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We present up-to-date electroweak fits of various Randall-Sundrum (RS) models. We consider the bulk
RS, deformed RS, and the custodial RS models. For the bulk RS case we find the lightest Kaluza-Klein
(KK) mode of the gauge boson to be ∼8 TeV, while for the custodial case it is ∼3 TeV. The deformed
model is the least fine-tuned of all which can give a good fit for KK masses < 2 TeV depending on the
choice of the model parameters. We also comment on the fine-tuning in each case.
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I. INTRODUCTION

The discovery of the Higgs boson at ∼125 GeV has
firmly established the status of the Higgs mechanism as
the theory of electroweak symmetry breaking physics. In
addition, it also fixes one of the main unknown inputs of
electroweak precision fits. Electroweak precision measure-
ments put very important and sometimes very strong
constraints on new physics models. In the present work
we focus on the Randall-Sundrum (RS) model [1] and its
variations. We update the constraints on the lightest Kaluza-
Klein (KK) modes of RS scenarios in light of the discovery
of the Higgs mass and improved measurements of the
W-boson mass (mw) and top mass (mt). Electroweak
precision constraints played an important role in the evolu-
tion of RS models and their phenomenology.1 In the original
standard proposal all the Standard Model (SM) fields are
localized on the IR brane.
Later motivated by gauge coupling unification, gauge

fields were moved to the bulk while keeping the Higgs and
the fermion fields on the brane [4]. In both cases large
contributions to the oblique S and T parameters were noted
[5], resulting in bounds on the first KK mass in excess of
30 TeV [6–11]. Moving the fermions into the bulk served
the following two purposes.
(1) It offered an elegant solution to the Yukawa hierarchy

puzzle achieved by localizing the fermions at different
points in the bulk, resulting in interesting flavor
phenomenology in the hadronic sector [12–16] and
the leptonic sector [13,17–29]. For a detailed de-
scription of RS phenomenology with bulk fields,
see Refs. [2,30].

(2) The constraints on the gauge KK states from the S
parameter are significantly weakened as all the light
fermions except the top are localized away from the
IR brane and Higgs.

The constraints from the T parameter, however, remain
strong as the Higgs doublet is localized near the IR brane
which is necessary for the solution to the hierarchy problem.
In view of this, the following extensions were proposed.
a) Models with bulk custodial symmetry [31]: The bulk
gauge group in question is SUð2ÞL × SUð2ÞR × Uð1ÞX. In
this case the additional corrections to the T parameter due to
new KK gauge bosons cancel the volume-enhanced con-
tributions due to the KK states of the SM gauge bosons. The
T parameter vanishes at tree level and the limits on the KK
mass of the first gauge boson are mainly due to the S
parameter. A straightforward estimation of the S parameter
results in a lower bound on the first KK mass of ∼4 TeV for
the point to lie inside the 3σ region in Fig. 1. Taking into
account the loop corrections to the T parameter (in scenarios
with Zbb protection), it was found that one can lower the
mass of the first KK gauge boson to around 3 TeVat 3σ. An
additional alternative is to consider custodial models with
gauge-Higgs unification which can address the little hier-
archy problem. [32]. A global fit to the precision observables
in such models was performed in Ref. [33]. Scenarios with
bulk Higgs were considered in Ref. [34]. b) Models with a
deformed metric [35–37]: In this setup the bulk geometry is
RS-like [anti–de Sitter (AdS)] near the UV brane, while
there is a deviation from AdS geometry near the IR brane.
Depending on the model parameters this often results in a
smaller volume factor as compared to the original RS setup.
In Ref. [38] the authors performed a fit to the data for
different values of the Higgs mass and evaluated the fine-
tuning required to fit that particular Higgs mass. In Ref. [39]
the authors studied the implications of the one-loop correc-
tions to the T parameter on the fits. c) Models with brane-
localized kinetic terms for the gauge bosons [40]. Therewere
several previous analyses where the impact of bulk fields on
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oblique observables was studied. With bulk fermions, the
dominant constraint on the KK mass is due to the T
parameter which is enhanced due to the mixing of the
zero-mode gauge bosons with the KKmodes. This mixing is
governed by the Higgs vacuum expectation value (VEV). As
noted in Ref. [26], these constraints can be ameliorated with
a Higgs VEV that is not strongly localized near the IR brane,
which in turn reduces the zero-KK mode mixing. This setup
is particularly useful in a model with a deformed-RS metric,
where the KK constraints on the lowest KK masses can be
reduced to ∼2.5 TeV. In Ref. [41] the authors, while
updating the bounds on the KK masses from precision
electroweak data, also discussed the impact of the future
measurements of rare K and B decays on the parameter
space of the model. They also discussed the correlation
between the these flavor measurements and the limits from
direct searches for current and future runs of the LHC.
General composite Higgs models were discussed in
Ref. [42], of which RS was considered as an example.
While discussing the trilinear and quartic anomalous gauge
couplings in these scenarios, they quoted limits on the mass
of the KK gauge resonance due to precise values of the S and
T parameters. In the absence of brane kinetic terms, the
constraint on custodial models with a brane Higgs was about
7 TeV, while this could be lowered to 6.6 TeV for a pseudo-
Nambu-Goldstone Higgs at the 95% C.L. Models with bulk
Higgs were also considered in Ref. [34], where a detailed
analysis correlating signal strengths for different production
mechanisms and decay channels was performed as a
function of the anarchic bulk Yukawa parameter, KK
masses, and the extent of the compositeness of the Higgs

