinematics in weak
boson fusion, which are sensitive to the UV structure of the
theory [17–20]. Similar issues appear in Higgs-strahlung
[14] and in the production of off-shell Higgs bosons in
gluon fusion [21,22]. A key problem is that Higgs
production at hadron colliders does not probe a single
energy scale over the full relevant phase space.
On the other hand, in Ref. [7] it has been shown that a fit

of dimension-6 operators to the Higgs data at run I is a
sensible and practicable extension of the usual Higgs
couplings fit. Dimension-6 operators including derivatives
complement the Higgs coupling modifications and allow us
to extract information from kinematic distributions.
Because the LHC constraints do not induce a hierarchy
of scales, the EFT approach is not formally well defined.
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However, there appears to be no problem in describing the
LHC Higgs data in terms of a truncated dimension-6
Lagrangian. This description induces theory uncertainties
if we want to interpret the LHC results in terms of an
effective field theory [23]. On the other hand, these and
other theory uncertainties can and should be separated from
the experimental uncertainties [24,25].
Related to the topic of the validity of the effective

theory is the question if, given the experimental perfor-
mance, the analysis of a UV-complete model offers an
advantage compared to the effective theory [26]. The two
approaches are only equivalent if we account for the full
correlations between the effective operators in all analysis
steps, and if the effective theory is applicable over the full
relevant phase space. Unless the experimental collabora-
tions provide their fully correlated results beyond a
Gaussian approximation [7], a direct analysis of full
models will be superior.
Given these arguments, the applicability of the dimen-

sion-6 description of the Higgs sector has to be tested on a
process-to-process as well as model-to-model basis. In this
paper we present a comprehensive comparison of full
models and their truncated EFT description during the
LHC run II. We select extensions of the Higgs sector of the
Standard Model by (i) a scalar singlet, (ii) a scalar doublet,
(iii) a colored top-partner scalar, and (iv) a massive vector
triplet. Each of these models is mapped onto an EFT, which
we obtain by integrating out the heavy fields and expanding
the operators to dimension 6. We then derive predictions for
selected Higgs observables in the full model and compare
them to the EFT results. The key questions we aim to
address are as follows:
(1) Given the LHC sensitivity, how large do relevant

new physics effects have to be?
(2) Does the corresponding new physics scale respect a

self-consistency condition Λ ≫ v?
(3) Which observables are correctly described by the

truncated EFT?
(4) What are the reasons for the potential failure of

this EFT?
(5) Do they pose a problem for LHC analyses?

For weakly interacting models, visible effects at the LHC
lead us to scenarios in which the heavy scale is not
sufficiently separated from the electroweak scale, and the
EFT description is not obviously justified. We will analyze
what problems the lack of a clear hierarchy of scales leads
to in practice and discuss how these might affect global
LHC-Higgs fits including kinematic distributions [7].
It will turn out that two limitations of the EFT description

will guide us through the different models. First, we need to
ensure that the new physics scale and with it all new particles
are properly decoupled, in particular when we go beyond
total cross sections. Second, when we define our effective
field theory in terms of a Higgs-Goldstone doublet, it is
crucial that the electroweak vacuum expectation value

(VEV) does not have a destabilizing effect on the hierarchy
of scales.
The remainder of the paper is organized as follows: in

Sec. II we review our theoretical framework. We discuss
how new physics effects in the Higgs sector are accounted
for in the full model and EFT languages, and we identify
the reasons why the two methods can deviate from each
other. In Sec. III we show these ideas at work by explicitly
confronting full model versus EFT predictions for a variety
of UV completions and Higgs observables. We give our
conclusions in Sec. IV. We hope that Appendix A 1–A 5
with exhaustive details on the different models and their
EFT parametrizations will be particularly useful to
practitioners.

II. EFFECTIVE THEORY BASICS

Extensions of the SM Higgs sector involve new degrees
of freedom with electroweak charges and/or color charges,
coupled to or mixing with the SM-like Higgs boson.
Hidden sectors coupled to the Higgs potential without
any SM charge lead to nonstandard Higgs decays. Since the
Higgs potential is closely linked to the electroweak sector,
any model that affects the SM gauge bosons will also affect
Higgs physics. This way, a wide range of new physics
models can be probed in Higgs signatures at the LHC, both
in total rates and kinematic distributions. The simplest
effect are shifted couplings of the observed Higgs boson at
125 GeV [4]:

gxxH ¼ gSMxxHð1þ ΔxÞ: ð1Þ

In this notation Δ can reflect both a truncated EFT or a full
new physics model. These coupling deviations have been
used to test an effective light Higgs model with either free
or model-specific couplings [4–7].

A. Higgs effective theory

Effective field theories provide a systematic method to
link Higgs measurements to a large class of high-scale
UV completions. Their ingredients are (i) the dynamic
degrees of freedom and (ii) the symmetries at low energies.
The Higgs EFT framework keeps the SM fields and
requires an invariance under the SM gauge group SUð3Þ×
SUð2Þ × Uð1Þ:

Leff ¼ LSM þ
X∞
d¼5

X
ad

CðdÞ
ad

Λd−4O
ðdÞ
ad : ð2Þ

We assume a linear realization of electroweak symmetry
breaking. This implies that the Higgs scalar and the
Goldstones of the Standard Model form an SUð2Þ doublet
ϕ with the vacuum expectation value v ¼ 246 GeV. This is
justified by the level of agreement of the Standard Model
with all available data on the electroweak sector. A nonlinear
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formulation in terms of a general scalar field h is also
possible [27]. The higher-dimensional terms denote a linear
combination of local operators with mass dimension d,
weighted by Wilson coefficients Ca and suppressed by
inverse powers of the new physics scale Λ.
Higher-dimensional operators can be classified depend-

ing on whether they include derivatives to compensate for
the mass dimension in 1=Λ2. This leads to momentum-
dependent couplings, scattering amplitudes growing with
energy, and eventually the violation of perturbative unitar-
ity. It reflects the onset of new on-shell contributions, which
are integrated out in the EFT.
When we link full models to an EFT description it is

useful to categorize the higher-dimensional operators
according to whether they arise from the tree-level

exchange of heavy mediators or through loop effects
mediated by the heavy fields [28,29]. This categorization
is only meaningful for weakly interacting complete
models.
For the linear realization there exists a set of 59

dimension-6 operators. Popular bases are the Warsaw
[30], Hagiwara-Ishihara-Szalapski-Zeppenfeld (HISZ)
[31], and strongly interacting light Higgs (SILH) bases
[32]. All three maximize the use of bosonic operators to
describe Higgs and electroweak observables. They can be
mapped onto each other using equations of motion,
integration by parts, field redefinitions, and Fierz trans-
formations [33]. We use the SILH basis and retain only
those operators relevant for Higgs physics at the LHC [32].
The effective Lagrangian truncated to dimension 6 reads

LEFT ¼ LSM þ c̄H
2v2

∂μðϕ†ϕÞ∂μðϕ†ϕÞ þ c̄T
2v2

ðϕ†D
↔μ

ϕÞðϕ†D
↔

μϕÞ −
c̄6λ
v2

ðϕ†ϕÞ3 þ igc̄W
2m2

W
ðϕ†σkD

↔μ
ϕÞDνWk

μν

þ ig0c̄B
2m2

W
ðϕ†D

↔μ
ϕÞ∂νBμν þ

igc̄HW

m2
W

ðDμϕ†ÞσkðDνϕÞWk
μν þ

ig0c̄HB

m2
W

ðDμϕ†ÞðDνϕÞBμν þ
g02c̄γ
m2

W
ðϕ†ϕÞBμνBμν

þ g2s c̄g
m2

W
ðϕ†ϕÞGA

μνGμνA −
�
c̄u
v2

yuðϕ†ϕÞðϕ† · Q̄LÞuR þ c̄d
v2

ydðϕ†ϕÞðϕQ̄LÞdR þ c̄l
v2

ylðϕ†ϕÞðϕL̄LÞlR þ H:c:

�
: ð3Þ

Here, g ¼ e=sw, g0 ¼ e=cw, gs stand for the SM gauge
couplings and λ denotes the usual Higgs quartic coupling.
The normalization of the dimension-6 Wilson coefficients
c̄i does not follow Eq. (2) but includes conventional
prefactors which reflect a bias concerning their origin.
We present further details on the EFT setup, the translation
between the different bases, and the connection to Higgs
observables in Appendix A 1.

B. Default versus v-improved matching

Matching the dimension-6 Lagrangian to a full model is
a three-step procedure. Its starting point is the definition of
a heavy mass scale Λ. Second, we integrate out the degrees
of freedom above Λ, which leads to an infinite tower of
higher-dimensional operators. Finally, this effective action
is truncated so that only the dimension-6 terms, suppressed
by 1=Λ2, remain. The matching is not unambiguous: on the
one hand, Λ is usually not uniquely defined. Further
ambiguities arise in the third step because a dimension-6
truncation does not tell us howOðΛ−4Þ contributions to the
Wilson coefficients of the dimension-6 operators should be
treated.
For the linear dimension-6 Lagrangian in terms of the

doublet field ϕ the underlying assumption Λ ≫ v suggests
to match the linear EFT to the full theory in the unbroken
electroweak phase. An obvious choice for the matching
scale is then the mass scale of new particles in the limit of
v → 0. We expand the effective action and drop all terms of

OðΛ−4Þ. This way, the truncation removes the parts of the
Wilson coefficients of the dimension-6 operators that are
suppressed by additional factors of 1=Λ. This procedure is
our default matching scheme.
In the absence of a clear hierarchy of scales, multiple

heavy mass scales of the type Λ� gv occur for instance
through mixing effects in mass matrices, even if just one
dimensionful parameter Λ governs the new physics. This
raises the question if we can improve the agreement
between full model and dimension-6 Lagrangian by incor-
porating effects of the nonzero electroweak VEV in the
matching. In the first matching step, we can define Λ as the
physical mass of the new particles in the broken phase,
including contributions from v, rather than the mass scale
in the unbroken phase. In addition, the third step gives us
the choice to keep (part of) theOðΛ−4Þ terms of the Wilson
coefficients. This is equivalent to expressing the coeffi-
cients in terms of phenomenologically relevant quantities
such as mixing angles and physical masses, again defined
in the broken phase. Both of these prescriptions effectively
include effects from dimension-8 operators into the
dimension-6 Lagrangian by once replacing ϕ†ϕ → v2=2.
We will use the term v-improved matching for these
alternative EFT definitions.
The truncation of the EFT Lagrangian is formally

justified as long as v ≪ Λ and we only probe energies
Ephys ≪ Λ. In this limit the dimension-8 operators as well
as the Λ-suppressed terms in the Wilson coefficients are
negligible; our two matching procedures then give identical
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results. In the absence of a large enough scale separation,
our bottom-up approach allows us to treat them independ-
ently. This way we can use the v-improved matching to
enhance the validity of the dimension-6 Lagrangian.
The external energy scale depends on the specific

process and observable, e.g. Ephys ∼mh for on-shell
Higgs coupling measurements, Ephys ∼m4l for off-shell
Higgs coupling measurements, Ephys ∼mhh for Higgs pair
production at threshold, or Ephys ∼ pT;h for boosted single
or double Higgs production. In kinematic distributions the
high-energy tails can probe significantly larger energy
scales. This implies that the energy range where the EFT
description is applicable is model dependent and observ-
able dependent. Successively adding higher-dimensional
operators should improve the situation, as long as the key
scales Ephys;Λ are sufficiently separated. Of course, the
EFT description fails spectacularly in the presence of new
resonances in the relevant energy range, and we have to
adjust the field content of the effective Lagrangian.

C. Self-consistency at the LHC

Interpreting LHC physics in terms of an effective theory
involves a delicate balance between energy scales. On the
one hand, new physics searches often rely on selection
criteria which demand Ephys > mh to separate a high-
energy signal from the QCD background. On the other
hand, a model-specific scale Λ limits the validity of the
effective theory, as discussed above.
The extraction of Higgs properties during the LHC run I

essentially relies on on-shell single Higgs production and
decay. This allows us to roughly estimate the new physics
scales they are able to probe. Assuming no loop suppres-
sion, a deviation from the total single Higgs production and
decay rate lies within the experimental reach of the LHC if���� σ × BR
ðσ × BRÞSM

− 1

���� ¼ g2m2
h

Λ2
≳ 0.1 ⇔ Λ <

ffiffiffiffiffi
10

p
gmh

≃ 280 GeV; ð4Þ

where we assume a weakly interacting theory with
g2 ∼ 1=2. Because of the limited precision of the available
data, current Higgs results cannot test very high energy
scales, at least for weakly coupled new physics [7]. For this
simple power-counting argument we ignore that new
physics might also change distributions and especially
affect the high-energy tails. In this case the EFT expansion
develops in two different directions: E=Λ and gv=Λ.
For loop-induced new physics effects, the corresponding

loop suppression factor pulls Λ to even lower values:���� σ × BR
ðσ × BRÞSM

− 1

���� ¼ g2m2
h

16π2Λ2
≳ 0.1 ⇔ Λ <

ffiffiffiffiffi
10

p
gmh

4π

≃ 20 GeV: ð5Þ

This implies that the cutoff of the effective theory is below
the electroweak scale. We can compensate for this by
probing phase-space regions where mh is not the relevant
scale in the numerator. Only for moderately strongly
coupled dynamics with g ¼ 1…

ffiffiffiffiffiffi
4π

p
can one probe large

enough energy scales for the EFT approach to be valid
given the precision of the LHC Higgs program:���� σ × BR
ðσ × BRÞSM

− 1

���� ¼ g2m2
h

Λ2
≳ 0.1 ⇔ Λ <

ffiffiffiffiffi
10

p
gmh

≃ 400 GeV…1.4 TeV: ð6Þ

In fact, the EFT approach to Higgs observables has largely
been motivated by the desire to describe models with
strongly interacting electroweak symmetry breaking [32].
The increased statistics and Higgs production cross

sections at run II will enable us to add a wide range of
distributions and off-shell processes to the Higgs observ-
ables. They can probe higher energy scales Ephys ≫ mh,
which are more sensitive to differences between the
dimension-6 and full model predictions. A well-known
example is weak boson fusion, where the details of the
ultraviolet completion can have a huge effect for example
on the transverse momenta of the tagging jets [17–20].

III. MODELS VERSUS EFFECTIVE THEORY

The aim of this paper is to compare a comprehensive set
of LHC predictions from specific new physics models with
their corresponding effective field theory predictions. As
discussed in Sec. II C, the applicability of the effective
Lagrangian given in Eq. (3) is by no means guaranteed. We
test it based on detailed comparisons of matched EFTs with
the original, more or less UV-complete models, namely
(A) a scalar singlet extension with mixing effects and a

second scalar resonance;
(B) two Higgs doublets, adding a variable Yukawa

structure, a CP-odd, and a charged Higgs;
(C) scalar top partners, contributing to Higgs couplings

at one loop; and
(D) a vector triplet with gauge boson mixing.

