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We suggest that Hamiltonian matrix elements between physical states in QCD might be approximated,
in Coulomb gauge, by “lattice-improved” tree diagrams; i.e. tree diagram contributions with dressed
ghost, transverse gluon, and Coulomb propagators obtained from lattice simulations. Such matrix elements
can be applied to a truncated-basis treatment of hadronic states which include constituent gluons. As an
illustration, we apply this hybrid approach to the heavy quark potential, for quark-antiquark separations up
to 2.4 fm. The Coulomb string tension in SU(3) gauge theory is about a factor of 4 times greater than the
asymptotic string tension. In our approach we show that a single constituent gluon is in principle sufficient,
up to 2.4 fm, to reduce this overshoot by the factor required. The static potential remains linear, although
the precise value of the string tension depends on details of the Couloumb gauge ghost and gluon
propagators in the infrared regime. In this connection we present new lattice results for the transverse gluon
propagator in position space.
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I. INTRODUCTION

It is not obvious that particlelike gluons, which are vital
to perturbative QCD, really make sense as constituents of
hadrons, particularly highly excited hadrons with higher
spin. Perhaps such states can only be described by strings
of some kind which connect to quarks. The picture of linear
Regge trajectories as arising from a spinning linelike object
is certainly compelling, and, if there is any sense in which
gluons are constituents of hadrons, then surely the first
challenge is to find out whether this linelike object has a
substructure that can be understood in terms of individual
gluons. The simplest case to study is the lowest energy state
containing a static quark-antiquark pair separated by a
distance R. The linelike object connecting the quarks must
manifest itself as a color electric flux tube. Does this flux
tube have a substructure that involves individual gluons, as
in the “gluon chain” proposal of Ref. [1]?
To address this question, and in fact to even define what

is meant by an individual gluon, it is necessary to work in a
fixed gauge. We will use Coulomb gauge, which has the
advantage that a confining potential is already built into the
dressed Coulomb propagator. This fact has been verified
numerically in many lattice studies [2–7] and it is, more-
over, a necessary condition for a nonvanishing asymptotic
string tension [8]. The problem, however, is that the SU(3)
Coulomb string tension σcoul derived from the instanta-
neous Coulomb propagator is a factor of 4 times larger than
the asymptotic string tension [2,3], which seems too much
of a good thing. We may ask whether constituent gluons in
a static quark-antiquark state can somehow reduce the

Coulomb string tension to the known asymptotic value. If
that turns out to be true then we could go on to study other
hadronic states, such as the low-lying glueballs, which
would be another natural setting in which to investigate
gluons as constituent particles.
Among the physical states in Coulomb gauge, contain-

ing e.g. a static quark and antiquark pair, are superpositions
of states of the form

jΨiq̄q ¼
Z Yn

i¼1

d3xiΨk1…knðx1; x2;…; xnÞq̄†ð0Þ

× Ak1ðx1ÞAk2ðx2Þ…AknðxnÞq†ðRÞj0ivac; ð1Þ

where j0ivac is the true vacuum state, q†, q̄† are massive
quark-antiquark creation operators, and Ψ is a function
which, in a variational approach, may depend on some set
of parameters. Suppose we have a finite, not necessarily
orthogonal, set of such states, labeled by an integer fjjig.
From these a set fj~jig of orthogonal states can be
constructed. If we could compute Hamiltonian matrix
elements h~jjHj~ki in the Hilbert space spanned by this
truncated basis, then the standard procedure is to diago-
nalize the Hamiltonian in the truncated basis, minimize the
energy of the lowest energy state by adjusting the varia-
tional parameters, and in this way arrive at an estimate for
the static quark potential at separation R. A similar strategy
could be employed in spectrum calculations, involving
states with dynamical quarks. The problem, of course, is to
calculate the relevant overlaps and Hamiltonian matrix
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elements. In principle this task can be carried out by lattice
Monte Carlo in Coulomb gauge, and this was the path
followed in [9]. The problem was also addressed from the
Dyson-Schwinger point of view in [10]. In this article we
will suggest a somewhat different approach, inspired by
renormalized perturbation theory.
Consider the expression

CjkðtÞ ¼ hjje−Htjki: ð2Þ

The time derivative evaluated at t ¼ 0 gives us hjjHjki,
while Cjkð0Þ is the overlap hjjki. The prescription for
calculating CjkðtÞ, in ordinary perturbation theory, is
essentially the same as the prescription for calculating an
S-matrix element: Sum all of the tree diagrams which
contribute to this expression, including all n-point vertices.
The vertices are the one-particle irreducible (1PI) n-point
functions appearing in the quantum effective action, and the
propagators are the full (or “dressed”) propagators of the
theory. The task of perturbation theory is to compute these
renormalized propagators and 1PI n-point functions. This
program can be carried out analytically, within the limits
of validity of an asymptotic expansion, if the spatial
separations of the quarks and gluons in states fjjig are
small. If this is not the case then the program fails, because
the perturbative expansion for the relevant propagators
and vertices rapidly diverges. Let us observe, however, that
only a finite number of tree diagrams contribute to the
calculation of CjkðtÞ. The sum of trees is not an infinite
expansion; it is finite and, given the dressed propagators
and n-point vertices, it supplies the exact answer, regardless
of the magnitude of the renormalized coupling. Therefore,
if propagators and relevant vertices could be calculated by
some nonperturbative approach, say by Dyson-Schwinger
equations or lattice Monte Carlo simulations, then the tree
diagrams could be summed, and CjkðtÞ could be calculated.
From those quantities, the spectrum of the Hamiltonian in
the subspace of Hilbert space spanned by the set fjjig
could be calculated.
In this article we will take a first step along these lines,

by taking ghost, transverse gluon, and Coulomb propa-
gators from lattice Monte Carlo simulations, neglecting all
vertices apart from those arising from the nonpolynomial
operator in the Coulomb gauge Hamiltonian. We will use
the resulting tree diagrams to compute Hamiltonian matrix
elements in a truncated basis of 13 states, consisting of one
state with no constituent gluons, and 12 states with a single
constituent gluon in various spatial distributions. It is found
that the static quark potential derived in this way remains
linear, but the asymptotic string tension depends on an
overall constant factor associated with the ghost propagator.
In the absence of decisive data on this point, we simply tune
the factor in the ghost propagator to get the known result.
Hopefully future lattice Monte Carlo investigations of the
ghost propagator will make our study more predictive, but

for now we only show that inclusion of constituent gluons
in static quark-antiquark states, along the lines of the gluon
chain model, provides a very plausible mechanism for
reducing the string tension from the pure Coulombic value,
which is much too high, to the value consistent with
numerical simulations.
Below in Sec. II we review some of the numerical results

and conjectures in Ref. [2], which motivate the work
presented here. In Sec. III we will present our proposal in
detail, and in particular explain how the nonlocal operator
which appears in the Coulomb gauge Hamiltonian is treated
in the tree diagram approach. Expressions for the
Hamiltonian matrix elements in terms of lattice-improved
tree diagrams are derived in Sec. IV, and they require, in
addition to the Coulomb propagator already obtained in [2],
also the ghost and transverse gluon propagators. In Sec. V
we will show our lattice Monte Carlo results for the equal
times transverse gluon propagator in position space, relying
on Refs. [5,11,12] for the infrared behavior of the ghost
propagator. In Sec. VI wewill bring all these results together,
compute an estimate for the static quark potential, and show
how the superposition of zero and one constituent gluon
states can bring the static quark potential down from the
Coulomb result by a large numerical factor dependent on
the ghost propagator. We conclude in Sec. VII. Finally, in the
Appendix we discuss the results of Monte Carlo simulations
of gluon, ghost and Coulomb propagators in the context of
the Dyson-Schwinger approach.

