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Constituent gluons and the static quark potential
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We suggest that Hamiltonian matrix elements between physical states in QCD might be approximated,
in Coulomb gauge, by “lattice-improved” tree diagrams; i.e. tree diagram contributions with dressed
ghost, transverse gluon, and Coulomb propagators obtained from lattice simulations. Such matrix elements
can be applied to a truncated-basis treatment of hadronic states which include constituent gluons. As an
illustration, we apply this hybrid approach to the heavy quark potential, for quark-antiquark separations up
to 2.4 fm. The Coulomb string tension in SU(3) gauge theory is about a factor of 4 times greater than the
asymptotic string tension. In our approach we show that a single constituent gluon is in principle sufficient,
up to 2.4 fm, to reduce this overshoot by the factor required. The static potential remains linear, although
the precise value of the string tension depends on details of the Couloumb gauge ghost and gluon
propagators in the infrared regime. In this connection we present new lattice results for the transverse gluon

propagator in position space.
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I. INTRODUCTION

It is not obvious that particlelike gluons, which are vital
to perturbative QCD, really make sense as constituents of
hadrons, particularly highly excited hadrons with higher
spin. Perhaps such states can only be described by strings
of some kind which connect to quarks. The picture of linear
Regge trajectories as arising from a spinning linelike object
is certainly compelling, and, if there is any sense in which
gluons are constituents of hadrons, then surely the first
challenge is to find out whether this linelike object has a
substructure that can be understood in terms of individual
gluons. The simplest case to study is the lowest energy state
containing a static quark-antiquark pair separated by a
distance R. The linelike object connecting the quarks must
manifest itself as a color electric flux tube. Does this flux
tube have a substructure that involves individual gluons, as
in the “gluon chain” proposal of Ref. [1]?

To address this question, and in fact to even define what
is meant by an individual gluon, it is necessary to work in a
fixed gauge. We will use Coulomb gauge, which has the
advantage that a confining potential is already built into the
dressed Coulomb propagator. This fact has been verified
numerically in many lattice studies [2—7] and it is, more-
over, a necessary condition for a nonvanishing asymptotic
string tension [8]. The problem, however, is that the SU(3)
Coulomb string tension o, derived from the instanta-
neous Coulomb propagator is a factor of 4 times larger than
the asymptotic string tension [2,3], which seems too much
of a good thing. We may ask whether constituent gluons in
a static quark-antiquark state can somehow reduce the
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Coulomb string tension to the known asymptotic value. If
that turns out to be true then we could go on to study other
hadronic states, such as the low-lying glueballs, which
would be another natural setting in which to investigate
gluons as constituent particles.

Among the physical states in Coulomb gauge, contain-
ing e.g. a static quark and antiquark pair, are superpositions
of states of the form

|\I’>Qq = /r’l‘[d3xi\ykl‘..k”('xl7-x2’""xn)c_f(o)
X A, (x1) Ay, (%2)- - A, (x2)g" (R)[0)yper (1)

where [0),,. is the true vacuum state, ¢', g are massive
quark-antiquark creation operators, and ¥ is a function
which, in a variational approach, may depend on some set
of parameters. Suppose we have a finite, not necessarily
orthogonal, set of such states, labeled by an integer {|;)}.
From these a set {|j)} of orthogonal states can be
constructed. If we could compute Hamiltonian matrix
elements (j|H|k) in the Hilbert space spanned by this
truncated basis, then the standard procedure is to diago-
nalize the Hamiltonian in the truncated basis, minimize the
energy of the lowest energy state by adjusting the varia-
tional parameters, and in this way arrive at an estimate for
the static quark potential at separation R. A similar strategy
could be employed in spectrum calculations, involving
states with dynamical quarks. The problem, of course, is to
calculate the relevant overlaps and Hamiltonian matrix
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elements. In principle this task can be carried out by lattice
Monte Carlo in Coulomb gauge, and this was the path
followed in [9]. The problem was also addressed from the
Dyson-Schwinger point of view in [10]. In this article we
will suggest a somewhat different approach, inspired by
renormalized perturbation theory.

Consider the expression

Ciy (1) = (jle"""|k). (2)

The time derivative evaluated at r = 0 gives us (j|H|k),
while Cj;(0) is the overlap (j|k). The prescription for
calculating Cj(t), in ordinary perturbation theory, is
essentially the same as the prescription for calculating an
S-matrix element: Sum all of the tree diagrams which
contribute to this expression, including all n-point vertices.
The vertices are the one-particle irreducible (1PI) n-point
functions appearing in the quantum effective action, and the
propagators are the full (or “dressed”) propagators of the
theory. The task of perturbation theory is to compute these
renormalized propagators and 1PI n-point functions. This
program can be carried out analytically, within the limits
of validity of an asymptotic expansion, if the spatial
separations of the quarks and gluons in states {|j)} are
small. If this is not the case then the program fails, because
the perturbative expansion for the relevant propagators
and vertices rapidly diverges. Let us observe, however, that
only a finite number of tree diagrams contribute to the
calculation of Cj(t). The sum of trees is not an infinite
expansion; it is finite and, given the dressed propagators
and n-point vertices, it supplies the exact answer, regardless
of the magnitude of the renormalized coupling. Therefore,
if propagators and relevant vertices could be calculated by
some nonperturbative approach, say by Dyson-Schwinger
equations or lattice Monte Carlo simulations, then the tree
diagrams could be summed, and C(#) could be calculated.
From those quantities, the spectrum of the Hamiltonian in
the subspace of Hilbert space spanned by the set {|j)}
could be calculated.

In this article we will take a first step along these lines,
by taking ghost, transverse gluon, and Coulomb propa-
gators from lattice Monte Carlo simulations, neglecting all
vertices apart from those arising from the nonpolynomial
operator in the Coulomb gauge Hamiltonian. We will use
the resulting tree diagrams to compute Hamiltonian matrix
elements in a truncated basis of 13 states, consisting of one
state with no constituent gluons, and 12 states with a single
constituent gluon in various spatial distributions. It is found
that the static quark potential derived in this way remains
linear, but the asymptotic string tension depends on an
overall constant factor associated with the ghost propagator.
In the absence of decisive data on this point, we simply tune
the factor in the ghost propagator to get the known result.
Hopefully future lattice Monte Carlo investigations of the
ghost propagator will make our study more predictive, but
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for now we only show that inclusion of constituent gluons
in static quark-antiquark states, along the lines of the gluon
chain model, provides a very plausible mechanism for
reducing the string tension from the pure Coulombic value,
which is much too high, to the value consistent with
numerical simulations.

Below in Sec. II we review some of the numerical results
and conjectures in Ref. [2], which motivate the work
presented here. In Sec. III we will present our proposal in
detail, and in particular explain how the nonlocal operator
which appears in the Coulomb gauge Hamiltonian is treated
in the tree diagram approach. Expressions for the
Hamiltonian matrix elements in terms of lattice-improved
tree diagrams are derived in Sec. IV, and they require, in
addition to the Coulomb propagator already obtained in [2],
also the ghost and transverse gluon propagators. In Sec. V
we will show our lattice Monte Carlo results for the equal
times transverse gluon propagator in position space, relying
on Refs. [5,11,12] for the infrared behavior of the ghost
propagator. In Sec. VI we will bring all these results together,
compute an estimate for the static quark potential, and show
how the superposition of zero and one constituent gluon
states can bring the static quark potential down from the
Coulomb result by a large numerical factor dependent on
the ghost propagator. We conclude in Sec. VIL Finally, in the
Appendix we discuss the results of Monte Carlo simulations
of gluon, ghost and Coulomb propagators in the context of
the Dyson-Schwinger approach.