For each of these four models we introduce the setup and
the main LHC features, discuss the decoupling in the Higgs
sector, define the dimension-6 setup, and finally give a
detailed account of the full and dimension-6 phenomenol-
ogy at the LHC.
Our comparison covers the most relevant observables for

LHC Higgs physics. We evaluate all amplitudes at tree level
and take into account interference terms between Higgs and
gauge amplitudes. Our acceptance and background rejec-
tions cuts are minimal, to be able to test the effective field
theory approach over as much of the phase space as possible.
In the case of Higgs production through gluon fusion, we

analyze the production process with a Higgs decay to four
leptons or to photons:
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pp → h → 4l; pp → h → γγ: ð7Þ

For the photons we do not apply any cuts, while for l ¼ e,
μ we require

m4l > 100 GeV and msame flavor
lþl− > 10 GeV ð8Þ

to avoid too large contributions from the Z peak and
bremsstrahlung.
For Higgs production in weak boson fusion (WBF), we

evaluate the production process

ud → hud → WþW−ud → ðlþνÞðl−ν̄Þud: ð9Þ

We require the standard WBF cuts

pT;j > 20 GeV; Δηjj > 3.6; mjj > 500 GeV;

pT;l > 10 GeV; ET > 10 GeV: ð10Þ

Unlike for gluon fusion, the kinematics of the final state can
now introduce new scales and a dependence on the UV
structure of the model. The process is particularly interest-
ing in the context of perturbative unitarity [34]. While the
latter is satisfied in a UV-complete model by construction,
deviations from the SM Higgs-gauge couplings in the EFT
may lead to an increasing rate at very large energies
[20,35], well outside the EFT validity range E=Λ ≪ 1.
To look for such signatures, we focus on the high-energy
tail of the transverse mass distribution:

m2
T ¼ ðET;ll þ ET;ννÞ2 − ðpT;ll þ pmiss

T Þ2 with

ET;ll ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
T;ll þm2

ll

q
;

ET;νν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ET þm2

ll

q
: ð11Þ

As the last single Higgs production process we evaluate
Higgs-strahlung

qq → Vh ð12Þ
with V ¼ W�; Z. We do not simulate the Higgs and gauge
boson decays, assuming that we can always reconstruct for
example the full Zh → lþl−bb̄ final state. No cuts are
applied.
Finally, Higgs pair production is well known to be

problematic when it comes to the effective theory
description [36]:

gg → hh: ð13Þ
Again, neither Higgs decays nor kinematic cuts are
expected to affect our analysis, so we leave them out.
We test all these channels for the singlet and doublet

Higgs sector extensions. For the top-partner and vector
triplet models we focus on the WBF and Higgs-strahlung

modes, which are the most sensitive. In the dimension-6
simulations we always include the square of the dimension-6
operator contributions. While these terms are technically of
the same mass dimension as dimension-8 operators, which
we neglect, we must keep them to avoid negative values of
the squared matrix element in extreme phase-space regions.
Notice that these situations do not necessarily imply a
breakdown of the EFT expansion. On the contrary, they
may appear in scenarios where new physics contributions
dominate over the SM part, while the EFT expansion is fully
valid (with E=Λ ≪ 1). In such cases, the bulk effects stem
from the squared dimension-6 terms instead of the interfer-
ence with the SM, while the effects from dimension-8
operators are smaller and can be safely neglected.
Tree-level processes we generate with MADGRAPH5 [37],

using publicly available model files [38] and our own
implementations though FEYNRULES [39], which also pro-
vides the corresponding universal FEYNRULES output files
[40]. For the dimension-6 predictions we resort to an in-
house version of the HEL model file [41]. For all models we
evaluate the Higgs-gluon and Higgs-photon couplings with
the full one-loop form factors [42], including top, bottom
andW loops as well as new particles present in the respective
models. For Higgs pair production, we use a modified
version of Ref. [43].
Other loop effects are analyzed using reweighting: we

generate event samples using appropriate general cou-
plings. Next, we compute the one-loop matrix element
for each phase-space point and reweight the events with the
ratio of the renormalized one-loop matrix element squared
to the tree-level model. For the one-loop matrix elements
we utilize FEYNARTS and FORMCALC [44] with our own
model files that include the necessary counterterms. The
loop form factors are handled with dimensional regulari-
zation in the ’t Hooft–Veltman scheme and written in terms
of standard loop integrals. These are further reduced via
Passarino-Veltman decomposition and evaluated with the
help of LOOPTOOLS [45].
Generally we create event samples of at least 100 000

events per benchmark point and process for pp collisions atffiffiffi
s

p ¼ 13 TeV. We use the CTEQ6L parton distribution
function [46] and the default dynamical choices of the
factorization and renormalization scale implemented in
MADGRAPH. For the purpose of this project we limit
ourselves to parton level and do not apply a detector
simulation. The mass of the SM-like Higgs is fixed to mh ¼
125 GeV [47]. For the top mass we take mt ¼ 173.2 GeV
[48]. The Higgs width in each model is based on calculations
with HDECAY [49], which we conveniently rescale and
complement with additional decay channels if applicable.

A. Singlet extension

The simplest extension of the minimal Higgs sector
of the Standard Model is by a real scalar singlet [50].
The extended scalar potential has the form
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Vðϕ; SÞ ¼ μ21ðϕ†ϕÞ þ λ1jϕ†ϕj2 þ μ22S
2 þ λ2S4

þ λ3jϕ†ϕjS2; ð14Þ

where the new scalar S can mix with the SM doublet ϕ
provided the singlet develops a VEV, hSi ¼ vs=

ffiffiffi
2

p
. Details

on the parametrization, Higgs mass spectrum and coupling
patterns are given in Appendix A 2.
The additional scalar singlet affects Higgs physics in

three ways: (i) mixing with the Higgs via the mixing angle
α, which leads to a universal rescaling of all Higgs
couplings to fermions and vectors; (ii) a modified Higgs
self-coupling; and (iii) a new, heavy resonance H coupled
to the Standard Model through mixing.
The key parameter is the portal interaction between the

doublet and the singlet fields λ3ðϕ†ϕÞS2, which is respon-
sible for the mixed mass eigenstates. The mixing reduces
the coupling of the SM-like Higgs h to all Standard Model
particles universally:

Δx ¼ cos α − 1 for x ¼ W;Z; t; b; τ; g; γ;…: ð15Þ

It also affects the self-coupling of the light Higgs, which
takes on the form

ghhh ¼ 6cos3αλ1v − 3cos2α sin αλ3vs þ 3 cos αsin2αλ3v

− 6sin3αλ2vs: ð16Þ

The parameter sinα≃ α quantifies the departure from the
SM limit α → 0. This limit can be attained in two ways:
first, a small mixing angle can be caused by a weak portal
interaction:

jtanð2αÞj ¼
���� λ3vvs
λ2v2s − λ1v2

����≪ 1 if λ3 ≪ 1: ð17Þ

The Higgs couplings to SM particles approach their SM
values, but there is no large mass scale associated with this
limit. In the extreme case of λ2; λ3 ≪ λ1 we find small α ≈
−λ3=λ1 × vs=ð2vÞ even for vs ≲ v. This situation is to some
extent the singlet model counterpart of the alignment
without decoupling scenario in the two-Higgs-doublet
model (2HDM) [51,52] or the Minimal Supersymmetric
Standard Model (MSSM) [53,54]. It relies nonetheless on a
weak portal coupling and a small scale separation, which
cannot be properly described by an effective field theory.
Second, the additional singlet can introduce a large mass

scale vs ≫ v, giving us

tan α ≈
λ3
2λ2

v
vs

≪ 1 if v ≪ vs; ð18Þ

where λ3=ð2λ2Þ is an effective coupling of up to order one.
In this limit the heavy Higgs mass, which we identify as the
heavy mass scale, is given by

mH ≈
ffiffiffiffiffiffiffi
2λ2

p
vs ≡ Λ: ð19Þ

In terms of the heavy scale Λ the Higgs couplings scale
like

Δx ¼ −
α2

2
þOðα3Þ ≈ −

λ23
4λ2

�
v
Λ

�
2

: ð20Þ

This is a dimension-6 effect. If we require jΔxj≳ 10% to
keep our discussion relevant for the LHC, this implies

mH ≈ Λ <

ffiffiffi
5

p
λ3ffiffiffiffiffiffiffi

2λ2
p v ¼ 390 GeV ×

λ3ffiffiffiffiffi
λ2

p : ð21Þ

If we also assume that the ratio of quartic couplings is of the
order of a perturbative coupling, λ3=

ffiffiffiffiffi
λ2

p ≲ 0.5, the LHC
reach in the Higgs coupling analysis translates into heavy
Higgs masses below 200 GeV. For strongly coupled
scenarios, λ3=

ffiffiffiffiffi
λ2

p ≲ 1…
ffiffiffiffiffiffi
4π

p
, the heavy mass reach

increases to mH ≲ 0.4…1.5 TeV. This suggests that a
weakly coupled Higgs portal will fail to produce a sizable
separation of scales when looking at realistic Higgs
coupling analyses. The question becomes if and where
this lack of scale separation hampers our LHC analyses.
In the EFTapproach the singlet model only generatesOH

at dimension 6, with the Wilson coefficient

c̄H ¼ λ23
2λ2

�
v
Λ

�
2

: ð22Þ

We give the details of the EFT description in Appendix A 2.
As discussed in the previous section, the construction of the
EFT is not unique. Instead of keeping only the leading term
in the expansion in 1=Λ, we can match the dimension-6
operators to the full, untruncated singlet model. In the broken
phase the Higgs couplings are fully expressed through the
mixing angle α, so the v-improved EFT truncated to
dimension-6 operators gives the Wilson coefficient

c̄H ¼ 2ð1 − cos αÞ: ð23Þ

We start our numerical analysis by defining five singlet
benchmark points in Table I. The first three scenarios are in
agreement with current experimental and theoretical con-
straints. This includes direct mass bounds from heavy
Higgs searches at colliders, Higgs coupling measurements,
electroweak precision observables, perturbative unitarity
and vacuum stability [55]. We note that for S4 and S5 the
combination of large heavy Higgs masses together with
large mixing angles is incompatible with perturbative
unitarity and electroweak precision constraints. We never-
theless keep such benchmarks for illustration purposes.
Table I also includes the universal shift of the light Higgs
couplings, both for the full singlet model and its dimension-
6 EFT descriptions.
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In Table II we give the ratio of the total Higgs production
cross sections in gluon fusion, WBF and Higgs-strahlung.
They confirm what we expect from the coupling modifi-
cation shown in Table I: qualitatively, the full singlet and
the dimension-6 model predict similar shifts in the total
rates. But there are differences in the coupling modifica-
tions Δsinglet

x and ΔEFT
x of up to 5%, translating into a rate

deviation of up to 10%. In the v-improved EFTwe find that
the Higgs couplings and total rates agree exactly with the
full model predictions. The dimension-6 operators are
entirely sufficient to capture the coupling shifts, but a
significant part of their coefficients are formally
of Oðv4=Λ4Þ.
The most obvious source of discrepancy between the full

model and the EFT is the heavy resonance H. It can for
example be produced in gluon fusion and then observed as
a peak in the m4l distribution. By construction, it will not
be captured by the dimension-6 model. We illustrate this in
the upper left panel of Fig. 1. For Higgs-strahlung pro-
duction (Fig. 1, right panel), where the novel H resonance
does not appear in an intermediate Born-level propagator
and hence has no impact, we find instead excellent agree-
ment between both descriptions over the entire phase space.
The second Higgs has a second, more subtle effect. In the

full model, both Higgs exchange diagrams are needed to
unitarize WW scattering. Correspondingly, the EFT
description breaks perturbative unitarity roughly at the
scale [35]

m2
WW ¼ 16πv2

c̄Hð1 − c̄H
4ð1þc̄HÞÞ

≈
�
1.7 TeV
sin α

�
2

: ð24Þ

In our benchmark point S5, this is around 2.8 TeV. The
incomplete cancellations between Higgs and gauge ampli-
tudes means that the dimension-6 model tends to have a
larger rate at energies already below this scale. For this
specific benchmark choice, this can be seen in the lower left
panel of Fig. 1, where we show the distribution of the
transverse mass defined in Eq. (11) in the process
ud → WþW−ud → ðlþνÞðl−ν̄Þud, to which WBF produc-
tion of both h and H contributes. We observe that the
dimension-6 model predicts a slightly higher rate at large
mT than both the full singlet model and the SM. Given the
very mild signal, which results from the fast decrease in the
parton densities and the small mixing angle for realistic
scenarios, such an effect is likely of no relevance for LHC
physics.
A more interesting channel to study in the singlet model

is Higgs pair production. The Higgs self-coupling is the
only Higgs coupling which gains a momentum dependence
in the matched EFT. In addition, there exists an approxi-
mate cancellation between the two leading amplitudes in
the SM at threshold [56]. This induces a second relevant
scale and with it a sensitivity to small deviations in the
Higgs couplings. In Fig. 1 we give the mhh distribution in
the full and dimension-6 models. In addition, we show how
the distributions would look in the full model without a H
state and in the EFT without the momentum-dependent
(derivative) terms given in Eq. (A31). Already at threshold
and far away from the H resonance, the interference of the
SM-like terms with the H diagrams makes up a significant
part of the amplitude. In the EFT, the derivative terms are
similarly relevant already at low energies. Close to thresh-
old, the dimension-6 approximates the full model well.
This agreement becomes worse towards the H pole [36].
The question of how the Wilson coefficients are expanded
in v2=Λ2 does not play a role here.
If we limit ourselves to Higgs properties relevant for

single Higgs production at the LHC, the modifications from
a singlet extension are very simple: all Standard Model
couplings acquire a common scaling factor, and no relevant

TABLE I. Benchmarks for the singlet extension. We show the model parameters and the universal coupling modification for the
complete model, as well as the matching scale Λ, the Wilson coefficient c̄H , and the universal coupling modification in the EFT
truncated to dimension 6. We also give these results for an alternative, v-improved construction. mH and Λ are in GeV.

Singlet EFT EFT (v-improved)

Benchmark mH sin α vs=v Δsinglet
x Λ c̄H ΔEFT

x c̄H ΔEFT
x

S1 500 0.2 10 −0.020 491 0.036 −0.018 0.040 −0.020
S2 350 0.3 10 −0.046 336 0.073 −0.037 0.092 −0.046
S3 200 0.4 10 −0.083 190 0.061 −0.031 0.167 −0.083
S4 1000 0.4 10 −0.083 918 0.183 −0.092 0.167 −0.092
S5 500 0.6 10 −0.200 407 0.461 −0.231 0.400 −0.200

TABLE II. Cross section ratios of the matched dimension-6
EFTapproximation to the full singlet model at the LHC. We show
the leading Higgs production channels for all singlet benchmark
points. The statistical uncertainties on these ratios are below
0.4%.

σEFT=σsinglet σv-improved EFT=σsinglet

Benchmark ggF WBF Vh ggF WBF Vh

S1 1.006 1.006 1.004 1.001 1.001 1.000
S2 1.019 1.021 1.019 1.000 1.001 1.000
S3 1.119 1.118 1.118 1.000 0.999 1.000
S4 0.982 0.982 0.982 0.999 0.999 1.000
S5 0.925 0.925 0.925 0.999 0.999 1.000
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new Lorentz structures appear at tree level. The dimension-
6 setup reproduces this effect correctly: the reduced
couplings to all SM fields alone do not require a large
hierarchy of scales. An EFT construction in which the
dimension-6 coefficients are not truncated at Oðv2=Λ2Þ
gives perfect agreement with the full theory, while expand-
ing the coefficients to leading order in v2=Λ2 may lead to
sizable deviations from the full model. Higgs pair produc-
tion is different. There is a large contribution from off-shell
H, while in the EFT the h self-coupling involves a
derivative. These different structures lead to discrepancies
between full and effective description that increase with
momentum transfer. Finally, the effective theory by defi-
nition does not include the second resonance, so it fails
whenever a heavy Higgs appears on shell in the full theory.

B. Two-Higgs-doublet model

The 2HDM [57] adds a second weak doublet with weak
hypercharge Y ¼ þ1 to the SM Higgs sector. The com-
bined potential reads

Vðϕ1;ϕ2Þ ¼ m2
11ϕ

†
1ϕ1 þm2

22ϕ
†
2ϕ2 þ

λ1
2
ðϕ†

1ϕ1Þ2

þ λ2
2
ðϕ†

2ϕ2Þ2 þ λ3ðϕ†
1ϕ1Þðϕ†

2ϕ2Þ þ λ4jϕ†
1ϕ2j2

þ
�
−m2

12ϕ
†
1ϕ2 þ

λ5
2
ðϕ†

1ϕ2Þ2 þ H:c:

�
: ð25Þ

The physical degrees of freedom are two neutral CP-even
scalars h0; H0, one neutral CP-odd scalar A0, and a set of
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FIG. 1. Kinematic distributions in the singlet model. The different curves show the SM, full singlet model and singlet-matched
dimension-6 predictions, respectively, as indicated in each panel. Top left: m4l distribution in the gg → h → 4l channel after loose
acceptance cuts for S2 in the full and effective models. Top right:mVh distribution in Vh production for S1. Bottom left: mT distribution
in the WBF h → lþl−ET channel for S5. Bottom right: mhh distribution in Higgs pair production for S4. For mhh we show several
contributions in the full theory and the dimension-6 approach. In all plots, the error bars give the statistical uncertainties.
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charged scalars H�. The relevant model parameters are the
mixing angle between the CP-even scalars α, the ratio of
the VEVs tan β ¼ v2=v1, and the mixed mass term m12.
The latter induces a soft breaking of the discrete Z2

symmetry ϕi → ð−1Þiϕi (for i ¼ 1, 2). The two-doublet
structure allows for a rich variety of Higgs couplings to
fermions. We refer the reader to Appendix A 3 for a
detailed account of the model setup, Higgs spectrum,
coupling patterns, and matched effective description.
Just as the singlet extension, the 2HDM predicts two

types of LHC signatures: (i) scalar and VEV mixing lead to
modified light Higgs couplings. Unlike for the singlet
extension, these coupling modifications are not universal
and reflect the more flexible flavor structure as well as the
multiple scales of the model. (ii) There exist three heavy
resonancesH0; A0; H�, which should have near-degenerate
masses to avoid custodial symmetry breaking.
The light Higgs coupling to weak bosons V ¼ W, Z

always scales like

ΔV ¼ sinðβ − αÞ − 1 ¼ −
cos2ðβ − αÞ

2
þOðcos4ðβ − αÞÞ:

ð26Þ

We can insert the leading contribution of a mass-degenerate
heavy Higgs sector and find

ΔV ≈
sin2ð2βÞ

8

�
v

mA0

�
4

: ð27Þ

While in the singlet model the light Higgs coupling to
gauge bosons is shifted at Oðv2=Λ2Þ, Eq. (20), the same
coupling is now affected at Oðv4=m4