II. COULOMB POTENTIAL AND THE
GLUON CHAIN MODEL

In a recent article [2] we calculated the nonperturbative
Coulomb potential in SU(3) pure gauge theory via lattice
Monte Carlo simulations in Coulomb gauge, and found it
to be

VcoulðRÞ ¼ σcoulR − π

12

1

R
; ð3Þ

where the Coulomb string tension is

σcoul ≈ 20.5ð4Þ fm−2

≈ ð893� 9 MeVÞ2; ð4Þ

(see also [3]) which is about 4 times the accepted value of
the asymptotic string tension σ ¼ ð440 MeVÞ2. This is
clearly too much of a good thing. While it is helpful that a
linearly confining potential is obtained in Coulomb gauge
by what amounts to one (dressed) gluon exchange, it is
not acceptable that the static quark potential is four times
too large. Moreover there is no indication that the color
electric field generated by the Coulomb propagator around
the quark-antiquark sources is restricted to a flux tube.
Something else important must be going on.
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The key point is that VcoulðRÞ is not necessarily the
minimal energy of a state containing a pair of static quark-
antiquark sources. It is, rather, the interaction energy of a
specific state in Coulomb gauge, namely

j0iq̄q ¼ q̄†ð0Þq†ðRÞj0ivac; ð5Þ

where

Φ0½A� ¼ hAj0ivac ð6Þ

is the true vacuumwave functional. The energy of this state,
including self-energies, is given by the logarithmic time
derivative of the Euclidean-time correlator

VðRÞ ¼ −lim
t→0

d
dt

logq̄qh0je−Htj0iq̄q: ð7Þ

As Dirac indices and quark kinetic energies are not relevant
to our study, it is sufficient to compute, in a Euclidean
action formulation, the logarithmic time derivative of a
correlator of short timelike Wilson lines

VðRÞ ¼ −lim
t→0

d
dt

loghTr½Ltð0ÞL†
t ðRÞ�i; ð8Þ

where

LtðxÞ≡ T exp

�
ig
Z

t

0

dtA0ðx; tÞ
�
: ð9Þ

In a lattice formulation, the calculation of VðRÞ boils down
to calculating the logarithm of the vacuum expectation
value (VEV) of products of two timelike links, evaluated
at equal times. This method for computing the Coulomb
energy was first suggested in [7], and the potential defined
in this way includes an R-independent self-energy term.
The self-energy term, proportional to the inverse lattice
spacing, can be identified and subtracted away, with the
result for the R-dependent quark-antiquark interaction
potential VcoulðRÞ shown above in (3) and (4). The
coefficient π=12 in (3) is the correct value for the
Lüscher term, but this coefficient is not simply assumed.
Rather, it appears to be the likely continuum limit of the
values derived at finite lattice spacings, cf. [2].
Since the state j0iq̄q cannot be the minimal energy state

containing static quarks, it is reasonable to consider states
with n constituent gluons of the form shown in (1), where
what we mean by n “constituent gluons” is simply that
there are n A-field operators that operate on the true ground
state. In diagramatic representation this ket vector corre-
sponds to n transverse gluon lines emerging from a blob at
time t0 ¼ 0, and the bra vector is a blob with n transverse
gluon lines entering at some later time t. The static quark
and antiquark lines attach to either end of the blob. The
gluon chain model of Ref. [1] proposed that the minimal

energy state containing a static quark antiquark pair
consists of some number n of constituent gluons arranged
roughly in a line (or cylindrical region) between the quark
and antiquark, with the color ordering of the gluons
correlated with the spatial ordering of the gluons along
the line. The original motivation was the observation that
the force between colored sources, in two-loop perturbation
theory, grows very rapidly with R when the running
coupling approaches values of O(1). So the idea is that
as a quark and antiquark separate, the energy grows until at
some point it is energetically favorable to place a gluon in
between the quark and antiquark, which halves the effective
color charge separation. As the quark and antiquark
continue to separate, eventually it is energetically favorable
to introduce a second gluon between the two sources, and
so on. In the end, the minimal energy state would contain
approximately n ¼ R=R0 constituent gluons, where R0 is
essentially the average distance between gluons, and
the kinetic plus intergluon interaction energy is E0. Then
the total energy of the long chain is approximately
EðRÞ ¼ nE0 ¼ ðE0=R0ÞR, which is a linear potential with
string tension E0=R0.
It now seems clear that this picture is untenable, because

it assumes that at some point, as color charges separate, the
potential between colored sources grows faster than linear.
But if the Coulomb potential between gluons is instead
asymptotically linear, then there is no advantage to intro-
ducing more gluons. If the gluons were arranged exactly in
a line between the quarks, and the intergluon Coulomb
potential is linear with string tension σ0, then the overall
Coulomb energy would be σ0R regardless of the number of
gluons in the chain. The kinetic energy of the gluons, and
the transverse fluctuations away from the line joining the
quark-antiquark pair, could only increase this energy. So it
would appear that the minimal energy really is the zero
constituent gluon state (5), and we have found that this state
has a string tension which is far above the asymptotic string
tension.
However, this conclusion ignores the fact that a state

with a fixed number of constituent gluons is not an
eigenstate of the Hamiltonian, and there will always be
nonzero matrix elements hmjHjni between states with
different numbers of constituent gluons. This means that
the lowest energy state is certain to be a superposition of
states with different numbers of constituent gluons.
Diagonal matrix elements contain both purely kinetic
contributions, indicated schematically in Fig. 1(a), and
instantaneous Coulomb interactions, shown in Fig. 1(b).
Matrix elements between states with different numbers of
constituent gluons are associated with diagrams such as
Fig. 1(c). All matrix elements are derived from the time
derivatives of the diagrams indicated. In Ref. [2] we
showed that if we make some plausible assumptions about
the behavior of the diagonal and off-diagonal Hamiltonian
matrix elements, then the static quark potential associated

CONSTITUENT GLUONS AND THE STATIC QUARK POTENTIAL PHYSICAL REVIEW D 93, 074506 (2016)

074506-3



with the lowest energy state could be reduced from the
purely Coulomb value by a large numerical factor, while
retaining the asymptotic linearity of the potential. For
details of the model calculation we refer the reader to
[2]. In the present article we will actually evaluate the type
of diagrams just indicated, in a “lattice-improved” tree-
diagram framework, to see if they really do have the
conjectured effect.

III. LATTICE IMPROVED TREE DIAGRAMS
FOR THE STATIC QUARK POTENTIAL

A. Preliminaries

For completeness and to establish notation we begin
with the usual preliminaries regarding Coulomb gauge.
The Coulomb gauge Hamiltonian is H ¼ Hglue þHcoulþ
Hmatter, where

Hglue ¼
1

2

Z
d3xðJ −1

2Etr;aJ · Etr;aJ −1
2 þ Ba · BaÞ;

Hcoul ¼
1

2

Z
d3xd3yJ −1

2ρaðxÞJKabðx; y;AÞρbðyÞJ −1
2;

ð10Þ

with

Kabðx; y;AÞ ¼ ½M−1ð−∇2ÞM−1�abxy ;
ρa ¼ ρaq þ ρaq̄ þ ρag ;

M ¼ −∇ ·DðAÞ;
J ¼ det½M�: ð11Þ

Here ρaqðxÞ ¼ gq†i ðxÞtaijqjðxÞ, ρaq̄ðxÞ ¼ gq̄iðxÞtaijq̄†jðxÞ and
ρagðxÞ ¼ −gfabcAb

kðxÞEc
kðxÞ are the charge density of

quarks, antiquarks and gluons, respectively, and DkðAÞ
is the covariant derivative. Hmatter is the part of the
Hamiltonian containing dynamical matter fields. It will

not be needed here, since in this article we are only
concerned with static color sources, which can be repre-
sented by Wilson lines in the time direction. The operator-
ordering terms J �1

2 do not appear at the classical level, and
therefore do not appear in the construction of tree diagrams.
An equivalent Euclidean path-integral formulation in

first-order formalism [13–16] can be based on the generat-
ing functional

Z½J�

¼
Z
G
DAtr

i

Z
DEtr

i exp

�Z
d4x

�
iEi

_Ai−1

2
ðE2

i þB2
i Þ−iJiAi

�

−1

2

Z
dtd3xd3yðρgþgJ4Þx;tK½x;y;t;A�ðρgþJ4Þy;t

�
;

ð12Þ

where the “tr” superscript in the measure indicates that
the integration is restricted to transverse A, E fields, and
ρagðxÞ ¼ −gfabcAb

i ðxÞEc
i ðxÞ.