II. COULOMB POTENTIAL AND THE
GLUON CHAIN MODEL

In a recent article [2] we calculated the nonperturbative
Coulomb potential in SU(3) pure gauge theory via lattice
Monte Carlo simulations in Coulomb gauge, and found it
to be

1

Vcoul (R) = acoulR - EE ’

(3)
where the Coulomb string tension is

Geoul ®20.5(4) fm™2
~ (893 + 9 MeV)?, )

(see also [3]) which is about 4 times the accepted value of
the asymptotic string tension ¢ = (440 MeV)2. This is
clearly too much of a good thing. While it is helpful that a
linearly confining potential is obtained in Coulomb gauge
by what amounts to one (dressed) gluon exchange, it is
not acceptable that the static quark potential is four times
too large. Moreover there is no indication that the color
electric field generated by the Coulomb propagator around
the quark-antiquark sources is restricted to a flux tube.
Something else important must be going on.
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The key point is that V ., (R) is not necessarily the
minimal energy of a state containing a pair of static quark-
antiquark sources. It is, rather, the interaction energy of a
specific state in Coulomb gauge, namely

10}, = @"(0)g" (R)|0) e (5)
where

is the true vacuum wave functional. The energy of this state,
including self-energies, is given by the logarithmic time
derivative of the Euclidean-time correlator

d _
V(R) = —lim - 1ogg, (0] (0}, (7)

As Dirac indices and quark kinetic energies are not relevant
to our study, it is sufficient to compute, in a Euclidean
action formulation, the logarithmic time derivative of a
correlator of short timelike Wilson lines

V(R) = —lim { log(Tr[L O)LIR)).  (8)

where

L,(x)=Texp [igAttho(x, t)] 9)

In a lattice formulation, the calculation of V(R) boils down
to calculating the logarithm of the vacuum expectation
value (VEV) of products of two timelike links, evaluated
at equal times. This method for computing the Coulomb
energy was first suggested in [7], and the potential defined
in this way includes an R-independent self-energy term.
The self-energy term, proportional to the inverse lattice
spacing, can be identified and subtracted away, with the
result for the R-dependent quark-antiquark interaction
potential V. (R) shown above in (3) and (4). The
coefficient 7/12 in (3) is the correct value for the
Liischer term, but this coefficient is not simply assumed.
Rather, it appears to be the likely continuum limit of the
values derived at finite lattice spacings, cf. [2].

Since the state |0),, cannot be the minimal energy state
containing static quarks, it is reasonable to consider states
with n constituent gluons of the form shown in (1), where
what we mean by n “constituent gluons” is simply that
there are n A-field operators that operate on the true ground
state. In diagramatic representation this ket vector corre-
sponds to n transverse gluon lines emerging from a blob at
time 7, = 0, and the bra vector is a blob with n transverse
gluon lines entering at some later time ¢. The static quark
and antiquark lines attach to either end of the blob. The
gluon chain model of Ref. [1] proposed that the minimal
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energy state containing a static quark antiquark pair
consists of some number n of constituent gluons arranged
roughly in a line (or cylindrical region) between the quark
and antiquark, with the color ordering of the gluons
correlated with the spatial ordering of the gluons along
the line. The original motivation was the observation that
the force between colored sources, in two-loop perturbation
theory, grows very rapidly with R when the running
coupling approaches values of O(1). So the idea is that
as a quark and antiquark separate, the energy grows until at
some point it is energetically favorable to place a gluon in
between the quark and antiquark, which halves the effective
color charge separation. As the quark and antiquark
continue to separate, eventually it is energetically favorable
to introduce a second gluon between the two sources, and
so on. In the end, the minimal energy state would contain
approximately n = R/R, constituent gluons, where Ry, is
essentially the average distance between gluons, and
the kinetic plus intergluon interaction energy is E,. Then
the total energy of the long chain is approximately
E(R) = nEy = (Ey/Ry)R, which is a linear potential with
string tension Ey/R.

It now seems clear that this picture is untenable, because
it assumes that at some point, as color charges separate, the
potential between colored sources grows faster than linear.
But if the Coulomb potential between gluons is instead
asymptotically linear, then there is no advantage to intro-
ducing more gluons. If the gluons were arranged exactly in
a line between the quarks, and the intergluon Coulomb
potential is linear with string tension ¢, then the overall
Coulomb energy would be ¢’R regardless of the number of
gluons in the chain. The kinetic energy of the gluons, and
the transverse fluctuations away from the line joining the
quark-antiquark pair, could only increase this energy. So it
would appear that the minimal energy really is the zero
constituent gluon state (5), and we have found that this state
has a string tension which is far above the asymptotic string
tension.

However, this conclusion ignores the fact that a state
with a fixed number of constituent gluons is not an
eigenstate of the Hamiltonian, and there will always be
nonzero matrix elements (m|H|n) between states with
different numbers of constituent gluons. This means that
the lowest energy state is certain to be a superposition of
states with different numbers of constituent gluons.
Diagonal matrix elements contain both purely kinetic
contributions, indicated schematically in Fig. 1(a), and
instantaneous Coulomb interactions, shown in Fig. 1(b).
Matrix elements between states with different numbers of
constituent gluons are associated with diagrams such as
Fig. 1(c). All matrix elements are derived from the time
derivatives of the diagrams indicated. In Ref. [2] we
showed that if we make some plausible assumptions about
the behavior of the diagonal and off-diagonal Hamiltonian
matrix elements, then the static quark potential associated
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Diagrams which, after a time derivative, contribute to Hamiltonian matrix elements. (a) The graph which determines the kinetic

energy of constituent gluons. (b) One of the graphs determining the Coulomb energy of an n-gluon state. The blob labeled “K” is the
instantaneous nonpolynomial Coulomb operator. (c) Schematic of a graph contributing to an off-diagonal Hamiltonian matrix element
between states with n and n + 1 gluons. Here one of the A-field operators in the Coulomb operator K(A) contracts with a gluon in the

final state.

with the lowest energy state could be reduced from the
purely Coulomb value by a large numerical factor, while
retaining the asymptotic linearity of the potential. For
details of the model calculation we refer the reader to
[2]. In the present article we will actually evaluate the type
of diagrams just indicated, in a “lattice-improved” tree-
diagram framework, to see if they really do have the
conjectured effect.

III. LATTICE IMPROVED TREE DIAGRAMS
FOR THE STATIC QUARK POTENTIAL

A. Preliminaries

For completeness and to establish notation we begin
with the usual preliminaries regarding Coulomb gauge.
The Coulomb gauge Hamiltonian is H = H e + H ooyt
H 1 ater, Where

1
Hglue = 5/ d3x(-.7_%Emaj : Emaj_% + B* - Ba),

1

1 ]
Heow =5 / dPxd®y T 2p*(x) TK* (x,y: A)p”(y) T 2,

2
(10)
with
K (x.y:4) = M7 (V)M
P =pg+pi+ry
M = -V-D(A),
J = det{M]. (11)

Here pi(x) = gqj(x)t?jqj(x), pg(x) = gé_li(x)f?ﬁ;(x) and
pa(x) = —gf*°Al(x)E{(x) are the charge density of
quarks, antiquarks and gluons, respectively, and D;(A)
is the covariant derivative. H . 1S the part of the
Hamiltonian containing dynamical matter fields. It will

not be needed here, since in this article we are only
concerned with static color sources, which can be repre-
sented by Wilson lines in the time direction. The operator-

ordering terms [J 3 do not appear at the classical level, and
therefore do not appear in the construction of tree diagrams.