operator. In Ref. [43] the authors showed that the inclusion
of higher-dimensional operators in the bulk and on the
branes can significantly reduce the constraints on the T
parameter. These operators only require Oð1Þ coefficients,
and do not contribute much to the other electroweak
parameters. We focus our attention on scenarios a) and b)
of the extensions to the RS model. In both the scenarios
the brane mass parameter of the Higgs doublet plays an
important role in determining the constraint on the first KK
mass of the gauge boson. Additionally, with the precise
measurement of the Higgs mass, the extent of fine-tuning is
related to the brane mass parameter b [36–38]. We make
explicit the interplay between the fine-tuning required to fit
the Higgs boson mass and the b parameter which gives the
best fit to the electroweak observables. Using the expansion
formalism of Ref. [44] we determine the best-fit points for
the model parameters by using the standard χ2 analysis. We
find that the KK mass of the first gauge boson is lower than
what was obtained in earlier analyses when naive bounds
from the evaluation of S and T parameters were taken into
account.
The paper is organized as follows. In Secs. II and III we

outline the formalism of Ref. [44], thus providing the
necessary background for the analysis. In Sec. IV we
briefly review the bulk RS model and study the bulk RS
model with no additional gauge symmetries. In Secs. Vand
VI we analyze the RS model with a deformed metric and
custodial symmetry, respectively. We conclude in Sec. VII.

II. EXPANSION FORMALISM AND THE SM

In this section we briefly review the expansion formalism
of Ref. [44] which we use for our analysis. There are
numerous observables in the Standard Model whose values
have been very well measured. These observables are in
general a function of the following Lagrangian parameters:

pk0 ≡ fgi; yt; v; λg; ð1Þ

where gi are the gauge couplings, yt is the top quark
Yukawa coupling, v is the VEV, and λ is the quartic
coupling. These parameters are referred to as the “input
parameters.” The ith observable ÔSM

i in the SM can be
expressed as a function of these parameters as

ÔSM
i ðfpk0 gÞ¼ Ôref

i þ
X
k0

∂ÔSM
i

∂pk0
ðpk0 −pref

k0 Þþ � � � ; ð2Þ

where the � � � denote higher orders. fpref
k0 g is the set of

Lagrangian parameters chosen at a reference value pref
k0 at

which the evaluated expressions for the SM observables
match closely with experiment, and Ôref

i ¼ ÔSM
i ðfpref

k0 gÞ.
Thus the expansion in Eq. (2) is about the reference values
pref
k0 and pk0 is the allowed deviation about the reference

values.

FIG. 1. The red, blue, and orange regions denote the 68%,
95%, and 99% confidence level allowed regions in the S-T
parameter space.
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The Lagrangian parameters, however, are not measured
directly, but rather are extracted from the measurements of
certain observables. As a result it seems logical to reexpress
the SM observables in terms of a few accurately measured
observables which will now serve as the input. One such
list of input observables is2

Ôk0 ≡ fmZ;mH;GF; αðmZÞ; αsðmZÞ; mtðmtÞg: ð3Þ

In terms of the input observables, Eq. (2) can be reex-
pressed as follows:

ÔSM
i ðfÔk0 gÞ ¼ Ôref

i þ
X
k0

∂ÔSM
i

∂Ôk0
ðÔk0 − Ôref

k0 Þ þ � � � ; ð4Þ

where Ôref
k0 is the experimentally measured central value

of the input observable and Ôk0 quantifies the deviation
from the central value. Thus the deviation in ÔSM

i can be
expressed in terms of the experimental deviation of the
input observables from their central values. The relative
deviation can be defined as

δ̄SMÔiðfÔk0gÞ ¼
ÔSM

i ðfÔk0gÞ − Ôref
i ðfÔref

k0 gÞ
Ôref

i

: ð5Þ

Defining

cik0 ¼
Ôref

k0

Ôref
i

∂ÔSM
i

∂Ôk0
; ð6Þ

we can express the relative deviation in Eq. (5) in the ith
observable, due to the deviation from the central value of
the input observables as

δ̄OSM
i ¼

X
i0
cii0δÔ

SM
i0 : ð7Þ

Using this, Eq. (4) can be rewritten as

ÔSM
i ðfÔk0 gÞ ¼ Ôref

i ð1þ δ̂SMÔiÞ: ð8Þ

The deviation of all the SM observables can be quanti-
fied by constructing a χ2 statistic defined as

χ2ðÔk0 Þ ¼
X
i

�
ÔSM

i ðÔk0 Þ − Ôexpt
i

δÔexpt
i

�
2

: ð9Þ

TABLE I. Experimentally measured central values for the input and output observables along with the standard
deviation.

Input observables
mZ 91.1876(21) [47] GF 1.1663787ð6Þ × 10−5 [48]

αðmZÞ 7.81592ð86Þ × 10−3 [48] mtðmtÞ 173.34(75) [49]
αsðmZÞ 0.1185(6) [48] mH 125.9(4) [48]

Output observables

mW 80.385(15) [50] ΓZ 2.4952(23) [47]
σhad 41.541(37) [47] Re 20.804(50) [47]
Rμ 20.785(33) [47] Rtau 20.764(45) [47]
Rb 0.21629(66) [47] Rc 0.1721(30) [47]

sin2θe 0.23153(16) [47] sin2θb 0.281(16) [47]
sin2θc 0.2355(59) [47] Ae

FB 0.0145(25) [47]
Ab
FB 0.0992(16) [47] Ac

FB 0.0707(35) [47]
Ab 0.923(20) [47] Ac 0.670(27) [47]

TABLE II. Best-fit values for the input and output observables for the SM fit with χ2min ¼ 24.54.