We define the transverse gluon propagator

Dab
ij ðx; tÞ ¼ hAa

i ðx; tÞAb
j ð0; 0Þi

¼ Dijðx; tÞδab; ð13Þ

the E − A propagator

~Dab
ij ðx; tÞ ¼ hEa

i ðx; tÞAb
j ð0; 0Þi

¼ ~Dijðx; tÞδab; ð14Þ

the ghost propagator

Gabðx − yÞ ¼
��

1

−∇ ·D

�
ab

xy

�

¼ Gðx − yÞδab; ð15Þ

(a) (b) (c)

FIG. 1. Diagrams which, after a time derivative, contribute to Hamiltonian matrix elements. (a) The graph which determines the kinetic
energy of constituent gluons. (b) One of the graphs determining the Coulomb energy of an n-gluon state. The blob labeled “K” is the
instantaneous nonpolynomial Coulomb operator. (c) Schematic of a graph contributing to an off-diagonal Hamiltonian matrix element
between states with n and nþ 1 gluons. Here one of the A-field operators in the Coulomb operator KðAÞ contracts with a gluon in the
final state.
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and the K-propagator

Kabðx − yÞ ¼
��

1

−∇ ·D

�
ac

xz
ð−∂2Þz

�
1

−∇ ·D

�
cb

zy

�
:

¼ δabKðx − yÞ: ð16Þ

The Coulomb propagator demands some special atten-
tion; it is not the same as the K-propagator. It is defined as

Dab
44ðx−yÞ¼

�
1

Z
δ2

δJa4ðxÞδJb4ðyÞ
Z

�
J¼0

¼hKabðx−y;AÞiδðx4−y4Þ

þ
Z

d3zd3whKacðx−zÞρcgðzÞρdgðwÞKcbðw−yÞi

¼δabðKðx−yÞδðx4−y4ÞþPðx−yÞÞ: ð17Þ

In d ¼ 4 dimensions Pðx − yÞ may have both an instanta-
neous and noninstantaneous part

Pðx − yÞ ¼ Pinstðx − yÞδðx4 − y4Þ þ Pnonðx − yÞ; ð18Þ

so that

Dab
44ðx − yÞ ¼ δabðKðx − yÞ þ Pinstðx − yÞÞδðx4 − y4Þ

þ Pnonðx − yÞ: ð19Þ

The instantaneous part of the Coulomb propagator will be
denoted

~Kabðx − yÞ ¼ δab ~Kðx − yÞ
¼ δabðKðx − yÞ þ Pinstðx − yÞÞ: ð20Þ

It was shown by Zwanziger [13,15] that both g2Dab
44ðx − yÞ

and g2 ~Kðx − yÞ are renormalization group invariants. For
now only the instantaneous part of the Coulomb propagator
will be needed. We will denote the relationship of ~K to
operator expectation values by

~K ¼ hKi þ hKρρKiinst; ð21Þ

where the subscript on the last term indicates the instanta-
neous part of the VEV. The relationship between the
Coulomb potential between static sources in the funda-
mental representation and the instantaneous Coulomb
propagator is

VcoulðRÞ ¼ −g2CF
~KðRÞ: ð22Þ

For later use we will introduce the notation

KcðRÞ ¼ VcoulðRÞ
GcðRÞ ¼ gGðRÞ: ð23Þ

Our graphical notation for these propagators is shown
in Fig. 2. Assuming an analytic structure consistent with
causality, i.e. (in Minkowski space) the absence of complex
singularities in the energy plane, and of course trans-
versality, the gluon propagator has the form

Dijðx; tÞ ¼
Z

d4k
ð2πÞ4

eiðk0tþk·xÞ

k20 þ ω2
k

�
δij − kikj

k2

�

¼
Z

d3k
ð2πÞ3

eik·x−ωkt

2ωk

�
δij − kikj

k2

�

¼ δijDðx; tÞ −Dð1Þ
ij ðx; tÞ

Dðx; tÞ ¼ 1

2
δijDijðx; tÞ; ð24Þ

where we have defined k2 ≡ k · k. The E-A propagator is
indispensable in both the first-order and Hamiltonian
formulations in Coulomb gauge, which both dispense
with ghost fields. The E-A propagator is obtained, as in
perturbation theory, from a time derivative of the transverse
gluon propagator1

~Dijðx; tÞ ¼
Z

d4k
ð2πÞ4

k0eiðk0tþk·xÞ

k20 þ ω2
k

�
δij − kikj

k2

�

¼ δij ~Dðx; tÞ − ~Dð1Þ
ij ðx; tÞ

~Dðx; tÞ ¼ 1

2
δijDijðx; tÞ: ð25Þ

At the perturbative level ωk ¼ jkj. At the nonperturbative
level ωk will be something else, with

ωk ¼
( ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þm2
p

massive propagatorffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm4=k2

p
Gribov propagator

ð26Þ

static quark

Coulomb

ghost

transverse gluon

E−A propagator

FIG. 2. Diagrammatic notation for Coulomb gauge propaga-
tors.

1This basically follows from the fact that the transverse E-field
is a time derivative of the transverse A-field.
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as possible candidates. Our approach is to determine the
relevant gluon propagators in position space from lattice
Monte Carlo simulations. We will not need to know ωk
explicitly, although we will, in Section V, compare our
numerical results for the transverse gluon propagator in
position space with the forms implied by the above
candidates for ωk. However, the assumption that Dij, ~Dij

have the form above allows us to conclude that

D0ðx; 0Þ≡ lim
t¼0

d
dt

Dðx; tÞ

¼ −
1

2
δ3ðxÞ

lim
ϵ→0

~Dðx; ϵÞ ¼ i
2
signðϵÞδ3ðxÞ: ð27Þ

B. Decomposition of the Coulomb vertex

In the tree diagram framework we suggest here, there is a
question of how the nonpolynomial operator

ρaðxÞKabðx − y;AÞρbðyÞ ð28Þ

should be handled. Let us first consider the case where the
charge operators ρ contract only with “external” operators
in the initial and final states, either heavy quarks or
constituent gluons. These operators will be denoted ρext.
Then we also have to consider the possibility that some
A-field operators in the perturbative expansion of Kabðx −
y;AÞ contract with gluon operators in the initial and final
states. In some diagrams there are no such contractions, and
those diagrams sum up to the dressed K-propagator hKi.
We must also consider the product of ρKρ operators in
which two charge operators contract with initial and final
states, i.e. ρextKρρKρext. Again there are diagrams in which
there are no contractions of operators in either K with
the external constituent gluons. Those diagrams sum up to
hKρρKi, and add to the K-propagator hKi to produce the
dressed Coulomb propagator ~Kðx − yÞ [see (21)].
In other diagrams, however, it is necessary to consider a

“Coulomb vertex,” as indicated schematically in Fig. 1(c),
where one or more field operators in K contract with
operators in the initial and/or final states. It turns out, as we
will now show, that Coulomb vertices can be decomposed
into products of ghost operators, Coulomb operators, and
transverse gluon operators that contract with the external
states. In our tree diagram formulation, these ghost oper-
ators and Coulomb operators just become dressed ghost
and Coulomb propagators, and this prescription amounts to
a partial resummation of the full perturbation series.
We will begin with the case ρextKρext, so it is sufficient to

just consider the expansion of the Coulomb operator

Kab
xy ðAÞ ¼ Gac

xz ð−∇2ÞGcb
zy ; ð29Þ

where the ghost operator is

Gab
xy ¼ ðM−1Þabxy ¼

�
1

−∇ ·D

�
ab

xy

ð−∇ ·DÞab ¼ −ðδab∇2 þ gfabcAb
i ∂iÞ: ð30Þ

The perturbative expansion of the ghost operator begins
with

−∇2Gab
xy ¼ δabδ3ðx − yÞ þ gfacdAc

i ðxÞ∂iGdb
xy ð31Þ

or

Gab
xy ¼ δab

�
1

ð−∇2Þ
�

xy
þ
�

1

ð−∇2Þ
�

xz
gfacdAc

i ðzÞ∂iGdb
zy :

ð32Þ

This equation can be solved iteratively, and from here on
we will drop both color and spatial indices. The solution is
a power series

G ¼ 1

ð−∇2Þ
X∞
n¼0

�
gfAi∂i

1

ð−∇2Þ
�

n

¼ 1

ð−∇2Þ
X∞
n¼0

Mn; ð33Þ

where we define

M ¼ gfAi∂i
1

ð−∇2Þ : ð34Þ

The Coulomb operator is then

K ¼ 1

ð−∇2Þ
X∞
m¼0

Mmð−∇Þ2 1

ð−∇2Þ
X∞
n¼0

Mn

¼ 1

ð−∇2Þ
X∞
m¼0

X∞
n¼0

Mmþn

¼ 1

ð−∇2Þ
X∞
N¼0

ðN þ 1ÞMN: ð35Þ

In the perturbative expansion of K, each of the operators
M contains a single A operator, and in a Coulomb vertex
we have to choose one or more of these to connect to
external gluons in the initial or final states. Let us begin
with the case of a Coulomb vertex with a single gluon
emerging. Denote by M� the operator which contains the
A-field contracting with an external gluon field, and the
resulting operator (corresponding to the blob with one
gluon line coming out) we’ll denote KA. Then we have
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KA ¼ 1