An equivalent Euclidean path-integral formulation in
first-order formalism [13—16] can be based on the generat-
ing functional

ZlJ]

.1
—/DA;r/DE;rexp [/d4x<iEiA,»—§(E%+B,2)—iJ,»Ai>
G

1
—5/ didPxd®y(p,+9J4) . Kx.y.t.Al(p, +J4)y,z] ,

(12)

where the “tr” superscript in the measure indicates that
the integration is restricted to transverse A, E fields, and

Py (x) = —gf A} (x)E; (x).
We define the transverse gluon propagator

DI (x,1) = (Af(x.4(0,0))

= D;;(x, 1)8°, (13)
the £ — A propagator
l~)§‘j” (x,1) = (E¢(x, t)Af (0,0))
= Djj(x,1)5%, (14)
the ghost propagator
en={(2),)
-V-DJ,,
= G(x —y)o®. (15)
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and the K-propagator

e () o))

= 6K (x —y). (16)

The Coulomb propagator demands some special atten-
tion; it is not the same as the K-propagator. It is defined as
1 &

D (x—y)= (gmz> J=0
= (K™ (x—y;A))8(x4—y4)
+/d3zd3w<K‘w(.X'—Z)Pg(Z)PZ(W)KCb(W_y>>
=5 (K (x—y)8(xs—y4) +P(x—)). a7

In d = 4 dimensions P(x — y) may have both an instanta-
neous and noninstantaneous part

P(x_y) = Pinst(x_y)é(x4 _y4) +Pn0n(x_y)’ (18)

so that

Dfllg(x _y) = 5ab<K(x _y) + Pinst(x —y))é(X4 _)74)
+Pnon(x_y)' (19)

The instantaneous part of the Coulomb propagator will be
denoted

K®(x—y) = 6"K(x ~y)
=5 (K(x —y) + Pins(x —¥)).  (20)

It was shown by Zwanziger [13,15] that both ¢> D42 (x — y)
and ¢*K(x —y) are renormalization group invariants. For
now only the instantaneous part of the Coulomb propagator
will be needed. We will denote the relationship of K to
operator expectation values by

K= <K> + <KppK>inst’ (21)

where the subscript on the last term indicates the instanta-
neous part of the VEV. The relationship between the
Coulomb potential between static sources in the funda-
mental representation and the instantaneous Coulomb
propagator is

vcou1<R) = _gchi((R)' (22)

For later use we will introduce the notation

PHYSICAL REVIEW D 93, 074506 (2016)
static quark

________ Coulomb
________________ ghost
AVaVAVAVaVAVAVY Y transverse gluon
VOO0 00000000 E-A propagator

FIG. 2. Diagrammatic notation for Coulomb gauge propaga-
tors.

K(,(R) = Vcoul(R)
G:(R) = gG(R). (23)

Our graphical notation for these propagators is shown
in Fig. 2. Assuming an analytic structure consistent with
causality, i.e. (in Minkowski space) the absence of complex
singularities in the energy plane, and of course trans-
versality, the gluon propagator has the form

Ak ei(k0t+k-x) ki kj
Dij(x’t):/—ztﬁ Sij— 5
(27)* k§ + w; k

- d’%k eik~x—a)kt 5 kikj
a / @2n)* 20, 7 K

1
= 6,;D(x.1) = DIV (x,1)

1
D(x,t) = E(SijDij(x’ 1), (24)

where we have defined k> =k - k. The E-A propagator is
indispensable in both the first-order and Hamiltonian
formulations in Coulomb gauge, which both dispense
with ghost fields. The E-A propagator is obtained, as in
perturbation theory, from a time derivative of the transverse
gluon propagator1

B d4k k ei(k0t+k-x) kzk
Dij(x,1) _/—402—2 Sij =3
(2m)* k§+ wp k

= 5,-]-[)()6, t) — Dl(jl)(x, t)

DWQ:%%DALA (25)

At the perturbative level w; = |k|. At the nonperturbative
level w; will be something else, with

Vi +m? massive propagator (26)
Wy =
k*> + m*/k*> Gribov propagator

"This basically follows from the fact that the transverse E-field
is a time derivative of the transverse A-field.
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as possible candidates. Our approach is to determine the
relevant gluon propagators in position space from lattice
Monte Carlo simulations. We will not need to know w;
explicitly, although we will, in Section V, compare our
numerical results for the transverse gluon propagator in
position space with the forms implied by the above

candidates for w;. However, the assumption that D, D,- j
have the form above allows us to conclude that
D'(x,0) ElimiD(x 1)
b t:O dt 9
1
S5 )
lim D(x.€) = %sign(€)53 (x). (27)

B. Decomposition of the Coulomb vertex

In the tree diagram framework we suggest here, there is a
question of how the nonpolynomial operator

P(X)KP(x = y; A)p(y) (28)

should be handled. Let us first consider the case where the
charge operators p contract only with “external” operators
in the initial and final states, either heavy quarks or
constituent gluons. These operators will be denoted p**'.
Then we also have to consider the possibility that some
A-field operators in the perturbative expansion of K% (x —
y;A) contract with gluon operators in the initial and final
states. In some diagrams there are no such contractions, and
those diagrams sum up to the dressed K-propagator (K).
We must also consider the product of pKp operators in
which two charge operators contract with initial and final
states, i.e. p**'KppKp®*'. Again there are diagrams in which
there are no contractions of operators in either K with
the external constituent gluons. Those diagrams sum up to
(KppK), and add to the K-propagator (K) to produce the
dressed Coulomb propagator K(x — y) [see (21)].

In other diagrams, however, it is necessary to consider a
“Coulomb vertex,” as indicated schematically in Fig. 1(c),
where one or more field operators in K contract with
operators in the initial and/or final states. It turns out, as we
will now show, that Coulomb vertices can be decomposed
into products of ghost operators, Coulomb operators, and
transverse gluon operators that contract with the external
states. In our tree diagram formulation, these ghost oper-
ators and Coulomb operators just become dressed ghost
and Coulomb propagators, and this prescription amounts to
a partial resummation of the full perturbation series.

