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We study the topological structure of QCD by cluster analysis. The fermionic topological charge density
is constructed from low-lying modes of the overlap Dirac operator for three types of temporal boundary
conditions for the fermion field. This provides the possibility of marking all three dyon constituents of
Kraan–van Baal–Lee–Lu (KvBLL) calorons in the gluonic fields. The gluonic topological charge density
appears in the overimproved gradient flow process stopped at the moment when it maximally matches the
fermionic topological charge density. This corresponds to the smearing of gluonic fields up to the scale set
by dyon size. The timelike Abelian monopoles and specific KvBLL pattern of the Polyakov line are
correlated with topological clusters.
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I. INTRODUCTION

Two basic properties of QCD are the confinement of
quarks and gluons and the spontaneous breaking of chiral
symmetry at low temperature and density. Both properties
are believed to be intimately connected with each other and
to originate from a certain complex structure of the QCD
vacuum state, the simplest manifestations of which being
condensates of gluon and quark fields. The field fluctua-
tions contributing to these condensates are, however, space-
time and scale dependent. One of the aims of lattice gauge
theory is to reveal the corresponding structures. One school
of thought claims that—at the infrared scale—the origin of
both mechanisms can be traced back to semiclassical
objects of QCD. These objects either disappear or change
their properties at high temperature, where the quark-gluon
plasma phase appears.
Today it is commonplace to say that the instanton

mechanism is able to explain chiral symmetry breaking
while it fails to provide a mechanism for confinement.
Without further sophistication, this is certainly correct for
the instanton gas or liquid. Constituent dyons of Kraan–van
Baal–Lee–Lu (KvBLL) calorons [1–3], however, are as
good as instantons for explaining chiral symmetry

breaking. With their dyon “substructure,” calorons give
some room to reproduce certain features of confinement
(Polyakov loop correlators, spatial string tension, and
vortex and/or monopole percolation), which was the reason
why people expected for decades that “instanton quarks”
might solve the confinement problem. Moreover, when
considered as a rarefied gas, either without interaction or
with Coulomb-like interaction, dyons give confining
behavior for spacelike Wilson loops and for correlators
of Polyakov loops. The history of this idea dates from the
1970s and has continued to the recent past [4–8].
The modeling of dyon ensembles with interaction has

recently received even more attraction [9–14]. It is there-
fore of some interest to search for dyons in thermal
Monte Carlo configurations (representing lattice gauge
fields at different temperatures) in order to assess the
relevance of these models and in order to eventually
observe dyons clustering into caloronlike quasiclassical
configurations.
The caloron with nontrivial holonomy [1–3] has the

remarkable property that the single-zero mode of the Dirac
operator is able to localize on distinct constituent dyons
[15,16], depending on the temporal boundary condition
(BC) applied to the Dirac operator, if the latter possesses
improved chiral properties.*Deceased.
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Inspired by the KvBLL solutions, for a subset of thermal
lattice configurations of fixed total topological charge Q ¼
�1 (created below and above Tdec), the change of the
single-zero mode’s localization with the change of BC was
observed by Gattringer et al. [17,18] and was interpreted in
the caloron picture, ignoring other topological features of
these configurations. In the case of SUð2Þ and SUð3Þ lattice
gauge theory, it has been seen that this property of mobility
(and the changing degree of localization) is shared by a
band of near-zero modes (NZMs) of the overlap Dirac
operator [19–22]. Thus, not only the set of zero modes
reflecting the total topological charge of the gluonic field,
but also the band of low-lying modes of the overlap Dirac
operator identified with different boundary conditions can
be used as effective tools to detect distinct topological
objects. This direct insight from Monte Carlo configura-
tions of lattice gauge fields (without cooling or smearing) is
restricted, however, to a corresponding scale set by the
eigenvalues. In the present paper we will see to what extent
this technique leads us to the three dyons making up one
“instanton” (caloron) of QCD.
In Sec. II we introduce the lattice setup in which the

ensembles of gauge fields which we are going to analyze
have been generated in lattice QCDwithNf ¼ 2 dynamical
flavors. In Sec. III we define all the topologically relevant
lattice observables employed later on for the analysis.
Then, in Sec. IV, the concrete case of Nf ¼ 2 lattice
QCD is considered at two temperatures, at the crossover
Tχ (ensemble I) and at T ¼ 1.06Tχ (ensemble II). The
fermionic topological charge density was constructed with
the help of low-lying modes of the overlap Dirac operator
computed for three types of temporal boundary conditions.
We now introduce two ideas that are new compared to

previous papers dealing with SUð3Þ gluodynamics:
(i) Again, in addition to antiperiodic boundary conditions
for the overlap fermions, two other boundary conditions are
employed in order to construct topological densities for
each type of boundary condition. Here, however, the
number of pairs of nonzero modes is not fixed for all
boundary conditions; it is the eigenvalue cutoff that is fixed.
We consider two cutoffs at two temperatures. An eigen-
value cutoff for nonzero modes of the Dirac operator, rather
than a fixed number of modes (as was done earlier), is used
in order to hide the ultraviolet fluctuations of the gluonic
background. The eigenvalue cutoff is more directly related
to the task of separating scales than the number of modes
would be, in particular when different temperatures are
considered. (ii) In order to characterize the configurations
by the gluonic topological charge density, the technique of
gradient flow has replaced the previously used cooling
procedure. The gradient flow, a continuous cooling algo-
rithm, is the most contemporary answer to the question of
how to control the cooling; it introduces a scale parameter
of the diffusion length. With hindsight, one could decide to
cool up to the moment when diffusion length is of the order