ð−∇2Þ
X∞
N¼0

ðN þ 1Þ
XN−1

m¼0

MmM�MN−m−1

¼ 1

ð−∇2Þ
X∞
m¼0

X∞
n¼0

ðmþ nþ 2ÞMmM�Mn

¼ 1

ð−∇2Þ
X∞
m¼0

X∞
n¼0

ðmþ nþ 2ÞMmðgfA�∂Þ 1

ð−∇2ÞM
n

¼ 1

ð−∇2Þ
X∞
m¼0

ðmþ 1ÞMmðgfA�∂Þ 1

ð−∇2Þ
X∞
n¼0

Mn

þ 1

ð−∇2Þ
X∞
m¼0

MmðgfA�∂Þ 1

ð−∇2Þ
X∞
n¼0

ðnþ 1ÞMn

¼ KðgfA�∂ÞGþ GðgfA�∂ÞK: ð36Þ

Now let us consider a blob with two gluon lines coming
out. By the same reasoning

KAA¼ 1

ð−∇2Þ
X∞
N¼0

ðNþ1Þ
XN−2

m¼0

XN−m−2

n¼0

MmM�MnM�MN−m−n−2

¼ 1

ð−∇2Þ
X∞
m¼0

X∞
n¼0

X∞
k¼0

ðmþnþkþ3ÞMmM�MnM�Mk

¼ 1

ð−∇2Þ
X∞
m¼0

X∞
n¼0

X∞
k¼0

ðmþnþkþ3ÞMmðgfA�∂Þ

×
1

ð−∇2ÞM
nðgfA�∂Þ 1

ð−∇2ÞM
k

¼ 1

ð−∇2Þ
X∞
m¼0

ðmþ1ÞMmðgfA�∂Þ

×
1

ð−∇2Þ
X∞
n¼0

MnðgfA�∂Þ 1

ð−∇2Þ
X∞
k¼0

Mk

þ 1

ð−∇2Þ
X∞
m¼0

MmðgfA�∂Þ

×
1

ð−∇2Þ
X∞
n¼0

ðnþ1ÞMnðgfA�∂Þ 1

ð−∇2Þ
X∞
k¼0

Mk

þ 1

ð−∇2Þ
X∞
m¼0

MmðgfA�∂Þ 1

ð−∇2Þ
X∞
n¼0

MnðgfA�∂Þ

×
1

ð−∇2Þ
X∞
k¼0

ðkþ1ÞMk

¼KðgfA�∂ÞGðgfA�∂ÞGþGðgfA�∂ÞKðgfA�∂Þ
×GþGðgfA�∂ÞGðgfA�∂ÞK: ð37Þ

The general case follows from induction, and is indicated
schematically in Fig. 3. The tree diagram approximation is to
replace the operatorsK,G by the corresponding propagators,
as shown in the figure. In diagrammatic terms this means we
either neglect completely contractions of field operators in

one (K orG) blob with field operators in another blob, or we
assume that the only effect of such contractions is to multiply
the pointlike vertex by a constant, which can be absorbed into
a multiplicative factor c in the ghost propagator.
At this stage it would appear that the Coulomb vertices

involve K-propagators rather than Coulomb propagators.
However, this neglects the fact that there is a second
contribution to vertices with N external gluon lines, which
comes about from expanding the KρρK operator. We recall
that the Coulomb propagator is actually a sum of the K-
propagator and hKρρKi. A similar statement is true for
Coulomb vertices. Let us consider one term in the expan-
sion of the K operator with N external gluon operators, in
which there are n products of GðgfA�∂Þ to the left of the K
operator, and N − n products of ðgfA�∂ÞG operators to the
right of the K operator, i.e.

T1 ¼ GðgfA�∂Þ…GðgfA�∂Þ←n→
KðgfA�∂ÞG…ðg

←N−n→
fA�∂ÞG:

ð38Þ
Again, in the tree diagrammatic expansion we neglect any
diagrams which connect G operators to K operators or to
other G operators, and the result is a product of ghost
propagators, K-propagators, and A field operators which
contract with operators in the initial and/or final states. To
each term of this kind, there is a corresponding term which
arises from the expansion of the KρρK operator:

T2 ¼ fGðgfA�∂Þ…GðgfA�∂Þ←n→
Kρg

× fρKðgfA�∂ÞG…ðgfA�∂ÞG←N−n→
g: ð39Þ

K

...

= . . . .

.

.

.

K G

KG

G G

KG G G

G G+

+ . . . .

+

 .  . 

+

G G G K

.

.

.

 .  . 

 .  . 

(tree diagrams)

. . . .. . . .KG G G

FIG. 3. Decomposition of a vertex, generated by the Coulomb
operator Kðx − y;AÞ, into products of operators. In the tree
diagram decomposition, G and K operators become ghost and
Coulomb propagators respectively, as explained in the text.
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In the tree diagram expansion the G operators become
ghost propagators, and KρρK becomes hKρρKi. Then in
the tree-level approximation to T1 þ T2 the K operators
appear in the combination hKi þ hKρρKi, which is simply
the Coulomb propagator ~K. This is completely general. The
effect of adding the KρρK operator in computing Coulomb
vertices in this framework is equivalent to considering only
the expansion of the K operator, and then replacing the K-
propagator with the Coulomb propagator.
One might ask why we have neglected terms in the

expansion of KρρK such as

fGðgfA�∂Þ…GðgfA�∂ÞKðgfA�∂ÞG…ðgfA�∂ÞGρg
× fρGðgfA�∂Þ…GðgfA�∂ÞKðgfA�∂ÞG…ðgfA�∂ÞGg:

ð40Þ

One reason is that all of the diagrams which contribute to
the VEVof such a quantity involve loops which cannot be
absorbed into a ghost or Coulomb propagator. In the tree
diagram framework we propose here, contributions of that
kind are dropped. A second reason is that in the matrix
elements we are concerned with, where we imagine a small
time separation t between the ket and bra states, a
logarithmic time derivative as in Eq. (8), followed by
the t → 0 limit, only instantaneous terms contribute. That
is, for diagrams with one line ending on the static quark
worldline at time t1, and another line ending on the
antiquark worldline at time t2, the contribution is only
nonzero if it contains a time delta function δðt1 − t2Þ. Only
instantaneous terms of this kind survive the integrations
over t1, t2 and logarithmic time derivative, in the limit that
time separation t goes to zero. The instantaneous hKi
propagator is a term of this type. On the other hand,
hKρρKi has both an instantaneous and a noninstantaneous
part, and only the instantaneous part of this contribution
will contribute to our matrix elements. But we know from
numerical simulations that it is the instantaneous part
which, combined with hKi, carries the linear potential
and has the correct scaling properties. On the other hand,
there is no reason to think that a term such as hGρρGi is
dominated by an instantaneous part, and we think it is
likely that terms of this kind are dominated by contributions
which are noninstantaneous, and which therefore do not
contribute to the matrix elements of interest.

IV. THE HAMILTONIAN IN A BASIS OF ZERO
AND ONE CONSTITUENT GLUONS

In the toy model of a gluon chain, explained in Ref. [2],
the average number of gluons in the chain will grow
linearly with the quark-antiquark separation. If this idea
really works, then there should then be some intermediate
distance range, presumably just after the onset of confine-
ment, where the average number of gluons is less than one,

i.e. the minimal energy state is mostly a superposition of
just zero and one-gluon states. We will denote a finite set
of such states, containing also a static quark-antiquark
pair of separation R, as fjnig, where j0i is the zero-gluon
state

j0i ¼ q̄†αð0Þq†αðRÞj0ivac; ð41Þ

and the remaining one-gluon states (n ≥ 1) have the form

jni ¼ q̄†αð0Þ
�Z

d3xΨðnÞ
i ðxÞAa

i ðxÞtαβa
�
q†αðRÞj0ivac; ð42Þ

with ta ¼ 1
2
λa the SU(3) group generators. From these

states we can construct an orthonormal basis, and diag-
onalize the Hamiltonian in that basis. For this purpose we
need to compute

Hmn ¼ hmjHjni; Omn ¼ hmjni: ð43Þ

The trial one-gluon wavefunctions ΨðnÞ
i ðxÞ may depend

on some variational parameters, which are chosen such
that the lowest energy state obtained by diagonalization is
minimized.
There is a big simplification if we choose our trial one-

gluon wavefunctions ΨðnÞ
i ðxÞ to be transverse, ∇ ·ΨðnÞ ¼0.