We will begin with the case p*'Kp®*', so it is sufficient to
just consider the expansion of the Coulomb operator

Kg(A) = G£(-V)Gy

7y

(29)
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where the ghost operator is

1 ab
Giy = (M) = (_v_ D)

xy
(VD) = =¥V + g ak0). (30)

The perturbative expansion of the ghost operator begins
with

V2Gy = 576k —y) + of AT x)D,GY (1)

1 1 e
G = <(—v2)>xy ' ((—W))xf’f Gy
(32)

This equation can be solved iteratively, and from here on
we will drop both color and spatial indices. The solution is

a power series
2 (40 m)

- (_vz) f: g (33)

where we define

ng8< Vz) (34)

The Coulomb operator is then

(N +1)MV. (35)

In the perturbative expansion of K, each of the operators
M contains a single A operator, and in a Coulomb vertex
we have to choose one or more of these to connect to
external gluons in the initial or final states. Let us begin
with the case of a Coulomb vertex with a single gluon
emerging. Denote by M* the operator which contains the
A-field contracting with an external gluon field, and the
resulting operator (corresponding to the blob with one
gluon line coming out) we’ll denote K*. Then we have
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N—1
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Now let us consider a blob with two gluon lines coming
out. By the same reasoning

1 =) N—-2N—m—2

(_v2>z N+1 Z ZO MmM*MnM*Mmefnfz

0 m=0 n
1
=
1
= )
1
)

—%z)i(m 1M (gfA*D)

KAA —

=
Il
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[]s
[]s
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Il
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(- DM (9 4°0)

1 = * 1 > n *
+(_vz)m§:;)M (gfA 6)(_v2);M (gfA*d)
1

(_v2> k

=K(gfA*0)G(9fA"0)G+G(gfA"0)K(gfA" D)
xG+G(gfA*9)G(gfA* D)K. (37)

|
<
NS
—

X

(k+1)M*

I
o

The general case follows from induction, and is indicated
schematically in Fig. 3. The tree diagram approximation is to
replace the operators K, G by the corresponding propagators,
as shown in the figure. In diagrammatic terms this means we
either neglect completely contractions of field operators in
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p%p = p®§@§@§...?®p

P S é ...... :

FIG. 3. Decomposition of a vertex, generated by the Coulomb
operator K(x —y;A), into products of operators. In the tree
diagram decomposition, G and K operators become ghost and
Coulomb propagators respectively, as explained in the text.

..____p

one (K or G) blob with field operators in another blob, or we
assume that the only effect of such contractions is to multiply
the pointlike vertex by a constant, which can be absorbed into
a multiplicative factor ¢ in the ghost propagator.

At this stage it would appear that the Coulomb vertices
involve K-propagators rather than Coulomb propagators.
However, this neglects the fact that there is a second
contribution to vertices with N external gluon lines, which
comes about from expanding the KppK operator. We recall
that the Coulomb propagator is actually a sum of the K-
propagator and (KppK). A similar statement is true for
Coulomb vertices. Let us consider one term in the expan-
sion of the K operator with N external gluon operators, in
which there are n products of G(gfA*d) to the left of the K
operator, and N — n products of (gfA*0)G operators to the
right of the K operator, i.e.

<~n— <«~N—n—

T, = G(gfA*d)...G(gfA*0)K (gfA*D)G...(g fA*D)G
(38)

Again, in the tree diagrammatic expansion we neglect any
diagrams which connect G operators to K operators or to
other G operators, and the result is a product of ghost
propagators, K-propagators, and A field operators which
contract with operators in the initial and/or final states. To
each term of this kind, there is a corresponding term which
arises from the expansion of the KppK operator:

T, = {G(gfA*0)...G(gf A"D)Kp}
«~N—n—

< {pK(gfA"D)G...(gf A"D)G}.  (39)
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In the tree diagram expansion the G operators become
ghost propagators, and KppK becomes (KppK). Then in
the tree-level approximation to 7| + 7, the K operators
appear in the combination (K) + (KppK), which is simply
the Coulomb propagator K. This is completely general. The
effect of adding the KppK operator in computing Coulomb
vertices in this framework is equivalent to considering only
the expansion of the K operator, and then replacing the K-
propagator with the Coulomb propagator.

One might ask why we have neglected terms in the
expansion of KppK such as

{G(9fA"0)...G(gf A" 0)K (gf A" 0)G...(9f A" 0)Gp}
x {pG(gfA*D)...G(gfA*0)K(gfA*0)G...(9fA*0)G}.
(40)

One reason is that all of the diagrams which contribute to
the VEV of such a quantity involve loops which cannot be
absorbed into a ghost or Coulomb propagator. In the tree
diagram framework we propose here, contributions of that
kind are dropped. A second reason is that in the matrix
elements we are concerned with, where we imagine a small
time separation ¢ between the ket and bra states, a
logarithmic time derivative as in Eq. (8), followed by
the + — O limit, only instantaneous terms contribute. That
is, for diagrams with one line ending on the static quark
worldline at time #;, and another line ending on the
antiquark worldline at time 7,, the contribution is only
nonzero if it contains a time delta function §(z; — #,). Only
instantaneous terms of this kind survive the integrations
over t;, t, and logarithmic time derivative, in the limit that
time separation ¢ goes to zero. The instantaneous (K)
propagator is a term of this type. On the other hand,
(KppK) has both an instantaneous and a noninstantaneous
part, and only the instantaneous part of this contribution
will contribute to our matrix elements. But we know from
numerical simulations that it is the instantaneous part
which, combined with (K), carries the linear potential
and has the correct scaling properties. On the other hand,
there is no reason to think that a term such as (GppG) is
dominated by an instantaneous part, and we think it is
likely that terms of this kind are dominated by contributions
which are noninstantaneous, and which therefore do not
contribute to the matrix elements of interest.

IV. THE HAMILTONIAN IN A BASIS OF ZERO
AND ONE CONSTITUENT GLUONS

In the toy model of a gluon chain, explained in Ref. [2],
the average number of gluons in the chain will grow
linearly with the quark-antiquark separation. If this idea
really works, then there should then be some intermediate
distance range, presumably just after the onset of confine-
ment, where the average number of gluons is less than one,

PHYSICAL REVIEW D 93, 074506 (2016)

i.e. the minimal energy state is mostly a superposition of
just zero and one-gluon states. We will denote a finite set
of such states, containing also a static quark-antiquark
pair of separation R, as {|n)}, where |0) is the zero-gluon
state

10) = g"(0)g™(R)[0)yye- (41)

and the remaining one-gluon states (n > 1) have the form

In) = 3"(0) { / Bx0" ()AL () | g (R)|0) e (42)

with 7, = %la the SU(3) group generators. From these
states we can construct an orthonormal basis, and diag-
onalize the Hamiltonian in that basis. For this purpose we
need to compute

Hyy = (m|H|n), Oy = (mn). (43)

The trial one-gluon wavefunctions \I/l(-")(x) may depend
on some variational parameters, which are chosen such
that the lowest energy state obtained by diagonalization is
minimized.

There is a big simplification if we choose our trial one-
gluon wavefunctions \IIS”) (x) to be transverse, V- W) =0.
Then, since the transverse gluon propagator will always
contract with the index of an external wavefunction, and
the coordinate x of the external wavefunction is always
integrated over, we can simply drop the k;k;/ k> piece of
the transverse projection operator, because that piece will
always act like a divergence on W. Effectively, then, we are

allowed to drop Dg}) (x,1) in (24), and just use

Dl‘j(.x, t) = 5ijD(.x, t),

&Pk 1
D — _ Likx —oyl 44
() = [ sga e (44)

Likewise, for ¢ ~ 0,

Dylx.c) - %6ijsign(€)53 (x). (45)

We also denote, at equal times, D(x) = D(x, ¢t = 0). With
transverse U\")(x) and n > 1

Opn = (m|n)
— Tri,1, / Bz B0 (2)D(z) — 22) 9" (22),
(46)

with Tr(t,t,) = 3Cr where Cy is the quadratic Casimir in
the fundamental representation.
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Now, for any choice of transverse \I/,(-”>(x), there exists
another transverse function f l(»") (x), with Fourier transform

£ (k) defined by

3
W = [ S Va e @)

Then
(nln) = 3Cx / Pxf P00 ). (@8)

So f l(.") (x) is the analog of an ordinary quantum mechanics
one-particle wavefunction, and ideally we would like to

first choose f l(-”) (x) based on some combination of intuition
and convenience, transform to f l(-") (k), and then compute
\I!l(.") from (47). But in practice it would be difficult to derive

\I/E") analytically, because of the /@y factor in (47). Even
numerically this would be challenging, because the inte-
grand of (47) is an oscillating function. It is simpler to work

directly with W".