of the size of topological objects we are looking for, i.e.,
dyons. This is the reason to use the gradient flow, in which
the scale parameter replaces the number of cooling steps.
The stopping criterion is then set by the maximal approxi-
mation of the fermionic topological charge density by the
gluonic one; thus, the gluonic topological density depends
on the chosen cutoff scale. In this way, it will turn out that
all UV fluctuations are removed, up to the size of dyons that
we are searching for.
Finally, the properties of the clusters of the three

fermionic topological densities under consideration are
studied, including their correlations among each other as
well as to the local holonomy and to the Abelian monopoles
from the maximally Abelian gauge construction. In Sec. V
we shall draw our conclusions.

II. LATTICE SETTING FOR
THE THERMAL ENSEMBLES

We continue our study of topological objects in SUð3Þ
gauge theory in the case of QCD (with dynamical quarks).
We have analyzed gauge-field configurations generated
with the Wilson gauge action SW and Nf ¼ 2 dynamical
flavors of nonperturbatively OðaÞ improved Wilson fer-
mions (clover fermions). These configurations were pro-
duced by the DIK Collaboration [23,24] using the Berlin
QCD code [25]. The improvement coefficient cSW was
determined nonperturbatively [26]. The lattice spacing and
pion mass were determined by the interpolation of T ¼ 0
results obtained by the QCDSF Collaboration [27]. We
have analyzed configurations produced on lattices with the
temporal extent Lτ ¼ 8 and spatial sizes Ls ¼ 16 (ensem-
ble I of 50 configurations at T ¼ Tχ) and Lτ ¼ 8 and
Ls ¼ 24 (ensemble II of 50 configurations at T ¼ 1.06Tχ).
The DIK Collaboration scanned the temperature T at fixed
values of β by changing the Wilson fermion hopping
parameter κ. In other words, the quark mass was not kept
constant. The chiral crossover temperature Tχ ≈ 230 MeV
was determined in Refs. [23,24] at a corresponding pion
mass value of Oð1 GeVÞ.
In Ref. [28] we investigated the T dependence of the

topological susceptibility throughout the interval
½0.85Tχ ; 1.26Tχ � by overimproved cooling applied to
ensembles of 500 or 200 configurations, and we confronted
the T dependence with the case of pure SUð3Þ Yang-Mills
theory (with Wilson action).
For the two temperatures T ¼ Tχ and T ¼ 1.06Tχ ,

which we intend to investigate here with overlap fermions,
with respect to details of the space-time topological
structure (though for a smaller subensemble of 50 con-
figurations each), we recall the topological susceptibility
we found in Ref. [28]:

(i) ensemble I (500 configurations, overimproved
cooling), χtop ¼ ð0.6� 0.05ÞT4

χ ;
(ii) ensemble II (200 configurations, overimproved

cooling), χtop ¼ ð0.3� 0.03ÞT4
χ .
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III. TOPOLOGICALLY RELEVANT
OBSERVABLES

In our analysis, we use the following instruments
(observables):

(i) local holonomy and its trace (the Polyakov loop),
(ii) improved gluonic topological charge, and
(iii) Abelian monopoles revealed by Abelian projection

after transforming the gauge field to the maximal
Abelian gauge (MAG).

All these quantities are computed after gradient flow (in
close correspondence to overimproved cooling). We also
use the fermionic topological charge density (and its UV-
filtered version), including its dependence on the temporal
boundary conditions imposed on overlap fermions.
The importance and usefulness of the finite-temperature

holonomy (considered globally to distinguish the phases of
the theory and locally to distinguish the dyonic constituents
or “instanton quarks”) for the study of the topological
structure was recognized only through the discovery of the
KvBLL caloron solutions [1–3].

A. Holonomy

The local holonomy is defined as a product of timelike
links

Pð~xÞ ¼
YNτ

x0¼1

U0ð~x; x0Þ: ð1Þ

Pð~xÞ has eigenvalues

λkð~xÞ ¼ exp ði2πμkð~xÞÞ: ð2Þ

The positions in space of the dyon constituents of
KvBLL calorons are determined by the condition that
two of these eigenvalues coincide (cf. Appendix in [21]).
We use this property to localize (anti)dyons in unsmoothed
lattice field configurations.
The asymptotic holonomy of KvBLL calorons (after a

suitable constant gauge transformation),

P∞ ≡ lim
j~xj→∞

Pð~xÞ ¼ exp½2πidiagðμ1; μ2; μ3Þ�; ð3Þ

is characterized by the eigenphases, three real and
ordered numbers μ1 ≤ … ≤ μ3 ≤ μ4 ≡ 1þ μ1 fulfilling
μ1 þ μ2 þ μ3 ¼ 0. The set of eigenphases eventually deter-
mines the masses of well-separated dyon constituents via
8π2νm, where νm ≡ μmþ1 − μm (cf. Appendix in [21]).
The trace of Pð~xÞ is the gauge-invariant complex-valued