Input observables
mZ 91.188 GF 1.16638 × 10−5

αðmZÞ 7.81589 × 10−3 mtðmtÞ 173.59
αsðmZÞ 0.118567 mH 125.89

Output observables

mW 80.366� 0.005 ΓZ 2.4957� 0.0006

σhad 41.472� 0.04 Re 20.7427� 0.03
Rμ 20.7428� 0.03 Rtau 20.7897� 0.03
Rb 0.215822� 0.00005 Rc 0.17209� 0.000007

sin2 θe 0.23161� 0.000002 sin2 θb 0.2329� 0.00001
sin2 θc 0.2315� 0.000002 Ae

FB 0.0160� 0.000004
Ab
FB 0.1025� 0.00002 Ac

FB 0.0732� 0.00001
Ab 0.9346� 0.00005 Ac 0.6675� 0.000008

2A subset of these observables can be used to “determine” the
input parameters.
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It should be noted that while constructing the χ2 we assume
that there is no correlation [45] between the output observ-
ables. However, we note that taking into account the
correlation matrix for the output observables will not
significantly change the results of our analysis. The central
values and the allowed deviation for the input and output
observables are given in Table I. Using the Z pole observ-
ables and theW mass as the output observables, we minimize
the χ2 function in Eq. (9) by varying the input observables
within the experimentally allowed deviation given in Table I.
The minimization is performed using the method from
Ref. [46]. We obtain χ2min ¼ 24.54 with the corresponding
best-fit values for the input observables given in Table II.

III. NEW PHYSICS

The expansion formalism presented in Sec. II can be
extended to include new physics effects. Assuming the
nature of new physics is such that it mostly modifies the
oblique parameters, the new physics effects can be para-
metrized by the introduction of higher-dimension operators
in the Lagrangian. These operators can give corrections to
any of the input and the output observables.3 In the
presence of new physics, Eq. (7) becomes

δNPÔth
i ðfÔk0 g; NPÞ ¼ δ̄ÔSM

i þ ζi; ð10Þ

where ζiðfÔk0g; NPÞ≡ δNPÔth
i ðfÔk0 g;NPÞ
Ôref

i
parametrizes the

relative contribution to the ith observable due to
higher-dimension operators. Using Eq. (7), Eq. (10) can
be written as

δNPÔth
i ðfÔk0g; NPÞ ¼

X
i0
cii0δÔ

SM
i0 þ ζi

¼
X
i0
cii0δÔ

th
i0 þ δ̄NPÔi; ð11Þ

where δ̄NPÔi ¼ ζi −
P

i0cii0ζi0 . Here the superscript “th”
denotes the SM in addition to new physics. Note that from
Eq. (6), the matrix of coefficients cik0 is a unit matrix for
the input observables, i.e., ci0k0 ¼ δi0k0 . Thus any new
physics effects on the input observables are adjusted such
that the net shift is zero, which is apparent in Eq. (11).
This adjustment is however propagated in the evaluation
of the output observables through Eq. (11).
In many scenarios, new physics is such that the dominant

contribution to the various SM observables is only through
the self-energy corrections to the various gauge boson
propagators given below:

παβ ≡ fπZZ; π0ZZ; πγZ; π0γγ; πWW; π0WWg: ð12Þ

The primed quantities denote differentiation with respect to
q2, where q is the four-momentum. Note that the correc-
tions to the fermion coupling to the gauge bosons are
universal. In this case the new physics contribution to the
input observables in Eq. (11) can be reexpressed as

δNPÔth
i ¼

X
bi;αβδNPπαβ; ð13Þ

where it is understood that the sum extends over the list
in Eq. (12) while the coefficients bαβ were evaluated
in Ref. [44].
In such models the corrections to the gauge boson

propagators can be encoded in the oblique parameters S
and T [5,55].4 These oblique parameters are related to
the new physics effects to the self-energy correction as
follows [56];

δNPπZZ ¼ −αðmZÞT þ αðmZÞ
2

S;

δNPπ0ZZ ¼ αðmZÞ
2

S;

δNPπγZ ¼ −
αðmZÞ
4sin2θW

cos 2θW tan θWS;

δNPπ0γγ ¼ −
αðmZÞ

2
S:

We use Eq. (13) in Eq. (11) to construct the χ2 for the
output observables at the Z peak along with the W mass.
Using the results of the analysis in Ref. [44], the expression
for the χ2 statistic defined in Eq. (9) is given as

χ2 ¼ 25.0898þ 1102.39S2 þ 28.746S − 72.0085T

− 2256.69ST þ 1377.07T2: ð14Þ

The input observables were fixed to their experimentally
measured central values while obtaining the above expres-
sion. Using this we obtain the S-T plot in Fig. 1 in which the
68%, 95%, and 99% confidence level allowed regions are
depicted by the red, blue, and orange regions, respectively.
Our analysis is performed by fixing U ¼ 0. Additionally the
best-fit point formref

h ¼ 125 GeV and mref
t ¼ 173 GeV was

obtained to be S ¼ 0.08� 0.1 and T ¼ 0.09� 0.1, and
the correlation coefficient between the S and the T parameter
is þ0.89. In addition to S and T, the other floating-point
parameters were mZ ¼ 91.1876� 0.0021, αsðMZÞ¼
0.1185�0.0006, and αðM2

ZÞ¼ 7.81596ð86Þ×10−3. These
results are to be compared with the GFITTER analysis [57]
where the fmZ; α;Δαg were considered as the floating-
point parameters with ΔαðM2

ZÞ ¼ 0.02757� 0.0001. They
3In the calculations used for our analysis only tree-level

effective theory operators are considered. Things could get more
stringent if one-loop effective theory operators are considered
[51–53]. For a detailed analysis of precision observables using
the Standard Model effective field theory, see Ref. [54].

4The contribution to U is suppressed as only dimension-eight
operators contribute to it.
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obtained S ¼ 0.06� 0.09 and T ¼ 0.1� 0.07 with a cor-
relation coefficient þ0.91.
For a particular model of new physics, the oblique

parameters S and T depend on the model parameters. A
given set of model parameters is valid only if the corre-
sponding S, T observables computed for that set lie at least
within the orange ellipse in Fig. 1. Thus a very small
contribution (for example, to the S parameter) would
require T to also be very small so as to lie within the
bottom left portion of the ellipse. However an increasing S
can admit larger values of the T parameter, corresponding
to moving towards the top right portion of the ellipse. Thus
we can use Fig. 1 to constrain the model parameters. We
now use this analysis to obtain constraints on various
Randall-Sundrum models.