Then, since the transverse gluon propagator will always
contract with the index of an external wavefunction, and
the coordinate x of the external wavefunction is always
integrated over, we can simply drop the kikj=k2 piece of
the transverse projection operator, because that piece will
always act like a divergence onΨ. Effectively, then, we are

allowed to drop Dð1Þ
ij ðx; tÞ in (24), and just use

Dijðx; tÞ → δijDðx; tÞ;

Dðx; tÞ ¼
Z

d3k
ð2πÞ3

1

2ωk
eik·xe−ωkt: ð44Þ

Likewise, for ϵ ≈ 0,

~Dijðx; ϵÞ →
i
2
δijsignðϵÞδ3ðxÞ: ð45Þ

We also denote, at equal times, DðxÞ≡Dðx; t ¼ 0Þ. With

transverse ΨðnÞ
i ðxÞ and n ≥ 1

Omn ¼ hmjni

¼ Trtata

Z
d3z1d3z2Ψ

ðmÞ�
i ðz1ÞDðz1 − z2ÞΨðnÞ

i ðz2Þ;

ð46Þ

with TrðtataÞ ¼ 3CF where CF is the quadratic Casimir in
the fundamental representation.
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Now, for any choice of transverse ΨðnÞ
i ðxÞ, there exists

another transverse function fðnÞi ðxÞ, with Fourier transform

fðnÞi ðkÞ defined by

ΨðnÞ
i ðxÞ ¼

Z
d3k
ð2πÞ3

ffiffiffiffiffiffiffiffi
2ωk

p
fðnÞi ðkÞeik·x: ð47Þ

Then

hnjni ¼ 3CF

Z
d3xf�ðnÞi ðxÞfðnÞi ðxÞ: ð48Þ

So fðnÞi ðxÞ is the analog of an ordinary quantum mechanics
one-particle wavefunction, and ideally we would like to

first choose fðnÞi ðxÞ based on some combination of intuition

and convenience, transform to fðnÞi ðkÞ, and then compute

ΨðnÞ
i from (47). But in practice it would be difficult to derive

ΨðnÞ
i analytically, because of the

ffiffiffiffiffiffi
ωk

p
factor in (47). Even

numerically this would be challenging, because the inte-
grand of (47) is an oscillating function. It is simpler to work

directly with ΨðnÞ
i .

A. The truncated basis

For the numerical work in this article, we will choose as
an ansatz transverse wavefunctions of the form

ΨðnÞ ¼ ∇ ×

2
4−y

x

0

3
5Fαβðx; y; zÞ

¼

2
64

−x∂zFαβ

−y∂zFαβ

2Fαβ þ x∂xFαβ þ y∂yFαβ

3
75; ð49Þ

with α ¼ 1; 2; ::; N, β ¼ 1; 2; ::;M and n ¼ ðα − 1ÞM þ β.
Then Fαβ is chosen to have the form

Fαβðx;y;zÞ¼fαðzÞL1
β−1

�
4r
a

�

×exp

�
−1

a

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þz2

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þðR−zÞ2

q ��
;

ð50Þ

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
is the polar coordinate in the trans-

verse direction, L1
β is an associated Laguerre polynomial, a

is a variational parameter, and

fαðzÞ ¼
(
1 α ¼ 1

sin
	

πα
Rþ2z0

ðzþ z0Þ



α > 1
: ð51Þ

The motivation for this choice of Fαβ is the fact that if a
gluon is located on the z axis between the quarks, with
x ¼ y ¼ 0 and 0 < z < R, then the linear piece of the
Coulomb potential between the gluon, the quark, and the
antiquark, sums up to σczþ σcðR − zÞ ¼ σcR which is
independent of z. So if the gluon is not too far away from
the z axis, it can move more or less freely in the z direction
between the quarks. Hence the excitations in the z direction
might be as in a one-dimensional square well of width ≈R.
Since there is no reason for the wavefunction to drop to zero
exactly at z ¼ 0, R, we allow for a “well” a little bigger than
R, namely Rþ 2z0, where in this work we have taken
z0 ¼ a=3. Note that for r ≫ jzj; jR − zj

Fðx; y; zÞ ∼ expð−2r=aÞ: ð52Þ

The set of orthogonal functions in the integration measure
re−4r=a are the associated Laguerre polynomials L1

mð4r=aÞ.
It should be understood that an orthogonal set of Fαβ

does not produce an orthogonal set of one gluon states
fjnig; it only specifies a set of linearly independent states
which together span a subspace of Hilbert space. The object
is to find the lowest eigenvalue of the Hamiltonian in this
subspace. If we define a matrix ½H� with elements Hmn and
a corresponding matrix ½O� of overlaps Omn in the non-
orthogonal set of states fjnig, as in (43), the eigenvalues
of the Hamiltonian operator restricted to this subspace are
obtained by solving the generalized eigenvalue equation

uðnÞ ¼ En½O�uðnÞ: ð53Þ

This is essentially equivalent to the alternate procedure of
constructing a set of orthonormal states fjvnig from the
fjnig via, e.g., the Gram-Schmidt procedure, computing
matrix elements H0

ij ¼ hvijHjvji in the orthogonal basis
from the Hmn, and then diagonalizing the matrix H0 in the
usual way.

B. Matrix elements

We now list the improved-tree contributions to each
of the required Hamiltonian matrix elements Hmn of
Eq. (43). The state with a static quark-antiquark pair and
zero constituent gluons will be denoted j0i, and states
with the static quarks and one constituent gluon will be
denoted jni with n > 0. The expression for overlap matrix
elements Omn of one-gluon states was given in (46), while
for the zero-gluon state O00 ¼ 3 (a sum over three colors),
and O0n ¼ 0.

1. h0jHj0i
The matrix element is given by the diagram in Fig. 4, and

this is the simplest contribution. It is

H00 ¼ −g2TrðtataÞ ~KðRÞ ¼ 3KcðRÞ: ð54Þ
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2. hmjHjni kinetic term

The next simplest term is associated with the kinetic
energy of the one-gluon state for the casem ¼ n, and that is
best obtained by displacing the initial and final state in
time, so that the transverse gluon propagator is at unequal
times, and then taking minus the time derivative of the
diagram shown in Fig. 5:

Hkin
mn ¼ −lim

t→0

d
dt

Trtata

Z
d3z1d3z2Ψ

ðmÞ
i ðz1Þ

×Dðz1 − z2; tÞΨðnÞ
i ðz2Þ

¼ −Trtata
Z

d3z1d3z2Ψ
ðmÞ
i ðz1ÞD0ðz1 − z2; 0ÞΨðnÞ

i ðz2Þ

¼ 3CF

Z
d3z

1

2
ΨðnÞ

i ðzÞΨðnÞ
i ðzÞ: ð55Þ

From (47), this could also be expressed in terms of fi as

Hkin
mn ∝

Z
d3kωkf�i ðkÞfiðkÞ; ð56Þ

although this is actually not the most useful form if the
variational wavefunction is given in terms of Ψi rather
than fi.