Polyakov loop

Lð~xÞ ¼ 1

3
TrPð~xÞ: ð4Þ

Its value can be represented as a point in the Weyl plot in
the complex plane, see Fig. 6 in Sec. IV.
For SUð3Þ, when two eigenvalues of the local holonomy

are equal, the respective Polyakov loop is represented by a
point at the periphery of the Weyl plot. If all three
eigenvalues coincide, the holonomy is an element of the
center group

Pð~xÞ ¼ zi · I; ð5Þ

where

zi ∈ f1; exp ð2πi=3Þ; exp ð−2πi=3Þg:

The expectation value of the spatially averaged Polyakov
loop (V3 is the spatial volume),

L̄ ¼ 1

V3

X
~x

Lð~xÞ; ð6Þ

is an order parameter of the deconfinement transition in
pure Yang-Mills gauge theory, signaling the breaking of the
center symmetry. In the presence of dynamical fermions,
this symmetry is—at best—only approximate, even at low
temperature.

B. MAG and Abelian monopole definitions

We use the definition of the MAG introduced for lattice
SUðNÞ theory in [29] and later specified for the SUð3Þ
group in [30]. The MAG is fixed by maximizing the
functional

F½U�¼ 1

12V

X
x;μ

½jðUμðxÞÞ11j2þjðUμðxÞÞ22j2þjðUμðxÞÞ33j2�

ð7Þ

with respect to local gauge transformations g of the lattice
gauge field,

UμðxÞ → Ug
μðxÞ ¼ gðxÞ†UμðxÞgðxþ μ̂Þ: ð8Þ

Alternative definitions of the MAG condition for the SUð3Þ
group were introduced in [31] and were studied further in
[32]. To maximize the functional equation (7), we use the
simulated annealing algorithm, which was found to be very
effective in fighting the problem of Gribov copies [33]. It
was first used in [34] for the SUð3Þ gauge group; see also
[35] for details of its implementation to the case of the
SUð3Þ gauge group. After fixing to the MAG, the Abelian
fields uμðxÞ ∈ Uð1Þ ×Uð1Þ are determined as a result of
the Abelian projection described in [29].
The monopole currents jðaÞμ ð�xÞ are defined [29] on links

of the dual lattice and satisfy the current conservation law
for every a separately,
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X
μ

∂−
μ j

ðaÞ
μ ð�xÞ ¼ 0; a ¼ 1; 2; 3: ð9Þ

Additionally,

X3
a¼1

jðaÞμ ð�xÞ ¼ 0; ð10Þ

i.e., only two currents are independent.

C. The gluonic definition of the topological density

The definition of topological charge density is

qðxÞ ¼ 1

16π2
TrðFμνðxÞ ~FμνðxÞÞ; ð11Þ

where

~FμνðxÞ ¼
1

2
ϵμνλσFλσðxÞ: ð12Þ

The lattice gluonic topological charge density uses the field
strength definition of FμνðxÞ as a “clover” average over the
traceless anti-Hermitian part of all four plaquettes within
the μν plane, with side length n ¼ 1 placed around a site x
while kept untraced in that site x. The improved topological
charge density [36] extends this construction to quadratic
loops of sizes n ¼ 2, 3, which are added with appropriate
weights. The improved topological charge and correspond-
ing action (in units of the one-instanton action Sinst) are then
defined as

Qglue ¼
X
x

TrðFμνðxÞ ~FμνðxÞÞ=ð16π2Þ; ð13Þ

S=Sinst ¼
X
x

TrðFμνðxÞFμνðxÞÞ=ð16π2Þ: ð14Þ

D. Overimproved gradient flow

Gradient flow is an advanced method to remove quantum
fluctuations up to a certain “diffusion” scale from given
lattice field configurations created in the course of
Monte Carlo simulations [37]. The gradient flow effectively
also results in a minimization of the action in the
“direction” of the steepest descent in configuration space
[38–40]. Proposed by Lüscher for the Wilson (one-
plaquette) action, the gradient flow can be defined with
respect to different gluonic actions, of which the Wilson
flow realizes the simplest case. In our case, we propose to
use the gradient flow with respect of an action of the form

SðϵÞ ¼
X
x;μν

4 − ϵ

3
Re Trð1 −Ux;μνÞ

þ
X
x;μν

ϵ − 1

48
Re Trð1 −U2×2

x;μνÞ; ð15Þ

which reduces to the Wilson action in the case ϵ ¼ 1. The
so-called overimproved action [41] corresponds to ϵ ¼ −1.
Expanding in powers of lattice spacing a, one finds that the
lattice action now includes higher-dimension operators,