IV. RANDALL-SUNDRUM MODELS

The Randall-Sundrum model is a model of a single
extra dimension compactified on an S1=Z2 orbifold [1].
The five-dimensional gravity theory is defined by the
following line element:

ds2 ¼ e−2AðyÞημνdxμdxν − dy2: ð15Þ

Two opposite-tension branes are located at the two fixed
points of the orbifold. The space between the branes is
endowed with a large negative bulk cosmological constant
making it a slice of AdS. The presence of brane-localized
sources of energy results in zero cosmological constant
being induced on the branes. In the original setup
AðyÞ ¼ ky, where k is the reduced Planck scale.
Identifying the scale of physics on the y ¼ 0 brane as
MIR, the effective UV scale induced at the y ¼ πR brane
owing to geometry is given as

MIR ¼ e−kRπk; ð16Þ
where R is the compactification radius. Choosing kR ∼ 12
will result in MIR ∼ 200 GeV owing to large exponential
warping. Any radiative instability to the masses of funda-
mental scalars in the theory can be warped down to the
electroweak scale, thus solving the gauge hierarchy prob-
lem. In the original setup, with the exception of gravity all
the SM fields were localized on the brane at y ¼ y1 ¼ πR,
also referred to as the IR brane. Here we consider a
generalization of the original setup where particles of all
types of spin are allowed to propagate in the bulk.
A bulk fieldΨsðxμ; yÞ with spin s can be expanded in the

KK basis as follows:

Ψsðxμ; yÞ ¼ 1ffiffiffiffiffiffi
πR

p
X∞
n¼0

ψ ðnÞ
s ðxμÞfðnÞs ðyÞ: ð17Þ

The zero modes for the fields are identified as the SM
fields. While the zero modes for the gauge bosons are flat at

leading order, the ones for the scalars and the fermions are
controlled by the brane and bulk mass terms, respectively.
They are parametrized as ms

brane ¼ bk and mf
bulk ¼ ck,

where b, c are dimensionless Oð1Þ quantities. The nor-
malized profiles for the fields are given as

fð0Þ0 ðb; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðb − 1ÞkRπ
e2ðb−1ÞkRπ − 1

r
eðb−1Þky;

fð0Þ1=2ðc; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − 2cÞkRπ
eð1−2cÞkRπ − 1

r
eð0.5−cÞky;

fð0Þ1 ðyÞ ¼ 1; ð18Þ

where the normalization conditions are given as

1

πR

Z
πR

0

ðfð0Þs ðyÞÞ2dy ¼ 1: ð19Þ

c < 0.5 and b > 1 (c > 0.5 and b < 1) correspond to the
fields being localized towards the IR (UV) brane, respec-
tively. The KK modes of all fields are however localized
near the IR brane. We note here that while the profiles of the
gauge boson fields are flat at leading order, they receives
corrections due to the mixing of the KK mode with the
zero mode. The mixing is proportional to the VEV and is
given as

a01 ¼
v2

ðkRπÞM2
KK

Z
zIR

1

z2fð0Þ0 ðzÞ2f1ðzÞð0Þf1ðzÞð1Þ; ð20Þ

where z ¼ ekRy is the conformal coordinate. fð0Þ0;1 are given

in Eq. (18), while fð1Þ1 is the profile of the first KK mode
of the gauge boson. A detailed review about bulk RS
models can be found in Refs. [2,3]. Thus diagonalizing
the mass matrix of KK modes and the zero mode will
result in the lightest state (identified as the SM boson)
having a small KK component proportional to Eq. (20).
As a result the coupling of the fermions to the SM boson
will have a nonuniversal component which is a function
of its localization parameter c. The c parameters will be in
general different for different fermionic generations to
generate the required hierarchy in the Yukawa parame-
ters. For the light fields with the exception of the top it is
fair to assume c > 0.5 to reduce the overlap with the
Higgs. For c > 0.5, the nonuniversal component of
the coupling is very small and can be neglected [2,58].
This is enough to evade bounds from flavor-changing
neutral current (FCNC) processes which can occur at
tree level.
The solution of the hierarchy problem requires the

Higgs zero mode to be localized very close to the IR
brane. It corresponds to a choice b ≥ 2 for the brane
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mass parameter [37,59].5 For a bulk scalar field with a
massless zero mode the brane mass parameter b is related to
the bulk mass parameter a as6

b ¼ 2� ffiffiffiffiffiffiffiffiffiffiffi
4þ a

p
: ð21Þ

Henceforth, we will drop the b ¼ 2 −
ffiffiffiffiffiffiffiffiffiffiffi
4þ a

p
solution as it

will never lead to a b ≥ 2 necessary for the solution to the
hierarchy problem. The zero mode increasingly becomes
sharply localized near the IR brane as b increases.
However, an increase in b is only facilitated by the
corresponding increase in jaj. Depending on the value of
k

Mpl
, the bulk mass parameter cannot be increased indefi-

nitely as the product ak will become greater than the five-
dimensional Planck scale. Figure 2 shows a plot of b as a
function of a. Depending on the value of k

Mpl
, the plot is

terminated on the right at which ak ¼ MPl. For instance, for
k

Mpl
¼ 0.1, the plot (blue curve) is terminated at b ¼ 5.74,

while for k
Mpl

¼ 0.25 the plot (red curve) is terminated

b ¼ 4.82.
Thus the case with a brane-localized Higgs will be

treated separately and not as a limiting case where the bulk
Higgs field tends to a brane-localized one.
We now proceed to study the impact of electroweak

precision tests in various RS models.