A0Þ, corresponding to a
dimension-8 effect.
Two aspects turn the decoupling in the general 2HDM

into a challenge: first, delayed decoupling effects appear
after electroweak symmetry breaking [58]. For example, in
type-II models we find [5]

Δb ¼ − tan β
ffiffiffiffiffiffiffiffiffiffiffiffi
j2ΔV j

p
þ ΔV þOðΔ3=2

V Þ

≈ − tan β
sinð2βÞ

2

�
v

mA0

�
2

: ð28Þ

This correction to the bottom Yukawa coupling corre-
sponds to a dimension-6 effect, and already moderate
values of tan β significantly delay the decoupling of the
heavy 2HDM states in the Yukawa sector.
Second, unlike in the MSSM the Higgs self-couplings

λ1…λ5 and m12 are not bounded from above. In combi-
nations like λjv2 they contribute to the interactions of the
SM-like Higgs state, effectively inducing a new energy
scale through terms of the kind

ffiffiffiffiffiffiffiffiffiffiffiffij2ΔV j
p ffiffiffiffi

λj
p

v or propor-
tional to m12. They are significantly less suppressed than
we would expect for the usual suppression

ffiffiffiffiffiffiffiffiffiffiffiffij2ΔV j
p

—in

particular if an additional factor tan β appears in this
coupling deviation.
This additional, effectively lower mass scale driven by v

leads to problems with any EFT derived from and matched
to the full theory assuming only one new physics scale.
While this should not be viewed as a problem of the EFT
approach in general, it will require a v-improved matching
procedure.
We first match the effective theory to the 2HDM in the

unbroken phase. For this we define the new physics scale in
terms of the mass terms in the potential of Eq. (25) and ratio
of VEVs [16] as

Λ2 ¼ M2 ≡m2
11sin

2β þm2
22cos

2β þm2
12 sinð2βÞ: ð29Þ

The 2HDM generates a number of dimension-6 oper-
ators at tree level, for which the Wilson coefficients depend
on the flavor structure. While the up-type Yukawa coupling
is always modified the same way, the down-type and lepton
couplings are different for type I and type II. We find

c̄u¼ c̄Id ¼ c̄Il ¼
sinð2βÞcotβ

2

×

�
λ1
2
−
λ2
2
þ
�
λ1
2
þλ2

2
−λ3−λ4−λ5

�
cosð2βÞ

��
v
Λ

�
2

;

c̄IId ¼ c̄IIl ¼−
sinð2βÞ tanβ

2

×

�
λ1
2
−
λ2
2
þ
�
λ1
2
þλ2

2
−λ3−λ4−λ5

�
cosð2βÞ

��
v
Λ

�
2

;

ð30Þ

where the superscripts I and II denote the type of the flavor
structure.
Upon electroweak symmetry breaking, the physical heavy

Higgs masses mH0 , mA0 , and mH� acquire VEV-induced
contributions ∼λiv2 in addition to contributions from the
heavy scale M. As in the singlet model, we therefore also
consider a v-improved matching where the matching scale is
Λ ¼ mA0 and the Wilson coefficients are expressed in terms
of mass eigenstates. In this setup, Eq. (30) remains
unchanged, except that Λ is identified with mA0 .
The two matching schemes exhibit significant differences

in the 2HDM; for instance, the pseudoscalar mass is given by
m2

A0 ¼ m2
12=ðsin β cos βÞ − λ5v2. This means that it does not

coincide with M, unless we enforce a single mass scale
m11 ≈m22 ≈m12 and tan β ≈ 1.
The 2HDM benchmark points in Table III are in agree-

ment with all current constraints, implemented with the
help of 2HDMC [59], HIGGSBOUNDS [60], SUPERISO [61],
and HIGGSSIGNALS [62]. To better illustrate certain model
features, in some scenarios we tolerate deviations between
1σ and 2σ in the Higgs couplings measurements. The key
physics properties of the different 2HDM scenarios can be
summarized as follows:
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[D1] Moderate decoupling.—With Higgs couplings
shifts of up to 2σ in terms of the LHC constraints.
This generates Δτ;b;t ≈Oð15%Þ as well as a large
h0HþH− coupling. Additional Higgs masses
around 250…350 GeV can leave visible imprints.

[D2] Supersymmetric.—Reproducing the characteristic
mass splittings and Higgs self-couplings of the
MSSM with light top squarks [63].

[D3] Sign-flipped bottom Yukawa.—This is possible in
type-II models at large tan β, as shown in Eq. (28)
[64]. This can be viewed as a manifestation of a
delayed decoupling [58].

[D4] Fermiophobic heavy Higgs.—Possible only in
type-I models for sinα ¼ 0. The heavy Higgs
H0 is relatively light but essentially impossible to
observe at the LHC [65,66].

In Table IV we show the heavy scales Λ and the Wilson
coefficients for both the EFT matched in the unbroken
phase and the v-improved EFT construction. In contrast to
the singlet model, a significant v dependence of the heavy
masses occurs even for parameter points in agreement with
all relevant experimental and theoretical constraints.
Only in one of our four benchmark scenarios does the

heavy scale M approximate the physical mass mA0 . The
matching in the unbroken phase is particularly pathological
in benchmark D1, where M2 is negative and the signs of
the Wilson coefficients are switched compared to the
v-improved matching.
Table V confirms that matching in the unbroken phase

does not reproduce the modified Higgs couplings, while the
v-improved matching essentially captures the coupling
shifts without a strong requirement on the hierarchy of
scales. For our purpose we conclude that the expansion in
powers of v=M is not well controlled, and we have to rely
on v-improved matching for the 2HDM.
However, even in the v-improved EFT, the dimension-6

truncation can present an important source of deviations.
According to Table V the operatorsOu,Ou, andOl modify
the Higgs couplings similarly to the mixing, at least in the
limit of small mixing angles. This is clearly visible e.g. in
the MSSM-like scenario D2 as well as the fermiophobic
scenario of benchmark D4, which are very well described
by the dimension-6 Lagrangian, in spite of the lacking scale
separation.
In Table VI we show LHC rate predictions by the

dimension-6 approach and the full 2HDM. Depending on
the benchmark, the dimension-6 truncation leads to up to
10% departures. A particularly interesting scenario is
described by benchmark D3. In the full model, the bottom
Yukawa is exactly sign flipped, a signature hardly visible at
the LHC. Generating such a signature from higher-
dimensional operators requires their contributions to be
twice as large as the SM Yukawa coupling due to the
enhancement of v=Λ by a large coupling. The EFT with
default matching is certainly not valid anymore, and even the
v-improved prescription fails to capture this coupling shift
fully, leading to a significantly different coupling pattern.

TABLE III. Benchmarks for the 2HDM extension. We show the
model parameters and the heavy Higgs masses. All masses are in
GeV.

Benchmark

2HDM

Type tan β α=π m12 mH0 mA0 mH�

D1 I 1.5 −0.086 45 230 300 350
D2 II 15 −0.023 116 449 450 457
D3 II 10 0.032 157 500 500 500
D4 I 20 0 45 200 500 500

TABLE IV. Matching scales and Wilson coefficients for the effective theory matched to the 2HDM. We give these
results both for the EFT matching in the unbroken phase as well as for the v-improved matching with Λ ¼ mA0 .

Benchmark

EFT EFT (v-improved)

jΛj [GeV] c̄u c̄d;l Λ [GeV] c̄u c̄d;l c̄γ

D1 100 −0.744 −0.744 300 0.082 0.082 1.61 × 10−4

D2 448 0.000 0.065 450 0.000 0.065 4.16 × 10−6

D3 99 0.465 −46.5 500 0.018 −1.835 1.05 × 10−4

D4 142 0.003 0.003 500 0.000 0.000 1.48 × 10−4

TABLE V. Normalized tree-level couplings of the light Higgs in our 2HDM benchmarks.

Benchmark

ΔV Δt Δb ¼ Δτ

2HDM EFT (both) 2HDM EFT EFT (v-improved) 2HDM EFT EFT (v-improved)

D1 −0.05 0.00 0.16 −0.74 0.08 0.16 −0.74 0.08
D2 0.00 0.00 0.00 0.00 0.00 0.07 0.07 0.07
D3 −0.02 0.00 0.00 0.46 0.02 −2.02 −46.5 −1.84
D4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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In the left panel of Fig. 2 we illustrate the coupling
deviations in gluon fusion Higgs production with a decay
h → τþτ−. The full 2HDM and the EFT give substantially
different predictions for the size of the Higgs signal but do
not affect the remaining distribution.
In addition, the charged Higgs contributes to the Higgs-

photon coupling, an effect which is mapped onto the
operator Oγ. Within the v-improved EFT, one finds

cγ ¼ −
g2ðtan β þ cot βÞ

12288π2

×

��
λ1 þ λ2 − 2λ3 þ 6λ4 þ 6λ5 − 8

m2
h0

v2

�
sinð2βÞ

þ 2ðλ1 − λ2Þ sinð4βÞ þ ðλ1 þ λ2 − 2λ3 − 2λ4 − 2λ5Þ

× sinð6βÞ
��

v
mA0

�
2

: ð31Þ

There appears no nondecoupling term of OðΛ0Þ, because
the charged Higgs loop decouples in the limit mA0 → ∞

with finite λi. If instead we keepm12 fixed and let one of the
couplings λi grow with mA0 , the charged Higgs does not
decouple. Interestingly, Eqs. (30) and (31) show that in this
model it is possible to realize alignment without decoupling
scenarios [51–54], where the limit of SM-like couplings is
achieved via very small prefactors of ðv=mA0Þ2, while the
additional Higgs states can remain moderately light—and
hence potentially within LHC reach.
For all our benchmarks we find good agreement between

the full 2HDM and the v-improved dimension-6 approach
for on-shell Higgs decays to photons. In Table VII the
rescaling of the Higgs-photon couplings shows slight
discrepancies which can nearly entirely be traced back
to the different couplings of the Higgs to the top and bottom
in the loop due to the inaccurate truncation and are not
related to the H� contribution.
This changes for off-shell Higgs production. At mγγ≳

2mH� , the H� in the loop can resolve the charged Higgs,
enhancing the size of its contribution significantly. This
effect is not captured by the effective operator and leads to a
different behavior of the amplitude gg → h0 → γγ between
the full and effective model, as shown in the right panel of
Fig. 2. However, the tiny rate and the large combinatorial
background mean that this discrepancy will be irrelevant
for LHC phenomenology. Similar threshold effects have
been computed for the top-induced Higgs-gluon coupling
and appear to be similarly irrelevant in practice [67].
The situation in Higgs pair production resembles the

observations in the singlet model. The agreement can be
worse already at threshold if the inaccurate truncation leads
to differences in the Higgs-top couplings between the full
and effective model.
Leaving the discussion of individual benchmarks behind,

in Fig. 3 we demonstrate how deviations in the signal rates

TABLE VI. Cross section ratios of the matched dimension-6
EFT approximation to the full 2HDM at the LHC. We show the
leading Higgs production channels for all 2HDM benchmark
points. The statistical uncertainties on these ratios are below
0.4%.

Benchmark

σv-improved EFT=σ2HDM

ggF WBF Vh

D1 0.872 1.109 1.108
D2 1.001 1.000 1.000
D3 1.022 1.042 1.042
D4 1.001 1.001 1.003
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FIG. 2. Left: mττ distribution in the gluon fusion (ggF) h0 → τþτ− channel. Right: Off-shell behavior of the process ppðggÞ →
h0 → γγ in 2HDM benchmark D1, only taking into account the Higgs diagrams. At mγγ ≳ 2mH� ¼ 700 GeV, the charged Higgs
threshold is visible.
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μp;d can be correlated; cf. Ref. [24]. The upper panels
illustrate the dependence on the decoupling parameter
sinðβ − αÞ. In all cases we choose tan β ¼ 1.5, m12 ¼ 0,
degenerate heavy Higgs masses mH�;H0;A0 ¼ 500 GeV,
and restrict ourselves to sinðβ − αÞ ≥ 0.98. All signal
strength deviations are obtained by rescaling the SM
production cross section, branching ratio and total
width [68].

In the limit sinðβ − αÞ → 1 or ΔV → 0 we find perfect
agreement between the full model and the v-improved
dimension-6 model. The latter also captures the nondecou-
pling part of the Higgs-photon coupling in the SM limit,
μγγ ≠ 1. Away from the SM-like limit the dimension-6
model slightly overestimates the signal strengths. This can
for instance be attributed to ΔV ; it remains zero in the EFT
while it decreases via Oðv4=Λ4Þ corrections in the full

TABLE VII. Normalized couplings of the light Higgs to gluons and photons in our 2HDM benchmarks.
The bottom loop leads to small imaginary parts of Δg and Δγ . For the Higgs-photon coupling, these imaginary parts
are always smaller than 1% of the real part of the amplitude and neglected here. The numbers in parentheses ignore
the modification of the Higgs-fermion couplings, allowing us to separately analyze how well the H� loop is
captured by Oγ.

Benchmark

Δg Δγ

2HDM EFT (v-improved) 2HDM EFT (v-improved)

D1 0.16þ 0.00i 0.08þ 0.00i −0.16 (−0.05) −0.10 (−0.07)
D2 0.00þ 0.00i 0.00þ 0.00i 0.00 (0.00) 0.00 (0.00)
D3 0.07 − 0.09i 0.02þ 0.00i −0.08 (−0.05) −0.05 (−0.05)
D4 0.00þ 0.00i 0.00þ 0.00i −0.05 (−0.05) −0.05 (−0.05)
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FIG. 3. Signal strength modifications in the 2HDM. The solid lines show the full model, while the dashed lines give the EFT
predictions. Top: Signal strength μp;d for different Higgs production modes and decay channels in exemplary 2HDM setups, as a
function of sinðβ − αÞ. In the upper horizontal axis we track down the distance with respect to the SM-like limit through the coupling
shift ΔV (27). Bottom: Signal strength correlations μp1;d1 versus μp2;d2 between different channels for variable sinðβ − αÞ.
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model. Through theW loop this is also the main reason for
the deviation in the γγ final states. Truncated negative
Oðv4=Λ4Þ corrections to Δτ are also in part responsible for
the slight upward shift of μggF;ττ in the dimension-6 model.
The behavior of the down-type Yukawas in type-II models,
which are governed byΔb;τ¼−cosðβ−αÞtanβþOðv4=Λ4Þ,
leads to the strongly increased γγ rates at large tan β, a
feature which is well reproduced by the EFT.
Eventually, the 2HDM discussion leads us to the same

conclusion as the singlet model: as long as the mixing is
small, the new resonances do not contribute significantly; all
the LHC probes in single Higgs production is a set of three
coupling modifications Δx. New Lorentz structures do not
play any role for the models considered. Barring the special
case of Higgs pair production [65,69] the EFT captures most
relevant aspects of Higgs phenomenology. A naive con-
struction of the EFT by matching the effective dimension-6
Lagrangian to the 2HDM in the gauge symmetric phase fails
to correctly describe the modified Higgs boson dynamics in
typical 2HDM scenarios, since formally suppressed terms in
v2=Λ2 as well as delayed decoupling or additional scales can
become important for the phenomenologically relevant
scenarios to be tested at the LHC.