A. The truncated basis

For the numerical work in this article, we will choose as
an ansatz transverse wavefunctions of the form

-y
Y =V x | x Fop(x.y,2)
0
—x0F o
= —y0_Fop , (49)
2F op + X0 F o5 + YO, F o

witha=1,2,.,N,f=1,2,..Mandn = (a—1)M + p.
Then F4 is chosen to have the form

4
Fa/}(xvy7Z) :fa(Z)L/l,v_l <_r>

a

1
X exp {——( P47+ r2+(R—z)2>] ,
a
(50)
where r = /x> 4+ y? is the polar coordinate in the trans-

verse direction, L}, is an associated Laguerre polynomial, a
is a variational parameter, and

1 a=1
falz) = {sin( s (z~|—z0)) a>1" (51)

R+-2z,
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The motivation for this choice of F; is the fact that if a
gluon is located on the z axis between the quarks, with
x=y=0 and 0 <z <R, then the linear piece of the
Coulomb potential between the gluon, the quark, and the
antiquark, sums up to 6.z + o.(R —z) = 6.R which is
independent of z. So if the gluon is not too far away from
the z axis, it can move more or less freely in the z direction
between the quarks. Hence the excitations in the z direction
might be as in a one-dimensional square well of width ~R.
Since there is no reason for the wavefunction to drop to zero
exactly at z = 0, R, we allow for a “well” a little bigger than
R, namely R + 2z,, where in this work we have taken
zo = a/3. Note that for r > |z|, |R — 7|

F(x,y,z) ~exp(—2r/a). (52)

The set of orthogonal functions in the integration measure
re~#/% are the associated Laguerre polynomials Ll (4r/a).
It should be understood that an orthogonal set of F4
does not produce an orthogonal set of one gluon states
{|n)}; it only specifies a set of linearly independent states
which together span a subspace of Hilbert space. The object
is to find the lowest eigenvalue of the Hamiltonian in this
subspace. If we define a matrix [H| with elements H,, and
a corresponding matrix [O] of overlaps O,,, in the non-
orthogonal set of states {|n)}, as in (43), the eigenvalues
of the Hamiltonian operator restricted to this subspace are
obtained by solving the generalized eigenvalue equation

u = E,[0]u™. (53)

This is essentially equivalent to the alternate procedure of
constructing a set of orthonormal states {|v,)} from the
{|n)} via, e.g., the Gram-Schmidt procedure, computing
matrix elements Hj; = (v;|H|v;) in the orthogonal basis
from the H,,,, and then diagonalizing the matrix H’ in the
usual way.

B. Matrix elements

We now list the improved-tree contributions to each
of the required Hamiltonian matrix elements H,, of
Eq. (43). The state with a static quark-antiquark pair and
zero constituent gluons will be denoted |0), and states
with the static quarks and one constituent gluon will be
denoted |n) with n > 0. The expression for overlap matrix
elements O,,, of one-gluon states was given in (46), while
for the zero-gluon state Oy, = 3 (a sum over three colors),
and O, = 0.

1. (0|H|0)
The matrix element is given by the diagram in Fig. 4, and
this is the simplest contribution. It is

Hop = =g Tr(t,t,)K(R) = 3K.(R). (54)
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gta 7777777777777 _gta

FIG. 4. Diagram responsible for the instantaneous Coulomb
potential.

2. (m|H|n) kinetic term

The next simplest term is associated with the kinetic
energy of the one-gluon state for the case m = n, and that is
best obtained by displacing the initial and final state in
time, so that the transverse gluon propagator is at unequal
times, and then taking minus the time derivative of the
diagram shown in Fig. 5:

i . d m
Hm :_EI_I)I(}C”Trtuta/dg’Zld?)ZQ\I]S )(Zl)

x D(z) —22. )W (z,)

= —Trfafa/d321d322‘1’,(-m)(11)D/(11 ~ 2,000 (z,)

1 n n
:3CF/d3z2\Iff. (20" (z). (55)
From (47), this could also be expressed in terms of f; as
Hi o [ dhons; 0,0 (56)

although this is actually not the most useful form if the
variational wavefunction is given in terms of W, rather
than f;.

FIG. 5.
energy.

Diagram associated with constituent gluon kinetic

PHYSICAL REVIEW D 93, 074506 (2016)

gfa>*——* """""" -gt gta,,,,,,,,,,,,,,,,,_g,
abc c abc c
gf 9; gf EA

FIG. 6. Diagram responsible for the H,, Hamiltonian matrix
element.

3. (n|H|0)
The relevant diagrams are shown in Fig. 6, and we find
C n
H,, = —2iC—A Pxd3 70" (2)D(x —z)

x {G.(x)OK, (R — x) + K (x)9,G.(R —x)} (57)

4. (m|H|n) Coulomb term

The planar diagrams are shown in Fig. 7. There are two
diagrams in which the Coulomb propagator ends on the
left-hand side quark, and likewise two diagrams where the
Coulomb propagator ends on the right-hand side antiquark.
The sum of all contributions is

C m n

H = ¢ [ dad s @)De -2 @)
F

X {K.(z1) + K(R—21) + K.(22) + K (R —23)}.

(58)

There is also a nonplanar contribution to the Coulomb
energy, which is shown in Fig. 8. This contribution comes
out to be

FIG. 7. Planar diagrams contributing to the instantaneous
Coulomb energy of the one constituent gluon state.
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FIG. 8. Nonplanar contribution to the instantaneous Coulomb
energy of the one constituent gluon state.

1
%:l = _gKC(R)Omn- (59)

5. (m|H|n) KGG terms

The diagrams are shown in Figs. 9(a) and 9(b). “KGG
permutations” means permutations in the order of the
instantaneous Coulomb (K) and ghost (G) propagators.
The possible orders are KGG, GKG, and GGK. With the
diagrammatic rules as before (trace of matrix generators
is clockwise), it turns out that diagram 9(b) is simply
the complex conjugate of diagram 9(a). The resulting
contribution is

2
HKGG — % / dExd3yd*ud®vD(u)D(v)
F

x {0 (x — )W (y — )

+ 0 (x — )P (y —v)}

x {K.(x)%{G,(x —y)@G.(y — R)

+ G (x)0K, (x —y)?'G.(y — R)

+ G, ()G (x —y)PKy—R)}  (60)

V. THE EQUAL-TIMES TRANSVERSE
GLUON PROPAGATOR

In order to actually compute the H,,, matrix elements
we need the full propagators K.(x —y), G.(x —y), and
D(x —y). The Coulomb propagator follows from (22) and
the Coulomb potential determined previously in [2]. In this
section we present our lattice Monte Carlo results for
D(x — y); the infrared behavior of the ghost propagator will
be taken from Refs. [5,11,12].