3. hnjHj0i
The relevant diagrams are shown in Fig. 6, and we find

Hn0 ¼ −2i CA

CF

Z
d3xd3zΨðnÞ

i ðzÞDðx − zÞ

× fGcðxÞ∂iKcðR − xÞ þ KcðxÞ∂iGcðR − xÞg ð57Þ

4. hmjHjni Coulomb term

The planar diagrams are shown in Fig. 7. There are two
diagrams in which the Coulomb propagator ends on the
left-hand side quark, and likewise two diagrams where the
Coulomb propagator ends on the right-hand side antiquark.
The sum of all contributions is

Hcoul
mn ¼ CA

CF

Z
d3z1d3z2Ψ

ðmÞ
i ðz1ÞDðz1 − z2ÞΨðnÞ

i ðz2Þ

× fKcðz1Þ þ KcðR − z1Þ þ Kcðz2Þ þ KcðR − z2Þg:
ð58Þ

There is also a nonplanar contribution to the Coulomb
energy, which is shown in Fig. 8. This contribution comes
out to be

a i

a i

*

FIG. 5. Diagram associated with constituent gluon kinetic
energy.

a

i
*

gf
abc

i

−gt

b

c
g ta

i
*

gf
abc

i

−gt

b

c
g t

FIG. 6. Diagram responsible for the Hn0 Hamiltonian matrix
element.

gt

−gt

a

b i

c i

*

abc−gf   gta

c i*

−gf
abc

b i

−gf
abc

b i

a

c i

*

−gf
abc −gt

ib

c i
*

a

FIG. 7. Planar diagrams contributing to the instantaneous
Coulomb energy of the one constituent gluon state.

gt −gt
a a

FIG. 4. Diagram responsible for the instantaneous Coulomb
potential.
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Hnp
mn ¼ − 1

8
KcðRÞOmn: ð59Þ

5. hmjHjni KGG terms

The diagrams are shown in Figs. 9(a) and 9(b). “KGG
permutations” means permutations in the order of the
instantaneous Coulomb (K) and ghost (G) propagators.
The possible orders are KGG, GKG, and GGK. With the
diagrammatic rules as before (trace of matrix generators
is clockwise), it turns out that diagram 9(b) is simply
the complex conjugate of diagram 9(a). The resulting
contribution is

HKGG
mn ¼ C2

A

CF

Z
d3xd3yd3ud3vDðuÞDðvÞ

× fΨðmÞ
i ðx − uÞΨðnÞ

j ðy − vÞ
þΨðnÞ

i ðx − uÞΨðmÞ
j ðy − vÞg

× fKcðxÞ∂x
i Gcðx − yÞ∂y

jGcðy − RÞ
þ GcðxÞ∂x

i Kcðx − yÞ∂y
jGcðy − RÞ

þ GcðxÞ∂x
i Gcðx − yÞ∂y

jKcðy − RÞg ð60Þ

V. THE EQUAL-TIMES TRANSVERSE
GLUON PROPAGATOR

In order to actually compute the Hmn matrix elements
we need the full propagators Kcðx − yÞ, Gcðx − yÞ, and
Dðx − yÞ. The Coulomb propagator follows from (22) and
the Coulomb potential determined previously in [2]. In this
section we present our lattice Monte Carlo results for
Dðx − yÞ; the infrared behavior of the ghost propagator will
be taken from Refs. [5,11,12].

A. The question of gauge copies

Since our calculation is in Coulomb gauge, we will begin
with some remarks about Gribov copies. It is well known
that any point in field space where the quantity

R ¼ 1

3V3

X
x

X3
i¼1

ReTr½Uiðx; tÞ�; ð61Þ

evaluated on each timeslice, is stationary (V3 is the number
of sites on the timeslice), will satisfy the Coulomb gauge
condition

X3
k¼1

ðUkðx; tÞ −Ukðx − k̂; tÞ − H:c: ¼ 0 ð62Þ

at all sites x, which is just the lattice version of ∇ · A ¼ 0.
Gribov copies are the configurations on a gauge orbit
which satisfy this condition, and those copies which are
local maxima of R are said to be inside the Gribov region.
The global maximum of R is said to be in the “fundamental
modular region.” In practice it is impossible to find the
global maximum of the gauge fixing condition, although
some studies use simulated annealing in an attempt to find a
better gauge copy than what might be obtained from, e.g.,
the ordinary over-relaxation technique. Here we should
remark that in a fundamental sense there is no such thing
as a “better” gauge copy. It is obvious that if we are
calculating a gauge-invariant quantity, then the choice of
gauge copy is irrelevant. Of course, it may be that gauge
dependent quantities such as propagators and vertices will
vary somewhat from copy to copy, and the expectation
value for such quantities could very well depend on exactly
how the gauge copy is chosen. On the other hand, if one
could put together propagators and vertices so as to
compute a gauge-invariant quantity (such as a scattering
amplitude in ordinary perturbation theory, or the energy of

a i

a i

*

g tb −gtb

FIG. 8. Nonplanar contribution to the instantaneous Coulomb
energy of the one constituent gluon state.

+ KGG permutations 

gt −gt
g f

abc
g f

cde

i

ja e

dj

i b
*

(a)

+ KGG permutations 

gt −gtg f
abc

g fcdei
j

a e

dj

i b

*

(b)

FIG. 9. Diagrams contributing to the HKGG matrix element.
These entail a 12-dimensional integration.
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some physical state), then it is expected that the gauge
variance of the propagators and vertices should cancel out,
and the details of Coulomb gauge fixing should be
irrelevant. For this to happen, however, it is important that
the same version of Coulomb gauge fixing is used for all
gauge-dependent quantities.
Any lattice Monte Carlo calculation in Coulomb or

Landau gauge uses some version of what might be called
“computer gauge.” Lattice configurations are generated
according to the gauge-invariant probability weighting,
and then some deterministic procedure is applied to arrive
at a particular Gribov copy inside the Gribov region. The
procedure we have used in [2], and that we will continue to
use here, is the method of Fourier acceleration, introduced
in [17]. Although we will not use simulated annealing to try
to obtain “better” gauge copies, it may still be of interest to
compare values of R in Coulomb gauge obtained from
simulated annealing followed by Fourier acceleration, with
the values obtained from Fourier acceleration alone. We
have carried out these procedures on the t ¼ 1 timeslice of
25 lattices of volume 244, generated at gauge coupling
β ¼ 6.0, with each lattice separated by 2000 update
sweeps. Each timeslice was first fixed to Coulomb gauge
by the Fourier acceleration method (which stops after a
certain convergence criterion is met), and the value of R
(which is approximately 0.88 at this value of β) was
recorded. The timeslice was then subject to a random
gauge transformation followed by 1000 simulated
annealing sweeps, with the final fixing carried out via
Fourier acceleration, and the procedure again stops when
the convergence criterion is met. In every case, the values of
R obtained for each lattice by the two procedures differed
at most at the fourth nonzero digit, i.e. a difference on
the order of 10−4. A variety of cooling schedules and final
temperatures were tried out for the simulated annealing
steps, and seemed to make little difference to this result. It
may be that Fourier acceleration is already very efficient at
maximizing R.

B. Renormalization

Propagators computed in lattice simulations are bare
propagators. The relation of the bare to the renormalized
transverse gluon propagator is given by the usual relation

Dbare
ij ðxÞ ¼ Z2

ADijðxÞ; ð63Þ

where ZA is the wavefunction renormalization factor, which
depends on both the cutoff and the renormalization scheme.
Relations between various renormalization constants in
Coulomb gauge were worked out in [13], where we find
that g2 ~KðxÞ in terms of bare coupling and propagator equals
the same expression in terms of the renormalized coupling
and propagator. From this reference one can also deduce
that the combination gGðxÞAk is renormalization invariant,
in which case

gbareGbareðxÞ ¼ gGðxÞZ−1
A : ð64Þ

It is worth noting that Coulomb vertices, in Hamiltonian
matrix elements, are always multiplied by a factor of g2.
This means that the tree-level Coulomb vertices discussed
in Sec. III B involve only renormalization group invariant
combinations g2 ~Kðx − yÞ and gGðx − yÞAðyÞ.
This observation has an important consequence: it means

that when states are normalized (i.e. by division by
ffiffiffiffiffiffiffiffi
Onn

p
),

the Hamiltonian matrix elements we compute are renorm-
alization group invariant. Therefore if we compute ghost,
gluon, and Coulomb propagators at a particular lattice
coupling β, and use these to calculate the energy spectrum
of the static quark-antiquark pair plus constituent gluons,
the continuum limit obtained by extrapolation to β → ∞
will be the same as if we had carried through the spectrum
calculation using instead the corresponding renormalized
propagators and vertices.