SðϵÞ ¼
X
x;μν

a4Tr

�
1

2
F2
μνðxÞ −

ϵa2

12
ðDμFμνðxÞÞ2

�
þOða8Þ:

ð16Þ
For a discretized continuum instanton of size ρ this
provides corrections of order a=ρ,

SðϵÞ ¼ 8π2
�
1 −

ϵ

5

�
a
ρ

�
2

þO
��

a
ρ

�
4
��

; ð17Þ

suggesting that undercooling ρ will decrease for ϵ > 0 and
increase for ϵ < 0. The inversion of lattice artefacts relative
to the Wilson case makes topological lumps stable against
the process of gradient flow.
It is worth noting that standard gradient flow or Wilson

flow [38–40] (ϵ ¼ 1) can be mapped one to one [42] to
standardWilson cooling. It is seen from Fig. 1 that the same
holds for over-improved gradient flow in the sense that it
nicely follows over-improved cooling.

E. UV filtered fermionic topological charge density

We consider the NZM band of eigenmodes of the
massless overlap operator D. We use the overlap Dirac
operator D of the form [43,44]

Dðm ¼ 0Þ ¼ ρ

a

0
B@1þ DWffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D†
WDW

q
1
CA

¼ ρ

a
ð1þ sgnðDWÞÞ; ð18Þ

1 10 100
1

10

100

1000

S/
S_

in
st

n   , 42/8     , n    , 3      O τO W τ W

FIG. 1. The evolution of action (14) (in instanton units) with the
Wilson cooling step nW (black line) and with Wilson flow time
3τW (black dashed line) shown on the abscissa, and the variation
of the same action (14) (in the same units) with the overimproved
cooling step nO (red line) and with overimproved flow time
ð42=8ÞτO shown on the abscissa (red dash-dotted line).
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where DW ¼ M − ρ=a, M is the hopping term of the
Wilson-Dirac operator and ρ=a is a negative mass term
usually determined by optimization. The index of D can be
identified with the integer-valued topological charge Qover
[45]. The nonzero modes have vanishing chirality and
appear in pairs, with modes in the pair related by
ψλ ¼ γ5ψ−λ.
For the configurations with Lτ ¼ 8 and spatial size Ls ¼

16 at T ¼ Tχ (ensemble I with 50 configurations), we
found from the average square of the number of zero modes
(equal to hQ2i) χtop ¼ ð0.71� 0.17ÞT4

χ . For ensemble II
with 50 configurations, with Lτ ¼ 8 and spatial size Ls ¼
24 at T ¼ 1.06Tχ , we found χtop ¼ ð0.24� 0.05ÞT4

χ . The
comparison of these numbers with those of overimproved
cooling reported in Sec. II (the agreement is within 4% or
6% for the fourth root of the susceptibility) specifies the
systematical error induced by the cooling method.
The fermionic topological charge density with maximal

resolution (down to the lattice spacing a) is defined in terms
of the overlap Dirac operator (18) as follows:

qðxÞ ¼ −tr
�
γ5

�
1 −

a
2ρ

Dðm ¼ 0; x; xÞ
��

: ð19Þ

Using the spectral representation of (19) after diagonaliza-
tion in terms of the eigenmodes ψλðxÞ, a UV-filtered form
of the density can be defined as a sum over narrow band of
NZMs,

qλsmðxÞ ¼ −
X

jλj<λsm

�
1 −

λ

2

�X
c

ðψc
λðxÞ; γ5ψc

λðxÞÞ; ð20Þ

with λsm acting as a UV cutoff.
The diagonalization of the overlap operator is achieved

using a variant of the Arnoldi algorithm [46]. We had at our
disposal between 20 and 30 nonzero eigenmodes.
While the physical fermion sea is described by the Dirac

operator implemented with antiperiodic temporal boundary
conditions, for the purpose of analyzing the topological
structure it is useful to diagonalize the Dirac operator
subject to continuously modified temporal boundary con-
ditions characterized by an angle ϕ,

ψð~x; x4 þ βÞ ¼ expðiϕÞψð~x; x4Þ: ð21Þ

The reason is that a caloron with nontrivial holonomy has
the remarkable property that the single-zero mode of the
Dirac operator is able to localize on distinct constituent
dyons [15,16], depending on the temporal BC applied to
the Dirac operator if the latter possesses improved chiral
properties. In the case of SUð2Þ and SUð3Þ lattice gauge
theory, it has been seen that this property of mobility (and
changing degree of localization) is also shared by a band of
near-zero modes of the overlap Dirac operator [19–22].