A. Bulk Higgs with no additional symmetries

This model is the same setup as that discussed above. All
the fermionic fields except the top are localized near the UV
brane. This is sufficient to fit the masses of all fermions
except the top. Due to the localization of all the fermions
near the UV brane, the vertex corrections are very small and

universal, and thus the new physics effects can be para-
metrized in terms of the oblique operators S and T which
are given as [36–38]

αT ¼ sin2θWm2
Zy1k

2e−2kRπ

Λ2
IR

ðαhh − 2αhf þ αffÞ;

αS ¼ 8sin2θWcos2θWm2
Zy1k

2e−2kRπ

Λ2
IR

ðαff − αhfÞ; ð22Þ

where y1 denotes the position of the IR brane and αij are
parameters involving the bulk propagators of the bulk
gauge fields with ðþþÞ boundary conditions, where þ
denotes the Neumann boundary condition. They are given
as [37,61]

αhh ¼
Z

e2AðyÞ
�
Ωh −

y
y1

�
2

;

αhf ¼
Z

e2AðyÞ
�
Ωh −

y
y1

��
Ωf −

y
y1

�
;

αff ¼
Z

e2AðyÞ
�
Ωf −

y
y1

�
2

; ð23Þ

where Ωf;hðyÞ ¼ 1
y1

R y
0 dyf

2
f;hðyÞ and the profiles f0s are

given by Eq. (18). For the case where the fermions are
localized on the UV brane, Ωf ¼ 1. These coefficients
are a function of the localization of the zero mode of
the fermionic and Higgs fields. For a fixed KK scale, the
coefficients increase as the fields move closer to the IR
brane due to a larger overlap of the zero mode with the
KK modes.
For the oblique T parameters, the coefficient αhh also

contributes in addition to αhf;ff. Owing to the localization
of the Higgs very close to the IR brane, αhh will be
enhanced as compared to αhf;ff, which is smaller as the
fermions are closer to the UV brane. As a result in this
scenario the contributions to the T parameter are large. In

FIG. 2. Maximum allowed value of b for k
Mpl

¼ 0.25 (red) and
k

Mpl
¼ 0.1 (blue).

FIG. 3. 3σ allowed parameter space in the b − ΛIR plane for
regular bulk RS. ΛIR is in GeV.

5The realization of electroweak symmetry breaking also
requires b > 2 [60].

6The bulk scalar mass is parametrized as ms
bulk ¼ ak.
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this case the oblique observables primarily depend on two
parameters:
(a) The localization parameter b for the bulk Higgs field.
(b) The first KK scale of the gauge boson.
To extract the parameter space of these two parameters
(which are consistent with the constraints on the S and T
parameters) a scan is performed over the following ranges:

b≡ ½2; 5�; ΛIR ≡ ½1250; 10000�: ð24Þ
Figure 3 shows the 3σ region in the b − ΛIR plane. The first
KK mass of the gauge boson is related to the IR scale as
mð1Þ

KK ∼ 2.44ΛIR. We see ΛIR is lowered as b approaches 2,
corresponding to a shifting of the Higgs away from the IR
brane. However, b ≥ 2 must be maintained for the model to
serve as a solution to the hierarchy problem [37,59]. Table III
gives the fit values when all input observables along with b
and ΛIR are varied simultaneously to minimize the χ2 in
Eq. (9). From the plot in Fig. 3 we find that the lowest value
of ΛIR possible is around 3.4 TeV, corresponding to a first
KK mass for the gauge boson of around 8 TeV. The plot is
highly concentrated around b ¼ 2 since the coupling of the
SM fields to the KK states is small as compared to higher
values of b. This point corresponds to the case where the
mass of the first KK gauge boson is minimum.

We finally note that for the brane-localized case, a
minimum KK mass of 13.6 TeV is required for the model
to be consistent with the data. The fit values for the input
and the output observables are given in Table IV.
It is to be noted that KK scales in excess of 20 TeV are

required when constraints from FCNCs like μ → eγ are
taken into account [27]. The implementation of bulk flavor
symmetries with the imposition of the minimal flavor
violation ansatz helps to substantially reduce the KK mass
to around ∼3 TeV [12,23,62,63].
Fine-tuning: It is well known that the requirement of a

massless zero mode for the bulk scalar field requires the
bulk massmbulk ¼ ak and the brane massmbrane ¼ bk to be
related by the following relation7:

mbrane ¼ 2kþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4k2 þm2

bulk

q
: ð25Þ

Any misalignment between the brane and the bulk masses
will result in a nonzero mass for the zero mode. In a
realistic model with electroweak symmetry breaking, the

TABLE III. Fit values for the input and output observables with a bulk Higgs. Input observables are free in the fit
and are varied within their 1σ allowed experimental deviation. b ¼ 2.00 andm1

kk ¼ 8.3 TeV are obtained for the fit.

Input observables
mZ 91.1813 GF 1.1663784 × 10−5

αðmZÞ 7.81611 × 10−3 mtðmtÞ 173.05
αsðmZÞ 0.119101 mH 126.3

Output observables

mW 80.411 ΓZ 2.4983
σhad 41.479 Re 20.7472
Rμ 20.7473 Rtau 20.7941
Rb 0.2158 Rc 0.1712

sin2 θe 0.2313 sin2 θb 0.2327
sin2 θc 0.2312 Ae

FB 0.0164
Ab
FB 0.1038 Ac

FB 0.0742
Ab 0.9347 Ac 0.6683

Model Parameters b 2.00 m1
kk 8.3 TeV

TABLE IV. Fit values for the input and output observables. Input observables are free in the fit and are varied
within their 1σ allowed experimental deviation. m1

kk ¼ 13.6 TeV is obtained for the fit.