A. The question of gauge copies

Since our calculation is in Coulomb gauge, we will begin
with some remarks about Gribov copies. It is well known
that any point in field space where the quantity

PHYSICAL REVIEW D 93, 074506 (2016)

+ KGG permutations

(b)

FIG. 9. Diagrams contributing to the HXSS matrix element.
These entail a 12-dimensional integration.

3
R= &;;ReTr[Ui(x, 0], (61)

evaluated on each timeslice, is stationary (V5 is the number
of sites on the timeslice), will satisfy the Coulomb gauge
condition

ZS:(Uk(x, )—Upx—kt)—Hec.=0  (62)
k=1

at all sites x, which is just the lattice version of V- A = 0.
Gribov copies are the configurations on a gauge orbit
which satisfy this condition, and those copies which are
local maxima of R are said to be inside the Gribov region.
The global maximum of R is said to be in the “fundamental
modular region.” In practice it is impossible to find the
global maximum of the gauge fixing condition, although
some studies use simulated annealing in an attempt to find a
better gauge copy than what might be obtained from, e.g.,
the ordinary over-relaxation technique. Here we should
remark that in a fundamental sense there is no such thing
as a “better” gauge copy. It is obvious that if we are
calculating a gauge-invariant quantity, then the choice of
gauge copy is irrelevant. Of course, it may be that gauge
dependent quantities such as propagators and vertices will
vary somewhat from copy to copy, and the expectation
value for such quantities could very well depend on exactly
how the gauge copy is chosen. On the other hand, if one
could put together propagators and vertices so as to
compute a gauge-invariant quantity (such as a scattering
amplitude in ordinary perturbation theory, or the energy of
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some physical state), then it is expected that the gauge
variance of the propagators and vertices should cancel out,
and the details of Coulomb gauge fixing should be
irrelevant. For this to happen, however, it is important that
the same version of Coulomb gauge fixing is used for all
gauge-dependent quantities.

Any lattice Monte Carlo calculation in Coulomb or
Landau gauge uses some version of what might be called
“computer gauge.” Lattice configurations are generated
according to the gauge-invariant probability weighting,
and then some deterministic procedure is applied to arrive
at a particular Gribov copy inside the Gribov region. The
procedure we have used in [2], and that we will continue to
use here, is the method of Fourier acceleration, introduced
in [17]. Although we will not use simulated annealing to try
to obtain “better” gauge copies, it may still be of interest to
compare values of R in Coulomb gauge obtained from
simulated annealing followed by Fourier acceleration, with
the values obtained from Fourier acceleration alone. We
have carried out these procedures on the r = 1 timeslice of
25 lattices of volume 24*, generated at gauge coupling
p =6.0, with each lattice separated by 2000 update
sweeps. Each timeslice was first fixed to Coulomb gauge
by the Fourier acceleration method (which stops after a
certain convergence criterion is met), and the value of R
(which is approximately 0.88 at this value of f) was
recorded. The timeslice was then subject to a random
gauge transformation followed by 1000 simulated
annealing sweeps, with the final fixing carried out via
Fourier acceleration, and the procedure again stops when
the convergence criterion is met. In every case, the values of
R obtained for each lattice by the two procedures differed
at most at the fourth nonzero digit, i.e. a difference on
the order of 107, A variety of cooling schedules and final
temperatures were tried out for the simulated annealing
steps, and seemed to make little difference to this result. It
may be that Fourier acceleration is already very efficient at
maximizing R.

B. Renormalization

Propagators computed in lattice simulations are bare
propagators. The relation of the bare to the renormalized
transverse gluon propagator is given by the usual relation

DY(x) = Z3D; (), (63)

where Z 4 is the wavefunction renormalization factor, which
depends on both the cutoff and the renormalization scheme.
Relations between various renormalization constants in
Coulomb gauge were worked out in [13], where we find
that g21~( (x) in terms of bare coupling and propagator equals
the same expression in terms of the renormalized coupling
and propagator. From this reference one can also deduce
that the combination gG(x)A,, is renormalization invariant,
in which case

PHYSICAL REVIEW D 93, 074506 (2016)
gbareGbare(x) = gG(x)Z/_\l (64)

It is worth noting that Coulomb vertices, in Hamiltonian
matrix elements, are always multiplied by a factor of ¢°.
This means that the tree-level Coulomb vertices discussed
in Sec. III B involve only renormalization group invariant
combinations ¢?K (x — y) and gG(x — y)A(y).

This observation has an important consequence: it means
that when states are normalized (i.e. by division by \/O,,,),
the Hamiltonian matrix elements we compute are renorm-
alization group invariant. Therefore if we compute ghost,
gluon, and Coulomb propagators at a particular lattice
coupling f, and use these to calculate the energy spectrum
of the static quark-antiquark pair plus constituent gluons,
the continuum limit obtained by extrapolation to f — oo
will be the same as if we had carried through the spectrum
calculation using instead the corresponding renormalized
propagators and vertices.

C. Numerical results

We define the space components of A-field on the lattice,
in Coulomb gauge, as

A;(x.1) (U(x.1) = U} (x. 1)) (65)

B 2iga

where g = 1/6/f and a = a(p) is the lattice spacing in
fermis at coupling f, obtained from the Necco-Sommer
formula [18]

a(B) = (0.5 fm) exp[—1.6804 — 1.7331(8 — 6)
+0.7849(8 — 6)> — 0.4428(8 — 6)°]. (66)

We then use lattice Monte Carlo simulation (with Coulomb
gauge fixing as described above) to compute the equal-
times expectation value

= oy A ). (67)

D(R) = 5

where R = |x —y|.? In terms of the propagator

D?]»”(R) = (A%(x, t)A’j-(v, 1))
_ 5ahDij(R) (68)

we have

*Note that a midlink prescription for position would make no
difference to separation R, given the i = j restriction.
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1.1 4
D(R) = 351125“171)”/7( )= §5ijDij(R)
_ §D(R). (69)

The simulations have been carried out for lattice volumes
124,164,204, 244,284, 30% and # = 5.7, 5.8, 5.9, 6.0; there
is roughly a factor of 2 between lattice spacings at the
lowest and highest values of f in this range. Figure 10 is a
set of logarithmic plots which displays the dependence of
D(R) on lattice volume, at each value of #. What we see in
these figures is that the data at the different volumes may
have converged at R < 0.6 fm or so, but at larger separa-
tions this is not the case. At =5.7, 5.8 the data has
dropped below the x axis and gone negative in some region.
At =15.9, 6.0 the data points remain positive, but there is
reason to suspect that at still higher volumes this data might
also go negative in the long distance regime. The data is
shown on a linear scale in Fig. 11.

gluon propagator, B=5.7
10 ¢ ‘ ‘

PHYSICAL REVIEW D 93, 074506 (2016)

It is interesting to see whether the data in the intermediate
regime, where we may be seeing scaling, can be fit by a
standard ansatz. Define the equal-time propagators corre-
sponding to a massive or Gribov form

D" (R, m) :/ &’k eikx
’ (27)? 2(k* + m?):
m
= 1ag KimR). (70)
and
) 3k ik-x
Dot(Ram) = [ S ()
(27)° 2(K% + m*/K?)>