C. Scalar top partners

New colored scalar particles are, strictly speaking, not an
extension of the SM Higgs sector, but they can lead to
interesting modifications of the LHC observables. We
consider a scalar top-partner sector mimicking the top
squark and sbottom sector of the MSSM. Its Lagrangian
has the form

L ⊃ ðDμ
~QÞ†ðDμ ~QÞ þ ðDμ~tRÞ�ðDμ~tRÞ − ~Q†M2 ~Q −M2~t�R~tR

− κLLðϕ · ~QÞ†ðϕ · ~QÞ − κRRð~t�R~tRÞðϕ†ϕÞ
− ½κLRM~t�Rðϕ · ~QÞ þ H:c:�: ð32Þ

Here, ~Q and ~tR are the additional isospin doublet and
singlet, respectively, in the fundamental representation of
SUð3ÞC. Their mass terms can be different, but for the sake
of simplicity we unify them to a single heavy mass scaleM.
The singlet state ~bR is assumed to be heavier and integrated
out. This leaves us with three physical degrees of freedom,
the scalars ~t1, ~t2 and ~b2 ¼ ~bL. The eigenvalues of the top
squark mass matrix 

κLL
v2
2
þM2 κLR

vMffiffi
2

p

κLR
vMffiffi
2

p κRR
v2
2
þM2

!
ð33Þ

define two massesm~t1 < m~t2 and a mixing angle θ~t. Again,
we provide a detailed description of the model setup in
Appendix A 4.
The main new physics effects in the Higgs sector are

loop-induced modifications of the Higgs interactions, most
significantly to Δg, Δγ ,ΔV , possibly including new Lorentz
structures. The Yukawa couplings do not change at one

loop, because we do not include gauge boson partners. As a
side remark, the 2HDM described in Sec. III B combined
with the scalar top partners given here corresponds to the
effective description of the Minimal Supersymmetric
Standard Model in the limit of infinitely heavy gauginos,
sleptons, and light-flavor squarks.
Adding the top parters, the correction to the hVV

coupling in the limit of small θ~t scales like

ΔV ≈
κ2LL
16π2

�
v
m~t1

�
2

: ð34Þ

This shift can be sizable for relatively low top squark and
sbottom masses but also for large couplings κij to the Higgs
sector.
As already noted for the 2HDM, the decoupling of the

heavy scalars becomes nontrivial in the presence of a Higgs
VEV. Following Eq. (33) the masses of the heavy scalar are
not only controlled byM in the gauge symmetric phase, but
they receive additional contributions of the type κLRvM,
κLLv2, or κRRv2 after electroweak symmetry breaking. This
leads to a mass splitting of order v between masses of order
M. Large values of κLR increase this splitting. This means
that in the full model the decoupling is best described in
terms of m~t1 < M.
This motivates us to again define two different matching

schemes. First, we stick to our default prescription and
carry out the matching of the linear EFT Lagrangian to the
full model in the unbroken phase. The matching scale Λ is
then dictated by the intrinsic heavy field mass scale M and
completely unrelated to v. The suppression scale of loop
effects in the complete model and this matching scale in the
EFT only agree in the limit M −m~t1 ≪ M.
In this dimension-6 approach the top squark loops

generate a number of operators:

c̄g¼
m2

W

24ð4πÞ2M2
½κLLþ κRR− κ2LR�;

c̄γ ¼
m2

W

9ð4πÞ2M2
½κLLþ κRR− κ2LR�;

c̄B ¼−
5m2

W

12ð4πÞ2M2

�
κLL−

31

50
κ2LR

�
;

c̄W ¼ m2
W

4ð4πÞ2M2

�
κLL−

3

10
κ2LR

�
;

c̄HB ¼
5m2

W

12ð4πÞ2M2

�
κLL−

14

25
κ2LR

�
;

c̄HW ¼−
m2

W

4ð4πÞ2M2

�
κLL−

2

5
κ2LR

�
;

c̄H ¼ v2

4ð4πÞ2M2

�
2κ2RR− κ2LL−

�
κRR−

1

2
κLL

�
κ2LRþ

κ4LR
10

�
;

c̄T ¼
v2

4ð4πÞ2M2

�
κ2LL−

κLLκ
2
LR

2
þ κ4LR

10

�
: ð35Þ
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In addition, we define a v-improved matching at the scale
Λ ¼ m~t1 in the broken phase. The Wilson coefficients we
obtain are the same as in Eq. (35), except thatM is replaced
by m~t1.
Unlike in the previous two models, the top-partner loops

not only induce modifications to the SM Higgs couplings
but induce new Lorentz structures. In Table VIII we define
a set of parameter space configurations, all with light and
almost degenerate states and small mixing. The corre-
sponding Wilson coefficients in our two matching schemes
are given in Table IX. Unrealistic parameter choices with
strong couplings are necessary to generate sizable loop
corrections to the hVV couplings [70]. For fixed masses
and mixing, the Higgs couplings to the top partners depend
on the interplay between M2 and the coupling constants κ.
For small mixing and large M2, light top-partner masses
require large four-scalar couplings κii. Conversely, if M2 is
close to the physical masses, the Yukawa couplings can
be small. This illustrates the balance between the VEV-
dependent (nondecoupling) and the explicit (decoupling)
mass contributions.
Since the contributions from scalar top partners to the

Higgs production in gluon fusion are well known [71], we
focus on corrections to the hVV coupling in WBF and
Higgs-strahlung, shown in Table X. In benchmark P1 the
WBF cross section is reduced by about 0.6% compared to
the Standard Model, with good agreement between effec-
tive and full descriptions. Such a scenario is not relevant for
LHC measurements in the foreseeable future. In more
extreme corners of the parameter space the loop effects in
the full model grow, higher-dimensional terms in the EFT
become larger, the validity of the latter worsens, and
discrepancies between both increase. In benchmarks P2
and P3 the WBF rate is reduced by 9.1% and 43.5%,

respectively, with respect to the Standard Model. In the left
panel of Fig. 4 we show that this change in the total rate
does not have dramatic effects in the kinematic distribu-
tions. By construction, the EFT based on the default
matching captures only the formally leading term at
Oðv2=Λ2Þ, only giving a reduction of 0.5% and 2.0%.
The corresponding difference is again independent for
example of the tagging jet’s transverse momentum. With
the v-improved matching, the cross section is reduced by
2.4% and 17.7%, still far from the result of the full model.
The results for Higgs-strahlung look similar: in the

moderate benchmark P1 the predictions of the full model
and the dimension-6 Lagrangian agree within 0.1%, but in
this scenario the overall deviation from the Standard Model
is negligible. In scenarios with larger loop effects, the
dimension-6 predictions fails to capture most of the full
top-partner loops. We demonstrate this in the right panel of
Fig. 4. As for WBF, the agreement between EFT and full
model becomes even worse in benchmark P3, with numeri-
cal results similar to those given for WBF Higgs produc-
tion. Again the v-improved matching performs better than
the default matching.
To summarize, the top-partner model for the first time

generates a large set of dimension-6 operators through
electroweak loops. However, in realistic scenarios with a
large scale separation the loop corrections for example to
the hVV vertex are tiny. Pushing for loop effects that are
large enough to leave a visible imprint in WBF and Higgs-
strahlung requires breaking the scale separation between
the observed Higgs scalar and the top partners. In that case
the EFT fails already for the total rates, and kinematic
distributions hardly add to this discrepancy.

D. Vector triplet

Heavy vector bosons appear in many new physics
scenarios and possibly also in data [72]. Their properties
can be tested in Higgs measurements, provided they are
connected to the gauge-Higgs sector of the Standard Model
[14,73,74]. For these analyses the key property of new
vector resonances are their SM charges. We analyze a
massive vector field Va

μ which is a triplet under SUð2Þ,
couples to a scalar and fermion currents, and kinetically
mixes with the weak gauge bosons of the Standard Model
[14,74]. The Lagrangian includes the terms

TABLE VIII. Scalar top-partner Lagrangian parameters (left)
and physical parameters (right) for representative model bench-
marks. All masses are in GeV.

Benchmark

Scalar top-partner model

M κLL κRR κLR m~t1 m~t2 θ~t

P1 500 −1.16 2.85 0.147 500 580 −0.15
P2 350 −3.16 −2.82 0.017 173 200 −0.10
P3 500 −7.51 −7.17 0.012 173 200 −0.10

TABLE IX. Matching scales (in GeV) and selected Wilson coefficient for the top-partner benchmarks, both for
default and v-improved matching.

Benchmark

EFT EFT (v-improved)

Λ c̄H c̄W c̄HW Λ c̄H c̄W c̄HW

P1 500 0.0062 −3.11 × 10−7 3.99 × 10−7 500 0.0062 −3.11 × 10−7 3.99 × 10−7

P2 350 0.0043 −2.55 × 10−4 2.55 × 10−4 173 0.0176 −1.04 × 10−3 1.04 × 10−3

P3 500 0.0166 −2.97 × 10−4 2.97 × 10−4 173 0.1388 −2.48 × 10−3 2.48 × 10−3
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L⊃−
1

4
Va
μνVμνaþM2

V

2
Va
μVμaþ i

gV
2
cHVa

μ½ϕ†σaD
↔μ

ϕ�

þ g2w
2gV

Va
μ

X
fermions

cFF̄Lγ
μσaFLþ

gV
2
cVVVϵabcVa

μVb
νD½μVν�c

þg2VcVVHHVa
μVμaϕ†ϕ−

gw
2
cVVWϵabcWμνVb

μVc
ν: ð36Þ

The new field-strength tensor is Va
μν ¼ DμVa

ν −DνVa
μ

and the covariant derivative acts on the triplet as DμVa
ν ¼∂μVa

ν þ gVϵabcVb
μVc

ν. The coupling constant gV is the
characteristic strength of the heavy vector-mediated inter-
actions, while gw denotes the SUð2Þ weak gauge coupling. It
will turn out that cVVW and cVVV are irrelevant for Higgs
phenomenology at the LHC.We give details of the model and
the matching to the corresponding EFT in Appendix A 5.
The feature setting the vector triplet apart from the

singlet, doublet, and top-partner models is that it directly
affects the weak gauge bosons. The mixing of the new
states with theW and Z bosons has two consequences: (i) a
modification of the Higgs couplings to SM particles and
(ii) new heavy states ξ0, ξ�.

The definition of mass eigenstates from the heavy vector
and the SM-like gauge fields links the observable weak
coupling g and theLagrangian parameter gw. For the coupling
modifications this shift in the gauge coupling and the direct
heavy vector coupling to the Higgs doublet combine to

ΔV ≈
g2cFcH

4

�
v
MV

�
2

−
3g2Vc

2
H

8

�
v
MV

�
2

;

Δf ≈
g2cFcH

4

�
v
MV

�
2

−
g2Vc

2
H

8

�
v
MV

�
2

: ð37Þ

The contribution from the shift in the weak coupling is
identical for both coupling modifications. In addition, con-
tributions from virtual heavy states ξmodify the phase-space
behavior of Higgs signals in many ways.
Just as for the 2HDM and the top partners, the mass

matrix for the massive vectors contains both the heavy scale
MV , which will eventually become the matching scale, and
terms proportional to some power of v multiplied by
potentially large couplings. The new vector states have
roughly degenerate masses

m2
ξ

M2
V
≈ 1þ g2VcVVHH

�
v
MV

�
2

þ g2Vc
2
H

4

�
v
MV

�
2

: ð38Þ

Even if there appears to be a clear scale separation
MV ≫ v, large values of gV , cVVHH, or cH can change
mξ significantly and effectively induce a second mass scale.
Just as for the top partners, a problem for the dimension-6
approach arises from virtual ξ diagrams contributing for
example to WBF Higgs production. If mξ < MV ≡ Λ, the
lightest new particles appearing in Higgs production
processes have masses below the matching scale of the
linear representation. The way out of a poor agreement
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FIG. 4. Kinematic distributions for the top-partner model in benchmark P2. Left: Tagging jet properties in WBF Higgs production.
Right: mVh distribution in Higgs-strahlung.

TABLE X. Cross section ratios of the matched dimension-6
EFT approximation to the full scalar top-partner model at the
LHC. We give the results both for the default matching scheme
with matching scale Λ ¼ M as well as for the v-improved
matching at Λ ¼ m~t1 . The statistical uncertainties on these ratios
are below 0.4%.

Benchmark

σEFT=σtriplet σv-improved EFT=σtriplet

WBF Vh WBF Vh

P1 1.000 0.999 1.000 0.999
P2 1.095 1.100 1.074 1.049
P3 2.081 1.904 1.749 1.363
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between the full model and its dimension-6 description is
again switching to a v-improved matching in the broken
phase with matching scale Λ ¼ mξ.
Integrating out the heavy vector triplet at tree level leaves

us with dimension-6 Wilson coefficients

c̄H ¼ 3g2v2

4M2
V

�
c2H

g2V
g2

−2cFcH

�
; c̄6 ¼

g2v2

M2
V

�
c2H

g2V
g2

−2cFcH

�
;

c̄f ¼
g2v2

4M2
V

�
c2H

g2V
g2

−2cFcH

�
; c̄W ¼−

m2
W

M2
V
cFcH;

ð39Þ
and four-fermion contributions that are irrelevant for Higgs
physics. Additional loop-induced contributions will be
further suppressed and do not add qualitatively new features,
so we neglect them. As in the 2HDM, we compare this
default matching to an alternative v-improved matching with
matching scale Λ ¼ mξ0 . The coefficients in Eq. (39) remain
unchanged, except that MV is replaced by mξ0.
The main phenomenological features of this model

reside in the Higgs-gauge interactions. In the dimension-
6 description, these modifications are mapped (among
others) onto OW , which induces momentum-dependent
changes to the hWW and hZZ couplings. Therefore, our
analysis focuses on WBF Higgs production and Higgs-
strahlung, where the intermediate t-channel and s-channel
gauge bosons can transfer large momenta.
As for the other models we study a set of benchmark

points, defined in Tables XI and XII. Some of them are
meant to emphasize the phenomenological possibilities of
the vector triplet model. For those we ignore experimental
constraints or parameter correlations from an underlying
UV completion:

[T1–T2] All dimension-6 EFT operators except for OW
vanish along the line cH=cF ¼ 2g2=g2V . We aim
for a large effect only in the hVV couplings.
The large couplings induce different scalesMV
and mξ.

[T3] The sign in front of OW changes on another line
in the ðcH; cFÞ space. The remaining operators do
not vanish.

[T4] The vector triplet couplings and masses satisfy the
leading constraints from direct collider searches.
For weak couplings (gV ≤ 1) resonances typically
decaying to dilepton and neutrino final states have
to stay above 3 TeV. For the strongly interacting
case (gV > 1) decays to dibosons tend to exclude
masses below 1–1.5 TeV [74,75].

[T5] Aweakly coupled UV completion can be based on
the gauge group SUð3Þ × SUð2Þ × SUð2Þ ×Uð1Þ
[76], arising for instance from deconstructed extra
dimensions [77]. Its vector triplet phenomenology
is effectively described by the parameter α ¼
gV=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2V − g2w

p
together with the symmetry break-

ing scale f [74]:

M2
V ¼ α2g2Vf

2; cH ¼ −α
g2w
g2V

;

cVVHH ¼ α2
�
g4w
4g4V

�
; cF ¼ −α; cVVW ¼ 1;

cVVV ¼ −
α3

gV

�
1 −

3g2w
g2V

þ 2g2w
g4V

�
: ð40Þ

In Fig. 5 we show a set of kinematic distributions in WBF
Higgs production. In addition to the predictions of the full
vector triplet model and the matched EFT, we show distri-
butions of the vector triplet model without contributions from
ξ propagators. The corresponding production cross section
ratios between full vector triplet model and EFT are given in
Table XIII. For the full model we observe a significant
modification of the rate relative to the Standard Model,
especially towards large momentum transfers. They can be
traced to the ξ fusion and mixed W-ξ fusion diagrams,
which increase strongly with energy. In comparison, the
modification of the hWW coupling only leads to a relatively
mild rescaling. These contributions from ξ propagators can

TABLE XI. Benchmark points for the vector triplet model.

Benchmark

Triplet model

MV [GeV] gV cH cF cVVHH mξ [GeV]

T1 591 3.0 −0.47 −5.0 2.0 1200
T2 946 3.0 −0.47 −5.0 1.0 1200
T3 941 3.0 −0.28 3.0 1.0 1200
T4 1246 3.0 −0.50 3.0 −0.2 1200
T5 846 1.0 −0.56 −1.32 0.08 849

TABLE XII. Matching scales and Wilson coefficients for the effective theory matched to the vector triplet model. We give these results
both for the EFT matching in the unbroken phase as well as for the v-improved matching with Λ ¼ mξ0 .

Benchmark

EFT EFT (v-improved)

Λ [GeV] c̄W c̄H c̄6 c̄f Λ [GeV] c̄W c̄H c̄6 c̄f

T1 591 −0.044 0.000 0.000 0.000 1200 −0.011 0.000 0.000 0.000
T2 946 −0.017 0.000 0.000 0.000 1200 −0.011 0.000 0.000 0.000
T3 941 0.006 0.075 0.100 0.025 1200 0.004 0.046 0.061 0.015
T4 1246 0.006 0.103 0.138 0.034 1200 0.007 0.111 0.149 0.037
T5 846 −0.007 −0.020 −0.027 −0.007 849 −0.007 −0.020 −0.027 −0.007
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become relevant already at energy scales well belowmξ. The
weak boson virtualities inducing a momentum flow into the
Higgs coupling are not the only source of deviation from
the Standard Model; the azimuthal correlation between the
tagging jets is well known to be sensitive to the modified
Lorentz structure of the hWW vertex [19].
Qualitatively, the dimension-6 approach captures the

features of the full model, driven by OW. In T1 and T2
a negative Wilson coefficient yields a nonlinear increase of
the cross section with energy. Conversely, the positive
coefficient in T3 reduces the rate with energy, eventually
driving the combined amplitude through zero.
Comparing full and effective model for the more realistic

benchmark points T4 and T5 we see good agreement in
the bulk of the distribution. The deviations from the Standard
Model are captured by the dimension-6 operators, including
the momentum dependence coming from the ξ diagrams.