We have chosen three angles including the case of
antiperiodic boundary condition,

ϕ ¼

8>><
>>:

ϕ1 ≡ −π=3
ϕ2 ≡þπ=3

ϕ3 ≡ π

9>>=
>>;
; ð22Þ

thus ensuring for a single caloron solution that the
corresponding fermion zero modes become maximally
localized at one, but each time at a different one, of its
three constituent dyons. Note that ϕ3 corresponds to the
antiperiodic boundary condition.
The construction of the UV-smoothed topological charge

density in terms of the eigenvalues and eigenmodes should
be specifically done for the three boundary conditions

qi;λsmðxÞ ¼ −
X

jλj<λsm

�
1 −

λ

2

�X
c

ðψc
i;λðxÞ; γ5ψc

i;λðxÞÞ; ð23Þ

where i ¼ 1, 2, 3 enumerates the three boundary conditions
defined by Eq. (22).
For the configurations with Lτ ¼ 8 and spatial sizes

Ls ¼ 16 (ensemble I with 50 configurations at T ¼ Tχ) we
take λsm ¼ 331 MeV. This is the minimal spread of jλj
among the 20 nonzero eigenvalues we have found per
configuration (i.e., minimal with respect to all 50 configu-
rations and 3 boundary conditions). For the configurations
with Lτ ¼ 8 and spatial sizes Ls ¼ 24 (ensemble II with 50
configurations at T ¼ 1.06Tχ) we take λsm ¼ 254 MeV;
this is the minimal spread of jλj among 30 eigenvalues per
configuration, which we have determined by diagonaliza-
tion. The actual number of nonzero modes falling into this
interval and being included in the definition Eq. (20)
fluctuates from configuration to configuration because in
the present analysis an eigenvalue cutoff is applied instead
of a fixed number of modes.
We remark that in the case of ensemble I we have also

considered, aside from the cutoff λsm ¼ 331 MeV, the
smaller cutoff λsm ¼ 254 MeV known from ensemble II.
This implies that the construction of the topological density
includes fewer nonzero modes than for the larger cutoff.
This will allow us to discuss the effect of changing the
cutoff for ensemble I (representing the lower temperature)
and to compare the two temperatures (applying the smaller
cutoff both to ensemble I and ensemble II).
The localization of the topological charge within a given

charge density filling a lattice configuration can be mea-
sured by the inverse participation ratio (IPR), which ranges
between the extremes of 1 (totally delocalized) and V4

(fully localized). It is defined as

IPR ¼ V4

P
xjqðxÞj2

ðPxjqðxÞjÞ2
; ð24Þ
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where V4 is the four dimensional volume. Any subvolume
fV4 that is equally filled results in IPR ¼ 1=f. Using
Eq. (24), we have analyzed the IPR of the three types of
fermionic toplogical charge density corresponding to the
three boundary conditions, at both temperatures for the
same cutoff, and for the lower temperature (at Tχ) with two
different cutoffs. The result is presented in Table I.
We can conclude that at the equal cutoff λsm ¼ 254 MeV

for antiperiodic boundary conditions, the localization is
three times bigger at the higher temperature T ¼ 1.06Tχ

compared to T ¼ Tχ . In addition, at the higher temperature,
antiperiodic boundary conditions result in a localization by
a factor of 2.5 stronger than the other two boundary
conditions.
At the lower temperature Tχ , the lower cutoff λsm ¼

254 MeV leads only to a few-percent increase of locali-
zation as compared to the larger cutoff λsm ¼ 331 MeV.
The effect of changing boundary conditions is at a
similar level.
We will compare the fermionic topological density

qfðxÞ, truncated according to (23) with a fixed cutoff
λsm and averaged over the boundary conditions, with the
gluonic topological density qgðxÞ (11), provided that a
suitable amount of overimproved gradient flow has been
applied to the gauge-field configuration. Before we can
make the comparison, both topological densities should be
corrected (by a shift [47]) to have a vanishing volume
average,

qgðxÞ → qgðxÞ − q̄g ð25Þ

and

qfðxÞ → qfðxÞ − q̄f: ð26Þ
The optimal matching between the two (corrected) topo-
logical densities is achieved when the properly normalized
“scalar product” between the two topological densities
qgðxÞ − q̄g and qfðxÞ − q̄f, expressed by the cosine
between “direction vectors,”

cosðθÞ ¼
P

xðqgðxÞ − q̄gÞ · ðqfðxÞ − q̄fÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
xðqgðxÞ − q̄gÞ2 ·

P
xðqfðxÞ − q̄fÞ2

q ; ð27Þ

passes a maximum. Figure 2 shows the rise of the cosine
towards the maximum for the 50 individual configurations
of both ensembles, ensemble I (left panel) and ensemble II
(right panel), as function of the flow time τO, until the flow
is stopped at the maximum of the cosine.
Figure 3 shows the step number (corresponding to the

adoption of a finite-flow time step Δτ ¼ 0.02 adopted)
linearly growing until the overimproved gradient flow is
stopped. This necessary step number fluctuates from
configuration to configuration. Let us note that the average
step number (≈100) of the overimproved gradient flow
corresponds to a flow time τO ≈ 2. This is the time required
to let the diffusion length [48] of gradient flow,

ffiffiffiffiffiffiffiffi
8τO

p
, grow

TABLE I. Inverse participation ratio (IPR) of the fermionic topological charge density at the selected fermionic
cutoff λsm, for three types of boundary conditions.