The latter integral can be expressed in terms of MeijerG
functions:

gluon propagator, 3=5.8
100 ‘ :

4 4
ﬁ o
1L 20: frre i 10 | 3
H o 24 = F
iy 28? A
855, 30* 1F T ]
0.1t *;+ as 1 o
E = E | .
=1 5 O s e
0.01 MMM g S
0.01 | WW
%ﬂ”@ﬁm?‘m;
0.001 ¢ 0.001 | g
0.0001 L L L L L L 0.0001 L L L L L L
0 0.2 0.4 0.6 0.8 1 1.2 0 0.2 0.4 0.6 0.8 1 1.2
R (fm) R (fm)
(ay=57 (b)B=5.8
gluon propagator, f=5.9 gluon propagator, 3=6.0
100 100
10 ¢ 10 L
1t ‘ﬁtti d}it:+
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) a
0.1 +
0.01
0.001 L 0.01 |
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FIG. 10. Lattice Monte Carlo results, in physical units, for the equal-times transverse gluon propagator at lattice volumes 12*-30* and
couplings 5.7 < # < 6.0. Data is shown on a logarithmic scale.
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Same as Fig. 10, but on a linear scale.
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Since the data has not convincingly converged at

R > 0.6 fm, we can at least try to fit the data in the range

0 < R £0.6 fm, where we do seem to see both scaling

and volume convergence, to either the massive or Gribov
forms, i.e.

pR) = { i 73)

o CDGrib(R’m> ’

where ¢ and m are the fitting parameters. Figure 12(a)
shows a best fit for the massive propagator, and Fig. 12(b)
for the Gribov propagator, on a logarithmic scale. The data
points shown are combined data for all couplings on the
largest 30* lattice volume. Clearly neither of these fits are
very convincing. The fitting functions can get the short
distance behavior correctly, where the propagator is large,
but then they deviate in the longer range tail, where the
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Gluon Propagator, Gribov fit
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FIG. 12. Comparison of lattice data for the transverse gluon propagator to fits by (a) a propagator with a mass pole; (b) the Gribov

propagator.

propagator is small. By fitting instead to the logarithm of
the data one can get quite a good fit to the tail, but then the
fits both go wrong at the short distance end, especially
when plotted on a linear scale. Neither the massive nor the
Gribov propagator gives a good account of the data in the
full 0 < R £0.6 fm interval. This motivates a search for
some other functional form for the propagator. We have
found that this form:

—bR*>+aR

R2

e

DU(R) = ¢ (74)

gives an excellent fit to the data. In the logarithmic plot in
Fig. 13(a), and the linear plot in Fig. 13(b) we show the data
for D(R) at all four  values at the largest 30* lattice
volume. On the same plots we also display the best fit (solid
line) to the data in the interval 0.09 < R < 0.6 fm by
D"al(R). The constants which give this fit are

a=2.35(23)fm™ !,

b=5.65(31)fm™2, ¢=0.0469(12).

(75)

There is no particular theoretical justification for the form
(74). The ansatz just happens to work very well in this
particular distance interval, where we have convergent
data. Presumably (74) is simply a good approximation in
this interval to the true, and no doubt very complicated,
transverse equal-times gluon propagator, which probably
violates positivity at larger distances, and displays loga-
rithmic corrections at shorter distances.

It is important to note the striking fact, seen in Figs. 13(a)
and 13(b), that the data at different values of the lattice
spacing, when expressed in physical units, completely
overlap up to 0.6 fm or so, beyond which the data still
seems to be volume dependent. This is not expected. In
lattice simulations we are dealing with the unrenormalized

propagator, so data sets at different values of the cutoff
ought to differ from one another by multiplicative con-
stants, and in the coupling range shown the largest
and smallest lattice spacings differ by almost a factor of
2 Yet there seems to be no trace of a cutoff-dependent

gluon propagator, 30* lattice
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FIG. 13. Comparison of the best fit (74) to the equal-times

transverse propagator data, at various lattice couplings, on the
largest 30* lattice volume. (a) logarithmic scale; (b) linear scale.
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multiplicative constant in the range of lattice couplings we
have probed. The conclusion appears to be that within this
range of lattice cutoffs we may have Z, ~ 1, at least in the
force renormalization scheme which underlies the Necco-
Sommer formula (66), and if that is the case then the bare
and renormalized propagators agree in this coupling range.
Of course Z, must differ very much from unity at
sufficiently large f and small lattice spacings. In any
event, the bare gluon propagator for this range of couplings
is fit by

exp[—5.65R? + 2.35R|
R? ’

D(R) = 0.0469 (76)

where R is in fm and D(R) in fm~2.

It should be noted that there have been previous studies of
both the transverse propagator in Coulomb gauge, carried out
in both SU(2) [5,11,19] and SU(3) [20] pure gauge theory.
These studies computed gluon propagators in momentum
space, rather than position space, and the scaling analysis was
on time asymmetric lattices. For these and other technical
reasons it is not straightforward to compare our position space
results directly with the earlier momentum space studies,
and we will not attempt this here. However, given the strong
sensitivity of our results to lattice volume, we believe it would
be very helpful to carry out further studies of the equal-times
transverse gluon propagator in both position and momentum
space, on much larger lattices than those used here.

D. The ghost propagator

We now consider the (bare, unrenormalized) ghost
propagator

GP(R) = (M) 4 py)

= (M) ) (77)

where the Faddeev-Popov operator on any given timeslice
of the lattice is

Mgy = ReTri:[{t”, PHUL(x) + Uy(x — k)5,

= 251U (x)6

thy 2t”thk(x - ]%)5)[7;(

5]
(78)

with the U, (x) being the spacelike link variables on that
timeslice. However, M has eight eigenvectors with zero
eigenvalues (¢ = 1 — 8)

c 1 . c
wglx) = méac with Max,byl//éy) =0 (79)

associated with a remnant global SU(3) color symmetry,
and is therefore not invertible as it stands. We must

PHYSICAL REVIEW D 93, 074506 (2016)

therefore invert M on a subspace orthogonal to these zero
modes. An alternate procedure is to invert the Faddeev-
Popov operator in momentum space, as in [5,11,12].
Nakagawa et al. [12] find in momentum space, for the
SU(3) group

G(k) o (infrared). (80)

Burgio et al. [5,11] and Langfeld and Moyaerts [19] find
nearly the same power dependence in SU(2). Translating
this into position space, we write

Ve c(p)

8 RO

G.(R)=gG(R) = (81)
The motivation for multiplying the ghost propagator by
coupling g is that, as we have noted above, the combination
gG(R)Zy", where ¢gG is the product of the bare lattice
coupling and ghost propagator, is equal to the product of
the renormalized coupling and ghost propagator. We have
already seen evidence that Z, ~ 1 in the range of couplings
p € 5.7-6.0. We therefore treat ¢(f) ~ ¢ as a constant in
this coupling range, to be fixed by fitting to some physical
quantity. As mentioned below (37), this constant may also
absorb a contribution correcting for the factorization of the
operator expectation values shown in Fig. 3.

VI. THE STATIC QUARK POTENTIAL

We now define the matrix [H] to have elements
H,, = (m|H|n) where Hyy and H,, = H};, were defined
in Egs. (54) and (57) respectively, and

H,,, = Hyn + Hs' + Hyp + HIGO, (82)
where expressions for HXin geoul gh HXGG have been
given in Egs. (55), (58), (59), (60). All of these matrix
elements, as well as the elements O,,,, of the overlap matrix
[O] defined in (46) depend on the parameter a that appears
in the one-gluon wavefunctions W, as well as the parameter
¢ in the ghost propagator.