Only at very large momentum transfer the validity of the
EFT breaks down. For our realistic benchmark points the
LHC is likely not sensitive to these subtle effects.
In the more strongly coupled benchmark points T1–T3,

the full model predicts shifts in the jet distributions that are
large enough to be relevant for the upcoming LHC run. We
find good agreement between the full model and the default
EFT only at low momentum transfer, where the effects of
new physics are small. In particular in benchmark T1,
this naive dimension-6 approach loses its validity already
around pT;j ≳ 80 GeV, a phase-space region highly rel-
evant for constraints on new physics [7].1 This does not
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FIG. 5. Tagging jet distributions in WBF Higgs production in the vector triplet model. Top: pT;j1 distribution in benchmark T1,
focusing on the low (left) and high (right) transverse momentum regions. Bottom left: Δϕjj distribution above a certain pT;j1 threshold
for T1. Bottom right: pT;j1 distribution for scenario T5.

1Note, however, that these scenarios are already in tension with
bounds from electroweak precision observables, but we never-
theless show them to illustrate the qualitative aspects of EFT
breakdown.
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signal a breakdown of the E=Λ expansion, but a too large
civ2=Λ2. It is linked to the difference between the scalesmξ

and MV as given in Eq. (38), which the default matching
procedure is blind to. Indeed, with the v-improved
matching the agreement is significantly better, and the

dimension-6 description departs from the full model only at
high energies, pT;j1 ≳ 300 GeV.
The situation is similar in Higgs-strahlung, shown in

Fig. 6. In the full model the ξ propagators again dominate
over the modified hWW interaction. In addition, the
interference with the ξ-mediated diagrams leads to a
significant change of the rate and introduces a momentum
dependence already far below the actual resonance. The
relative sign of the interference between ξ amplitudes and
SM-like diagrams is opposite to that in WBF.
In the EFT the operator OW induces the corresponding

strong energy dependence. A positive Wilson coefficient
leads to a nonlinear increase of the cross section with the
energy scale, probed by either mVh or the pT;V . A negative
coefficient leads to a decreasing amplitude with energy,
including a sign flip. Like for the full model, these OW
terms have the opposite effect on the rate as in WBF.
The full and effective models agree relatively well in the

more weakly coupled benchmarks at low energies. In the

TABLE XIII. Cross section ratios of the matched dimension-6
EFT approximation to the full vector triplet at the LHC. To avoid
large contributions from the ξ resonance in the Vh channel, we
only take into account the regionmVh < 600 GeV. The statistical
uncertainties on these ratios are below 0.4%.

Benchmark

σEFT=σtriplet σv-improved EFT=σtriplet

WBF Vh WBF Vh

T1 1.299 0.299 0.977 0.794
T2 1.045 0.737 0.992 0.907
T3 0.921 1.066 0.966 1.024
T4 1.026 0.970 1.012 0.978
T5 1.001 1.043 1.002 1.043
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FIG. 6. Higgs-strahlung distributions in the vector triplet model. Top: mVh distribution for benchmark T2, focusing on the low (left)
and high (right) invariant mass regions. Bottom left: pT;V distribution for the same benchmark. Bottom right: mVh distribution for T4.
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realistic scenarios T4 and T5, this agreement extends over
the most relevant part of the phase space, and the EFT
successfully describes how the ξ propagators shift the Higgs-
strahlung kinematics. With increasing energy, momentum-
dependent effects in both the full model (due to the
resonance) and the EFT (due to OW) become more relevant.
While the sign of the effect is the same in full model and
EFT, the size and energy dependence is different, and the
EFT eventually fails to be a good approximation. At even
higher energies, the “dips” at different energies in the full
model and EFT as well as the ξ resonance in the full model
mark the obvious failure of the effective theory.
For benchmarks T1–T3, where the effects are numeri-

cally much more relevant for the LHC, the range of
validity of the default EFT is limited. The couplings are so
large that in spite of a resonance mass mξ ∼ 1 TeV the
dimension-6 description already fails at mVh ≳ 220 GeV.
Switching to the v-improved matching again ameliorates
the dimension-6 approximation. Even then, this mismatch
between full model and EFT is more pronounced in
Higgs-strahlung than in WBF, because ξ contributions
play a larger role in these s-channel diagrams than in the
t-channel WBF amplitudes.
In Fig. 7 we again go beyond individual benchmark points

and examine the agreement between full model and its
dimension-6 description in terms of signal strengths, corre-
lated for different Higgs production modes and decay
channels. For definiteness, we assume vector triplet param-
eters in line with the benchmarks T1 and T2 and vary the
heavy vector mass scaleMV ¼ 0.5…5 TeV. The dimension-
6 coefficients are based on the default matching.
The huge deviations in the WBF signal strength are due

to the sizable momentum-dependent effects in the fusion

process. As discussed above, this behavior is poorly
captured by the EFT for large vector couplings and fails
dramatically for light mass scales. The same differences
are visible from the different trajectories in the correlated
signal strength plane, shown in the left panel. The mild
offset from μp;γγ ¼ 1 in the limit MV ≫ v can be traced
back to the nondecoupling ξ�-mediated contribution to
the hγγ loop. The OðcFcHv4=m4

VÞ contributions of
dimension 8 and higher are responsible for the additional
upward enhancement of the fermion Yukawas in the full
model, which is in particular visible for μgg;ττ, where
the full model predictions systematically surpass the EFT.
Finally, we find that an enhanced top-W interference in
Δγ pulls the full model γγ rates below the dimension-
6-based predictions. The accidental counterbalance of
the higher-dimension effects missing in the EFT
explains the remarkable agreement with the full model
for μggF;γγ.
Like the additional scalar models discussed before, the

vector triplet model offers regions in parameter space
where the EFT works up to large momentum transfer for
realistic scenarios. It successfully captures the virtual ξ
contributions in the momentum-dependent contribution
from OW , but these numerical effects are small. Relevant
effects for the LHC occur if the separation of scales is
spoiled by large couplings or light new particles. In this
case we find substantial dimension-6 departures from the
full model predictions for example in the bulk of the WBF
distributions, which typically further increase with the
energy scale. A modified dimension-6 description incor-
porating v-dependent effects improves the EFT accuracy
such that large deviations only occur in the high-energy
tails of distributions.
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FIG. 7. Signal strength modifications in the vector triplet. The solid lines show the full model, while the dashed lines give the
dimension-6 predictions for the default matching. Left: Signal strength μp;d for different Higgs production modes and decay channels for
an exemplary vector triplet setup as a function ofMV . In the upper horizontal axis we show the deviation from the SM-like limit through
the coupling shift ΔV , Eq. (37). Right: Signal strength correlations μp1;d1 versus μp2;d2 between different channels for variable MV .
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IV. SUMMARY

An effective field theory for the Higgs sector offers
a theoretically well-defined, efficient, and largely
model-independent language to analyze extensions of
the Standard Model in both rate measurements and
kinematic distributions. A fit of dimension-6 operators
to LHC Higgs measurements works fine [7] and
constitutes the natural extension of the Higgs couplings
analyses of run I. Most of the relevant higher-
dimensional operators correspond to simple coupling
modifications, supplemented by four operators describ-
ing new Lorentz structures in the Higgs coupling to
weak bosons [7].
In this paper we have studied the validity of this

approach from the theoretical side. We know that at the
LHC a clear hierarchy of electroweak and new physics
scales cannot be guaranteed; the question is whether
dimension-6 operators nevertheless capture the phenom-
enology of specific UV-complete theories with sufficient
accuracy. We have systematically compared a singlet
Higgs portal model, a two-Higgs-doublet model, scalar
top partners, and a heavy vector triplet to their dimension-6
EFT descriptions, based on the linear realization of
electroweak symmetry breaking with a Higgs doublet. We
have analyzed the main Higgs production and decay sig-
natures, covering rates as well as kinematic distributions.
We have found that the dimension-6 operators provide an

adequate description in almost all realistic weakly coupled
scenarios. Shifts in the total rates are well described by
effective operators. Kinematic distributions typically do not
probe weakly interacting new physics with sufficient
precision in the high-energy tails to challenge the effective
operator ansatz. This is obvious for the extended scalar
models, where new Lorentz structures and momentum-
dependent couplings with dramatic effects in LHC distri-
butions only appear at the loop level. A loop-suppressed
effective scale suppression E2=ð4πΛÞ2 has to be compared
with on-shell coupling modifications proportional to
v2=Λ2. Only phase-space regions probing energies around

4πv ≈ 3 TeV significantly constrain loop contributions in
the Higgs sector and eventually lead to breakdown of
the effective field theory. In turn, a simple dimension-6
descriptions will capture all effects that are expected to be
measurable with sufficient statistics at the LHC run II.
On the other hand, the vector triplet model shows that
modifications of the gauge sector can generate effects in
LHC kinematics at tree level. However, we again find that
for weakly interacting models and phenomenologically
viable benchmark points they are described well by an
appropriate set of dimension-6 operators.
Three sources for a possible breakdown of the

dimension-6 description are illustrated in Table XIV2:
First, the EFT cannot describe light new resonances. Such a
signature at the LHC would be an obvious signal to stop
using the EFT and switch to appropriate simplified models.
Second, selected kinematic distributions fail to be described
by the dimension-6 Lagrangian, in particular for Higgs
pair production. Deviations in the high-energy tails of
WBF and Higgs-strahlung distributions on the other hand
are too small to be relevant in realistic weakly coupled
scenarios. These two cases do not threaten LHC analyses in
practice.
The third issue with the dimension-6 EFT description is

linked to matching in the absence of a well-defined scale
hierarchy. Even with only one heavy mass scale in the
Lagrangian, the electroweak VEV together with large
couplings can generate several new physics scales,
defined by the masses of the new particles. A linear
EFT description, which is justified by the SM-like proper-
ties of the newly discovered Higgs boson, should in
principle be matched in the phase where the electroweak
symmetry is unbroken. Such a procedure is blind to
additional scales induced by the electroweak VEV,
potentially leading to large errors in the dimension-6

TABLE XIV. Possible sources of failure of dimension-6 Lagrangian at the LHC. We use parentheses where
deviations in kinematic distributions appear but are unlikely to be observed in realistic scenarios.

Model Process

EFT failure

Resonance Kinematics Matching

Singlet On-shell h → 4l, WBF, Vh, … ⨯
Off-shell WBF, … (⨯) ⨯
hh ⨯ ⨯ ⨯

2HDM On-shell h → 4l, WBF, Vh, … ⨯
Off-shell h → γγ, … (⨯) ⨯
hh ⨯ ⨯ ⨯

Top partner WBF, Vh ⨯
Vector triplet WBF (⨯) ⨯

Vh ⨯ (⨯) ⨯

2Forcing the EFT approach into a spectacular breakdown was
the original aim of this paper, but to our surprise this did not
happen.
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approximation. Including v-dependent terms in the
Wilson coefficients, which corresponds to matching in
the broken phase, can significantly improve the EFT
performance. We have explicitly demonstrated this for
all the models considered in this paper.
Barring the detection of new light resonances, none of

these complications with the dimension-6 description
presents a major problem in using effective operators to
fit LHC Higgs data. Most of them are purely theoretical
issues that only need to be considered for the interpretation
of the results.
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APPENDIX: MODELS AND MATCHING

1. Operator bases

As mentioned in Sec. II A, we here adopt the notation
and conventions of Ref. [41], which is based on the SILH
framework with the decomposition and normalization of
the Wilson coefficients defined in Ref. [32]. For our
purposes, it is enough to single out the subset that encodes
all possible new physics contributions to the Higgs sector
compatible withCP conservation and the flavor structure of
the SM. These are given in Table XVand correspond to the
Lagrangian in Eq. (3).
The conventions for how covariant derivatives act on the

Higgs, fermion and gauge vector fields are fixed as follows:

Dμϕ ¼ ∂μϕ −
ig0

2
Bμϕ − ig

σa

2
Wa

μϕ;

DμFL ¼ ∂μFL − ig0
YFL

2
BμFL − ig

σa

2
Wa

μFL;

DμVa
ν ¼ ∂μVa

ν þ gεabcWb
μVc

ν;

DμWa
νρ ¼ ∂μWa

νρ þ gεabcWb
μWc

νρ: ðA1Þ

While the effective Lagrangian in Eq. (3) is written in
terms of the fundamental SM gauge fields, the connection
to physics observables is more easily seen in the mass-
eigenstate basis, which we can write as

L ⊃ −
m2

H

2v
gð1ÞHHHHHH þ 1

2
gð2ÞHHHHð∂μHÞð∂μHÞ − 1

4
gggHGμνAGA

μνH −
1

4
gγγHFμνFμνH −

1

4
gð1ÞZ ZμνZμνH − gð2ÞZ Zν∂μZμνH

þ 1

2
gð3ÞZ ZμZμH −

1

2
gð1ÞW WμνW†

μνH − ½gð2ÞW Wν∂μW†
μνH þ H:c:� þ gð3ÞW mWW

†
μWμH

−
�
gu

1ffiffiffi
2

p ðūPRuÞH þ gd
1ffiffiffi
2

p ðd̄PRdÞH þ gl
1ffiffiffi
2

p ðl̄PRlÞH þ H:c:

�
; ðA2Þ

with the different effective couplings gi quoted in Table XVI.
More details on the notation and conventions can be found in
Ref. [41].
Note that the Higgs-fermion coupling shift is given by

gf ∝ yfð1 − c̄H=2þ 3c̄f=2Þ, but Ôf also shifts the fermion
masses to mf ¼ yfvð1þ c̄f=2Þ=

ffiffiffi
2

p
, yielding the result

given above. Similarly, ÔH and Ôγ generate additional
contributions to the Higgs-boson and gauge-boson kinetic
terms, which are restored to their canonical form by the
field redefinitions

H → H

�
1 −

1

2
cH

�
;

Zμ → Zμ

�
1þ 4s4w

c2w
cγ

�
;

Aμ → Aμð1þ 4s2wcγÞ − Zμ

�
8s3w
cw

cγ

�
: ðA3Þ

None of the operators considered in this basis affects the
relations between g, mW , v and GF, so the SM relations

mW ¼ gv
2
; GF ¼

ffiffiffi
2

p
g2

8m2
W

¼ 1ffiffiffi
2

p
v2

ðA4Þ

can always be used to translate these coupling shifts from
one scheme of input parameters to another.
Dimension-6 operators result in a modified pattern of

Higgs interactions, leading to coupling shifts gxxH ≡
gSMxxHð1þ ΔxÞ and also genuinely novel Lorentz structures.
Interestingly, in general more than one of the effective
operators in Table XV contributes to a given Higgs
interaction in the mass basis, implying that it is in general
not possible to establish a one-to-one mapping between
Wilson coefficients and distorted Higgs couplings.
Note that the Wilson coefficients of the operators ÔT

and ÔB þ ÔW are strongly constrained by electroweak
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precision data [32]. In this work, we allow ourselves, on
occasion, to ignore these bounds to more distinctly illus-
trate the effects in the Higgs sector.
Translations between effective operator bases can be

performed with the help of equations of motion, field
redefinitions, integration by parts and Fierz identities. Here
we quote a number of such relations which turn out to be
particularly useful for the practitioner. For example, in
addition to the effective operators in the SILH basis, we
often find the operators

Ôr ¼ ϕ†ϕðDμϕÞ2; Ô0
HF ¼ ðf̄LγμσafLÞðϕ†σaD

↔

μϕÞ;
ÔD ¼ ðD2ϕÞ2; Ô0

HH ¼ ðϕ†σaD
↔

μϕÞðϕ†σaD
↔

μϕÞ:
ðA5Þ

Ô0
HH can be replaced by using the completeness relation of

the Pauli matrices, which for arbitrary SUð2Þ doublets ξ, χ,
η, ψ leads to

ðξ†σaχÞðη†σaψÞ ¼
X
ijkl

ξ�i σ
a
ijχjη

�
kσ

a
klψ l

¼
X
ijkl

ð2δilδjk − δijδklÞξ�i χjη�kψ l

¼ 2ðξ†ψÞðη†χÞ − ðξ†χÞðη†ψÞ: ðA6Þ

Thus we find

Ô0
HH ¼ ðϕ†σaDμϕÞ2 þ ððDμϕ†ÞσaϕÞ2 − 2ððDμϕ†ÞσaϕÞ

× ðϕ†σaDμϕÞ
¼ ðϕ†DμϕÞ2 þ ððDμϕ†ÞϕÞ2 − 2½2ððDμϕ†ÞDμϕÞðϕ†ϕÞ
− ððDμϕ†ÞϕÞðϕ†DμϕÞ�

¼ ÔH − 4Ôr: ðA7Þ

The equation of motion for the W fields,

DνWa
μν ¼ −igϕ† σ

a

2
D
↔

μϕ − g
X
f

f̄L
σa

2
γμfL; ðA8Þ

gives rise to the identity

X
f

Ô0
HF ¼ 2

g
ÔW − iÔH þ 4iÔr: ðA9Þ

A global redefinition ϕ → ϕþ αðϕ†ϕÞϕ=v2 generates a
shift in the Wilson coefficients

cH → cH þ 2α; cr → cr þ 2α;

c6 → c6 þ 4α; cf → cf þ α; ðA10Þ
so that with the choice α ¼ −cr=2 one can eliminate the
operator Or in favor of other operators:

TABLE XVI. Subset of the dimension-6 operators which enter
the different leading-order Higgs couplings which are relevant for
LHC phenomenology, in the notation and conventions of
Ref. [41] (see text). The different superscripts denote the various
terms in the Lagrangian in Eq. (A2) and correspond to either a
SM-like interaction with a rescaled coupling strength or to
genuinely new Lorentz structures. The weak coupling constant
is written as g≡ e=sw. The SM contribution to the loop-induced
Higgs coupling to the gluons (photons) is denoted by gH (aH).