Type of boundary condition
Ensemble I

λsm ¼ 331 MeV
Ensemble I

λsm ¼ 254 MeV
Ensemble II

λsm ¼ 254 MeV

First type BC 2.279(30) 2.373(36) 3.312(76)
Second type BC 2.282(29) 2.428(36) 3.259(84)
Third type BC 2.354(35) 2.493(45) 8.436(964)

0 2000 4000 6000
0

0.2

0.4

0.6

0.8

0 2000 4000 6000 8000
0

0.2

0.4

0.6

0.8

FIG. 2. The evolution of the cosine cosðθÞ, the cosine of an “angle” between gluonic and fermionic topological charge density (see
text), shown as function of common flow time (τO=Δτ), consecutively for all 50 configurations of ensemble I (left panel) and ensemble
II (right panel).
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to the size of a dyon, 1=ð2πνdTÞ where νd ¼ ν1 ¼ ν2 ¼
ν3 ¼ 1=3 [1–3]. This would adequately describe the frac-
tional charges in the case of maximally nontrivial holon-
omy (i.e., a vanishing average Polyakov loop). This
average step number is shown by a horizontal line in the
left panel of Fig. 3, which represents the smoothing of
ensemble I. The averaged value of dimensionless quantity
t2O · 1

2
TrðFμνðxÞFμνðxÞÞ (with the dimensionful flow time

tO ¼ a2τO) is equal to 0.37 in the case of ensemble I and
0.34 for ensemble II. This fits remarkably well to the
generally used stopping criterion for Wilson flow [38–40].
Figure 4 shows for each configuration how the IPR of the

gluonic topological density evolves in the course of
gradient flow, until the average fermionic density is
optimally matched. The filling fraction f changes from
1=3 to 1=10 with the increase of temperature (see also the
IPR for the fermionic topological charge density).
Topologically nontrivial clusters filtered out with the

three truncated fermionic densities (23), each correspond-
ing to one type of fermionic boundary condition, will be
separately considered in the following as topologically
different objects (dyon candidates). Their localization was

previously described by a corresponding IPR (see Table I).
They may appear either as isolated or as forming com-
pounds with other dyons (dyon-dyon pairs) or antidyons
(dyon-antidyon pairs), including the possibility of recom-
bining into calorons.

IV. RESULTS OF CLUSTER ANALYSIS
FOR THE QCD ENSEMBLES

In the following we will analyze our two QCD ensem-
bles of thermalized configurations along the lines sketched
above. In order to identify topological clusters of the lattice
gauge fields with the help of the low-lying spectrum of the
overlap operator, we used a fixed cut on eigenvalues λsm ¼
331 MeV for configurations with Ls ¼ 16, T ¼ Tχ (see
above). For configurations with Ls ¼ 24 (50 configurations
at T ¼ 1.06Tχ) we take λsm ¼ 254 MeV. In all three
sectors (selected by the angles ϕi) the fermionic topological
density is constructed.
For the purpose of detecting gluonic features of (anti)

dyon excitations among such clusters we have made the
configurations undergo the procedure of overimproved
gradient flow until the gluonic topological density profiles
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FIG. 4. The IPR of the gluonic topological charge density evolving in the course of overimproved gradient flow (τO=Δτ) until the best
matching between the gluonic topological charge density and the fermionic topological charge density (averaged over boundary
conditions) is achieved. All 50 configurations of ensemble I (left panel) and ensemble II (right panel) are shown.
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FIG. 3. The number of steps of overimproved gradient flow (τO=Δτ) (with step size Δτ ¼ 0.02) growing until the cosine reaches the
maximum; i.e., the best matching is achieved between the gluonic topological charge density and the fermionic topological charge
density (averaged over boundary conditions). All 50 configurations of ensemble I (left panel) and ensemble II (right panel) are shown.
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optimally matched the fermionic one averaged over sectors,
analogously to what we did in our previous paper [21]
where we followed the concept of an equivalent filtering as
developed in [47,49,50]. This filtering is in particular acting
on (smoothing) the local holonomy, while the gluonic
topological density fits, by construction, to the sector-
averaged fermionic density.
We have first applied the same cluster analysis as in our

previous paper [21] with a variable lower cutoff qcut > 0 in
order to characterize the cluster properties of the three
density functions Eq. (23) in the thermal ensembles.
Let us summarize here the idea of the cluster algorithm.

In the first step, for each of the three fermionic boundary
conditions [Eq. (22)], the algorithm identifies the lattice
points forming the interior of all clusters (the so-called
“topological cluster matter”) defined by the condition
jqðxÞj > qcut. The crucial second step is to require the
connectedness between the lattice points in order to form
individual extended clusters out of this cluster matter.
Neighboring points with jqðxÞj above the threshold and
sharing the same sign as the topological charge density are
declared to belong to the same cluster. The cutoff qcut has
been chosen such as to resolve the given “continuous”
distribution qðxÞ into a maximal number of internally
connected and mutually separated clusters. The cutoff value
has been independently adapted for each configuration.
For ensemble I, the difference between the two cutoff