C. Numerical results

We define the space components of A-field on the lattice,
in Coulomb gauge, as

Aiðx; tÞ ¼
1

2iga
ðUiðx; tÞ −U†

i ðx; tÞÞ; ð65Þ

where g ¼ ffiffiffiffiffiffiffiffi
6=β

p
and a ¼ aðβÞ is the lattice spacing in

fermis at coupling β, obtained from the Necco-Sommer
formula [18]

aðβÞ ¼ ð0.5 fmÞ exp½−1.6804 − 1.7331ðβ − 6Þ
þ 0.7849ðβ − 6Þ2 − 0.4428ðβ − 6Þ3�: ð66Þ

We then use lattice Monte Carlo simulation (with Coulomb
gauge fixing as described above) to compute the equal-
times expectation value

DðRÞ ¼ 1

3
δijhTr½Aiðx; tÞAjðy; tÞ�i; ð67Þ

where R ¼ jx − yj.2 In terms of the propagator

Dab
ij ðRÞ ¼ hAa

i ðx; tÞAb
j ðy; tÞ�i

¼ δabDijðRÞ ð68Þ

we have

2Note that a midlink prescription for position would make no
difference to separation R, given the i ¼ j restriction.
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DðRÞ ¼ 1

3
δij

1

2
δabDab

ij ðRÞ ¼
4

3
δijDijðRÞ

¼ 8

3
DðRÞ: ð69Þ

The simulations have been carried out for lattice volumes
124, 164, 204, 244, 284, 304, and β ¼ 5.7, 5.8, 5.9, 6.0; there
is roughly a factor of 2 between lattice spacings at the
lowest and highest values of β in this range. Figure 10 is a
set of logarithmic plots which displays the dependence of
DðRÞ on lattice volume, at each value of β. What we see in
these figures is that the data at the different volumes may
have converged at R < 0.6 fm or so, but at larger separa-
tions this is not the case. At β ¼ 5.7, 5.8 the data has
dropped below the x axis and gone negative in some region.
At β ¼ 5.9, 6.0 the data points remain positive, but there is
reason to suspect that at still higher volumes this data might
also go negative in the long distance regime. The data is
shown on a linear scale in Fig. 11.

It is interesting to see whether the data in the intermediate
regime, where we may be seeing scaling, can be fit by a
standard ansatz. Define the equal-time propagators corre-
sponding to a massive or Gribov form

DmassðR;mÞ ¼
Z

d3k
ð2πÞ3

eik·x

2ðk2 þm2Þ12
¼ m

4π2R
K1ðmRÞ; ð70Þ

and

DGribðR;mÞ ¼
Z

d3k
ð2πÞ3

eik·x

2ðk2 þm4=k2Þ12 : ð71Þ

The latter integral can be expressed in terms of MeijerG
functions:
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FIG. 10. Lattice Monte Carlo results, in physical units, for the equal-times transverse gluon propagator at lattice volumes 124–304 and
couplings 5.7 ≤ β ≤ 6.0. Data is shown on a logarithmic scale.
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Since the data has not convincingly converged at
R > 0.6 fm, we can at least try to fit the data in the range
0 < R ≤ 0.6 fm, where we do seem to see both scaling
and volume convergence, to either the massive or Gribov
forms, i.e.

DðRÞ ¼
�
cDmassðR;mÞ
cDGribðR;mÞ ; ð73Þ

where c and m are the fitting parameters. Figure 12(a)
shows a best fit for the massive propagator, and Fig. 12(b)
for the Gribov propagator, on a logarithmic scale. The data
points shown are combined data for all couplings on the
largest 304 lattice volume. Clearly neither of these fits are
very convincing. The fitting functions can get the short
distance behavior correctly, where the propagator is large,
but then they deviate in the longer range tail, where the
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FIG. 11. Same as Fig. 10, but on a linear scale.
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propagator is small. By fitting instead to the logarithm of
the data one can get quite a good fit to the tail, but then the
fits both go wrong at the short distance end, especially
when plotted on a linear scale. Neither the massive nor the
Gribov propagator gives a good account of the data in the
full 0 < R ≤ 0.6 fm interval. This motivates a search for
some other functional form for the propagator. We have
found that this form:

DtrialðRÞ ¼ c
e−bR2þaR

R2
ð74Þ

gives an excellent fit to the data. In the logarithmic plot in
Fig. 13(a), and the linear plot in Fig. 13(b) we show the data
for DðRÞ at all four β values at the largest 304 lattice
volume. On the same plots we also display the best fit (solid
line) to the data in the interval 0.09 ≤ R ≤ 0.6 fm by
DtrialðRÞ. The constants which give this fit are

a¼2.35ð23Þ fm−1; b¼5.65ð31Þ fm−2; c¼0.0469ð12Þ:
ð75Þ

There is no particular theoretical justification for the form
(74). The ansatz just happens to work very well in this
particular distance interval, where we have convergent
data. Presumably (74) is simply a good approximation in
this interval to the true, and no doubt very complicated,
transverse equal-times gluon propagator, which probably
violates positivity at larger distances, and displays loga-
rithmic corrections at shorter distances.
It is important to note the striking fact, seen in Figs. 13(a)

and 13(b), that the data at different values of the lattice
spacing, when expressed in physical units, completely
overlap up to 0.6 fm or so, beyond which the data still
seems to be volume dependent. This is not expected. In
lattice simulations we are dealing with the unrenormalized

propagator, so data sets at different values of the cutoff
ought to differ from one another by multiplicative con-
stants, and in the coupling range shown the largest
and smallest lattice spacings differ by almost a factor of
2 Yet there seems to be no trace of a cutoff-dependent

0.2 0.4 0.6 0.8 1.0

0.1

0.2

0.5

1.0

2.0

5.0

R

D
R

Gluon Propagator, massive fit

(a) massive

0.2 0.4 0.6 0.8 1.0

0.05

0.10

0.50

1.00

5.00

R

D
R

Gluon Propagator, Gribov fit

(b) Gribov

FIG. 12. Comparison of lattice data for the transverse gluon propagator to fits by (a) a propagator with a mass pole; (b) the Gribov
propagator.
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multiplicative constant in the range of lattice couplings we
have probed. The conclusion appears to be that within this
range of lattice cutoffs we may have ZA ≈ 1, at least in the
force renormalization scheme which underlies the Necco-
Sommer formula (66), and if that is the case then the bare
and renormalized propagators agree in this coupling range.
Of course ZA must differ very much from unity at
sufficiently large β and small lattice spacings. In any
event, the bare gluon propagator for this range of couplings
is fit by

DðRÞ ¼ 0.0469
exp½−5.65R2 þ 2.35R�

R2
; ð76Þ

where R is in fm and DðRÞ in fm−2.
It should be noted that there have been previous studies of

both the transverse propagator in Coulomb gauge, carried out
in both SU(2) [5,11,19] and SU(3) [20] pure gauge theory.
These studies computed gluon propagators in momentum
space, rather than position space, and the scaling analysis was
on time asymmetric lattices. For these and other technical
reasons it is not straightforward to compare our position space
results directly with the earlier momentum space studies,
and we will not attempt this here. However, given the strong
sensitivity of our results to lattice volume, we believe it would
be very helpful to carry out further studies of the equal-times
transverse gluon propagator in both position and momentum
space, on much larger lattices than those used here.

D. The ghost propagator

We now consider the (bare, unrenormalized) ghost
propagator

GabðRÞ ¼ hðM−1Þax;byi

¼ δab
1

8
hðM−1Þcx;cyi; ð77Þ

where the Faddeev-Popov operator on any given timeslice
of the lattice is

Max;by ¼ ReTr
X3
k¼1

½fta; tbgðUkðxÞ þ Ukðx − k̂ÞÞδxy

− 2tbtaUkðxÞδxþk̂;y − 2tatbUkðx − k̂Þδx−k̂;y�
ð78Þ

with the UkðxÞ being the spacelike link variables on that
timeslice. However, M has eight eigenvectors with zero
eigenvalues (c ¼ 1 − 8)

ψ ðcÞ
ax ¼ 1

L3=2 δac with Max;byψ
ðcÞ
by ¼ 0 ð79Þ

associated with a remnant global SU(3) color symmetry,
and is therefore not invertible as it stands. We must

therefore invert M on a subspace orthogonal to these zero
modes. An alternate procedure is to invert the Faddeev-
Popov operator in momentum space, as in [5,11,12].
Nakagawa et al. [12] find in momentum space, for the
SU(3) group

GðkÞ ∝ 1

k2.44
ðinfraredÞ: ð80Þ

Burgio et al. [5,11] and Langfeld and Moyaerts [19] find
nearly the same power dependence in SU(2). Translating
this into position space, we write

GcðRÞ≡ gGðRÞ ¼
ffiffiffi
6

p

8

cðβÞ
R0.56 : ð81Þ

The motivation for multiplying the ghost propagator by
coupling g is that, as we have noted above, the combination
gGðRÞZ−1

A , where gG is the product of the bare lattice
coupling and ghost propagator, is equal to the product of
the renormalized coupling and ghost propagator. We have
already seen evidence that ZA ≈ 1 in the range of couplings
β ∈ 5.7–6.0. We therefore treat cðβÞ ≈ c as a constant in
this coupling range, to be fixed by fitting to some physical
quantity. As mentioned below (37), this constant may also
absorb a contribution correcting for the factorization of the
operator expectation values shown in Fig. 3.