Coupling Operators Expression

gð1ÞZ ÔHB; ÔHW; Ôγ
2g

mWc2w
½c̄HBs2w − 4c̄γs4w þ c2wc̄HW �

gð2ÞZ ÔHW;ÔHB;ÔW;ÔB
g

mWc2w
½ðc̄HW þ c̄WÞc2w

þðc̄B þ c̄HBÞs2w�
gð3ÞZ ÔH; ÔT ; Ôγ

gmW

c2w
½1 − 1

2
c̄H − 2c̄T þ 8c̄γ

s4w
c2w
�

gð1ÞW ÔHW
2g
mW

c̄HW

gð2ÞW ÔHW; ÔW
g

mW
½c̄W þ c̄HW �

gð3ÞW ÔH gð1 − 1
2
c̄HÞ

gf ÔH;Ôfðf¼u;d;lÞ
ffiffi
2

p
mf

v ½1 − 1
2
c̄H þ c̄f�

gg ÔH; Ôg gH − 4c̄gg2sv
m2

W

gγ ÔH; Ôγ aH − 8gc̄γs2w
mW

gð1ÞHHH ÔH; Ô6 1þ 5
2
c̄6 − 1

2
c̄H

gð2ÞHHH ÔH
g

mW
c̄H

TABLE XV. Dimension-6 operators considered in our analysis.
These correspond to a subset of the most general effective
operator basis [32] describing new physics effects to the SM
Higgs sector with CP-invariance and SM-like fermion structures.

Higgs fields

ÔH ¼ ∂μðϕ†ϕÞ∂μðϕ†ϕÞ
Ô6 ¼ ðϕ†ϕÞ3
ÔT ¼ ðϕ†D

↔μ
ϕÞðϕ†D

↔

μϕÞ

Higgs and fermion fields

Ôu ¼ ðϕ†ϕÞðϕ† · Q̄LÞuR
Ôd ¼ ðϕ†ϕÞðϕQ̄LÞdR
Ôl ¼ ðϕ†ϕÞðϕL̄LÞlR

Higgs and gauge boson fields

ÔHB ¼ ðDμϕ†ÞðDνϕÞBμν

ÔHW ¼ ðDμϕ†ÞσkðDνϕÞWk
μν

Ôg ¼ ðϕ†ϕÞGA
μνGμνA

Ôγ ¼ ðϕ†ϕÞBμνBμν

ÔB ¼ ðϕ†D
↔μ

ϕÞð∂νBμνÞ
ÔW ¼ ðϕ†σkD

↔μ
ϕÞðDνWk

μνÞ
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Ôr↔

�
−
1

2
ÔHþ2λÔ6þ

X
f

�
1

2
yfÔfþH:c:

�	
: ðA11Þ

Finally, ÔD can be exchanged for others using the equation
of motion for ϕ:

D2ϕ ¼ −μ2ϕ − 2λϕ†ϕϕ

−
X
gen

½yuQ̄T
LuR þ ydd̄RQL þ yll̄RLL�: ðA12Þ

This leads to

ÔD ¼ μ4ϕ†ϕþ 4λμ2ðϕ†ϕÞ2 þ μ2
X
f

yff̄LϕfR

þ 4λ2ðϕ†ϕÞ3 þ 2λ
X
f

yfϕ†ϕðf̄LϕfRÞ: ðA13Þ

The first three terms lead to a renormalization of the
SM parameters μ, λ, yf, without any impact on physical
observables. The last two terms, however, mean that OD is
equivalent to the combination

ÔD ↔ 4λ2Ô6 þ 2λ
X
f

ðyfÔf þ H:c:Þ: ðA14Þ

a. HLM basis

Aside from the relatively simple case of the multi-Higgs
sector extensions, we make use of the covariant derivative
expansion [78,79] to analytically carry out the matching
between the different UV completions to their correspond-
ing EFT description. The method has been recently
reappraised in Ref. [26] and employed in a number of
studies [15,16,80,81]. By applying this method, the Wilson
coefficients are readily obtained in a different operator basis
(henceforth dubbed HLM):

LHLM ¼
X
i

ki
Λ2

O00
i : ðA15Þ

The HLM operators involving Higgs fields and their
interaction with gauge bosons are listed in Table XVII. In
addition, the HLM basis contains a subset of operators with
no direct correspondence to the bosonic SILH operators,
which must be rewritten with the help of equations of motion
and field redefinitions, as we discuss below.
The operators in Table XVII translate to the SILH

basis via

O00
H ¼ 1

2
ÔH; O00

6 ¼ O6; O00
T ¼ 1

2
ÔT;

O00
B ¼ ig0

2
ÔB; O00

W ¼ ig
2
ÔW; O00

GG ¼ g2sÔg;

O00
BB ¼ g02Ôγ; O00

WB ¼ 2ig0ÔB − 4ig0ÔHB − g02Ôγ;

O00
WW ¼ −2ig0ÔB þ 2igÔWþ 4ig0ÔHB − 4igÔHWþ g02Ôγ:

ðA16Þ

In addition, the HLM basis contains extra operators with no
SILH counterpart:

O00
R ¼ ϕ†ϕðDμϕÞ†ðDμϕÞ; O00

D ¼ ðD2ϕÞ2; ðA17Þ

which can be eliminated using Eqs. (A11) and (A14),
respectively. The Wilson coefficients ki of the HLM basis
translate to the SILH coefficients c̄i as follows:

c̄H ¼ v2

Λ2
ðkH − kRÞ; c̄B ¼ v2

Λ2

g2

4
ðkB þ 4kWB − 4kWWÞ;

c̄T ¼ v2

Λ2
kT; c̄W ¼ v2

Λ2

g2

4
ðkW þ 4kWWÞ;

c̄6 ¼ −
v2

Λ2

�
k6
λ
þ 2kR þ 4λkD

�
;

c̄HB ¼ v2

Λ2
g2ðkWW − kWBÞ; c̄g ¼

v2

Λ2

g2

4
kGG;

c̄HW ¼ −
v2

Λ2
g2kWW; c̄γ ¼

v2

Λ2

g2

4
ðkBB − kWB þ kWWÞ;

c̄f ¼ −
v2

Λ2

�
1

2
kR þ 2λkD

�
; ðA18Þ

TABLE XVII. Bosonic CP-conserving Higgs operators in the
HLM basis (left) and the HISZ basis (right). Here B̂μν ¼ ig0=2Bμν

and Ŵμν ¼ igσk=2Wk
μν.

HLM basis

O00
H ¼ 1

2
∂μðϕ†ϕÞ∂μðϕ†ϕÞ

O00
6 ¼ ðϕ†ϕÞ3

O00
T ¼ 1

2
ðϕ†D

↔μ
ϕÞðϕ†D

↔

μϕÞ
O00

B ¼ ig0
2
ðϕ†D

↔μ
ϕÞ∂νBμν

O00
W ¼ ig

2
ðϕ†σkD

↔μ
ϕÞðDνWk

μνÞ
O00

GG ¼ g2sðϕ†ϕÞGA
μνGμνA

O00
BB ¼ g02ðϕ†ϕÞBμνBμν

O00
WW ¼ g2ðϕ†ϕÞWk

μνWμνk

O00
WB ¼ gg0ðϕ†σkϕÞBμνWμνk

HISZ basis

O0
ϕ1 ¼ ðDμϕÞ†ϕϕ†ðDμϕÞ

O0
ϕ2 ¼ 1

2
∂μðϕ†ϕÞ∂μðϕ†ϕÞ

O0
ϕ3 ¼ 1

3
ðϕ†ϕÞ3

O0
GG ¼ ðϕ†ϕÞGA

μνGμνA

O0
BB ¼ ϕ†B̂μνB̂

μνϕ ¼ − g02
4
ϕ†ϕBμνBμν

O0
WW ¼ ϕ†ŴμνŴ

μνϕ ¼ − g2

4
ϕ†ϕWk

μνWμνk

O0
BW ¼ ϕ†B̂μνŴ

μνϕ ¼ − gg0
4
ðϕ†σkϕÞBμνWμνk

O0
B ¼ ðDμϕÞ†B̂μνðDνϕÞ ¼ i g

2
ðDμϕ†ÞðDνϕÞBμν

O0
W ¼ ðDμϕÞ†ŴμνðDνϕÞ ¼ i g

2
ðDμϕ†ÞσkðDνϕÞWk

μν
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where for the sake of completeness we have included the
coefficients of the redundant operators given in Eq. (A17).

b. HISZ basis

We also give the conversion to the popular HISZ
basis [31] (see also Refs. [7,82] for recent studies in this
framework)

LHISZ ¼
X
i

fi
Λ2

O0
i; ðA19Þ

with Higgs-gauge operators given in Table XVII. We use
the same conventions for the covariant derivative as above
(note that this is not the case in some of the cited literature).
The operators can then be translated via the relations

ÔH ¼ 2O0
ϕ2; ÔW ¼ 2i

g
ðO0

WW þO0
BW − 2O0

WÞ;

ÔHW ¼ −
2i
g
O0

W; ÔT ¼ 2O0
ϕ2 − 4O0

ϕ1;

ÔB ¼ 2i
g0
ðO0

BB þO0
BW − 2O0

BÞ; Ôg ¼ O0
GG;

Ô6 ¼ 3O0
ϕ3; ÔHB ¼ −

2i
g0
O0

B; Ôγ ¼ −
4

g02
O0

BB:

ðA20Þ

The HISZ basis also includes the redundant operator
O0

ϕ4 ¼ ðDμϕÞ†ðDμϕÞϕ†ϕ, which can be removed using
Eq. (A11). For the coefficients, we find

c̄H ¼ v2

Λ2

�
1

2
fϕ1 þ fϕ2

�
; c̄W ¼ −

v2

Λ2

g2

4
fWW;

c̄T ¼ −
v2

Λ2

1

2
fϕ1; c̄B ¼ v2

Λ2

g2

4
ðfWW − fBWÞ;

c̄6 ¼ −
v2

Λ2

1

3λ
fϕ3; c̄HW ¼ v2

Λ2

g2

8
ðfW þ 2fWWÞ;

c̄g ¼
v2

Λ2

g2

4g2s
fGG; c̄HB ¼ v2

Λ2

g2

8
ðfB þ 2fBW − 2fWWÞ;

c̄γ ¼
v2

Λ2

g2

16
ðfBW − fBB − fWWÞ: ðA21Þ

2. Singlet extension

For the sake of simplicity we consider a minimal version
of the singlet model, in which a discreteZ2 parity precludes
additional (e.g. cubic) terms in the potential. The SM is
then extended by including a real scalar singlet with the
Lagrangian

L¼ðDμϕÞ†ðDμϕÞþð∂μSÞ2−Vðϕ;SÞ;
Vðϕ;SÞ¼ μ21ðϕ†ϕÞþλ1jϕ†ϕj2þμ22S

2þλ2S4þλ3jϕ†ϕjS2:
ðA22Þ

The scalar doublet and singlets fields are expanded into
components as

ϕ ¼
� Gþ

1ffiffi
2

p ðvþ l0 þ iG0Þ
�

and S ¼ 1ffiffiffi
2

p ðvs þ s0Þ;

ðA23Þ

where v≡ ffiffiffi
2

p hϕi ¼ 246 GeV and vs ≡
ffiffiffi
2

p hSi denote
their respective VEVs. The minimization condition for
the potential of Eq. (A22) can be used to eliminate the
parameters μ1;2 in favor of v and vs. The CP-even
components l0 and s0 mix to form a light (h) and a heavy
(H) mass eigenstate:

h ¼ l0 cos α − s0 sin α;

H ¼ l0 sin αþ s0 cos α; where tanð2αÞ ¼ λ3vvs
λ2v2s − λ1v2

:

ðA24Þ

Their masses are

m2
h;H ¼ λ1v2 þ λ2v2s ∓ jλ1v2 − λ2v2s j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tan2ð2αÞ

q
ðA25Þ

with m2
H ≈ 2λ2v2s ≫ m2

h in the limit v2 ≪ v2s .
To perform the matching to the EFT, we identify the UV

scale Λ≡ ffiffiffiffiffiffiffi
2λ2

p
vs ≈mH for vs ≫ v. From the singlet-

doublet mixing one then finds a universal coupling shift
of the SM-like light Higgs to all other SM particles in
Eq. (1), given by

Δ ≈ −
sin2α
2

≈ −
g2eff
2

�
v
Λ

�
2

; geff ¼
λ3ffiffiffiffiffiffiffi
2λ2

p : ðA26Þ

Integrating out the heavy Higgs boson we find

Leff ⊃
sin2α
2v2

∂μðϕ†ϕÞ∂μðϕ†ϕÞ þOðΛ−4Þ: ðA27Þ

We thus see that, up to dimension-6 operators the heavy-
singlet-induced BSM effects in Higgs production and
decay are completely captured by the operator ÔH
(cf. Table XV) with coefficient

c̄H ¼ λ23
2λ2

�
v
Λ

�
2

þO
�
v4

Λ4

�
: ðA28Þ

The light Higgs couplings to fermions and gauge bosons
in the singlet model are universally suppressed relative to
the SM. In the full model and the EFT, respectively, they are
given by
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1þ Δx ¼ cos α; 1þ ΔEFT
x ¼ 1 −

1

2
c̄H: ðA29Þ

Amore complex pattern emerges for the self-interactions
involving at least one heavy Higgs field. We find

ghhH ¼ −
geffð2m2

h þm2
HÞ

vs

�
1þ geff

v2

v2s
þO

�
v3

v3s

��
∼ λ3vs þOðvÞ;

ghHH ¼ geffvðm2
h þ 2m2

HÞ
v2s

�
1 − geff þO

�
v
vs

��

∼ 2λ3v

�
1 −

λ3
2λ2

�
þO

�
v2

vs

�
; ðA30Þ

in which we observe a characteristic nondecoupling behav-
ior which manifests itself as a linear growth of ghhH with the
heavy Higgs mass. In the EFT, the leading self-interaction
contribution enters via a dimension-8 operator, which is
neglected in our dimension-6 analysis. Therefore, the sole
Wilson coefficient c̄H ¼ sin2 α defines the singlet model
EFT up to dimension 6.
On the other hand, let us emphasize a key structural

difference between the ÔH-induced and the UV-complete
singlet model contributions to the Higgs self-coupling hhh.
At variance with the latter, the effective operators also
induces a new momentum structure into the self-coupling,
namely adding derivatives in the Lagrangian or energy-
dependent terms in the Feynman rules

L ⊃ −
m2

h

2v

��
1 −

cHv2

2Λ2

�
h3 −

2cHv2

Λ2m2
h

h∂μh∂μh

�

¼ −
m2

h

2v

�
1 −

1

2
c̄H

�
h3 þ g

2mW
c̄Hh∂μh∂μh; ðA31Þ

which means that the SM-like h3 term is not only rescaled
but also endowed with new Lorentz structures involving
derivatives. This kind of momentum dependence is
encoded in the split into gð1ÞHHH and gð2ÞHHH in Eq. (A2).
This effect does not correspond to the Higgs singlet mixing,
where such a momentum dependence can only be gen-
erated via loop-induced heavy particle exchange with
momentum-dependent couplings like a heavy fermion
triangle.

3. Two-Higgs-doublet model

The most general gauge-invariant, CP-conserving poten-
tial with two scalar fields reads

Vðϕ1;ϕ2Þ ¼ m2
11ϕ

†
1ϕ1 þm2

22ϕ
†
2ϕ2

− ½m2
12ϕ

†
1ϕ2 þ H:c:� þ λ1

2
ðϕ†

1ϕ1Þ2

þ λ2
2
ðϕ†

2ϕ2Þ2 þ λ3ðϕ†
1ϕ1Þðϕ†

2ϕ2Þ þ λ4jϕ†
1ϕ2j2

þ
�
λ5
2
ðϕ†

1ϕ2Þ2 þ λ6ðϕ†
1ϕ1Þðϕ†

1ϕ2Þ

þ λ7ðϕ†
2ϕ2Þðϕ†

1ϕ2Þ þ H:c:

�
; ðA32Þ

where the mass terms m2
ij and the dimensionless self-

couplings λi are real parameters and vj ¼
ffiffiffi
2

p hϕ0
ji. The

ratio of VEVs is denoted as tan β ¼ v2=v1, whereas v21 þ
v22 ¼ v2 ¼ ð246 GeVÞ2 to reproduce the known gauge
boson masses. For the Yukawa couplings, there are four
possible scenarios that satisfy the SM flavor symmetry and
preclude tree-level flavor-changing neutral currents [83]:

(i) type I, where all fermions couple to just one Higgs
doublet ϕ2;

(ii) type II, where up-type (down-type) fermions couple
exclusively to ϕ2 (ϕ1);

(iii) lepton-specific, with a type-I quark sector and a
type-II lepton sector; and

(iv) flipped, with a type-II quark sector and a type-I
lepton sector.