values λsm is small. Between the two levels of gradient flow,
the resulting numbers of all clusters Ncl coincide within
errors. On the other hand, the same cutoff λsm ¼ 254 MeV
applied to lattices with different volumes [V4ðIIÞ=V4ðIÞ ¼
ð3=2Þ3=ð1.06Þ4 ≈ 2.67] provides us with the possibility to
understand the size of finite volume effects: all extensive
quantities (as it can be seen from Table I) differ from each
other by a factor of order 2.
There are two conditions for checking the dyonic nature

of isolated clusters: (1) an integrated topological charge of
close to � one third and (2) the existence of a point inside
of cluster where two eigenvalues of the local holonomy
become degenerate.
If the holonomy is represented by the local Polyakov

loop, this second condition corresponds to a position of that
point in the clusters’ Weyl plot close to one of its three
sides. According to the type of fermionic boundary con-
dition that is applied, one can anticipate which side of the
Weyl plot should be approached: the left side corresponds
to antiperiodic boundary conditions ϕ3, the upper right side
corresponds to ϕ2, and the lower right side corresponds to
ϕ1. Among all points belonging to a cluster, we have
searched for a minimum of the distance to the correspond-
ing side of the Weyl plot. In this way we have defined
which point should be considered as the “center of the
cluster” (compare Fig. 6).
In order to find the integrated topological charge of the

clusters, we use the gluonic topological charge density as it

appears after applying the gradient flow process required to
match the gluonic topological charge density to the
fermionic one. In this case we find clusters of the gluonic
topological charge density in the same way as we pre-
viously found clusters of fermionic topological charge
density, according to three different types of fermionic
boundary conditions.
If, for example, the extrema of the clusters of fermionic

topological charge density for the first type of BC (with
timelike monopole links inside) fall into a cluster of gluonic
topological charge, we say that this gluonic topological
cluster contains a dyon of the first type. The same
procedure is applied to identify the character of other types
of dyons. This gives us the possibility of sorting all gluonic
topological clusters into the following categories: as full
calorons (three different dyons inside), as three types of
dyon pairs (two different dyons inside), as three types of
dyons (one dyon inside), or as background (no dyons
inside).
For isolated dyons and dyon pairs and for full calorons,

we find the integrated topological charges the same way as
we do for isolated dyons and calorons in the case of SUð2Þ
objects [51]. The results can be seen in Fig. 5 for
ensemble II.
There is another question to be checked, i.e., the

correlation of Abelian monopoles with the timelike currents
in the Abelian projection after MAG. This is particularly
interesting at much higher temperatures, where Abelian
monopoles become thermal (cyclic) and almost static
(exclusively timelike). Even close to the transition, like
in our case, this might sharpen the test for clusters being
actually dyons or antidyons.
All quantitative data on the correlations between the

topological charge density and the MAG monopole content
is presented in Table II.
Our main results on the correlation of low-lying modes

of the overlap Dirac operator (as represented by the clusters
of fermionic topological charge) with the Abelian
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FIG. 5. The integrated topological charges of gluonic topo-
logical clusters interpreted as three types of dyons, as three types
of dyon pairs, and as full calorons (analyzed for ensemble II). The
color code refers to the type of dyon.
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monopoles of MAG are as follows. For ensemble I
(ensemble II) the topological clusters occupy about 11%
(8%) of the lattice 4-volume, whereas topological clusters
constrained to contain static MAGmonopole currents cover
10% (7%) of the lattice volume; the latter, however, contain
about 35% (40%) of the timelike dual links carrying MAG
monopoles. Inside those topological clusters, which are
pierced by MAG monopoles, the density of monopoles is
about 5 (9) times larger than it is outside these clusters.
These numbers become even more pronounced if one
counts not just the timelike monopole currents (dual links)
in topological clusters but also the numbers of thermal
monopoles piercing topological clusters. Around 75%
(60%) of thermal (thermally winding) monopoles are seen
to be piercing topological clusters.
We expect that the topological clusters detected with

antiperiodic boundary conditions (in our case with a real-
valued average Polyakov loop) can be viewed as related to
more-heavy dyons: at the higher temperature T ¼ 1.06Tχ

(in ensemble II), they are expected to become statistically
suppressed because of their higher action in comparison
with the other constituents of a caloron. The number of
clusters of the third type in ensemble II (see the lower part
of Table II) is more than two times lower than the numbers
of clusters of the first and second types. We can further
estimate the suppression quantitatively by measuring the
abundance of thermal monopoles piercing topological
clusters of the third type compared to those piercing
topological clusters of the first or second type. We are

inclined to associate such thermal monopoles, if they are
correlated with clusters of topological charge, with physical
dyons. We found the proportion 9.9∶10.6∶6.7 (see the
lower part of Table II). Thus, the heavier caloron constitu-
ent clusters are suppressed even when the temperature
exceeds Tχ by only few percent.
Furthermore, the correlation between the local Polyakov

loop on one side and the dyon nature of clusters of
topological charge on the other is increased if the clusters
are constrained to coincide with Abelian monopoles. The
Polyakov loop tests the degeneracy of holonomy eigen-
values in the cluster centers that are, by our definition
above, distinguished among all the cluster points by the
condition of having a minimal distance from the sides of the
Weyl plot.
We show in the lower panels of Fig. 6 scatter plots of

local Polyakov loops measured in the centers of the clusters
that are associated with magnetic monopoles. Since the
clusters are labeled by one of the three boundary conditions
for the fermionic modes (used to define the fermionic
topological charge density), the scatter plot on the Weyl
plot, Fig. 6, shows the different regions of population. The
tendency of the Polyakov loop in the cluster centers to
concentrate along the corresponding sides of the Weyl plot
is much more pronounced than it was for all clusters (Fig. 6,
upper panels). We recall that the Polyakov loop is measured
for the gluonic field that has emerged from the gradient
flow at the maximal matching of gluonic and fermionic
topological densities.