Input observables
mZ 91.1856 GF 1.16637854 × 10−5

αðmZÞ 7.816649 × 10−3 mtðmtÞ 172.33
αsðmZÞ 0.118657 mH 126.295

Output observables

mW 80.402 ΓZ 2.4976

σhad 41.477 Re 20.744
Rμ 20.744 Rtau 20.7916
Rb 0.2158 Rc 0.17229

sin2 θe 0.2314 sin2 θb 0.2327
sin2 θc 0.2313 Ae

FB 0.0164
Ab
FB 0.1036 Ac

FB 0.07412
Ab 0.9347 Ac 0.6682

7The relation mbrane ¼ 2k −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4k2 þm2

bulk

p
is relevant for a

Higgs field localized away from the IR brane and is not relevant
to the discussion here.
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Higgs boson is massive and is related to the misalignment
as [36,37,64]

m2
H ¼ 4ðb − 1Þðmbrane −m0

braneÞ
Λ2
IR

k
; ð26Þ

where m0
brane ¼ bk is the value of the brane mass when the

zero mode is massless. As given in Table III, ΛIR ¼
2.41 TeV in order for the model to be consistent with the
electroweak precision data. As a result, for b ¼ 2 a can-
cellation up to the fourth decimal between m0

brane and mbrane
is required to fit a Higgs mass of 126 GeV. The level of
tuning increases as the Higgs field is pushed closer to the IR
brane, corresponding to an increase in b. Due to a direct
dependence on the brane mass parameter b [36,37,65], it is
fair to expect that the Higgs boson mass is best fit by b ∼ 2.
In the dual theory this corresponds to the Higgs field being a
partial composite state with a relevant coupling between
the source and the conformal field theory (CFT) sectors.
As b increases, this coupling increases and the state is fully
composite of the CFT, thus recovering the original RS setup.

V. DEFORMED RS MODEL

The expression for the S and T parameters in Eq. (22)
can be reexpressed as [36,37]

αS ¼ 8cos2θWsin2θW
m2

Z

Λ2
IR

1

Z
I;

αT ¼ sin2θW
m2

Z

Λ2
IR

ky1
Z2

I; ð27Þ

where y1 is the position of the IR brane and the dimension-
less integrals I and Z are defined as

I ¼ k
Z

y1

0

½ðkðy1 − yÞÞ2�e2AðyÞ−2Aðy1Þdy;

Z ¼ k
Z

y1

0

dy
h2ðyÞ
h2ðy1Þ

e−2AðyÞþ2Aðy1Þ: ð28Þ

hðyÞ is the profile of the vacuum expectation value and is
given as

hðyÞ ¼ hðy1Þebkðy−y1Þ: ð29Þ

We find that the T parameter is enhanced by the volume
factor in addition to being suppressed by two powers of Z.
In RS models where AðyÞ ¼ ky, Z ¼ 0.5 for b ¼ 2 and
becomes smaller as the Higgs field approaches the IR brane
(b → ∞). This results in the enhancement of the T
parameter, leading to stringent constraints on the KK scale.
As a result, the authors of Refs. [36–38] considered an
alternative solution by considering a modification of the
line element in Eq. (15), where AðyÞ is now given as

AðyÞ ¼ ky −
1

ν2
log

�
1 −

y
ys

�
: ð30Þ

Note that ν → ∞ results in the RS limit. A consequence of
this metric is that the singularity at the IR brane is shifted
outside the patch between the IR and UV branes at
ys ¼ y1 þ Δ. Δ is the distance of the singularity from
the IR brane. For the case where the hierarchy problem is
solved, i.e., Aðy1Þ ∼ 36, the position of the IR brane in the
bulk y1 is a function of ν, Δ. A smaller ν will in general
result in a smaller volume factor y1 and helps in amelio-
rating the constraints on the KKmass from the T parameter.
Additionally, as noted in Refs. [36,37], this setup results in
large values of Z for certain choices of the parameters ν, Δ,
and b which help in reducing the KK scales so as to be
within the reach of the LHC.
As before we perform an analysis to determine the

parameter space of the b − ΛIR plane. We choose two sets
of ðν;ΔÞ as follows:
(a) ν ¼ 0.8 and Δ ¼ 1. This corresponds to y1 ¼ 30.60=k

so that Aðy1Þ≡ 36.
(b) ν ¼ 1 and Δ ¼ 0.1. This corresponds to y1 ¼ 30.28=k

so that Aðy1Þ≡ 36.

FIG. 4. Allowed parameter space in the b − ΛIR plane for the deformed metric. ΛIR is in GeV. The left panel corresponds to ν ¼ 0.8
and Δ ¼ 1, while the right panel corresponds to ν ¼ 1 and Δ ¼ 0.1.
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For the deformed metric, ΛIR is related to the first mkk
scale by the following relation [36,37]:

m1
kk ∼ j0;1

A0ðy1Þ
k

ΛIR; ð31Þ
where j0;1 is the first zero of the Bessel function J0ðxÞ. We
scan the b parameter from 2 to 5 andΛIR is scanned from 50
to 587 GeV for case a), while it is scanned from 50 to
120 GeV for case b). The upper limit on ΛIR corresponds to
a KK mass of ∼3 TeV. From the left panel of Fig. 4, a
lowest value of ΛIR ¼ 472.6 GeV is obtained for b ¼ 2
which corresponds to a first KK mass of about 2.3 TeV. For
case b), depicted in the right panel of Fig. 4, a lowest value
of ΛIR ¼ 71.10 GeV is obtained again for b ¼ 2. This
corresponds to a first KK mass of about 1.7 TeV for the
gauge boson. Thus we see that for certain choices of the
metric depending on the values ðν;ΔÞ, the first KK mass of
the gauge boson can be below 2 TeV. The fit values for the
input and output observables are given in Table V. Case b)
offers an advantage over case a) in terms of being a less
fine-tuned model since the ΛIR for the fit is small. The
analysis can be repeated for different values of ν and Δ. For
our analysis we fit the top-quark mass by cQ3

∼ 0.475 and
ct ∼ −1 with a choice of a Oð1Þ Yukawa ∼4.
The localization of the top doublet relatively near the UV

brane is to minimize the correction to the Zbb vertex.
Fine-tuning: Due to the deformation in the metric, the

Higgs mass in Eq. (26) can be generalized to [36,37,64]

m2
H ¼ 2

Z
ðmbrane −m0

braneÞ
Λ2
IR

k
where

Z ¼
Z

y1

0

h2ðyÞ
h2ðy1Þ

e−2AðyÞþ2Aðy1Þ: ð32Þ

For the normal RS case, AðyÞ ¼ ky and Z ¼ 1
2ða−1Þ, thus

reducing to Eq. (26). In comparison to RS where Z < 1,
certain choices of ν and δ result in Z > 1 which not only
lowers the contribution to the T parameter in Eq. (27) but
also helps in reducing the fine-tuning to obtain the Higgs

mass. For instance, for the parameters in Table V, Z ¼ 2.6,
the tuning reduces to 0.018.