VI. THE STATIC QUARK POTENTIAL

We now define the matrix [H] to have elements
Hmn ¼ hmjHjni where H00 and Hn0 ¼ H�

0n were defined
in Eqs. (54) and (57) respectively, and

Hnm ¼ Hkin
nm þHcoul

nm þHnp
nm þHKGG

nm ; ð82Þ

where expressions for Hkin
nm;Hcoul

nm ;Hnp
nm;HKGG

nm have been
given in Eqs. (55), (58), (59), (60). All of these matrix
elements, as well as the elementsOmn of the overlap matrix
[O] defined in (46) depend on the parameter a that appears
in the one-gluon wavefunctions Ψ, as well as the parameter
c in the ghost propagator.
The procedure, for any given ghost parameter c and

quark-antiquark separation R, is to compute the energy
spectrum of the Hamiltonian in a truncated basis which
spans the Hilbert subspace containing the nonorthogonal
zero and one-gluon states fjnig, and vary the parameter a
to minimize the lowest energy eigenvalue. As we have
already mentioned, a possible procedure is to construct an
orthonormal basis from the fjnig states via Gram-Schmidt
orthogonalization, compute the Hamiltonian matrix ele-
ments in this basis, and then diagonalize the Hamiltonian.
An equivalent method is to solve the generalized
Hamiltonian equation ½H�vn ¼ En½O�vn; this gives the same
spectrum of energy eigenvalues. This procedure is carried
out for a range of quark-antiquark separations R, and
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parameters c. If the lowest energy EminðRÞ is linear as a
function of R, then we choose c to get σ ¼ EminðRÞ=R
equal to the asymptotic string tension. In our calculation we
have chosen indices α, β in the wavefunction [see (50)] in
the range α ¼ 1, 2, 3, 4, β ¼ 1, 2, 3, so counting the zero-
gluon state this is 13 states in all.
Our final result, and the main result of this paper, is

shown in Fig. 14. Here we plot the variational/truncated
basis estimate for the static quark potential VðRÞ up to
R ¼ 2.4 fm, in intervals of 0.2 fm, as compared to the
Coulomb potential of Eq. (3). We have found that as we
increase the number of states in the truncated basis from 2
to 13, the ground state energy converges at around 6 or 7
states. Error bars, comparable to symbol size, are estimates
of the error deriving from numerical integrations. The
dashed line through the computed points is a best fit by the
function

VfitðRÞ ¼ σfitRþ δ ð83Þ

and we find

σfit ¼ 4.91ð9Þ fm−2

¼ ð437ð4Þ MeVÞ2 ð84Þ

which can be compared to the accepted value of
σ ¼ ð440 MeVÞ2. Of course, the parameter in the ghost

propagator c ¼ 3.5 was chosen to obtain this result, but
what is nontrivial is the fact that the potential remains
linear, despite deviating very strongly from the nonpertur-
bative Coulomb potential, which we recall had a string
tension four times greater than the asymptotic string
tension. Increasing or decreasing the constant c by 10%
away from c ¼ 3.5 decreases or increases σfit, respectively,
by about 30%.

VII. CONCLUSIONS

We have shown how the inclusion of a single constituent
gluon in the static quark-antiquark state can preserve
the linear dependence of the energy on quark separation
R, at least up to R ¼ 2.4 fm, while drastically reducing
the string tension from the pure Coulomb value of
σcoul ¼ ð891 MeVÞ2. To show that the reduction is by
precisely the right amount, namely a factor of 4, will
require further numerical studies of the ghost and transverse
gluon propagators.
The next step in our program is to apply our variational

approach to gluelumps, glueballs, and heavy (but not static)
quark-antiquark bound states. For quarkonium states the
diagrams are essentially the same as those shown in Sec. IV,
only replacing the static quark lines with dynamical quarks
and antiquarks, and of course there will be wavefunctions
for relative positions and spin of quark, antiquark, and (zero
or one) constituent gluons. Likewise, for the glueball states,
the static quark lines are replaced by gluon propagators. For
these states, where no constituent is located at a fixed
position, it is preferable to carry out the calculation of
Hamiltonian matrix elements in momentum rather than
position space. This takes advantage of overall momentum
conservation, and greatly reduces the dimensionality of
integrals that must be carried out numerically. We hope to
report on work along these lines in a future publication.
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APPENDIX: COMPARISON WITH DYSON-
SCHWINGER EQUATIONS

In this appendix we compare our results for the ghost
and Coulomb propagators derived from lattice simulations
with the predictions of Dyson-Schwinger (DS) equa-
tions [21–24]. In the one-loop, rainbow-ladder approxima-
tion, the renormalized DS equation for the momentum
space ghost dressing function dðpÞ≡ gGðpÞp2 is given by
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1

dðpÞ ¼
1

dðμÞ − Id½dðkÞ� þ Id½dðμÞ�; ðA1Þ

where

Id½dðkÞ� ¼ NC

Z
d3k
ð2πÞ3

1 − ðp̂ · k̂Þ2
2ωðk − pÞ

dðkÞ
ðp − kÞ2 ; ðA2Þ

and 2ωðpÞ ¼ D−1ðpÞ is the inverse momentum space
gluon propagator. Given the function ωðpÞ, the solution
of (A1) depends on the value of dðμÞ at an arbitrary
renormalization point, which we choose as μ ¼ 1 fm−1.
Specifically, the behavior of the ghost dressing function in
the IR, i.e. for p → 0, depends on the value of dðμÞ and the
IR behavior of ωðpÞ. If ωð0Þ is finite then so is dð0Þ,
providing that dðμÞ is less then some critical value dc which
depends on ω. As dðμÞ increases towards the critical value
the ghost dressing function becomes IR enhanced, and dð0Þ
becomes infinite for dðμÞ ¼ dc with dðpÞ ∝ 1=p1=2 as
p → 0. In general, if ωðpÞ behaves in the IR as

ωðpÞ ∝ 1=pβ; ðA3Þ

the ghost dressing function behaves as

dðpÞ ∝ 1=pð1þβÞ=2; ðA4Þ
so long as dðμÞ is equal to the critical value. The large-R
behavior of the ghost propagator gGðRÞ in position space,
which is implied by (A4), is

gGðRÞ ∝ 1=R1=2−β=2: ðA5Þ
For any β and dðμÞ < dc, dð0Þ is finite. However, there
is a range of low momenta where dðpÞ follows the power-
law behavior given by (A4). The lower limit in this range
approaches p ¼ 0 as dðμÞ → dc. Similarly, (A3) with
β > 0 implies that in position space at large distances
(R → ∞) the gluon propagator behaves as

DðRÞ ∝ 1=R3þβ: ðA6Þ

We note that if DðRÞ > 0 at all distances, ωð0Þ is finite,
while an IR enhanced ω with β > 0 implies that the gluon
propagator is positivity violating. The momentum space
Coulomb potential is proportional to the square of the ghost
propagator and the Coulomb form factor f,

CFg2KðpÞ ¼ − d2ðpÞfðpÞ
p2

; ðA7Þ

which satisfies the following DS equation,

fðpÞ ¼ fðμÞ þ If½fðpÞ� − If½fðμÞ�; ðA8Þ

with

If½fðkÞ� ¼ NC

Z
d3k
ð2πÞ3

1 − ðp̂ · k̂Þ2
2ωðk − pÞ

d2ðkÞfðkÞ
ðp − kÞ2 : ðA9Þ

It follows from (A8) that fðpÞ is determined up to an
overall normalization.
3A good approximation to the momentum space lattice

propagator can be obtained using a simple form motivated
by the Gribov ansatz

ωðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp=aÞ2 þm2

gðmg=pÞ2β
q

: ðA10Þ

The functional form adopted in (76), i.e. a positive DðRÞ,
implies β ¼ 0. In this case the DS equation (A1) results in a
ghost propagator which at large R behaves as gGðRÞ ¼
ð ffiffiffi

6
p

=8ÞAR−1=2 with A ≈ 1.5. The power behavior is close
to the lattice fit (81), but the magnitude is approximately a
factor of 2 smaller than what is required (according to the
analysis in this article) to fit the asymptotic string tension. It
follows from (A1) that to increase the value of the ghost
propagator it is necessary to enhance ω in the IR, and this in
turn implies positivity violation. The lattice data on the
gluon propagator does indeed indicate positivity violation.
While the analytical form in (76) is acceptable in the
analysis of the gluon chain spectrum, comparison with the
DS equation requires taking positivity violation into
account.
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