TABLE II. Results of the cluster analysis using low-lying overlap operator modes with three kinds of boundary conditions. All
numbers indicate averages per configuration. The pure statistical errors are given in parentheses. We denote by Vcl the volume fraction
occupied by all topological clusters; by Vcl mon, the volume fraction occupied by clusters identified to contain time-like magnetic
monopoles; byNcl, the number of all clusters per configuration; byNcl mon, the number of clusters identified to contain timelike magnetic
monopoles; by Nmon, the overall number of dual timelike links carrying monopole currents; byNmon cl, the number of dual timelike links
carrying monopole currents found inside topological clusters; by Nloop, the overall number of thermally closed monopole worldlines;
and by Nloop cl, the number of thermally closed monopole worldlines piercing topological clusters. The first part of the table is related to
ensemble I (Ls ¼ 16 at T ¼ Tχ). Here we show the effect of changing the cutoff from λsm ¼ 331 MeV (derived for 20 eigenmodes) to a
smaller cutoff λsm ¼ 254 MeV (implying more iterations of gradient flow). The second part of the table is related to ensemble II
(Ls ¼ 24 at T ¼ 1.06Tχ), where the cutoff λsm ¼ 254 MeV (derived for 30 eigenmodes) has been applied.

Type of clusters Vcl Vcl mon Ncl Ncl mon Nmon Nmon cl Nloop Nloop cl

Clusters obtained with lowest overlap modes for 163 × 8 configurations
First-type clusters 6.7(8)% 6.1(8)% 12.9(3) 3.5(2) � � � 32(3) � � � 5.4(4)
Second-type clusters 6.0(7)% 5.2(7)% 13.1(3) 3.7(2) � � � 30(2) � � � 5.4(4)
Third-type clusters 6.1(8)% 5.5(8)% 12.0(4) 3.6(2) � � � 31(2) � � � 5.1(4)
All clusters (λsm ¼ 331 MeV) 11(1)% 10(1)% 38(1) 10.8(6) 129(4) 45(3) 8.7(5) 6.4(4)
All clusters (λsm ¼ 254 MeV) 12(1)% 11(1)% 32(1) 9.6(6) 120(4) 42(3) 8.1(5) 5.8(4)

Type of clusters Vcl Vcl mon Ncl Ncl mon Nmon Nmon cl Nloop Nloop cl

Clusters obtained with lowest overlap modes for 243 × 8 configurations
First-type clusters 5.1(3)% 4.4(4)% 24(1) 5.8(3) � � � 59(3) � � � 9.9(6)
Second-type clusters 6.2(6)% 5.5(6)% 24(1) 5.5(3) � � � 64(4) � � � 10.6(7)
Third-type clusters 1.8(2)% 1.5(2)% 11(1) 5.7(4) � � � 40(3) � � � 6.7(6)
All clusters (λsm ¼ 254 MeV) 8.0(6)% 7.0(6)% 59(2) 17.0(8) 193(8) 76(5) 20.2(8) 12.1(7)
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V. CONCLUSIONS

We have discussed, for lattice QCD, the dyonic signa-
tures of clusters of topological charge selected by using
three types of temporal boundary conditions that were
applied to the overlap modes used in the fermionic
definition of topological density. In contrast to our previous
paper on SUð3Þ gluodynamics [22], for the construction of
fermionic topological densities here, it is not the number of
pairs of near-zero modes is fixed but instead the eigenvalue
cutoff. The thermal lattice gauge fields were generated
close to the crossover temperature. Topological clusters
considered as candidates to be dyons were established by
filtering, i.e., restricting ourselves to low-lying modes of
the overlap Dirac operator with specific boundary con-
ditions. Additionally, we have applied the procedure of
overimproved gradient flow (instead of overimproved
cooling, which was used in [22]) to the gluonic lattice
fields, after which a similar pattern of clusters occurs within
the gluonic topological charge distribution (which is,

however, averaged over boundary conditions). We looked
for distributions of the local Polyakov loop and searched
for MAG monopole currents in the gradient-flow-smeared
gluonic fields. We found clear correlations of the topo-
logical clusters with thermal monopoles as well as with
lattice sites, where the local holonomy has close-to-
degenerate eigenvalues. All this points to the correctness
of an interpretation of clusters in terms of (anti)dyon
excitations of the KvBLL type, and it has enabled us to
estimate corresponding densities and cluster properties.
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