In all four cases, the absence of tree-level flavor-changing
neutral currents is protected by a global Z2 discrete
symmetry ϕi → ð−1Þiϕi (for i ¼ 1, 2). The symmetry
demands that λ6;7 ¼ 0 in Eq. (A32), but it can be softly
broken by dimension-two terms in the Lagrangian,
viz. Lsoft ⊃ m2

12ϕ
†
1ϕ2 þ H:c:

The Higgs mass-eigenstates follow from the set of
rotations �

H0

h0

�
¼ RðαÞ

�
h01
h02

�
;

�
G0

A0

�
¼ RðβÞ

�
a01
a02

�
;

�
G�

H�

�
¼ RðβÞ

�
h�1
h�2

�
; ðA33Þ

where

ϕk ¼
� hþk

1ffiffi
2

p ðvk þ h0k þ iakÞ
�
;

RðθÞ ¼
�

cos θ sin θ

− sin θ cos θ

�
: ðA34Þ

Since the two doublets contribute to giving masses to the
weak gauge bosons, custodial symmetry will impose tight
constraints on the viable mass spectrum of the model
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[84,85]. Analytic relations linking the different Higgs
masses and mixing angles with the Lagrangian parameters
in Eq. (A32) can be found e.g. in Appendix A of [5].
The conventions 0 < β < π=2 and 0 ≤ β − α < π guaran-
tee that the Higgs coupling to vector bosons has the same
sign in the 2HDM and in the SM. As we will next show, the
decoupling limit implies that the light Higgs interactions
approach the alignment limit, where cos β ∼ jsin αj and the
couplings become SM-like [51].
A 2HDM with large mass hierarchy between the light

Higgsmh0 ¼ OðvÞ and its heavier companionsmH0;H�;A0 ≫
mh0 can be readily mapped onto an EFT [16,51,86]. In the
unbrokenphase,wematch by first rotatingϕ1 andϕ2 into the
so-calledHiggs basis, where only oneHiggs doublet obtains
a vacuum expectation value, hϕli ¼ v=

ffiffiffi
2

p
, hϕhi ¼ 0

[16,87]. This doublet ϕl is then identified with the SM-like
Higgs doublet, while the other doublet ϕh is integrated out.
Its decoupling is described by the mass scale

Λ2 ¼ M2 ¼ m2
11sin

2β þm2
22cos

2β þm2
12 sinð2βÞ ðA35Þ

and the expansion parameter

x≡ v2 sin 2β
2M2

�
λ1
2
−
λ2
2
þ
�
λ1
2
þ λ2

2
− λ3 − λ4 − λ5

�
cos 2β

�

þO
�
v4

M4

�
≪ 1; ðA36Þ

where we assume perturbative couplings, λi ≲Oð1Þ.
As discussed in Sec. III B, the dimension-6 EFT defined

this way does not provide a good approximation for
scenarios where the LHC will have sensitivity to discover
new physics. A more appropriate effective theory is
obtained by matching at a physical mass instead of M.
Specifically, this v-improved EFT is given by replacing
M → mA0 in Eqs. (A35) and (A36).
Similar to the singlet extension [see Eq. (A27)], mixing

between the two CP-even Higgs boson at tree level causes
the h0 kinetic term to be rescaled, leading to

c̄H ¼ x2 ¼ OðΛ−4Þ: ðA37Þ

This corresponds to a dimension-8 term, which we neglect
here. However, there exists a dimension-6 contribution to
the triple light Higgs scalar interaction:

gð1Þh0h0h0 ¼ 1þ x2
�
3

2
−

4m2
12

m2
h0 sin 2β

�
þOðx3Þ

¼ 1 − x2
M2

λv2
þOðM−3Þ: ðA38Þ

Nontrivial contributions to dimension-6 operators also arise
in the Yukawa sector. For definiteness, we concentrate on
2HDM type I and II. At tree level and up to OðΛ−2Þ, we
find for the Wilson coefficients

type I∶ c̄u ¼ x cot β; c̄d ¼ x cot β;

c̄l ¼ x cot β; ðA39Þ

type II∶ c̄u ¼ x cot β; c̄d ¼ −x tan β;

c̄l ¼ −x tan β: ðA40Þ

The above expressions hold both in the standard EFT
and the v-improved EFT, with the obvious replacement
M → mA0 for the latter. The operators ÔHB, ÔHW , ÔW , ÔB,
ÔT and Ôγ receive contributions only at loop level, while
Ôg ¼ 0 since there are no new colored particles in the
2HDM. The operator Ôγ receives a correction from the
charged Higgs loop. Expanding this contribution, and using
m2

h0=m
2
H� ¼ OðxÞ, we find

Δγ ¼
1

gSMHγγ

e2

720π2v

�
30

�
1− ½cotβþ tanβ� m

2
12

m2
H�

�

þ
�
19− 4½cotβþ tanβ� m

2
12

m2
H�

�
m2

h0

m2
H�

− 30 cotð2βÞ½cotβþ tanβ� m
2
12

m2
H�

x

�
þOðx2Þ; ðA41Þ

where in the first row we identify characteristic nondecou-
pling terms contributing to Oðx0Þ. On the other hand, the
operator

Leff ⊃
g02c̄γ
m2

W
ðϕ†ϕÞBμνBμν ðA42Þ

leads to

ΔEFT
γ ¼ 1

gSMHγγ

16s2wc̄γ
v

: ðA43Þ

Identifying these expressions, we find within the
v-improved EFT framework

c̄γ ¼
g2

11520π2

�
30

�
1 − ½cot β þ tan β� m

2
12

m2
H�

�

þ
�
19 − 4½cot β þ tan β� m

2
12

m2
H�

�
m2

h0

m2
H�

− 30 cotð2βÞ½cot β þ tan β� m
2
12

m2
H�

x

�
: ðA44Þ

In the full type-I 2HDM, the tree-level couplings shifts
g2HDMh0xx =gSMhxx ¼ 1þ Δx of the light Higgs are given by

1þ ΔV ¼ sinðβ − αÞ; 1þ Δt ¼
cos α
sin β

;

1þ Δb ¼
cos α
sin β

; 1þ Δτ ¼
cos α
sin β

; ðA45Þ
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while in the type-II 2HDM they read

1þ ΔV ¼ sinðβ − αÞ; 1þ Δt ¼
cos α
sin β

;

1þ Δb ¼ −
sin α
cos β

; 1þ Δτ ¼ −
sin α
cos β

: ðA46Þ

The light Higgs coupling to a charged Higgs pair is given in
all cases by

gh0HþH−

gSMhhh
¼ 1

3m2
h0

�
sinðβ − αÞð2m2

H� −m2
h0Þ

þ cosðαþ βÞ
sinð2βÞ

�
2m2

h0 −
2m2

12

sin β cos β

��
; ðA47Þ

with gSMhhh ¼ −3m2
h=v. Note that at tree level custodial

symmetry ensures that both couplings to the weak gauge
bosons V ¼ W, Z scale with the same factor sinðβ − αÞ, a
degeneracy that can be mildly broken by quantum
effects [5].
In the effective model, we have3

ΔEFT
V ¼ 0; ΔEFT

t ¼ c̄u; ΔEFT
b ¼ c̄d; ΔEFT

τ ¼ c̄l:

ðA48Þ

The loop-induced couplings are more involved, giving

1þ Δg ¼
1

ASM
gg

�X
f¼t;b

ð1þ ΔfÞAfðτfÞ
�
; ðA49Þ

1þ Δγ ¼
1

ASM
γγ

�X
f¼t;b

NCQ2
fð1þ ΔfÞAfðτfÞ

þQ2
τð1þ ΔτÞAfðττÞ þ ð1þ ΔWÞAvðτWÞ

− gh0HþH−
mWsw
em2

H�
AsðτH�Þ

�
; ðA50Þ

where ASM
xx are the corresponding contributions in the SM.

The conventional loop form factors read

AsðτÞ ¼ −
τ

2
½1 − τfðτÞ� ¼ 1=6þOðτ−1Þ;

AfðτÞ ¼ τ½1þ ð1 − τÞfðτÞ� ¼ 2=3þOðτ−1Þ;

AvðτÞ ¼ −
1

2
½2þ 3τ þ 3ð2τ − τ2ÞfðτÞ� ¼ −7=2þOðτ−1Þ;

ðA51Þ

fðτÞ ¼

8>><
>>:

− 1
4

h
log 1þ ffiffiffiffiffiffi

1−τ
p

1−
ffiffiffiffiffiffi
1−τ

p − iπ
i
2

for τ < 1h
arcsin 1ffiffi

τ
p
i
2

for τ ≥ 1;
ðA52Þ

and τx ¼ 4m2
x=m2

h0 . In the effective model, we find

1þ ΔEFT
g ¼ 1

ASM
gg

�X
f¼t;b

ð1þ c̄fÞAfðτfÞ
�
; ðA53Þ

1þ ΔEFT
γ ¼ 1

ASM
γγ

�X
f¼t;b

NCQ2
fð1þ c̄fÞAfðτfÞ

þQ2
τð1þ c̄lÞAfðττÞ þ AvðτWÞ þ

64π2c̄γ
g2

�
:

ðA54Þ

The comparison of couplings in the full 2HDM and the
EFT is summarized in Table XVIII.

4. Scalar top partners

The simplified scalar top-partner generation sector is
described by the Lagrangian

L ⊃ ðDμ
~QÞ†ðDμ ~QÞ þ ðDμ~tRÞ�ðDμ~tRÞ

− ~Q†M2 ~Q −M2~t�R~tR|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Lmass

− κLLðϕ · ~QÞ†ðϕ · ~QÞ − κRRð~t�R~tRÞðϕ†ϕÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
LHiggs

− ½κLRM~t�Rðϕ · ~QÞ þ H:c:�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Lmixing

: ðA55Þ

TABLE XVIII. Tree-level Higgs coupling shifts Δx as a
function of the 2HDM parameters. In the last column, the Wilson
coefficients for the relevant dimension-6 operators in Table XV
are matched to the 2HDM in the limit of decoupling heavy scalars
x≃ v2=M2 ≪ 1 [cf. Eq. (A36)].

Coupling 2HDM EFT

1þ Δt
Type I: x cot β − x2

2
þOðx3Þ c̄u ¼ x cot β

Type II: x cot β − x2
2
þOðx3Þ c̄u ¼ x cot β

1þ Δb
Type I: x cot β þOðx3Þ c̄d ¼ x cot β

Type II: −x tan β þOðx3Þ c̄d ¼ −x tan β

1þ Δτ

Type I: x cot β þOðx3Þ c̄l ¼ x cot β

Type II: −x tan β þOðx3Þ c̄l ¼ −x tan β
1þ ΔV 1 − x2

2
þOðx3Þ Od8

1þ Δh0 1 − x2ð3
2
− 4m2

12

m2

h0
sin 2βÞ þOðx3Þ c̄6 ¼ −x2 M2

λv2

3Note that the operator Ôγ introduces a new Lorentz structure
for the h0VV interaction, representing a charged Higgs loop.
The results in Sec. III B reveal how large this effect turns out to be
in practice.
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We use the customary notation for the SUð2ÞL invariant
product ϕa · ~Qb ≡ ϵabϕ

a ~Qb, with the help of the antisym-
metric pseudotensor ϵab ≡ ðiσ2Þab, so that ϵ12 ¼ −ϵ21 ¼ 1.
Notice that the term LHiggs gives rise to scalar partner

masses proportional to the Higgs VEV, mirroring the
supersymmetric F-term contribution to the squark masses.
By a similar token, the explicit mass terms Lmass are
analogous to the squark soft-supersymmetry breaking mass
terms; while Lmixing is responsible for the mixing between
the gauge eigenstates, as a counterpart of the MSSM A
terms. In the absence of an underlying supersymmetry,
the Lagrangian in Eq. (A55) features no equivalent of the
D-term contributions.
Collecting all bilinear terms from Eq. (A55) we get

L ⊃ ð~t�L~t�RÞ
�
M2

LL M2
LR

M2
RL M2

RR

��
~tL
~tR

�
; ðA56Þ

where

M2
LL ¼ κLL

v2

2
þM2;

M2
LR ¼ M2

RL ¼ κLRM
vffiffiffi
2

p ;

M2
RR ¼ κRR

v2

2
þM2: ðA57Þ

Assuming all parameters in Eq. (A55) to be real, the above
mass matrix can be diagonalized through the usual orthogo-
nal transformation Rðθ~tÞ which rotates the gauge eigen-
states ð~tL; ~tRÞ onto the mass basis ð~t1; ~t2Þ:

Rðθ~tÞM2
~t R

†ðθ~tÞ ¼ diagðm2
~t1
; m2

~t2
Þ;�

~t1
~t2

�
¼ Rðθ~tÞ

�
~tL
~tR

�
¼
�

cos θ~t sin θ~t
− sin θ~t cos θ~t

��
~tL
~tR

�
:

ðA58Þ

The physical scalar partner masses and the mixing angle are
then given by

m2
~t1
¼ M2

LLcos
2θ~t þM2

RRsin
2θ~t þ 2M2

LR sin θ~t cos θ~t;

m2
~t2
¼ M2

LLsin
2θ~t þM2

RRcos
2θ~t − 2M2

LR sin θ~t cos θ~t;

ðA59Þ

tanð2θ~tÞ ¼
2M2

LR

M2
LL −M2

RR
: ðA60Þ

As we assume the right-handed partner ~bR to be heavy and
thus decoupled, the sbottomlike scalar eigenstate ~bL under-
goes no mixing and can be readily identified with the
physical eigenstate.

To derive the effective theory, we compute the effective
action at one loop with the help of the covariant derivative
expansion [26,78,79], which is fully consistent with our
mass degeneracy setup. Notice that, since the Lagrangian
Eq. (A55) lacks any linear terms in the heavy scalar
fields Ψ≡ ð ~Q; ~t�RÞ, the tree-level exchange of such heavy
partners cannot generate any effective interaction at
dimension 6.
Following our default matching prescription, we set the

matching scale as Λ ¼ M. The relevant Wilson coefficients
in the SILH basis then read

c̄g ¼
m2

W

24ð4πÞ2M2
½ðκLL þ κRRÞ − κ2LR�;

c̄γ ¼
m2

W

9ð4πÞ2M2
½ðκLL þ κRRÞ − κ2LR�;

c̄B ¼ −
5m2

W

12ð4πÞ2M2

�
κLL −

31

50
κ2LR

�
;

c̄W ¼ m2
W

4ð4πÞ2M2

�
κLL −

3

10
κ2LR

�
;

c̄HB ¼ 5m2
W

12ð4πÞ2M2

�
κLL −

14

25
κ2LR

�
;

c̄HW ¼ −
m2

W

4ð4πÞ2M2

�
κLL −

2

5
κ2LR

�
;

c̄H ¼ v2

4ð4πÞ2M2

�
ð2κ2RR − κ2LLÞ

−
�
κRR −

1

2
κLL

�
κ2LR þ κ4LR

10

�
;

c̄T ¼ v2

4ð4πÞ2M2

�
κ2LL −

κLLκ
2
LR

2
þ κ4LR

10

�
: ðA61Þ

We also consider a v-improved matching. The only
difference to the default matching is the choice of the
matching scale Λ ¼ m~t1 , which manifests itself as a
rescaling of the Wilson coefficients in Eq. (A61) by a
factor of M2=m2

~t1
.