VI. CUSTODIAL RS

The custodial Randall Sundrum setup [31] contains an
enlarged bulk gauged symmetry given by

SUð2ÞL × SUð2ÞR × Uð1ÞX ð33Þ
which restores the custodial symmetry in the RS setup for
the Higgs potential. The corresponding gauge bosons are
denoted by W1;2;3

Lμ , W1;2;3
Rμ , and Xμ, with g5L;5R;5X denoting

the corresponding five-dimensional gauge couplings. In
updating the electroweak constraints in this setup we follow
the notation of Ref. [32].
The bulk symmetry is broken down to the Standard

Model by considering the following boundary conditions
for the gauge fields:

W1;2;3
Lμ ðþþÞ; BμðþþÞ; W1;2

Rμð−þÞ; Z0
μð−þÞ;

ð34Þ
with þð−Þ denoting Neumann (Dirichlet) boundary con-
ditions as before. The gauge fields Bμ and Z0

μ are defined as

Bμ ¼
g5XW3

Rμ þ g5RXμffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g25R þ g25X

q ; Z0
μ ¼

g5RW3
Rμ − g5XXμffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g25R þ g25X

q :

ð35Þ

TheW1;2;3
Lμ and Bμ possess zero modes corresponding to the

SM SUð2ÞL and the Uð1ÞY gauge boson, respectively. The
hypercharge coupling is given by Y ¼ 2ðT3

R þQXÞ. After
electroweak symmetry breaking, the electromagnetic
charge is given by Qem ¼ T3

R þ T3
L þQX. On the other

hand, owing to the mixed boundary conditions of W1;2
Rμ and

Z0
μ, they do not possess a zero mode.

TABLE V. Fit values for the input and output observables for the deformed RS case. b ¼ 2.0006 and m1
kk ¼

2.3 TeV are obtained for the fit. ν ¼ 0.8 and Δ ¼ 1
k are chosen for the fit.

Input observables
mZ 91.1813 GF 1.1663785 × 10−5

αðmZÞ 7.81663 × 10−3 mtðmtÞ 173.12
αsðmZÞ 0.119118 mH 126.29

Output observables

mW 80.419 ΓZ 2.498
σhad 41.486 Re 20.7381
Rμ 20.7382 Rtau 20.785
Rb 0.215 Rc 0.171

sin2 θe 0.2314 sin2 θb 0.2328
sin2 θc 0.2313 Ae

FB 0.0162

Ab
FB 0.1032 Ac

FB 0.0737
Ab 0.9346 Ac 0.6679

Model Parameters b 2.00 m1
kk 2.3 TeV
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The presence of new gauge bosons induces additional
corrections to the T parameter but the S parameter remains
unchanged. It is given as [11,15,37,66,67]

αT ¼ sin2θWm2
Zy1k

2e−2kRπ

Λ2
IR

ðαhh − α0hh − 2αhf þ αffÞ;

ð36Þ

where α0hh is the bulk propagator for the bosons with ð−þÞ
boundary conditions and is given as

α0hh ¼
Z

y1

0

e2AðyÞð1 −ΩhÞ2: ð37Þ

The contributions to the T parameter due to the KK states of
the SM as well as the new gauge bosons are very similar
in magnitude. Recalling that the dominant contribution to
the T parameter is due to αhh, the presence of α0hh nearly
cancels this contribution, thus significantly lowering the
constraint on the first KK scale of the gauge boson. As a

result, the dominant constraint to the KK scale is due to the
S parameter. To see the effects of a negligible T parameter
on the fits we assume UV localized fermions to begin
with. To obtain the plot for b − ΛIR parameter space in
the presence of custodial symmetry, we first evaluate the
constraints at tree level. From the S-T plot in Fig. 1, the
region around T ∼ 0 would also necessitate the S parameter
to be small, thereby pushing the KK scale up. Indeed, as is
noted in the left panel of Fig. 5, a lowest value of ΛIR ¼
1659 GeV is obtained which translates into a lowest KK
mass of around 4 TeV. While this case does better than the
normal bulk RS scenario the first KK mass is still out of
reach of the LHC.
The assumption of UV localized fermions is not suffi-

cient to fit the top-quark mass as it would result in large
Oð1Þ Yukawa coupling. As a result the zero mode top
doublet and the singlet must be moved closer to the IR
brane (c < 0.5) to increase overlap with the Higgs. This
results in the shift of the coupling of bL to the Z boson. The
relative shift to bL is given as [11,32]

δgbL
gbL

¼ −v2
ðg2LT3

L − g2RT
3
RÞα0hf þ ðg2LT3

L − ðg0Þ2YÞðαhf − αUVhf − α0hfÞ
1 − 2

3
sin2θW

: ð38Þ

The first term involving α0hf will be significant in this case
as the third-generation doublet is localized closer to the IR
brane to fit the top-quark mass. In the second term however
the presence of α0hf and αhf with a relative minus sign
softens the impact of localization of the third generation on
δgbL
gbL

. The current constraints on the corrections to the ZbLbL
coupling pushes the limit obtained in the left panel of Fig. 5
to beyond 5 TeV. However it was observed in Ref. [68] that
the dominant contribution due to the first term in Eq. (38)
can be removed by assuming T3

L ¼ T3
R and gL ¼ gR, thus

significantly softening the constraints on the KK mass from
corrections to the Zbb̄ vertex. This implies that the left-
handed bottom must belong to bidoublets of SUð2ÞL×
SUð2ÞR. The bidoublets induce large negative contributions
to the T parameter in most regions of the parameter space.
The contribution is a function of cQ3;t which are the
localization parameters for the bidoublet and the singlet
tR. It was noted in Ref. [32] that the negative contribution
decreases as the doublet and/or singlet are localized away
from the IR brane. However, the top-quark mass as a
function of cQ3;t is given as