The procedure, for any given ghost parameter ¢ and
quark-antiquark separation R, is to compute the energy
spectrum of the Hamiltonian in a truncated basis which
spans the Hilbert subspace containing the nonorthogonal
zero and one-gluon states {|n)}, and vary the parameter a
to minimize the lowest energy eigenvalue. As we have
already mentioned, a possible procedure is to construct an
orthonormal basis from the {|n)} states via Gram-Schmidt
orthogonalization, compute the Hamiltonian matrix ele-
ments in this basis, and then diagonalize the Hamiltonian.
An equivalent method is to solve the generalized
Hamiltonian equation [H]v, = E,[O]v,; this gives the same
spectrum of energy eigenvalues. This procedure is carried
out for a range of quark-antiquark separations R, and
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parameters c. If the lowest energy E;,(R) is linear as a
function of R, then we choose ¢ to get 6 = E,i,(R)/R
equal to the asymptotic string tension. In our calculation we
have chosen indices a, f in the wavefunction [see (50)] in
the range @ = 1, 2, 3, 4, f = 1, 2, 3, so counting the zero-
gluon state this is 13 states in all.

Our final result, and the main result of this paper, is
shown in Fig. 14. Here we plot the variational/truncated
basis estimate for the static quark potential V(R) up to
R =2.4 fm, in intervals of 0.2 fm, as compared to the
Coulomb potential of Eq. (3). We have found that as we
increase the number of states in the truncated basis from 2
to 13, the ground state energy converges at around 6 or 7
states. Error bars, comparable to symbol size, are estimates
of the error deriving from numerical integrations. The
dashed line through the computed points is a best fit by the
function

ViY(R) = 6"R + 6§ (83)
and we find

ot = 4.91(9) fm™2
— (437(4) MeV)? (84)

which can be compared to the accepted value of
o = (440 MeV)?2. Of course, the parameter in the ghost

55 - T
chain —e—
Coulomb -
fit oo

50 |

45

40 |

35 |
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V(R) (fm™)

25
20
15

10 | &

0.5 1 15 2 25
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FIG. 14. The Coulomb and gluon chain potentials.
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propagator ¢ = 3.5 was chosen to obtain this result, but
what is nontrivial is the fact that the potential remains
linear, despite deviating very strongly from the nonpertur-
bative Coulomb potential, which we recall had a string
tension four times greater than the asymptotic string
tension. Increasing or decreasing the constant ¢ by 10%
away from ¢ = 3.5 decreases or increases o'\, respectively,
by about 30%.

VII. CONCLUSIONS

We have shown how the inclusion of a single constituent
gluon in the static quark-antiquark state can preserve
the linear dependence of the energy on quark separation
R, at least up to R = 2.4 fm, while drastically reducing
the string tension from the pure Coulomb value of
Geout = (891 MeV)2. To show that the reduction is by
precisely the right amount, namely a factor of 4, will
require further numerical studies of the ghost and transverse
gluon propagators.

The next step in our program is to apply our variational
approach to gluelumps, glueballs, and heavy (but not static)
quark-antiquark bound states. For quarkonium states the
diagrams are essentially the same as those shown in Sec. IV,
only replacing the static quark lines with dynamical quarks
and antiquarks, and of course there will be wavefunctions
for relative positions and spin of quark, antiquark, and (zero
or one) constituent gluons. Likewise, for the glueball states,
the static quark lines are replaced by gluon propagators. For
these states, where no constituent is located at a fixed
position, it is preferable to carry out the calculation of
Hamiltonian matrix elements in momentum rather than
position space. This takes advantage of overall momentum
conservation, and greatly reduces the dimensionality of
integrals that must be carried out numerically. We hope to
report on work along these lines in a future publication.
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APPENDIX: COMPARISON WITH DYSON-
SCHWINGER EQUATIONS

In this appendix we compare our results for the ghost
and Coulomb propagators derived from lattice simulations
with the predictions of Dyson-Schwinger (DS) equa-
tions [21-24]. In the one-loop, rainbow-ladder approxima-
tion, the renormalized DS equation for the momentum
space ghost dressing function d(p) = gG(p) p? is given by
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1 1
mzm—ld[d(k)] + Iyld(u)], (A1)
where
Bk 1—(p-k)? dk
=N [

and 2w(p) = D7'(p) is the inverse momentum space
gluon propagator. Given the function w(p), the solution
of (Al) depends on the value of d(u) at an arbitrary
renormalization point, which we choose as y = 1 fm~!.
Specifically, the behavior of the ghost dressing function in
the IR, i.e. for p — 0, depends on the value of d(u) and the
IR behavior of w(p). If w(0) is finite then so is d(0),
providing that d(u) is less then some critical value d,. which
depends on w. As d(u) increases towards the critical value
the ghost dressing function becomes IR enhanced, and d(0)
becomes infinite for d(u) =d. with d(p) « 1/p'/? as
p — 0. In general, if @(p) behaves in the IR as

o(p) < 1/p’, (A3)
the ghost dressing function behaves as
d(p) < 1/pUHA72, (A4)

so long as d(u) is equal to the critical value. The large-R
behavior of the ghost propagator gG(R) in position space,
which is implied by (A4), is

gG(R)  1/RV?>F/2, (AS)
For any $ and d(u) < d., d(0) is finite. However, there
is a range of low momenta where d(p) follows the power-
law behavior given by (A4). The lower limit in this range
approaches p =0 as d(u) —» d.. Similarly, (A3) with
f > 0 implies that in position space at large distances
(R — o0) the gluon propagator behaves as

D(R) « 1/R*. (A6)
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We note that if D(R) > 0 at all distances, »(0) is finite,
while an IR enhanced @ with # > 0 implies that the gluon
propagator is positivity violating. The momentum space
Coulomb potential is proportional to the square of the ghost
propagator and the Coulomb form factor f,

Cr(p) ==L )
which satisfies the following DS equation,
f(p) =) + I f(P)] = 1 Lf (W], (A8)
with
&Pk 1—(p-k)?d(k)f(k
I;[f (k)] = N¢ / 20y Zw((kp — p)> ([f _)J;()z). (A9)

It follows from (A8) that f(p) is determined up to an
overall normalization.

3A good approximation to the momentum space lattice
propagator can be obtained using a simple form motivated
by the Gribov ansatz

o(p) = \/(p/a) + m(m,/ p). (A10)
The functional form adopted in (76), i.e. a positive D(R),
implies = 0. In this case the DS equation (A1) results in a

ghost propagator which at large R behaves as gG(R) =

(v/6/8)AR™'/? with A ~ 1.5. The power behavior is close
to the lattice fit (81), but the magnitude is approximately a
factor of 2 smaller than what is required (according to the
analysis in this article) to fit the asymptotic string tension. It
follows from (A1) that to increase the value of the ghost
propagator it is necessary to enhance  in the IR, and this in
turn implies positivity violation. The lattice data on the
gluon propagator does indeed indicate positivity violation.
While the analytical form in (76) is acceptable in the
analysis of the gluon chain spectrum, comparison with the
DS equation requires taking positivity violation into
account.
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