The scalar partner couplings to the Higgs boson can be
written as

gh~t1~t1=v ¼ κLLcos2θ~t þ κRRsin2θ~t þ sinð2θ~tÞκLR;
gh~t2~t2=v ¼ κLLsin2θ~t þ κRRcos2θ~t − sinð2θ~tÞκLR;
gh ~bL ~bL=v ¼ κLL: ðA62Þ

5. Vector triplet

We consider a real vector triplet field Va¼1;2;3
μ

transforming under the SM gauge group as
ðrc; rL; rYÞ ¼ ð1; 3; 0Þ. Its dynamics can be effectively
described by means of the Lagrangian [74]
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L ⊃ −
1

4
Va
μνVμνa þM2

V

2
Va
μVμa þ igVcHVa

μ½ϕ†τaD
↔μ

ϕ�

þ g2w
gV

Va
μcF
X
F

F̄Lγ
μτaFL þ gV

2
cVVVϵabcVa

μVb
νD½μVν�c

þ g2VcVVHHVa
μVμaϕ†ϕ −

gw
2
cVVWϵabcWμνVb

μVc
ν;

ðA63Þ

where the vector triplet field-strength tensor is Va
μν ≡

DμVa
ν −DνVa

μ and τa ≡ σa=2 are the SUð2ÞL generators
in the fundamental representation. The covariant derivative
acts on the vector triplet field as DμVa

ν ¼ ∂μVa
ν þ

gϵabcVb
μVc

ν.
The coupling constant gV stands for the characteristic

strength of the heavy vector-mediated interactions, while
gw denotes the SUð2ÞL weak gauge coupling (which differs
from the coupling strength g of the observableW boson due
to W-V mixing; see below). The different dimensionless
coefficients ci quantify the relative strengths of the indi-
vidual couplings. This parametrization weights the extra V
and ϕ field insertions by one factor of gV each, while gauge
boson insertions are weighted by one power of the weak
coupling. An exception is made for the couplings to
fermions, where an extra weighting factor gw2=gV2 is
introduced for a convenient power counting in certain
UV embeddings [74]. For simplicity, it is assumed that
the fermion current in Eq. (A63) is universal.
Equation (A63) is the most general Lagrangian compat-

ible with the SM gauge group and CP invariance, provided

that Va
μ transforms as Va

μðx; tÞ!CP − ð−1Þδa2Va
μð−x; tÞ as the

SM vectors. Moreover, the Lagrangian obeys a global
SOð4Þ ¼ SUð2ÞL × SUð2ÞR symmetry, which is typical of
strongly interacting dynamics.
Since Va

μ is not manifestly gauged, this simplified vector
triplet model in itself is not renormalizable. However, it can
be easily linked to a gauge-invariant theory e.g. via the
Higgs or the Stückelberg mechanisms [74].
An alternative model setup, which is particularly useful

to construct the effective theory, introduces an explicit
kinetic V-W mixing via the Lagrangian

L ⊃ −
1

4
Va
μνVμνa þ

~M2
V

2
Va
μVμa þ gV ~cHVa

μJ
μ;a
H

þ g2w
2gV

Va
μ ~cF
X
F

Jμ;aF þ ~cWV
gw
2gV

D½μVa
ν�W

μνa

þ gV
2

~cVVVϵabcVa
μVb

νD½μVν�c þ g2V ~cVVHHVa
μVμaϕ†ϕ

−
gw
2
~cVVWϵabcWμνVb

μVc
ν; ðA64Þ

where for convenience we have introduced the Higgs,
fermion and vector current bilinears

JH;a
μ ¼ i

2
½ϕ†σaD

↔

μϕ�; JF;aμ ¼ F̄Lγμσ
aFL;

JW;a
μ ¼ DνWa

μν: ðA65Þ
An appropriate field redefinition absorbs the kinetic mixing
term VμaðDνWμνÞa [88] and connects the parameters in the
tilded basis of Eq. (A64) and untilded basis of Eq. (A63)
through the relations

M2
V ¼ g2V

g2V − ~c2WVg
2
w

~M2
V;

cH ¼ gVffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2V − ~c2WVg

2
w

p �
~cH þ g2w

g2V
~cWV

�
;

cF ¼ gVffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2V − ~c2WVg

2
w

p ½~cF þ ~cWV �;

cVVHH ¼ g2V
g2V − ~c2WVg

2
w

�
~cVVHH þ g2w

2g2V
~cWV ~cH þ g4w

4g4V
~c2WV

�
;

cVVW ¼ g2V
g2V − ~c2WVg

2
w

�
~cVVW −

g2w
g2V

~c2WV

�
;

cVVV ¼ g2V
ðg2V − ~c2WVg

2
wÞ3=2

×

�
~cVVV −

g2w
g2V

~cWVð~cVVW þ 2Þ þ 2
g2w
g4V

~c3WV

�
:

ðA66Þ

a. Spectrum

The heavy vector sector in the gauge basis contains one
neutral state V0

μ ≡ V3
μ and two charged states V�

μ ≡
ðV1

μ ∓ V2
μÞ=

ffiffiffi
2

p
. Upon electroweak symmetry breaking

only one vector state remains massless, which we
readily identify with the standard photon field Aμ ¼
cwBμ þ swW3

μ. Here, the Weinberg angle is linked as usual
to the electroweak gauge couplings e ¼ gwsw ¼ g0cw,
although at this stage we cannot yet relate it to electroweak
observables before the mixing with the heavy vectors is
included. The latter involves, for the neutral fields, the
heavy vector component V0 and the linear combination of
B;W3 orthogonal to the photon field. A similar mixing
pattern appears in the charged sector, involving the field
components V1;2

μ ;W1;2
μ . The physical mass eigenstates can

be written as

Zμ ¼ cos θNð−swBμ þ cwW3
μÞ þ sin θNV3

μ;

ξ0μ ¼ − sin θNð−swBμ þ cwW3
μÞ þ cos θNV3

μ;

W�
μ ¼ cos θC

W1
μ ∓ W2

μffiffiffi
2

p þ sin θC
V1
μ ∓ V2

μffiffiffi
2

p ;

ξ�μ ¼ − sin θC
W1

μ ∓ W2
μffiffiffi

2
p þ cos θC

V1
μ ∓ V2

μffiffiffi
2

p : ðA67Þ
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The mass eigenvalues are given by

m2
Z=ξ0 ¼

1

2

�
m̂2

V þ m̂2
Z ∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm̂2

Z − m̂2
VÞ2 þ c2Hg

2
Vm̂

2
Zv̂

2

q �

¼
8<
:

m̂2
Z

�
1 − c2Hg

2
V

4
v̂2

m̂2
V
þOðv̂4=m̂4

VÞ
�

m̂2
V

�
1þ c2Hg

2
V

4
v̂2

m̂2
V
þOðv̂4=m̂4

VÞ
�
;

ðA68Þ

m2
W�=ξ� ¼ 1

2

�
m̂2

V þ m̂2
W ∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm̂2

W − m̂2
VÞ2 þ c2Hg

2
Vm̂

2
Wv̂

2

q �

¼
8<
:

m̂2
W

�
1 − c2Hg

2
V

4
v̂2

m̂2
V
þOðv̂4=m̂4

VÞ
�

m̂2
V

�
1þ c2Hg

2
V

4
v̂2

m̂2
V
þOðv̂4=m̂4

VÞ
�
:

ðA69Þ

For the mixing angles, we find

tanð2θNÞ ¼
cHgVv̂m̂Z

m̂2
V − m̂2

Z
¼ cHggV

2cw

v̂2

m̂2
V
þOðv̂4=m̂4

VÞ;

tanð2θCÞ ¼
cHgVv̂m̂W

m̂2
V − m̂2

W
¼ cHggV

2

v̂2

m̂2
V
þOðv̂4=m̂4

VÞ;

ðA70Þ

or

sin θC ¼ cHggV
4

v2

M2
V
þOðv̂4=m̂4

VÞ: ðA71Þ

Here we define

m̂Z ¼ gwv̂
2cw

; m̂W ¼ gwv̂
2

; m̂2
V ¼ M2

V þ g2VcVVHHv̂2;

ðA72Þ

where v̂ is the actual VEVof ϕ, which does not necessarily
have the SM value of v ¼ 2mW=g ≈ 246 GeV.
Notice that the V-W mixing also affects the weak current

interactions, which are no longer governed by gw. Instead,
the physical Wff0 coupling reads

g ¼ cos θCgw − sin θCcF
g2w
gV

¼ gw

�
1 −

cFcHg2w
4

v2

M2
V

�
þOðv4=M4

VÞ: ðA73Þ

The relation between v̂ and v can be read off from
Eq. (A69), giving approximately

v̂
v
¼ 1þ c2Hg

2
V

8

v2

M2
V
−
cFcHg2w

4

v2

M2
V
þOðv4=M4

VÞ: ðA74Þ

The global SUð2ÞV custodial symmetry connects the
charged and neutral current strengths through m2

Wm
2
ξ� ¼

c2wm2
Zm

2
ξ0
, which generalizes the SM relation m2

W ¼
c2wm2

Z. Compatibility with electroweak precision observ-
ables enforces nearly mass-degenerate statesmξ0 ≃mξ� for
phenomenologically viable scenarios. In practice, we set up
our model in the mW-g scheme, i.e. taking as input
parameters g, mW , α, mh0 , αs; the model-specific param-
eters ci; as well as the physical masses mξ� . The mass
spectrum and mixing angles we obtain by solving
Eqs. (A68) and (A69) iteratively.

b. Effective theory

To construct the vector triplet EFT following the default
matching, we identify the new physics scale Λ ¼ MV .
Starting from the heavy triplet Lagrangian defined by
Eq. (A64), we first integrate by parts the kinetic mixing
term:

~cWV
gw
2gV

D½μVa
ν�W

μνa ¼ ~cWV
gw
gV

Vμ;aðDνWa
μνÞ

¼ ~cWV
gw
gV

Vμ;aJWa
μ ; ðA75Þ

such that we can rewrite it in terms of the gauge current
from Eq. (A65). Integrating out the heavy vector field Va

μ

one obtains the effective Lagrangian

Leff ⊃
~M2
V

2
Vμ;aVa

μ

þ Va
μ

�
gV ~cHJ

μ;a
H þ g2w

2gV
~cF
X
F

Jμ;aF þ ~cWV
gw
gV

JWa
μ

�
þOðV3Þ; ðA76Þ

where we neglect those contributions involving higher
powers in the heavy field, as they play no role in our
analysis.
The Euler-Lagrange equation for Va

μ,

½∂μ∂ν − gμν∂2 − ~M2
V �Va

ν

¼ gV ~cHJ
μ;a
H þ g2w

2gV
~cF
X
F

Jμ;aF

þ ~cWV
gw
gV

Jμ;aW þ h:o: terms inVa
μ;

leads to
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Vμ;a ¼ −
1

~M2
V

�
~cWV

gw
gV

Jμ;aW þ gV ~cHJ
μ;a
H þ g2w

2gV
~cF
X
F

Jμ;aF

�
þOðp2

V= ~M4
VÞ þOðV2Þ: ðA77Þ

Plugging Eq. (A77) into Eq. (A76),Leff can be expressed
in terms of current products as

Leff ⊃ −
g4w ~c2F
8g2V ~M2

V

Jμ;aF JFaμ −
g2V ~c

2
H

2 ~M2
V

Jμ;aH JHa
μ −

g2w ~cF ~cH
2 ~M2

V

Jμ;aH JFaμ

−
gw ~cH ~cWV

~M2
V

Jμ;aH JWa
μ −

g2w ~c2WV

2g2V ~M2
V

Jμ;aW JWa
μ

−
g3w ~cF ~cWV

2g2V ~M2
V

Jμ;aW JFaμ : ðA78Þ

In the following, we disregard four-fermion operators since
they are irrelevant for our analysis. The remaining five
current products in Eq. (A78) can be expressed in terms
of two independent ones by using Eq. (A8) (with the
replacement g → gw), which corresponds to Jμ;aW ¼
gwJ

μ;a
H þ gwJ

μ;a
F =2:

Leff ⊃ −
ðg2V ~cH þ g2w ~cWVÞ2

2g2V ~M2
V

Jμ;aH JHa
μ

−
g2wð~cF þ ~cWVÞðg2V ~cH þ g2w ~cWVÞ

2g2V ~M2
V

Jμ;aH JFaμ

þ 4-fermion: ðA79Þ

Using Eq. (A.4) in [74], it can be checked that this equation
is invariant when changing between the tilded and untilded
bases. With the help of Eqs. (A7), (A9), and (A11) (and
again relabeling g → gw in these relations) the two inde-
pendent current products can be expressed in terms of
dimension-6 operators as follows:

Jμ;aH JHa
μ ¼ −

1

4
ðÔH − 4ÔrÞ

¼ −
1

4

�
3ÔH − 8λÔ6 − 2

X
f

½yfÔf þ H:c:�
�
;

Jμ;aF JHa
μ ¼ i

2
Ô0

HF

¼ iÔW

gw
þ 1

2

�
3ÔH − 8λÔ6 − 2

X
f

½yfÔf þ H:c:�
�
;

ðA80Þ

where yf denotes the bare Yukawa coupling yf ≡
ffiffiffi
2

p
mf=v.

Plugging the above into Eq. (A79), one can easily read off
the relevant Wilson coefficients of the EFT:

c̄H ¼ 3g2wv2

4 ~M2
V

�
~c2H

g2V
g2w

− 2~cF ~cWV
g2

g2V
− 2~cF ~cH − ~c2WV

g2

g2V

�
;

c̄6 ¼
g2wv2

~M2
V

�
~c2H

g2V
g2w

− 2~cF ~cWV
g2

g2V
− 2~cF ~cH − ~c2WV

g2

g2V

�
;

c̄f ¼ g2wv2

4 ~M2
V

�
~c2H

g2V
g2w

− 2~cF ~cWV
g2

g2V
− 2~cF ~cH − ~c2WV

g2

g2V

�
;

c̄W ¼ m2
W

~M2
V

�
−~cF ~cH − ~cH ~cWV − ~cF ~cWV

g2w
g2V

− ~c2WV
g2

g2V

�
:

ðA81Þ

In the untilded basis, these correspond to

c̄H ¼ 3g2wv2

4M2
V

�
c2H

g2V
g2w

− 2cFcH

�
;

c̄6 ¼
g2wv2

M2
V

�
c2H

g2V
g2w

− 2cFcH

�
;

c̄f ¼ g2wv2

4M2
V

�
c2H

g2V
g2w

− 2cFcH

�
;

c̄W ¼ −
m2

W

M2
V
cFcH ðA82Þ

with f ¼ u; d;l. Other than that, only four-fermion inter-
actions are generated at tree level and at Oðv2=M2

VÞ; these
are not relevant for our analysis and are not consid-
ered here.
As in the 2HDM and scalar partner models, we define an

additional v-improved EFT by Λ ¼ mξ0, leading the same
Wilson coefficients as above except that MV is replaced
by mξ0.

c. Higgs couplings

On the EFT side, it is illustrative to discuss the origin of
the Higgs coupling shifts within two different approaches.
First we consider the EFT that keeps the fermionic
operator Ô0

HF [i.e. instead of using the conventional
replacement in Eq. (A9) that maximizes the use of bosonic
operators]. In this case, similar to Eq. (A73), a renorm-
alization effect of the weak coupling occurs from V-W
mixing:

g ¼ gwð1 − ic̄0HFÞ; ðA83Þ

where g is the observable coupling between the W boson
and SM fermions. In this EFT and using the untilded basis,
the relevant Wilson coefficients are

c̄H ¼ c2H
3g2Vv

2

4M2
V
; c̄f ¼ 1

3
c̄H; c̄0HF ¼ −icFcH

g2wv2

4M2
V
:

ðA84Þ
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Instead, if we now consider the EFTwith the bosonic operator ÔW, i.e. after applying the replacement in Eq. (A9), there is
no additional renormalization of the weak coupling, so that g ¼ gw. The relevant Wilson coefficient are given
in Eq. (A82).
Now we are in a position to determine the Higgs coupling shifts in the three models. For the Yukawa couplings we find

full model∶ Δfull
f ¼ gw

g
v
v̂
− 1 ¼ 1

cθC − cF
gw
gV
sθC

v
v̂
− 1 ¼ c2H

g2Vv
2

8M2
V
þ cFcH

g2v2

4M2
V
þOðM−4

V Þ;

EFT with Ô0
HF∶ ΔÔ0

HF
f ¼ c̄H

2
þ c̄f ¼ c̄H

2
þ c̄f þ ic̄0HF ¼ c2H

g2Vv
2

8M2
V
þ cFcH

g2v2

4M2
V
;

EFT with ÔW∶ ΔÔW
f ¼ c̄H

2
þ c̄f ¼ c2H

g2Vv
2

8M2
V
þ cFcH

g2v2

4M2
V
: ðA85Þ

Similarly for the Higgs coupling to on-shell W bosons we get

full model∶ Δfull
W ¼ 1

gmW

�
c2θCg

2v̂

2ðcθC − cF
gw
gV
sθCÞ2

− cH
sθCcθCggVv̂

cθC − cF
gw
gV
sθC

þ 2cVVHHs2θCg
2
Vv̂

�
− 1

¼ c2H
3g2Vv

2

8M2
V
þ cFcH

g2v2

4M2
V
þOðM−4

V Þ;

EFT with Ô0
HF∶ ΔÔ0

HF
W ¼ gw

g

�
1 −

c̄H
2

�
− 1 ¼ c̄H

2
þ ic̄0HF ¼ c2H

3g2Vv
2

8M2
V
þ cFcH

g2v2

4M2
V
;

EFT with ÔW∶ ΔÔW
W ¼ c̄H

2
þ 2c̄W ¼ c2H

3g2Vv
2

8M2
V
þ cFcH

g2v2

4M2
V
: ðA86Þ
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