FIG. 5. The left panel shows the b − ΛIR parameter space when just the tree-level computations of S − T are taken into account. In the
right panel, the loop contributions to the T parameter are also included. ΛIR is in GeV.
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mtop ¼ ~Yu
3;3

vffiffiffi
2

p ðπRÞ3=2

×
Z

πR

0

fð0Þ0 ðb; yÞfð0Þ1=2ðcQ3
; yÞfð0Þ1=2ðct; yÞ; ð39Þ

where Yu
3;3 is a dimensionless Oð1Þ parameter. Choosing

the bidoublet and the singlet to be localized away from the
IR brane will result in the choice of a large Yu

3;3 > 10 to fit
the top-quark mass and is not feasible. As a result the
combination of cQ3;t that induces a positive contribution to
the T parameter is when cQ ≤ 0 and ct ∼ ½0.4; 0.5�. As
shown in Ref. [32], this choice of c parameters not only fits
the top-quark mass but also gives a non-negative contri-
bution to the T parameter.
A nonzero positive contribution to the T parameter

would correspond to moving vertically up in the S-T plane
in Fig. 1. The tilted orientation of the ellipse makes it
possible to accommodate larger values of S, thereby help-
ing to reduce the lower bound on the first KK mass. The
right panel of Fig. 5 corresponds to the case where the loop-
level contributions to the T parameter [32] have been turned
on. In the figure we have assumed ΔT loop ≤ 0.1. We find
that a minimum of ΔT loop ∼ 0.06 for b ¼ 2 is required to
lower the scale of the first KK gauge boson below 3 TeV.
As b increases (corresponding to the Higgs moving further
towards the IR brane) one can expect the minimum ΔT loop
required to keep the KK scale below 3 TeV to increase. The
fit values for the input and output observables are given in
Table VI.
Fine-tuning: In this case too we find that the best fit to the

precision data is when the brane mass parameter b ¼ 2. The
KK mass is lowered to 3 TeV, thus reducing the fine-tuning
by an order of magnitude. As a result the cancellation
between mbrane and m0

brane is of the order of 0.002

VII. CONCLUSIONS

There is a perception that in order for the Randall-
Sundrum model to successfully address the gauge-hierarchy

problem, the Higgs ought to be localized on the IR brane.
It has been noted earlier [59,64] that this is not the case and
our results bear this out. In fact, we find that even if we move
the Higgs field off the IR brane, a solution to the gauge
hierarchy problem is obtained as long as we have b ≥ 2.
Further, electroweak fits and the fine-tuning argument
seem to prefer a b value very close to 2. In the dual CFT
terminology, the Higgs field is a partially composite state
[69,70]. This has to do with the exponential form of the
scalar profiles which get pushed close to the IR brane for
values of b greater than 2, so that from the point of view of
the gauge hierarchy the Higgs is essentially IR localized.
However, such a bulk Higgs differs from the brane-localized
Higgs in the freedom that it offers in exploring the parameter
space of the model when confronted with electroweak
precision constraints.
A few remarks about the collider implications of bulk RS

models are in order. Generically, in these models the gauge
boson KK modes provide the most interesting signals, and
of these the KK gluon is the most important [71–73]. The
production cross section of the KK gauge boson modes is
very small partly because of the couplings of these modes
to the SM particles, but also because of the strong
constraints on the masses of the KK modes coming from
electroweak and flavor constraints. The cross sections for
other KK modes (like those of the fermions) are even
smaller than that of the gauge boson KK modes (except in
some versions of the RS model where the Higgs is treated
as a pseudo-Nambu-Goldstone boson). The collider tests of
the bulk RS models are therefore difficult and several

TABLE VI. Fit values for the input and output observables. The corresponding RS parameters are b ¼ 2.0004 and
m1

kk ¼ 2.9 TeV. ΛIR is in GeV. The loop contribution to the T parameter is ∼0.06.

Input observables
mZ 91.1938 GF 1.1663787 × 10−5

αðmZÞ 7.81509 × 10−3 mtðmtÞ 173.3499
αsðmZÞ 0.119003 mH 125.40

Output observables

mW 80.347 ΓZ 2.495
σhad 41.471 Re 20.736
Rμ 20.736 Rtau 20.783
Rb 0.215 Rc 0.171

sin2 θe 0.231 sin2 θb 0.233
sin2 θc 0.2317 Ae

FB 0.0155
Ab
FB 0.100 Ac

FB 0.072
Ab 0.934 Ac 0.666

Model Parameters b 2.00 m1
kk 2.88 TeV

TABLE VII. Summary of results for the various models at 3σ.

Model mKKðTeVÞ b

Normal RS 5.9 2.00
Deformed RS (ν ¼ 0.8, Δ ¼ 1) 2.3 2.00
Deformed RS (ν ¼ 1, Δ ¼ :1) 1.7 2.00
Custodial RS 2.88 2.00
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studies which propose probing alternative production
channels have been presented [74,75], but the range of
masses probed by these processes is just marginally larger
than that allowed by precision constraints. In view of this,
our results of the global fit for the deformed metric case are
very encouraging. Unlike the custodial-symmetry case for
which the global fits yield a bound on the mass of the first
KK mode of about 2.9 TeV, one gets a lower bound of
around 2.3 TeVat 3σ for the case of the deformed metric for
ν ¼ 0.8 and Δ ¼ 1. This bound reduces to about 1.7 TeV
when ν ¼ 1 andΔ ¼ 0.1. Table VII gives a summary of the

results obtained. A collider analysis for such a class of
models was done in Ref. [76]. The deformed metric model
then is testable at the LHC at a statistically significant level
and a more detailed study of the collider implications of this
model is called for.
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